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Abstract

Advanced temporal and spatial applications require both the representation of complex objects and the

ability to �nitely represent in�nite relations. Representing such data requires combining the constraint

relational model (allowing �nite representation of in�nite information) and either the nested relational

or the object-oriented model (allowing representation of complex objects). In this paper, we extend the

nested relational calculus to deal with �nitely representable relations. The aim of the language we propose,

called frNRC, is to provide the right formal foundations to analyze nested constraint query languages,

overcoming most limitations of already existing languages. As an example of the theoretical foundations

of frNRC, we show that it is e�ectively computable and has NC data complexity. Moreover, frNRC

queries are independent of the depth of set nesting in data generated by intermediate computations.

Keywords: Databases, nested relational calculus, constraints.

1 Introduction

The need for sophisticated functionalities has lead to the evolution of database theory, requiring the de�nition

of appropriate data models. In this respect, at least two important research directions have been devised:

the �rst is the de�nition of complex object models [1, 7], the second is the de�nition of constraint models,

using mathematical constraints to �nitely represent in�nite information [13].

Several approaches have been proposed to model complex data by using �nitely representable relations.

By �nitely representable nested relations we mean relations that are nested and such that the used sets can

be either �nite, as in the traditional nested relational model, or in�nite but �nitely representable, as in the

constraint relational model. Most of the proposed languages model sets up to a given height of nesting [18].

Others do not have this restriction but are de�ned only for speci�c theories [9]. For others, as LyriC [5], the

de�nition of a formal basis, supporting the de�nition and the analysis of relevant language properties, has

been left to future work.

The aim of this paper is the de�nition of a model and a query language for �nitely representable nested

relations, overcoming some limitations of the previous proposals. Our language is obtained by extending

NRC [20] to deal with possibly in�nite relations, �nitely representable by using a decidable logical theory

admitting variable elimination (this is a necessary and su�cient condition to the de�nition of constraint

query languages [10]), and is called frNRC.NRC is similar to the well-known comprehension mechanism in

functional programming and its formulation is based on structural recursion [7] and on monads [19]. NRC

has been proved equivalent to most nested relational languages presented before. The choice of this language
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is motivated by the fact that the formal semantics assigned to NRC and the structural recursion on which

it is based allow us to prove several results about frNRC in a simple way. To simplify the discussion, in

this paper, frNRC is de�ned by considering the real polynomial constraint theory (real). However, starting

from results presented in [10], it is simple to show that any other theory admitting quanti�er elimination can

be easily modeled using the same framework.

One of the main results about this language is that frNRC, as NRC, has the conservative extension

property. This means that, when input and output are restricted to deal with a speci�c degree of nesting, any

higher degree of nesting generated by the computation is useless [20]. Thus, when input and output relations

represent constraint 
at relations, frNRC expressions can be mapped into �rst-order logic extended with the

considered logical theory. Conservative extension is a very important property for optimization purposes,

since it guarantees that complex computations generating higher degree of nesting can be automatically

simpli�ed, generating new expressions equivalent to the original ones but more e�cient. Giving a constructive

proof, we also prove that frNRC is e�ectively computable. For the sake of simplicity, the proof is provided

for real but can be easily extended to deal with any other theory admitting quanti�er elimination. The

same proof shows that the language has NC data complexity. The proposed proof, that can be applied to

other languages as well (for example to LyriC [5]), clearly shows which are the main issues arising in the

compilation of nested constraint query languages onto 
at constraint query languages.

2 Finitely Representable Nested Relational Calculus

Types In the traditional constraint query setting [13], a relation is an in�nite set of tuples taking values

from a given domain, as long as the set is �nitely representable by a �nite number of constraints, expressed

using a decidable logical theory [10, 13, 16]. We extend this paradigm to sets that can be nested to an

arbitrary depth. To this purpose, since we assume to deal with real, we allow in�nite sets of tuples of reals

to appear at any depth in a nested relation.

1

However, we do not allow a nested set to have an in�nite

number of such in�nite sets as its elements, to guarantee e�ective computability and low data complexity. To

be precise, the types that we want to consider are: s ::= R j s

1

� � � � � s

n

j fsg j f

fr

R� � � � �Rg: The type R

contains all the real numbers. The type s

1

� � � �� s

n

contains n-ary tuples whose components have types s

1

,

..., s

n

respectively. The type fsg represents sets of �nite cardinality whose elements are objects of type s.

