
?

n

?

1

2

3

1 2 3 2

Abstract.

1 Introduction

Generalized Relational Algebra: Modeling

Spatial Queries in Constraint Databases

A. Belussi E. Bertino M. Bertolotto B. Catania

Constraint programming is a completely declarative paradigm by which com-

putations are described by specifying how they are constrained. In data mod-

eling, the main advantage of using constraints is that they serve as a unifying

data type for the (conceptual) representation of heterogeneous data. In partic-

ular, the bene�t of this approach is emphasized when complex knowledge (for

Dipartimento di Elettronica e Informazione

Politecnico di Milano

Piazza L. da Vinci 32

20133 Milano, Italy

e-mail: belussi@elet.polimi.it

Dipartimento di Scienze dell'Informazione

Universit�a degli Studi di Milano

Via Comelico 39/41

20135 Milano, Italy

e-mail: bertino@hermes.mc.dsi.unimi.it

e-mail: catania@ghost.dsi.unimi.it

Dipartimento di Informatica e Scienze dell'Informazione

Universit�a degli Studi di Genova

Via Dodecaneso 35

16146 Genova, Italy

e-mail: bertmic@disi.unige.it

The introduction of constraints in database languages is an

appealing direction. In this paper we present a model for constraint

databases, derived from the one proposed in [13], and a family of general-

ized relational algebra languages, derived from the language proposed in

[12] and in [19]. Each language of the family is obtained by specifying a

certain logical theory for constraints and a particular application domain,

by means of a set of functions. We then analyze the issues concerning

spatial data modeling in the proposed constraint data model and the

application of the proposed language to model spatial queries. Indeed,

constraint databases o�er a powerful formalism to express sets of points

embedded in -dimensional spaces.

The work reported in this paper was partially supported by CNR under grant number

95.00430.CT12 \Modelli e sistemi per il trattamento di dati ambientali e terrioriali".

F

F

F

F

F

F

�;

� �

�

�

generalized

Generalized Relational Algebra

Tuple

operators

set operators

example, spatial or temporal data) has to be combined with some descriptive

non-structured information (such as names or �gures).

During the last few years, a lot of work has been done in order to introduce

constraints in databases, both as data and as language primitives. One of the

�rst approaches is certainly the one proposed in [10]. There, constraints are

inserted in the relational algebra in order to model in�nite relations. However,

this introduction is only at the language level. Constraints are not inserted into

data.

The �rst general design principle to make this integration feasible has been

proposed in [13], where a general framework for constraint query languages has

been de�ned. The framework is based on the simple idea that a constraint can be

seen as an extension of a relational tuple, or, viceversa, that a relational tuple

can be interpreted as a simple form of constraint. The new constraint tuples

are called . In the same paper, a calculus for constraint databases is

proposed and shown to be tractable from a computational point of view. An

algebra equivalent to the calculus introduced in [13] has been proposed in [12].

All the subsequent work extends these results in some ways. In [2], linear

constraints are inserted into an object-oriented framework. The resulting query

language can be seen as an extension of XSQL [14] and it has been proved to be

equivalent to the language obtained by inserting linear constraints in SQL. In

[19], constraints are used in modeling spatial data and spatial queries. A theory

of spatial queries has also been proposed, adapting the concept of computable

query proposed in [4] to the spatial case.

Neither the algebra proposed in [12] and in [19], nor the calculus proposed

in [13] are tailored to a speci�c application. They can be used whatever the

applicative context, regardless of the meaning given to constraints. However, we

claim that each application needs some particular procedures. These procedures

may either be not expressible in the constraint language or require a speci�c

implementation.

In order to consider this aspect within a relational context, we de�ne a fam-

ily of relational languages denoted GRA() (

tailored on and). represents a decidable logical theory used to specify

constraints, and represents a set of recursive total functions, that we may

think of as a set of functions needed in a particular application domain. Hence,

for each choice of and of , we obtain a distinct language in the family.

Each language of the family is composed of two sets of operators.

act on generalized tuples by manipulating the set of relational tuples

they represent. Thus, they do not consider generalized tuples as unique objects.

Rather, they consider them as a collection of relational tuples. On the other hand,

consider generalized tuples unitarily as single objects, without the

use of explicit tuple identi�ers.

Note that when is the linear polynomial constraints theory and is empty,

the de�nition of tuple operators exactly coincides with the algebra operators pro-

posed in [12]. Set operators do not increase the expressive power of the algebra,

though functions in do increase. Thus, set operators represent a compact way

1

1

1

1

1

1

1

1

1

1

1

n

n

k

N i

i k

k

k

M

i k

M

M

De�nition1.

{

{

{

{

{

F

2 f 6 �

� g

^ ^ � �

f g

� �

f g

_ _

�

2 The Generalized Relational Model

�;

p X ; :::; X � p

X ; :::; X � ; ; ; <;

; >

�

x ; :::; x �

' ::: ' ' i N �

' x ; :::; x

x ; :::; x �

x ; :::; x

k � r ; :::;

 i M x ; :::; x

�

r ; :::;

 :::

constraint

generalized tuple

disjunctive generalized tuple d-generalized tuple

generalized relation of arity

formula corresponding to a generalized relation

generalized database

to formalize operations on generalized tuples as a whole, that may be useful from

a user point of view.

In order to better analyze the power of the proposed operators, we tailor the

GRA() to a spatial application domain. We show that the set of spatial data

types (point, line and polygon), usually adopted in spatial database systems,

can be simply mapped to linear constraints. Moreover, by analyzing the various

spatial data models proposed in the literature [5, 8, 9, 21, 22], we show how a

large part of spatial queries can be mapped to GRA expressions.

The remainder of the paper is organized as follows. In Section 2, the gen-

eralized constraint model is introduced. In Section 3, the family of Generalized

Relational Algebra languages is de�ned, discussing the meaning of all the new

introduced operators. Then, a particular language of the family, which is tailored

for spatial applications, is considered. To this purpose, in Section 4, a represen-

tation of some spatial data in terms of our generalized model is proposed. The

considered logical theory is that of linear polynomial constraints. Then, in Sec-

tion 5, we show how several spatial queries can be de�ned within such language.

The analysis shows that the introduced set operators are very useful in de�ning

such queries. Finally, Section 6 presents some conclusions and outlines future

work.

The model we consider is an extension of the model proposed in [13]. The consid-

ered extension can be seen as a simpli�cation from a data representation point

of view.

In the following, a identi�es a formula of a decidable logical theory.

Several classes of constraints have been proposed. For example, the class of real

polynomial constraints identi�es formulas of the form () 0, where

is a polynomial with real coe�cients in variables and = =

.

The following de�nition introduces the model.

Let be a class of constraints (a decidable logical theory).

A over variables in the logical theory is a �nite

conjunction , where each , 1 , is a constraint in .

The variables in each are all free and among .

A (abbreviated as) over

variables in the logical theory is a �nite disjunction of generalized

tuples over variables .

A in is a �nite set = where

each , 1 , is a d-generalized tuple over variables and in

.

The = is the

disjunction .

A is a �nite set of generalized relations.