The type f

fr

sg represents sets of (possibly) in�nite cardinality whose elements are objects of type s, where

s is a type of the form R� � � ��R. We also require each set in f

fr

sg to be �nitely representable in the sense

of [10, 13, 16]. For convenience, we also introduce a `type' B to stand for Booleans. However, for economy,

we use the number 0 to stand for false and the number 1 to stand for true.

Expressions To express queries over our �nitely representable nested relations, we extend the nested

relational calculus NRC de�ned in [7, 20]. We call the extended calculus frNRC, standing for �nitely

representable NRC. The syntax and typing rules of frNRC are presented in Figure 1. We often omit the

type superscripts as they can be inferred. An expression e having free variables ~x is interpreted as a function

f(~x) = e, which given input

~

O produces e[

~

O=~x] as its output. An expression e with no free variable can

be regarded as a constant function f(~x) = e that returns e on all input ~x. In the following, we present the

language incrementally.

NRC. NRC is equivalent to the usual nested relational algebra [1, 7]. The semantics of the NRC rules is

as follows. Variables x

s

are available for each type s. Every real number c is available. The operations for

1

Even if in this paper we consider real numbers, other domains can be easily considered.
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NRC rules

x

s

: s c :R

e : s

1

� � � � � s

n

�

i

e : s

i

e

1

: s

1

� � � e

n

: s

n

(e

1

; : : : ; e

n

) : s

1

� � � � � s

n

fg

s

: fsg

e : s

feg : fsg

e

1

: fsg e

2

: fsg

e

1

[ e

2

: fsg

e

1

: ftg e

2

: fsg

S

fe

1

j x

s

2 e

2

g : ftg

e

1

:R e

2

:R

e

1

= e

2

: B

e

1

: B e

2

: s e

3

: s

if e

1

then e

2

else e

3

: s

e : fRg

empty e : B

Rules for �nitely representable sets and constraints

f

fr

g

s

: f

fr

sg

e : s

f

fr

eg : f

fr

sg

e

1

: f

fr

sg e

2

: f

fr

sg

e

1

[

fr

e

2

: f

fr

sg

e

1

: f

fr

s

1

g e

2

: f

fr

s

2

g

S

f

fr

e

1

j x

s

2

2

fr

e

2

g : f

fr

s

1

g

e

1

:R e

2

:R

e

1

+ e

2

:R

e

1

:R e

2

:R

e

1

� e

2

:R

e

1

:R e

2

:R

e

1

� e

2

:R

e

1

:R e

2

:R

e

1

� e

2

:R

R : f

fr

Rg

e : f

fr

Rg

empty

fr

e : B

Rule for integrating sets and �nitely representable sets

e

1

: f

fr

s

1

g e

2

: fs

2

g

S

f

fr

e

1

j x

s

2

2 e

2

g : f

fr

s

1

g

Figure 1: frNRC syntax and typing rules

tuples are standard. Namely, (e

1

; : : : ; e

n

) forms an n-tuple whose i component is e

i

and �

i

e returns the i

component of the n-tuple e. fg forms the empty set. feg forms the singleton set containing e. e

1

[ e

2

unions

the two sets e

1

and e

2

.

S

fe

1

j x 2 e

2

g maps the function f(x) = e

1

over all elements in e

2

and then returns

their union; thus if e

2

is the set fo

1

; : : : ; o

n

g, the result of this operation is f(o

1

) [ � � � [ f(o

n

). For example,

S

ff(x; x)g j x 2 f1; 2gg evaluates to f(1; 1); (2; 2)g. The operations for Booleans are also quite typical, with

the understanding that true is represented by 1 and false is represented by 0. e

1

= e

2

returns true if e

1

and

e

2

have the same value and returns false otherwise. empty e returns true if e is an empty set and returns

false otherwise. Finally, if e

1

then e

2

else e

3

evaluates to e

2

if e

1

is true and evaluates to e

3

if e

1

is false; it

is unde�ned otherwise.

Finitely representable relations and constraints. We add constructs analogous to the �nite set con-

structs of NRC to manipulate �nitely representable sets and constructs for arithmetics to express real poly-

nomial constraints.

2

The semantics of the �rst four rules is analogous to those of �nite sets, except that

each operation does not return a set but a �nitely representable set. The four arithmetic operations have the

usual interpretation. empty

fr

e tests if the �nitely representable set e of reals is empty. Finally, the symbol

R denotes the in�nite (but �nitely representable) set of all real numbers. It is the presence of this symbol R

that allows to express unbounded quanti�cation. For example, given a polynomial f(x), we can express its

set of roots easily:

S

f

fr

if f(x) = 0 then f

fr

xg else f

fr

g j x 2

fr

Rg. Similarly, we can express the usual

linear order on the reals, because the formula 9z:(z 6= 0)^ (y � x = z

2

), which holds i� x < y, is expressible

as not (empty

fr

(

S

f

fr

if not(z = 0) then if y � x = z � z then f

fr

zg else f

fr

g else f

fr

g j z 2

fr

Rg)), with

not implemented in the obvious way.

2

Note that di�erent sets of rules can be inserted to represent di�erent logical theories (for example, dense-order).
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Integrating sets and �nitely representable sets. The constructs described above let us manipulate

�nite sets and �nitely representable sets independently. In order for these two kinds of sets to interact, we

need one more construct; see Figure 1. This construct let us convert a �nite set of real tuples into a �nitely

representable one. The semantics of

S

f

fr

e

1

j x 2 e

2

g is to apply the function f(x) = e

1

to each element of

e

2

and then return their union as a �nitely representable set. That is, if e

2

is the set fo

1

; : : : ; o

n

g, then it

produces the �nitely representable set f(o

1

) [

fr

� � � [

fr

f(o

n

). For example, the conversion of a �nite set

e of real tuples to a �nitely representable one can be expressed as

S

f

fr

f

fr

xg j x 2 eg.

Before we study frNRC properties, let us brie
y introduce a nice shorthand, based on the comprehension

notation [6, 19], for writing frNRC queries. Recall from [6, 7, 20] that the comprehension fe j A

1

; : : : ; A

n

g,

where each A

i

either has the form x

i

2 e

i

or is an expression e

i

of type B , has a direct correspondent in

NRC that is given by recursively applying the following equations:

� fe j x

i

2 e

i

; : : :g =

S

ffe j : : :g j x

i

2 e

i

g

� fe j e

i

; : : :g = if e

i

then fe j : : :g else fg

The comprehension notation is very user-friendly. For example, it allows us to write f(x; y) j x 2 e

1

; y 2

e

2

g for the Cartesian product of e

1

and e

2

instead of the clumsier

S

f

S

ff(x; y)g j y 2 e

2

g j x 2 e

1

g.

The comprehension notation can be extended naturally to all frNRC expressions. We can interpret the

comprehension f

fr

e j A

1

; : : : ; A

n

g, where each A

i

either has the form x

i

2 e

i

or has the form x

i

2

fr

e

i

or is

an expression e

i

of type B , as an expression of frNRC by recursively applying the following equations:

� f

fr

e j x

i

2 e

i

; : : :g =

S

f

fr

f

fr

e j : : :g j x

i

2 e

i

g

� f

fr

e j x

i

2

fr

e

i

; : : :g =

S

f

fr

f

fr

e j : : :g j x

i

2

fr

e

i

g

� f

fr

e j e

i

; : : :g = if e

i

then f

fr

e j : : :g else f

fr

g

For example, the query to �nd the roots of f(x) becomes f

fr

x j x 2

fr

R; f(x) = 0g. Similarly, the query

to test if x < y becomes not(empty

fr

(f

fr

z j z 2

fr

R; not(z = 0); y � x = z � zg)).

In addition to comprehension, we also �nd it convenient to use pattern matching. For example, we

write f(x; z) j (x; y) 2 e

1

; (y

0

; z) 2 e

2

; y = y

0

g for relational composition instead of the more o�cial

f(�

1

xy; �

2

yz) j xy 2 e

1

; yz 2 e

2

; �

2

xy = �

1

yzg.

We should also remark that while frNRC provides only equality test onRand emptiness tests on fRg and

f

fr

Rg, these operations can be lifted to every type s using frNRC as the ambient language; see [20]. Similarly,

commonly used operations such as set membership, set subset tests, set di�erence, and set intersection are

expressible at all types in frNRC.