2

inconsistent

Example 1.

normal canonical

^

;

� � ^ � �

� � ^ � � _ � � ^ � �

^ � � ^ � �

^ � � ^ � �

^ � � ^ � �

X < Y

X Y Y

X t

ext t t ext t

R

R

a X c b Y d

e X f g Y h f X l g Y i

R

R

Z ia a X c b Y d

Z ib e X f g Y h

Z ib f X l h Y i

ia ib

Each d-generalized tuple identi�es a set of relational tuples. For example,

the generalized tuple 2 = 3 identi�es all the relational tuples with two

attributes, and , having 3 as value for and a number greater than 2 as a

value for . The set of relational tuples represented by a d-generalized tuple

is denoted by (). A d-generalized tuple is if () = .

In our model, a d-generalized tuple is a �nite disjunction of generalized tuples.

In the model proposed in [13], a generalized relation is a �nite disjunction of

generalized tuples. Thus, the d-generalized tuple introduced in De�nition 1 can

be seen as a compact form for representing a portion of a generalized relation,

as it has been introduced in [13]. As we will see in Section 4, this could be

very useful for modeling spatial concepts. Indeed, a generalized tuple can only

represent a convex �gure. For representing concave �gures either a d-generalized

tuple or a set of generalized tuples should be used. In the latter case, generalized

tuples should have an additional variable, encoding an object identi�er. This

fact is better explained by the following example.

Suppose is a generalized relation, containing �gures in the Eu-

clidean plane. Assume the current instance of contains the �gures shown

in Figure 1. It is simple to show that the concave object in Figure 1 can be

decomposed in two convex �gures, representing two rectangles. A possible rep-

resentation in the generalized relational model of the considered objects is the

following:

() ()

() () () ()

In the representation of the concave object, each disjoint represents a convex

polygon belonging to the convex decomposition of the �gure.

If we want to represent the instance of by using generalized tuples, the

schema of must contain an additional variable, encoding the �gure identi�er.

We then obtain the following generalized tuples:

= () ()

= () ()

= () ()

where and are the �gure identi�ers. This is the only representation allowed

by the model considered in [13].

In general, constraints are assumed to be in or form [1, 2,

12]. In this paper we do not consider any particular normal form. We suppose

that two d-generalized tuples are equivalent if their extensions coincide. More-

over, a generalized relation can contain several equivalent d-generalized tuples

only if their representation (eventually, in normal form) is di�erent.

a

b

c

d

e f

g

h

i

l

R

F

{

{

�;

Fig. 1. Figures represented in relation

3 The Generalized Relational Algebra GRA()

constraint

variables relational variables

A last remark is related to generalized relations dealing with both

, used inside constraints, and , playing the role of

relational attributes. De�nition 1 introduces the concept of d-generalized tuple

by considering that all the variables in a relation schema are constrained. In

practice, it can be useful to deal with relations containing both constraint and

relational variables. This topic has been addressed in [1], [2] and [19]. By deal-

ing with both constraint and relational variables, we can associate descriptive

non-structured knowledge, represented by unconstrained values (i.e., in the case

of a geographical system, a river name), with complex data, represented by in-

formation modeled by constraints (i.e., the representation by constraints of the

river path). Our model can be easily extended to this case (see for example [19]).

However, for the sake of simplicity, in the following we consider only generalized

databases of the form introduced in De�nition 1, without considering descriptive

non-structured knowledge.

Di�erent constraint theories should be used for di�erent application domains

(e.g., temporal [15] or spatial [18, 19] applications). In general, the set of oper-

ations introduced in the algebra proposed in [12] and in [19] is not adequate for

any possible application context. This is due to two main reasons:

Di�erent application domains may need di�erent speci�c operators. These

operators may not always be modeled by the proposed constraint language.

If we consider a particular application domain, a logical theory must be

chosen with respect to some speci�c expressiveness and complexity require-

ments. Often, the chosen theory is not adequate to support all the function-

alities needed by the speci�c application. For example, if we choose linear

polynomial constraints to model spatial data, the concept of Euclidean dis-

�;

F

F

F

F F

3.1 Application Independent Operators

application independent

application dependent

tance cannot be modeled, even if it can be modeled in the logical theory of

(not necessarily linear) polynomial constraints.

In order to consider these aspects in de�ning a constrained algebra, we introduce

a family of languages, parameterized with respect to the chosen logical theory

and to the particular application domain.

Each language in this family consists of two sets of operators. The �rst set is

composed of a �xed number of operators, de�ned regardless of the application

domain. The second set includes operators strictly dependent on the chosen do-

main. Thus, if the generalized relational model is to be used in a spatial context,

some operators strictly related to spatial queries are introduced in this second

set. However, if we want to model temporal applications, the set of operators to

consider may be di�erent.

In order to model this family of languages, the base language we consider is an

extension of the constrained relational algebra introduced in [12] and in [19]. We

tailor such language to a speci�c logical theory and to a given application domain.

The latter extension is possible by specifying a set of functions on d-generalized

tuples, assumed to be computable and total (i.e., de�ned on all the domain

values). For example, if we deal with spatial applications and, for e�ciency

requirements, we choose the theory of linear polynomial constraints [16], we

can introduce the concept of Euclidean distance by de�ning an ad hoc function.

Note that the de�nition of functions in may rely on e�cient algorithms de�ned

within a speci�c application domain.

Our approach thus avoids introducing a \complex" logical theory, with high

computational complexity. Moreover, it allows to adopt a \simple" logic, for

example the linear polynomial inequality constraint theory, and to add the spe-

ci�c functionalities requiring a higher complexity as functions. In this way, the

theory still remain simple and the increment of expressibility, and in general of

complexity, is embedded in the set of external functions. The expressibility and

complexity of the language can be changed by modifying this set. Note that this

is di�erent from using a more powerful logical theory, since, in this case, the

changes of complexity are not related to the use of a special set of functions.

Indeed, they depend on the language as a whole.

In the following, the algebraic operators are introduced. We distinguish be-

tween operators, de�ned independently from functions

in , and operators, de�ned by means of the functions in

. We denote with GRA() (abbreviated as GRA), the family of languages

constructed in this way.

The application independent operators are all those operators that are de�ned in

the languages of the family regardless of the application domain. The obtained

application independent language is a generalization of the algebra proposed in

[12] and in [19].

V

1

j

0

0

0

0

1

2 1 2

4

1 1

1

1

1

Table 1.