3 Conservative Extension Property

Given a type s, the height of s is de�ned as the depth of nesting of set brackets f�g and f

fr

�g in s. Given an

expression e of frNRC, the height of e is de�ned as the maximum height of all the types that appear in e's

typing derivation. For example, f(x; y) j x 2 e

1

; y 2 e

2

g has height 1 if both e

1

and e

2

have height 1. On

the other hand, f(x; f

fr

z j z 2

fr

R; z < xg) j x 2 eg have height 2 if e has height 1.

De�nition 3.1 A language L is said to have the conservative extension property if every function

f : s

1

! s

2

that is expressible in L can be expressed using an expression of height no more than the

maximum between the heights of s

1

and s

2

. 2
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�

i

(e

1

; : : : ; e

n

); e

i

if true then e

1

else e

2

; e

1

if false then e

1

else e

2

; e

2

fg [ e; e

e [ fg; e

empty(e

1

[ � � � [ e

n

); false , if some e

i

has the form feg

empty(e

1

[ � � � [ e

n

); true, if every e

i

has the form fg

empty

fr

(e

1

[

fr

� � � [

fr

e

n

); false , if some e

i

has the form f

fr

eg

empty

fr

(e

1

[

fr

� � � [

fr

e

n

); true, if every e

i

has the form f

fr

g

S

fe j x 2 fgg; fg

S

fe

1

j x 2 fe

2

gg; e

1

[e

2

=x]

S

fe

1

j x 2 e

2

[ e

3

g;

S

fe

1

j x 2 e

2

g [

S

fe

1

j x 2 e

3

g

S

fe

1

j x 2

S

fe

2

j y 2 e

3

g;

S

f

S

fe

1

j x 2 e

2

g j y 2 e

3

g

S

fe

1

j x 2 if e

2

then e

3

else e

4

g; if e

2

then

S

fe

1

j x 2 e

3

g else

S

fe

1

j x 2 e

4

g

S

f

fr

e j x 2

fr

f

fr

gg; f

fr

g

S

f

fr

e

1

j x 2

fr

f

fr

e

2

gg; e

1

[e

2

=x]

S

f

fr

e

1

j x 2

fr

e

2

[

fr

e

3

g;

S

f

fr

e

1

j x 2

fr

e

2

g [

fr

S

f

fr

e

1

j x 2

fr

e

3

g

S

f

fr

e

1

j x 2

fr

S

f

fr

e

2

j y 2

fr

e

3

gg;

S

f

fr

S

f

fr

e

1

j x 2

fr

e

2

g j y 2

fr

e

3

g

S

f

fr

e

1

j x 2

fr

if e

2

then e

3

else e

4

g ; if e

2

then

S

f

fr

e

1

j x 2

fr

e

3

g else

S

f

fr

e

1

j x 2

fr

e

4

g

S

f

fr

e j x 2 fgg; fg

S

f

fr

e

1

j x 2 fe

2

gg; e

1

[e

2

=x]

S

f

fr

e

1

j x 2 e

1

[ e

2

g;

S

f

fr

e

1

j x 2 e

2

g [

S

f

fr

e

1

j x 2 e

3

g

S

f

fr

e

1

j x 2

S

fe

2

j y 2 e

3

gg;

S

f

fr

S

f

fr

e

1

j x 2 e

2

g j y 2 e

3

g

S

f

fr

e

1

j x 2

fr

S

f

fr

e

2

j y 2 e

3

gg;

S

f

fr

S

f

fr

e

1

j x 2

fr

e

2

g j y 2 e

3

g

S

f

fr

e

1

j x 2 if e

2

then e

3

else e

4

g; if e

1

then

S

f

fr

e

1

j x 2 e

3

g else

S

f

fr

e

1

j x 2 e

4

g

Table 1: Rewriting rules

We now prove that frNRC has the conservative extension property, just like NRC [20]. To this purpose,

as in [20], we �rst provide some rewriting rules, reducing set height. Then, we show that the normal forms

induced by such rules have height no more than that of their free variables (i.e., their input variables).

Table 1 shows the rewriting rules that we want to use. Those for NRC are taken from [20]. As usual, we

assume that bound variables are renamed to avoid capture and that e

1

[e

2

=x] denotes the expression obtained

by replacing all free occurrences of x in e

1

by e

2

.

It is readily veri�ed that the proposed rewriting rules are sound. That is, expressions obtained from

e

1

by rewriting are semantically equivalent to e

1

. Furthermore, using a straightforward adaptation of the

terminationmeasure given in [20], we can prove that the rewriting system presented in Table 1 is guaranteed to

stop no matter in what order these rules are applied. We therefore say that the system is strongly normalizing.

Proposition 3.2 If e

1

; e

2

, then e

1

= e

2

.

3

Moreover, the rewriting system presented in Table 1 is strongly

normalizing. 2

The following result follows from the application of a simple induction on the structure of expressions.

Proposition 3.3 Let e : s be a frNRC expression, having free variables x

1

: s

1

, ..., x

n

: s

n

such that e is

a normal form with respect to the above rewriting system. Then the height of e is at most the maximum of

the heights of s, s

1

, ..., s

n

. 2

Combining Propositions 3.2 and 3.3, we conclude the following.

Theorem 3.4 frNRC has the conservative extension property. 2

3

The symbol = denotes semantic equivalence.
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Paredaens and Van Gucht gave a translation for mapping nested relational algebra expressions having


at relations as input to an equivalent expression in �rst-order logic with bounded quanti�cation [17]. This

translation can be easily adapted to provide a translation for mapping frNRC expressions of height 1 to

�rst-order logic with polynomial constraints. Next result follows from this and Theorem 3.4.

Corollary 3.5 If f : s

1

! s

2

is a function expressible in frNRC and s

1

and s

2

have height 1, then f is

expressible in �rst-order logic with polynomial constraints. 2

Thus all functions f : s

1

! s

2

in frNRC, with s

1

and s

2

of height 1, are e�ectively computable by

compiling into constraint query languages such as those proposed in [10, 13, 16]. As a consequence, we

can make use of well-known results [3, etc.] on constraint query languages to analyze the expressiveness

of frNRC with respect to such functions. For example, an immediate consequence is that frNRC cannot

express parity test, connectivity test, and transitive closure.

We can also use the above \compilation procedure" to study the expressive power of frNRC on functions

whose types have heights exceeding 1. We borrow an example from [15] for illustration. A set of sets

O = fO

1

; : : : ; O

n

g : ffRgg is said to have a family of distinct representatives i� it is possible to pick an

element x

i

from each O

i

such that x

i

6= x

j

whenever i 6= j. It is known from [15] that NRC cannot test if a

set has distinct representatives. We show it cannot be expressed in frNRC either.

Corollary 3.6 frNRC cannot test if a set of sets has distinct representatives.

Proof. frNRC cannot express parity test. It follows that it cannot test if a chain has an even number

of nodes. Let a set X

m

= f(x

1

; x

2

); : : : ; (x

m�1

; x

m

)g be given, where m > 2. Then we can construct in

frNRC the set S

m

= ffx

1

g; fx

m

g; fx

1

; x

3

g; fx

2

; x

4

g; : : : ; fx

m�2

; x

m

gg. According to [15], S

m

has distinct

representatives i� m is even. It follows that frNRC cannot test for distinct representatives. 2

4 E�ective Computability and Complexity

Recall that expressions in frNRC can iterate over in�nite sets. An important question is whether every

function expressible in frNRC is computable. In the previous section, we saw that if a function in frNRC

has input and output of height 1, then it is computable. In this section, we lift this result to functions of all

heights.

Our strategy is as follows. We �nd a total computable function p

s

: s ! s

0

to encode nested �nitely

representable sets into 
at �nitely representable sets. We also �nd a partial computable decoding function

q

s

: s

0

! s so that q

s

� p

s

= id. Finally, we �nd a translation (�)

0

that maps f : s

1

! s

2

in frNRC to

(f)

0

: s

0

1

! s

0

2

in frNRC such that q

s

2

� (f)

0

� p

s

1

= f . Note that (f)

0

has height 1 and is thus computable.

Before we de�ne p and q, let us �rst de�ne s

0

, the type to which s is encoded. Notice that s

0

always has

the form f

fr

R� � � � �Rg.

� R

0

= f

fr

Rg

� (s

1

� � � � � s

n

)

0

= f

fr

t

1

� � � � � t

n

g, where s

0

i

= f

fr

t

i

g.