� ^ �

^ � ^ �

R X; Y

X a X

a Y b Y b

B

i i

p

i i

p

i i

p

i i

p

p

l

seeing

tuple operators set operators

t

n

n

t

P

s

s

P;�

A

x ;:::;x

m

x ;:::;x

p

x ;:::;x

m

x ;:::;x

i i

p

l

l i

1 2 1 2 1 1

1

1

2 2

2

1

2 2

1 1 1 1 1

1

1 2 1 2 1 2

()

1 1

1

1 1

1

1 2 1 2 1 2

[]

1 1 1

[]

1

1

[]

1

[]

1

=1

1 2 1 2 1 1 2 2

1 2

4

n f 9 2

^: ^ ^: g

f g

� f 9 2 ^ g

n f 2 69 2

g

� f 9 2

g

2 62 f 9 2

n f g j g

[f g

[f 2 2 g

f g f 2 g

� � 9 9

f g

^

[f 9 2 9 2

^ g

r r r � r � r � r r t t r ;

t t t ::: t

r t ; :::; t

r � r � P � r r t t r ; t t P

� r � r

r r r � r � r � r r t t r ; t r

ext t ext t

r � r � P � r r t t r ;

� r � r ext t �ext P

r % r A � r ;B � r r t t r ;

� r � r A t t A B

B

r r r � r � r � r r t t r t r

r � r � r x ; :::; x r � t t r

i ; :::; i m � t x ; :::; x

� � r

x ; :::;x

t y x

r r r � r � r � r r t t r ; t r ;

t t t

ext

Op. name Op. symbol Restrictions Semantics

tuple = () = () = () = :

di�erence =

=

tuple = () () (), = : =

selection () = ()

set di�erence = () = () = () = : :

() = ()

set selection = () () (), = :

() = () () () is true

renaming = () () (), = :

() = (()) = []

union = () = () = () = : or

projection = () () = , = () :

1 , () =

(()) = (=)

natural join = () = () () = :

=

Application independent operators

Note that some conditions in the table use function . An equivalent logical

representation of these conditions is however possible. For example, the condition

The introduced generalizations are related to a di�erent way of d-

generalized tuples. Indeed, d-generalized tuples can be considered under two

di�erent points of view: as a �nite representation of an in�nite set of relational

tuples, or as a single object, having a meaning by itself.

For example, consider a generalized relation () where each generalized

tuple represents a rectangle. Each tuple will have the form:

. If we want to determine the set of points contained in the

intersection space of two given rectangles, each constraint should be considered

as the �nite representation of an in�nite set of points. However, if we want to

know which rectangles are contained in a given space, each constraint must be

considered as a single object. In the latter case, all the points of a single rectangle

must satisfy a certain condition.

By taking these two di�erent points of view into account, we de�ne two sets of

operators: and . Set operators consider d-generalized

tuples as single objects and assume a sort of universal quanti�cation over all the

relational tuples representing a single d-generalized tuple. Set operators avoid

the use of explicit tuple identi�ers. From a user point of view, they simplify the

usage of d-generalized tuples.

Table 1 presents application independent operators . Following the approach

0

{

{

{

� 8 !

1 1

1 1

1 2

1 2

1 2

1

2

1 2

ext t ext P x t P

:

�

2 f� � 6 ; ; g

�

8 !

�

8 !

; 6 ;

^

^

j

() () can be rewritten as ().

�

r r

r r

c c

c

<

P

P P

r r

r

r

P; � P

� ; ; ;

P; �

r r

�

P �

� r

P � t x x t

P

� r

P � t x x P t

� � r

P t P

t P

P

t A B

t A B

r r

r

r t

schema restrictions

Tuple di�erence

Tuple selection

Set di�erence

Set selection

Renaming

Union

Projection

proposed in [11], each operator is described by using two kinds of clauses: those

presenting the required by the argument relations and by

the result relation, and those introducing the operator semantics. In the table,

is a function that takes a relation or a d-generalized tuple and returns their

schema, i.e. the set of variables appearing in it.

The operators are the following:

1. : Given two generalized relations and , the operator

returns all the relational tuples in not contained in . The condition re-

quires that if is a constraint of a certain logical theory, then is equivalent

to a certain constraint , de�nable in the same theory. For example, given

a theory with the predicate , we need the theory to contain the predicate

. For a more formal de�nition of tuple di�erence, see [12].

2. : Let be a d-generalized tuple on the considered logical

theory. This operator returns all the relational tuples, represented in the

generalized relation, that satisfy , i.e., belonging to the extension of .

3. : Given two generalized relations and , this operator re-

turns all the d-generalized tuples contained in for which there does not

exists an equivalent d-generalized tuple contained in .

4. : This operator selects all the d-generalized tuples satisfying a

certain condition from a generalized relation. The condition has the form

(), where is a d-generalized tuple on the considered logical theory and

(=) (=) .

The set selection operator with condition (), applied on a generalized

relation , selects from only the d-generalized tuples for which there exists a

relation between the extension of the d-generalized tuple and the extension

of . The possible meanings of operators are:

= : we select all the d-generalized tuples in whose extension is

contained in the extension of (i.e., those for which, if () = ~, ~(

) holds);

= : we select all the d-generalized tuples in whose extension contains

the extension of (i.e., those for which, if () = ~, ~ () holds);

= (=) [= (=)]: we select all the d-generalized tuples in

whose natural join with is [is not] empty (i.e., those for which is

inconsistent [is consistent]). Thus, we select all the d-generalized

tuples whose extension has no [at least one] relational tuple in common

with the extension of .

5. : This operation changes some of the variable names of a general-

ized relation. In the table, [] identi�es the d-generalized tuple obtained

from by renaming variable with .

6. : Given two generalized relations and , it generates the union of

the input generalized relations.

7. : Given a generalized relation , this operator returns all the d-

generalized tuples restricted to a subset of the variables of . In the table,

V

2

1

1

�

�

p
i i

p

l

� �

9 9 ^

2

2

n

n

�

�

F

8 2 F ! �

F

F 6 ;

F

3.2 Application Dependent Operators

m p p

i i
x ;:::;x

m

p

l

l i

s

t

s

X

t

X

gentuple gentuple

1 1 1

[]
1

=1

1

2 1 1

2 2

1 2

1 2

1

2

1 2

1 2 1

1 2

1 2

1 2

1 2

3

1 1

3

1 1

Natural Join

Example 2.

rectangles

points

rectangles

points

x ; :::; x i ; :::; i m y ; :::; y

x ; :::; x � t x ; :::; x t

y x : �

�

r

r t r

t r

t t

r r X; Y

r

r

r r

r r r

r r

r r

r r

r r

� r r X

� r r X

�

f f A B A;B DOM � DOM �

�

�;

is a d-generalized tuple on variables , 1 ;

are variables di�erent from and () = (

=) In the table, we use the symbol to denote the projection

operation on a generalized relation, and to denote projection on a single

d-generalized tuple.

8. : This operation represents the generalization of the relational

natural join for the generalized model. Given two generalized relations

and , for any d-generalized tuple and for any d-generalized tuple

, this operator returns the natural join of all the relational tuples

represented by with those represented by .

Note that we have de�ned the natural join operator also on disjoint schemas.

As we will see, this assumption simpli�es the de�nition of the Cartesian

product (see Subsection 3.3).

For the renaming operator, no distinction between set and tuple semantics

exists. For union, projection and natural join, we propose only one semantics,

corresponding to the most intuitive one. However, tuple and set versions of these

operators could be given, by assuming to remove duplicates. Indeed, the con-

cept of duplicate from a tuple point of view may be di�erent from the concept

of duplicate from a set point of view. In this paper, we assume to maintain

duplicates.

Let and be two relations on the schema . Each relation

contains generalized tuples de�ning rectangles. Figure 2 shows relation (white)

and relation (shadow). Then:

1. returns all generalized tuples, that is, all the , contained

in and not in . In this case, it returns all the generalized tuples of ,

since no tuple of is also a tuple of .

2. returns all (corresponding to relational tuples) contained in

and not in . Thus, it returns all the (parts of) rectangles contained in

that are not contained in (see Figure 3).

3. () returns all contained in with 3. In this case, it

returns only one rectangle (see Figure 4).

4. () returns all contained in such that 3 (see Figure 5).

Let be a decidable logical theory. Let be a set of total computable functions

such that , : , (). () is

the set of all the possible d-generalized tuples de�ned on the logical constraint

theory . Functions in can be considered as library functions, completing the

knowledge of a certain application domain. We assume that, if = , then it

contains at least the projection operator. Application dependent operators for

the language GRA() are summarized in Table 2:

1 2 3 4 7-3 -2 -1

1

2

3

-1

-3

-2

5 6

1 2 3 4 5 6 7-3 -2 -1

1

2

3

-1

-3

-2

n

t

f

1 1

r r

r r

1 2

1 2

1 2

1 2

1 2

Fig. 2.

Fig. 3.

2 F

F

2 F 2 f� � 6 ; ; g

f AT AT

t

f t

f ; f ; �

f ; f � ; ;

�

f f

Relation (white) and (shadow)

Relation (shadow)

Apply Transformation

Application dependent set selection

1. : For each , we introduce an operator (

as Apply Transformation). The operator takes a relation and returns another

relation by replacing each d-generalized tuple by the d-generalized tuple

().

2. : A set selection operator using functions

in can be de�ned. To this purpose, we introduce the condition (),

where and , (=) (=) .

The operator selects only the d-generalized tuples for which there exists a

relation between the extension of the d-generalized tuple, transformed by

, and the extension of the d-generalized tuple, transformed by .

1 2 3 5 6 7-3 -2 -1

1

2

3

-1

-3

-2

4

1 2 3 5 6 7-3 -2 -1

1

2

3

-1

-3

-2

4

F

�

�

3

1

3

1

� r

� r

s

X

t

X

Fig. 4.

Fig. 5.

3.3 Derived Operators

Relation () (shadow)

Relation () (shadow)

Note that the application dependent set selection di�ers from the (application

independent) set selection only for the fact that conditions depending on the

application domain (i.e., depending on) are used in this case.

By using the previous operations, we can de�ne some useful derived operations,

whose semantics is described in Table 3. In particular:

1

1

1 2

1

1

{

{

{

{

;

�

6 ; ;

0

0

;

�

6 ; ;

6 ; ;

�

� n

F F

r

s s

inc;

s s s

Table 2.

Table 3.

5

2 2

1

1 2

1 2

(=)

()

(=) (=)

f 2 F 9 2

gg

f 9 2

g

� [

\ ;

\

\ n n

n

f

s

f ;f ;�

r

t

s s s

s s

inc;

s s s

% r r

r

r r

r r

� r � r inc

r

� r r � r

r

D �

�; D

D

1 1

()

1 1 1

1 2

1 2 1 2

1 2

1 2

1 2 1 2 1 2

1 2 1 2 1 1 2

(=)

1 1

()

1

(=)

1 1 1

(=)

1

5

Cartesian product

Tuple intersection

Set intersection

Derived selection

r AT r r t f ; t r

t f t

r � r � r � r r t t r ;

ext f t �ext f t

r r r � r � r � r

� r � r

r r % r

r r r � r � r � r r r r

r r r � r � r � r r r r r

r � r � r � r r � r

r � r � r � r r r � r

Op. name Op. symbol Restrictions Semantics

apply = () = : :

transformation = ()

set selection = () () = () = :

(()) (()) is true

Application dependent operators

Op. name Op. symbol Restrictions Derived sem.

Cartesian

product

= () = () (),

() () =

= ()

tuple

intersection

= () = () = () =

set intersection = () = () = () = ()

derived

selection

= () () = () = ()

= () () = () = (())

Derived operators

This de�nition is possible because our de�nition of natural join still works on disjoint

schemas.

: The Cartesian product can be obtained from the natural

join, if the two considered relations have disjoint schemas . If they do not

have disjoint schema, we rename the variables of the second relation. In Table

3, the operation () renames all the variables of the schema of that

are also contained in the schema of .

: Given two generalized relations and , this operation

returns all the relational tuples contained in the extension of both relations.

: Given two generalized relations and , this operation

returns the d-generalized tuples contained in both relations.

: Two other conditions can be inserted in the de�nition of

the set selection operators. They are: (=) and (=). They can be obtained

as follows:

() = (), where is an inconsistent constraint on the

considered logical theory. This operation selects all the inconsistent tu-

ples contained in .

() = (()). This operation selects all the consistent

tuples contained in .

Let be a generalized database schema. Let be a decidable logical theory.

Let be a set of total recursive functions. The GRA() language for

is composed of all the expressions de�nable by using the operators introduced

in Table 1, 2 and 3, applied to all the relations in as well as to relations

1

()

[]

0 0

�

0 0

0 0 0 0

0

F

2 F

^ F

F

C

C

C

F

C

8 ! ^

n n

tuple

tuple

tuple

s

P;

tuple

t

N

t t

P

t

P

3.4 Set and Tuples Operators: Examples and Remarks

{

Set

set

Example 3. \Find all objects in that are contained in the

object "

f

R X; Y f Z X Y �;

R X Y

k k

� �;

�

R S X; Y

� R S

R S

R S N;X; Y N

R S

R

o P o

GRA �;

� R

x; y R n; x; y P R n; x; y

�

R R � R � R :

� R P

implicitly de�ned by constraints. Functions contained in can also be applied

to constraints explicitly used in GRA expressions. For example, if , the

expression () (= +) is a GRA() expression for the database

schema containing a generalized relation over and .

operators are of particular interest when it is necessary to treat sets of rela-

tional tuples (implicitly represented by generalized tuples), as single objects with

a well-de�ned identity. This feature has proved to be useful in spatial databases,

where relational tuples with variables represent points in a -dimensional

space and d-generalized tuples represent objects (i.e. point-sets) embedded in

this space. In such context, set-oriented operations improve signi�cantly the us-

ability of the language and reduce the complexity of the expressions when writing

the most common queries.

However, operators do not add expressive power to the language. Let

GRA () denote the generalized relational algebra obtained fromGRA()

by considering an empty set of functions and by removing set operators. For lin-

ear polynomial constraint theory, this algebra is equivalent to the one proposed

in [12]. Let be the generalized relational calculus proposed in [13]. The fol-

lowing examples show how queries involving set operators can be translated in

expressions of the calculus and in the algebra GRA ().

Both examples refer to relations and on the schema . In order to

simulate set operators in or GRA (), the schema of relations and

should be modi�ed. In particular, since it is necessary to identify distinct sets of

relational tuple, represented by distinct generalized tuples, as distinct objects, an

additional variable has to be introduced. Thus, and are mapped to relations

and on the schema . is a generalized tuple identi�er. As the mod-

els proposed in [12] and in [13] do not deal with d-generalized tuples, we assume

that relations and contain non-disjunctive generalized tuples. Moreover, we

assume that inconsistent tuples are directly removed by the computation.

Consider the query

(see Section 5). Let be the generalized tuple representing in the

Euclidean space. This query is expressed in () using a set operator, as

follows:

()

in as follows:

(~ ~ (~ ~)) ()

in GRA () as follows:

(((())))

Previous expression has the following meaning:

() selects the points contained in , together with the identi�er of the

object to which they belong.