� f

fr

sg

0

= f

fr

R� sg

� fsg

0

= f

fr

R�R� tg, where s

0

= f

fr

tg

The encoding function p

s

: s ! s

0

is de�ned by induction on s. In what follows,

~

0 stands for a tuple of

zeros (0; : : : ; 0) having the appropriate arity. A �nitely representable set is coded by tagging each element

by 1 if the set is nonempty and is coded by a tuple of zeros if it is empty. A �nite set is coded by tagging
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each element by 1 and by a unique identi�er if the set is nonempty and is coded by a tuple of zeros if it is

empty. More precisely:

� p

R

(o) = f

fr

og

� p

s

1

�����s

n

((o

1

; : : : ; o

n

)) = f

fr

(x

1

; : : : ; x

n

) j x

1

2

fr

p

s

1

(o

1

); : : : ; x

n

2

fr

p

s

n

(o

n

)g

� p

f

fr

sg

(O) = f

fr

(0;

~

0)g, if O is empty. Otherwise, p

f

fr

sg

(O) = f

fr

(1; x) j x 2

fr

Og.

� p

fsg

(O) = f

fr

(0; 0;

~

0)g, if O is empty. Otherwise, p

fsg

(O) = O

1

[

fr

� � � [

fr

O

n

, if O = fo

1

; : : : ; o

n

g and

O

i

= f

fr

(1; i; x) j x 2

fr

p

s

(o

i

)g. Note that we allow the i's above to be any numbers, so long as they are

distinct positive integers.

We use

S

fe

1

j x 2

fr

e

2

g to stand for the application of f(x) = e

1

to each element of e

2

, provided the

�nitely representable set e

2

has �nite number of elements, and return the �nite union of the results. Then

the comprehension notation fe j A

1

; : : : ; A

n

g is extended to allow A

i

to be of the form x

i

2

fr

e

i

and the

translation equations are augmented to include the equation: fe j x

i

2

fr

e

i

; : : :g =

S

ffe j : : :g j x

i

2

fr

e

i

g.

The decoding function q

s

: s

0

! s, which strips tags and identi�ers introduced by p

s

, can be de�ned as

follows:

� q

R

(O) = o, if O = f

fr

og.

� q

s

1

�����s

n

(O) = (o

1

; : : : ; o

n

), if o

i

= q

s

i

(f

fr

x

i

j (x

1

; : : : ; x

n

) 2

fr

Og).

� q

f

fr

sg

(O) = f

fr

x j (1; x) 2

fr

Og.

� q

fsg

(O) = fq

s

(f

fr

y j (1; j; y) 2

fr

O; i = jg) j (1; i; x) 2

fr

Og.

It is clear that p

s

and q

s

are both computable, even though they cannot be expressed in frNRC. Moreover,

using the fact that p

s

(O) is never empty, by induction on the structure of s we can show that q

s

is inverse of

p

s

.

Proposition 4.1 q

s

� p

s

= id. 2

Note that p

s

is not deterministic. Let O

1

: s

0

and O

2

: s

0

. Then we say O

1

� O

2

if q

s

(O

1

) = q

s

(O

2

).

That is, O

1

and O

2

are equivalent encodings of an object O : s. It is clear that whenever O

1

� O

0

1

, ..., and

O

n

� O

0

n

, then f

fr

(x

1

; : : : ; x

n

) j x

1

2

fr

O

1

; : : : ; x

n

2

fr

O

n

g � f

fr

(x

1

; : : : ; x

n

) j x

1

2

fr

O

0

1

; : : : ; x

n

2

fr

O

0

n

g.

It is also obvious that whenever O � O

0

, then f

fr

x

i

j (x

1

; : : : ; x

n

) 2

fr

Og � f

fr

x

i

j (x

1

; : : : ; x

n

) 2

fr

O

0

g.

We can now state the following key proposition (see [4] for the proof).

Proposition 4.2 For every function f : s

1

! s

2

in frNRC, there is a function (f)

0

: s

0

1

! s

0

2

such that

s

1

id

-

s

1

f

-

s

2

id

-

s

2

s

0

1

p

s

1

?

�

-

s

0

1

q

s

1

6

(f)

0

-

s

0

2

q

s

2

6

�

-

s

0

2

p

s

2

?