1

�

F

[]

[] []

% �

% % % %

j j

j j j j j j

{

{

{

{

{

{

{

{

n

n

n

n n

F

�

C

9 ^ ^ ^

X ;Y X ;Y

N ;X ;Y N X Y

6

[] []

7

[] [] [] []

1

1 2

1 1 1

1

1

1 1

1 1 1

2

X;Y

X

X

;Y

Y

X ;Y

N N X Y

N

N

N

N N X Y

X Y

N X Y N X Y

0

j

0

j

0 0

0

0 0 0 0

0

0

0

0

0

0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

[]

[]

[]

6

((=))

7

1 2 1 2

[] [] []

[]

[] []

[] []

[] [] []

0 0

0 0

0 0 0

0 0 0 0

0 0

� 6 ;

0 0 0 0 0 0

0 0

j

0

j j j

0

0

j

0 0

0

0

j

0

0 0

j

0

0

0

0 0

j

0

j j j

0

t t

P

N

t t

P

N

t t

P

t

N

t t

P

s

� ;% � ;

tuple

N;N N N ;X ;Y

N

N;N N

N;N N

N;N N N ;X ;Y

Example 4. \Find all pairs of object belonging to and ,

such that their intersection is not empty"

R � R P

P

� R � R P

R � R � R

P

R R � R � R P

R S

X; Y X ; Y

GRA �;

� R S

x; y R n ; x; y S n ; x; y R n ; x; y S n ; x ; y

�

R � R % S % S :

R % S N;X; Y;N ;X; Y

R

N S N

� R % S

R � R % S

N;X; Y;N R

N;X Y N

S

R � R % S % S

R S

Note that the used operator can be de�ned as a function

contained in . In this case, the user does not have to deal with renaming.

Operator is equivalent to (()).

() selects the points that are not contained in , together with the

identi�er of the object to which they belong. These objects are not contained

in .

(()) selects the identi�ers of the objects not contained in .

((())) selects the identi�er and the extension of the

objects not contained in .

(((()))) selects the objects contained in .

Consider the query

(Spatial Join) (see Section 5). Assum-

ing the Cartesian product renames variables in variables , this query

is expressed in () using a set operator, as follows :

()

in as follows :

(~ ~ : (~ ~) (~ ~)) () ()

in GRA () as follows:

((())) ()

Previous expression has the following meaning:

() selects generalized tuples over variables ,

representing the points belonging both to an object of relation , identi�ed

by , and to an object of relation , identi�ed by .

(()) selects the identi�ers of pairs of intersecting ob-

jects.

((())) selects generalized tuples over variables

, representing the objects contained in relation , identi�ed by

and , together with the identi�er of an object contained in relation

, having a non-empty intersection with it.

((())) () selects all pairs of

intersecting objects, belonging respectively to and .

As we can see from both examples, set operators support more compact forms

to express queries. Moreover, the used operators seems to be more suitable from

a user point of view.

1

1

1

n

P

P n

n

2 f 6 �

� g �

4 Spatial Data in Constraint Databases

n

X ; :::; X

n n

�

� p X ; :::; X � p

X ; :::;X � ; ; ; <;

; >

(Linear Polynomial Inequality Constraint Theory)

{

{

{

4.1 Representing Geometry Using Constraints

De�nition2.

Spatial databases involve complex data which are composed of geometry, em-

bedded in spaces of various dimensions, and alphanumeric information, which

are linked to geometry at various levels of granularity.

The coexistence of geometry and alphanumeric data implies the following

basic requirements for any data model which has to describe spatial data:

R1. It should be able to represent the association between alphanumeric infor-

mation and geometry at any level of granularity, that is, considering both

simple geometric objects, such as points, segments or convex polygons, and

also complex geometries, obtained, for example, through an aggregation of

simple geometric objects.

R2. It should be able to integrate in a uni�ed structure the geometric and al-

phanumeric aspects of spatial data [17].

In this section, we analyze the issue concerning the modeling of spatial data in

the generalized relational model. In particular, we want to exploit the constraint

formalism in order to ful�ll the requirements discussed above. Indeed:

constraints �nitely represent in�nite sets of points embedded in

-dimensional spaces, thus a single constraint can model complex geome-

tries;

combination of constraints can represent in a simple way bindings between

spatial data and descriptive data at di�erent levels of granularity (require-

ment R1);

no \ad-hoc" concept has to be added to the constraint formalism in order

to model spatial data (requirement R2).

In the proposed generalized relational model, a relation contains a set of con-

straints over a �nite set of variables , which represents the schema of

the relation itself. In order to represent geometry in this model, the idea is to

use a relation with variables to contain points of an -dimensional space. In

this way, d-generalized tuples of this relation represent sets of points (i.e. spatial

objects) embedded in that space.

The di�erent expressive power of di�erent classical logical theories permits

to represent several types of spatial objects within a large range of complexity.

In this paper, we consider the following constraint theory, for the representation

of spatial data.

: The the-

ory represents formulas of the form () 0, where is a linear

polynomial with real coe�cients in variables and = =

.

E

2

P

2

�

n

n n n

E

convex geometric objects

4.2 Spatial Data Types in : a Mapping to d-Generalized Tuples

Note that the de�nition of d-generalized tuple has some consequences in

representing spatial data. Indeed, a single generalized tuple (i.e., conjunctions

of constraints in) can represent only . This means,

for example, that a line composed of several concatenated segments cannot be

represented as one generalized tuple, but only as a set of generalized tuples.

In order to overcome such limitation, we have de�ned (see De�nition 1) d-

generalized tuples as a disjunction of conjunctions of constraints, thus obtaining

more expressive power at the level of a single generalized tuple. For example, we

can represent concave geometric objects with a single d-generalized tuple.

An alternative way to overcome this problem is to represent sets of spatial

objects embedded in an -dimensional space through a relation which contains

+1 variables. The �rst variables represent points of the space, the (+1)-th

variable is used as an identi�er for the object. In this case, complex objects can

be represented by several generalized tuples, where tuples belonging to the same

object have the same identi�er. However, this solution has some drawbacks: (a)

it enforces the decomposition of spatial data; (b) it requires the management of

the identi�ers; (c) it is more expensive in terms of space.

Another issue concerning the management of spatial data in a database is

the representation of topological relationships among objects [6, 7]. Topological

relationships are the basis of a large number of spatial queries and their explicit

representation can be useful for query optimization. A particular \hierarchical"

structure where complex spatial objects (e.g. higher-dimensional entities) are

de�ned in terms of simpler objects (e.g. in terms of lower-dimensional ones),

is a possible approach to represent topology. In this way, the implementation

of some topological properties, such as adjacency, can be simpli�ed by testing

whether two entities share some lower-dimensional entity. However, the mapping

of such hierarchical structure in a constraint database requires the introduction

of some integrity constraints between d-generalized tuples representing objects

of di�erent levels. Thus, two di�erent spatial data representations in a constraint

database are possible:

E1. a representation of spatial data in a \
at" structure, that is, without any

integrity constraints among relations;

E2. a representation of spatial data in a \hierarchical" structure that requires

integrity constraints.

Since the E2 representation can be modeled as a particular case of E1, we discuss

E1 into more details.

In order to illustrate an example of representation of spatial data in a constraint

database, we de�ne three spatial data types which are usually the basis of any

data model for spatial objects embedded in the Euclidean plane . Note that we

restrict our consideration to two-dimensional examples, for simplicity. However,

the same de�nitions could be easily extended to higher dimensions.

� � � �

De�nition3.

De�nition4.

De�nition5.

2

2

2

2

1

2

1

2

+1 +1

+1 +1

1 1 2 1 1 1

1 1 1 1

1

+1

2

1

2

1

+1 +1

!

[[

f � ^ 1g

_ _

2 2

f g ^

�

f 2 � � ^

\ ; 6 � � � g

� ^ � ^ _

_ � ^ � ^

2

�

f 2 � � ^ ^

\ ; 6 � � � g

(SET POINT TYPE (SPT)) �nite

(LINE TYPE (LN))

(POLYGON TYPE (PG))

vector

gentuple

vector

gentuple

P

m

i

i i i i i i i

n LN i

i i j j

i i i i

n LN

n n n n n

n LN i i i j j j

j j j

j j

n PG i n

i i j j

map

map DOM DOM

DOM

DOM �

E

SPT P P E card P <

map P map p ::: map p

P SPT p P m card P

map < x ; y > X x Y y < x ; y > p :

card P P

E

s

s

s s

LN < P ; :::; P > P E ; i n

P P P P ; i j; i; j n

P P P P

map < P ; :::; P > x X X x a X b Y c :::

x X X x a X b Y c

< P ; :::; P > LN P < x ; y > a ; b ; c

a X b Y c

P P

E

PG < P ; :::; P > P E ; i n P P

P P P P ; i j; i; j n

We de�ne each data type by giving the representation of its values in vector

form together with the mapping of these values to d-generalized tuples:

:

where: = SPT LN PG; SPT, LN, PG are de�ned below, and

is the domain of the d-generalized tuples on with two variables.

: Its values are sets of points

in the Euclidean plane :

= : ()

() = () ()

where , and = ()

() = (= =) where =

() denotes the cardinality of the set .

: Its values are chains (i.e. sequences) of di-

rected segments of the Euclidean plane such that non-consecutive segments

cannot intersect. Besides, the �rst endpoint of each segment coincides with the

second endpoint of the segment preceding in the chain and the second endpoint

of coincides with the �rst endpoint of the segment following in the chain.

= : (1)

(= = 1 1)

where is the set of points representing the segment joining to

without endpoints.

() = ((+ + = 0)

(+ + = 0))

where , = and are the real coe�-

cients of the equation (+ + = 0) representing the straight line passing

through and .

: Its values are simple polygons. Simple

polygons de�ne polygonal regions. A polygonal region is a closed connected and

regular subset of the Euclidean plane [20]. A simple polygon can be de�ned by

a closed chain of segments. We suppose by convention that the polygonal region

is always on the left side of each directed segment of the polygon bounding it.

= : (1) (=)

(= = 1 1)

�

8

9

8

1

1

1 1 1 1 2

1

1

+1

9

(Spatial transformations)

_ _

2

� ^

^ �

� �

�

� _ � ^ �

� � _ � ^ �

�

F

!

IsLinear IsPolygon

Boundary

4.3 Spatial Transformations

De�nition6.

{

n

n

convex

n n n n

convex n i i i j j j

j j j

j j h k

h k

k h k h k h

k h k h k h

vector

vector vector

map pg map c ::: map c

pg PG c ; :::; c pg

map pg a X b Y c sign P P :::

a X b Y c sign P P

pg < P ; :::; P > P < x ; y > a ; b ; c

a X b Y c

P P sign P P h i; k i i

n h n; k

sign P P

x x > x x y y <

x x < x x y y > :

sign

�

sp

DOM

Boundary DOM DOM

Boundary sp

sp

Note that such partition is always possible, for example by using a Delaunay trian-

gulation [20].

Note that functions and can be simply obtained from function

. We permit this redundancy as the set of functions we propose has been

designed with no minimality and completeness requirements in mind.

We consider a particular mapping which assumes to have a partition of the

polygon into convex polygons . More formally:

() = () ()

where: and represents the partition of into convex polygons.

() = ((+ +) () 0)

((+ +) () 0)

where: = , = , are the real coe�cients

of the equation (+ + = 0) representing the straight line passing

through and and (), where either = = + 1, for 1

1, or = = 1, is de�ned as follows:

() =

1 (0) (= 0 0)

1 (0) (= 0 0)

The introduction of the function () is necessary in order to take into account

that the polygonal region represented by a simple polygon is always on the left

side of the polygon itself.

When GRA is applied to a speci�c application area, it is necessary to specify

the logical theory , which de�nes the constraints, and the set of transformation

operators , to be used as parameters of application dependent operators of the

generalized relational algebra.

In the spatial application area, the need of introducing these operators de-

rives from the analysis of the most common queries and processing tasks. Since

application independent operators applied on d-generalized tuples cannot model

all the needed functions, new spatial transformations have to be added to the

base language.

: Given a spatial object belonging

to , the following spatial transformations are de�ned:

:

() returns the spatial object that represents the \limit points" of

. There are di�erent de�nitions of boundary. The de�nition we adopt here

is obtained by giving emphasis to the dimensionality of the spatial object.

8

<

:

�

� �

� �

� �

� �

2

1

2 2

1 1

2 2

1 1

2 2

1 1

2 2

1 1

{

{

{

{

{

De�nition7.

{

{

{

{

; 2

2

2

!

f g 2 2

2

� < !

2

! 2 < <

!

!

! � <

�

!

!

!

!

vector vector

vector vector

r vector vector

vector vector

vector vector

vector vector

n

gentuple

gentuple P

P

gentuple gentuple

gentuple gentuple

r r r

gentuple gentuple

r r r

gentuple gentuple

Boundary sp

sp SPT

sp sp LN

sp sp PG

D E

D

Interior DOM DOM

Interior sp sp

sp sp SPT sp LN

sp PG

Buffer DOM DOM

Buffer sp; r ps PG

r sp

Buffer DOM DOM r

IsLinear DOM DOM

IsLinear sp sp sp

IsPolygon DOM DOM

IsPolygon sp sp sp

Area DOM DOM

Area sp sp

DOM DOM �

� n

map

map

Bnd Boundary Bnd DOM DOM

� t � Bnd t map Bnd t Boundary map t

Int Interior Int DOM DOM

� t � Int t map Int t Interior map t

Buf Buffer Buf DOM DOM

� t � Buf t map Buf t Buffer map t

IsLin IsLinear IsLin DOM DOM

� t � IsLin t map IsLin t IsLinear map t

This implies, for example, that the boundary of a segment is composed of

its endpoints. More formally:

() =

if

(endpoints of) if

(border of) if

Giving emphasis to the dimensionality of the embedding space (for ,

= 2), the boundary of a segment is the segment itself. This is also the

main di�erence between this de�nition and the one reported in [18], where

the boundary of a spatial object is de�ned by using a constraint in a non-

linear logical theory.

:

() returns the set of points of which are not boundary points.

Thus, it returns , if ; the line without its endpoints, if ;

the polygonal region without its border, if .

:

() returns the polygon that represents the set of points

which have a distance less than from the boundary of . For uniformity,

we assume to have a function

: for each . represents real

numbers.