Proof Sketch. Left and right squares commute by de�nitions of p

s

, q

s

, and �. It is then possible to

construct (f)

0

by induction on the structure of the frNRC expression that de�nes f such that the middle

square and thus the entire diagram commutes. 2

Now let f : s

1

! s

2

be a function in frNRC, where s

1

and s

2

have arbitrary nesting depths. Proposition

4.2 implies that there is a function (f)

0

: s

0

1

! s

0

2

in frNRC such that q

s

2

� (f)

0

� p

s

1

= f . Since s

0

1

and s

0

2

are

both of height 1, by Theorem 3.4, we can assume that (f)

0

has height 1. Then by Corollary 3.5, we conclude

that (f)

0

is e�ectively computable. Since q

s

and p

s

are also computable, we have the very desirable result

below.
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Theorem 4.3 All functions expressible in frNRC are e�ectively computable. 2

The above \compilation procedure" shows that frNRC can be embedded in �rst-order logic with poly-

nomial constraints, modulo the encodings p

s

and q

s

(thus, frNRC is closed). The converse is also true. For

example, a formula 9x:�(x) can be expressed in frNRC as not (empty

fr

f

fr

1 j x 2

fr

R; �(x)g). So frNRC

does not gain us extra expressive or computational power, compared to the usual constraint query languages.

However, it gives a more natural data model and a more convenient query language, since it is no longer

necessary to model data as a set of 
at tables.

Results about data complexity of frNRC can be obtained from results presented in Section 4 and from

[13]. Consider the diagram introduced in Proposition 4.2. As f

0

is expressed in �rst-order logic extended

with polynomial constraints, it follows from [13] that its data complexity is in NC. Moreover, it is simple to

show that encoding and decoding functions p

s

and q

s

are also in NC. Thus, we obtain the following result

(similar results can be obtained by considering other constraint theory).

Proposition 4.4 frNRC has data complexity in NC. 2

5 Comparison with Related Work

Other approaches have been proposed to model in�nite sets in constraint data models. Such approaches can

be classi�ed according to the following criteria (see Table 2):

� Theory and underlying query language. Di�erent theories have been considered by di�erent languages.

The choice of a particular theory and language allows to obtain speci�c complexity and expressivity

results. Often, less general theories are chosen only to guarantee a low data complexity (see for example

LyriC). This is not the case of C-CALC, whose semantics strictly depends on the chosen theory.

� Maximal set height. Some proposed languages model sets up to a �xed set height. Among the proposed

languages, only C-CALC and frNRC in the nested relational framework, and LyriC, in the object-

oriented framework, allow the representation of arbitrary complex data.

� Data complexity. Practical languages are usually required to have PTIME data complexity. Among

the proposed languages, Datalog

�

P(Z)

and C-CALC have the higher complexity. The high complexity

of Datalog

�

P(Z)

is mainly due to the fact that Datalog is the underlying language, whereas the hyper-

exponential complexity of C-CALC is due to the fact that variables may range over sets, thus high-order

computation is provided.

From the previous considerations, it follows that frNRC overcomes some limitations of the previous

proposals to model complex objects in constraint databases. Indeed, no maximum degree of nesting is

assumed and di�erent theories can be used to �nitely represent relations, ensuring at the same time a low

data complexity. Moreover, the formal semantics on which it is based allows one to easily analyze several

interesting properties (as conservative extension) of nested constraint relational languages.

6 Concluding remarks

The paper has presented a framework to reason about nested constraint query languages. The framework

can be applied to any constraint domain under which the standard �rst-order constraint query language

works [10]. Future work includes the de�nition of optimization techniques for the proposed language and the
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Language Theory Underlying Max. Complexity

query language set height

frNRC theories admitting quanti�er

elimination

NRC n � 0 = complexity of FO(�) (FO ex-

tended with theory �), if FO(�) �

NC

LyriC [5] linear polynomial constraints XSQL [14] n � 0 � PTIME

Datalog

�

P(Z)

[8, 18] set constraints on integer

numbers

Datalog 2 � DEXPTIME

C-CALC [9] dense-order constraints relational calculus

for complex objects

[11]

n � 0 hyper-exponential

EGRA(�) [2] theories admitting quanti�er

elimination

constraint rela-

tional algebra [12]

2 = complexity of FO(�) (FO ex-

tended with theory �), if FO(�) �

NC

Table 2: Language comparison

integration of external functions. In particular, an interesting topic is the detection of conditions under which

computability can be retained when inserting high-order signatures, de�ning functions on set types.
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