:

() returns if is a line, an empty set otherwise.

:

() returns if is a polygon, an empty set otherwise.

:

() returns and its corresponding area.

Since the representation of a spatial object in constraint databases is a d-

generalized tuple, all spatial transformations must be de�ned in this model as

transformations on d-generalized tuples.

Let be the subset of () containing

exactly all the d-generalized tuples on with variables. For the spatial trans-

formations de�ned in De�nition 6, the following transformation operators on

d-generalized tuples are de�ned (in the following, denotes the inverse of

function):

for , :

() = (()) (()) = (())).

for , :

() = (()) (()) = (())).

for , :

() = (()) (()) = (())).

for , :

() = (()) (()) = (())).

10

�

�

inc

� �

�

n

n

n

n

1 1 1

2 2 2

1 1

1 1

{

{

De�nition8.

2 2

1 1

2 3

1

1

0 0

1 2

1 1 1

10

1

1

2

2

1 1 1 2 1 1 1

1 2

1 1 2 2

1 2 1 2

1 1

2 2

(Transformation operator for Boundary computation)

In the following, represents an inconsistent constraint.

!

!

[f g ^ �

_ _ f g

^

� ^ � ^

� ^ ^ �

;

^

�

_ ^

�

� ^ � ^ _

_ � ^ � ^

2 ^

9 2 6 ^

_ _ _

_

_ _ _

_

gentuple gentuple

gentuple gentuple

n

point

segment

convex n n n

point

segment

convex ; ;

n; n; n n n

i; i; convex

i;

i i i

j j j

i;

i i i

j j j

segment segment PT segment

segment

convex convex LN convex

convex

IsPoly IsPolygon IsPoly DOM DOM

� t � IsPoly t map IsPoly t IsPolygon map t

Ar Area Ar DOM DOM

� Ar t � t A Ar t t A Area map t

Bnd

Bnd

t c ::: c � t X; Y

t

c X x Y y

c x X X x aX bY c

c a X b Y c ::: a X b Y c

Bnd inc

Bnd c inc

Bnd c X x y

c ax

b

X x y

c ax

b

Bnd c x X X x a X b Y c

x X X x a X b Y c

x ; y ; x ; y ext c

j ; j ::n i j ; j

x ; y

a X b Y c

a X b Y c

x ; y

a X b Y c

a X b Y c

Bnd c ::: c NoDuplicates Bnd c :::

::: Bnd c

Bnd c ::: c NoDuplicates Bnd c :::

::: Bnd c

for , :

() = (()) (()) = (())).

for , :

(()) = () () = = (()).

As an example, we report hereby the formal de�nition of the function.

: Given

a d-generalized tuple = (() =), the corresponding d-

generalized tuple which contains the boundary of the spatial object is obtained

by applying the transformation function de�ned as follows.

We assume that generalize tuples, and therefore , are represented in one of the

following forms:

= (= =)

= (+ + = 0)

= (+ + 0 + + 0)

The de�nition of the function is given incrementally :

() =

() =

() = (= =

+

) (= =

+

)

() = (+ + = 0)

(+ + = 0)

() () ()

([1] : =

() =

+ + = 0

+ + = 0

() =

+ + = 0

+ + = 0)

() = (() (1)

())

() = (()) (2)

())

1 +1

+1

1

+1

+1

j j k

k n

j

j k

k n

{

{

De�nition9.

1

point

segment

convex

1

1

2

_ _ _ _ _ _ _ _

_ _

[[[� \ �

F F f g �

f g

n i i i i

i i

i i

i i

i i

PT

LN

n

n

P

r

spatial P r

spatial

spatial

spatial

V E F V

E F

(GRA for Spatial Data)

Bnd

plane subdivision

faces edges

vertices

vertices edges faces

Bnd c ::: c Bnd c ::: Bnd c Bnd c ::: c

Bnd c ::: c

c :::c

c :::c

c :::c

NoDuplicates

NoDuplicates

�; � ext � ; ext �

 ; :::;

ext
 ::: ext
 ext � ext � ext � ext � :

�

Int Buf IsLin IsPoly Ar

GRA GRA � ; Bnd; Int; Buf ; IsLin; IsPoly; :

GRA

E R

GRA � R X; Y

� V;E; F

F � E � V

�

V E F

� V;E; F GRA

R ;R ;R X Y R

R R

() = () () () (3)

()

: of type c

: of type c

: of type c

where:

: given a disjunction of conjunctions, where each conjunc-

tion represents two points, it eliminates the duplicated conjunctions, leaving

only the conjunctions that appear once.

: given a disjunction of conjunctions, where each conjunc-

tion represents a segment, it eliminates all duplicated conjunctions; it substi-

tutes each pair of conjunctions whose extensions () () partially

overlap, with the minimum number of conjunctions such that:

() () = (() ()) (() ())

Given the previous de�nitions, we can now de�ne the version of GRA for spatial

data.

: Given the logical theory and the

transformation operators: , , , , and , the version

of GRA for spatial applications is de�ned as follows:

= () where = Ar

Let us now consider the two approaches discussed in Section 4.1 to see how they

can be mapped into .

E1. In this approach, which does not impose any structure on spatial data, a set

of spatial objects in can be represented as a generalized relation of

with schema () = .

E2. An example of this approach is given by the structure which describes a

plane subdivision. A is described by the triple (),

where is the set of the of , is the set of the of , and

is the set of the of . For the de�nition of the relationships existing

among , and , see [5].

A plane subdivision = () can be represented in by using

three generalized relations: over variables and , where

represents , represents and represents .

The properties of a plane subdivision which relate faces, edges and vertices

must be represented in GRA as integrity constraints. In this paper, we focus on

the �rst case E1, which is anyway more general than E2.

0 0

f g

�

5 Spatial Queries

R S � R � S

X; Y R S

X Y S X Y

P

R

spatial

spatial

spatial

5.1 Queries Based on Relationships with the Embedding Space

spatial relationships with the embedding space

spatial relationships with other objects in the same space

spatial properties

Point Intersection

The large range of applications which use spatial data generates di�erent func-

tional requirements for spatial query languages. Therefore, a large number of

operations are considered basic tools for a spatial database. This is also the

reason why no completeness results can be given for any query language that

is designed for spatial applications and the complexity of almost all of them is

higher than the complexity of the classical relational algebra.

All spatial queries presented in the following must be considered as classical

queries (as de�ned in [4]). Thus, we do not consider generic spatial queries with

respect to geometric or topological transformations, as they have been de�ned

in [19].

The introduction of spatial information in databases requires to enrich query

languages in order to take into consideration the characteristics of this new

type of data within query predicates. Queries are in
uenced in particular by the

following features of spatial data:

1. : they derive from the position

of the object in the space;

2. : we classify in this

group topological relationships (deriving from the introduction of a concept

of boundary), metric relationships (deriving from the introduction of a dis-

tance concept in the embedding space) and direction relationships (requiring

the de�nition of some reference vector in the embedding space);

3. : they are all various measurements (area, perimeter, vol-

ume, etc.) which describe the size of spatial objects and all di�erent classi-

�cations of their shapes.

From these features, several classes of queries can be derived. In the following,

we propose some of them. For each class of queries, we present an example and

we translate it into the corresponding GRA expression.

Other examples are presented in Tables 4, 5 and 6. Each query is described

by assigning a textual description and the mapping to GRA . In the de-

scription of queries we refer to two sets of spatial objects, which are represented

in GRA by two generalized relations and , where () = () =

. We assume that the Cartesian product between and renames vari-

ables and in the schema of in and . In the tables, denotes the

function composition operator. For a detailed description of spatial queries, refer

to [5, 8, 9, 21, 22].

1. POINT INTEFERENCE QUERIES: These queries retrieve the set of spatial

objects that are somehow related to a single given point .

EXAMPLE:

DESCRIPTION: \Select all spatial objects in that contain a given point

1

n

�

�

�

()

()

s

P;

s

P;

Table 4.

�

6 ;

�

6 ;

6 ;

s

P;

s

P;

s

P;

s t

P

s t

()

((=))

()

(=)

(=)

Range Containment

pt

� R

P map pt

P;

pt

R

rt

� R

P map rt

Point interference queries

Range queries

R

pt

� R P map pt

R

rt

� R P map rt

R

rt

� R P map rt

R

rt

� � R P map rt

R

rt

� R P P map rt

".

GRA EXPRESSION:

()

where = ().

COMMENTS: Condition () selects all d-generalized tuples whose exten-

sion contains the extension of the constraint corresponding to .

2. RANGE QUERIES: These queries retrieve the set of spatial objects that are

somehow related to a range, which is represented by a hyper-rectangle in the

embedding space.

EXAMPLE:

DESCRIPTION: \Select all spatial objects in that are completely con-

tained in a given hyper-rectangle of the embedding space".

GRA EXPRESSION:

()

where = ().

COMMENTS: Similar to Point Intersection.

Type Query GRA expr. Conditions

POINT

INTERSECTION

select all spatial objects in

that contain a given point

() = ()

RANGE

INTERSECTION

select all spatial objects in

that intersect the region

of the space identi�ed by a

given rectangle

() = ()

RANGE

CONTAINMENT

select all spatial objects in

that are contained in the re-

gion of the space identi�ed

by a given rectangle

() = ()

RANGE CLIP calculate all spatial objects

obtained as intersection of

each object in with a rect-

angle

(()) = ()

RANGE ERASE calculate all spatial objects

obtained as di�erence of

each object in with a rect-

angle

() = ()

Examples of queries based on relationships with the embedding space

1

X Y

1 1

1
0 0 0 0

1 2

2

1

6 ;

j j

0 0

0 0

; 6 ;

2 2

�

6 ; �

2

2

1 2

(

10

() (=))

10

[] [] []

s

c

s

c

s

c

s

c

s

P ;

s

c

X;Y X ;Y X ;Y

5.2 Queries Based on Relationships with Other Objects in the

Same Space

Adjacent Selection

Distance Selection

Spatial Join Intersection Based

sp

R

sp

� � R

P map sp ; c Int P ; ; c Bnd P ;

� R R

sp �

sp

sp

sp

R

sp

�

Buf

R

P map sp

Buf P

sp

R

r; s ; r R; s S

r s

� R S

c � ; g; ; g % �

X; Y;X ; Y r; s r R

X; Y s S X ; Y

r

X; Y s

1. TOPOLOGICAL QUERIES: These queries retrieve the set of spatial objects

that have a given topological relationship with a given spatial object of

the database.

EXAMPLE:

DESCRIPTION: \Select all spatial objects in that are adjacent to a spatial

object ".

GRA EXPRESSION:

(())

where = () = (() (=)) = (() (=)).

COMMENTS: Selection () retrieves from all the d-generalized tu-

ples having a non-empty intersection with the constraint representing the

boundary of . Selection , applied to the resulting relation, retrieves all

the d-generalized tuples having an empty intersection with the constraint

representing the interior of . Thus, the retrieved tuples exactly correspond

to objects adjacent to .

2. METRIC QUERIES: These queries retrieve the set of spatial objects that

have a given metric relationship with a given spatial object of the database.

EXAMPLE:

DESCRIPTION: \Select all spatial objects in that are within 10 Km from

a spatial object ".

GRA EXPRESSION:

()

where = ().

COMMENTS: Function () generates a constraint representing the

object in the space containing all the points with a distance less than 10 Km

from . The use of this function transforms this query into a topological

query. The selection condition allows the retrieval of all d-generalized tuples

of having a non-empty intersection with this object.

3. SPATIAL JOIN QUERIES: These queries retrieve all pairs of spatial objects

that satisfy a given spatial relation.

EXAMPLE:

DESCRIPTION: \Generate all pairs of spatial objects () ,

such that intersects ".

GRA EXPRESSION:

()

where = ((=)) = .

COMMENTS: The Cartesian product generates a new relation with four

variables , containing all pairs of objects (), (identi�ed

by variables) and (identi�ed by variables). The selection

allows the retrieval of the pairs in which (obtained by projecting the tuple

on) has a non-empty intersection with (obtained by projecting the

1 2

1 2

X Y

X Y

X Y

Table 5.

�

�

j j

j j

j j

1

1

1

1

1

1

1

1

0 0 0 0

0 0 0 0

0 0 0 0

;

6 ;

6 ;

� 6 ;

2 2

�

� � �

;

2 2 �

� 6 ;

�

� �

6 ;

2 2 �

1

2

()

()

10

[]

[] []

1

[]

2

[]

[] []

[]

10

[] []

s

c

s

c

s

P;

s

;

s

c

s

c
X;Y

X ;Y X ;Y

s

c

s

c
X;Y

X;Y

X ;Y X ;Y

s

c
X;Y

X ;Y X ;Y

Topological queries

Metric queries

Spatial join queries

� � R P map sp

R c Int P ;

sp

c Bnd P ;

R

sp

� R P map sp

R

sp

�

Bnd P

R P map sp

� R P map sp

R

Km

sp

c Buf P ;

R

S

R S

� R S c � ; g;

r; s r R; s S

r

s

g % �

� � R S c Int � ; Int g;

r; s ;

r R; s S c Bnd � ;

r Bnd g;

s g % �

� R S c � ;Buf g;

r; s r R; s S

r

Km s

g % �

Type Query GRA expr. Conditions

ADIACENT select all spatial (()) = ()

SELECTION objects in that = (() (=))

are adjacent to a spa-

tial object

= (() (=))

CONTAINED

SELECTION

select all spatial ob-

jects in that con-

tain a spatial object

() = ()

ON BORDER

SELECTION

select

all spatial objects in

that are contained

in the boundary of

()

() = ()

DISTANCE select all spatial () = ()

SELECTION objects in that are

within 10 from a

spatial object

= (() (=))

SPATIAL

INTERSECTION

generate all spa-

tial objects that are

intersection between

one object in and

one object in

SPATIAL JOIN generate all pairs of () = ((=))

(intersection

based)

spatial objects

() ,

such that intersects

=

SPATIAL JOIN generate all pairs of (()) = (

(adjacency spatial objects () (=))

based) , such = (

that is adjacent (=))

to =

SPATIAL JOIN generate all pairs of () = (

(distance based) spatial objects (=))

() ,

such that is within

10 from

=

Examples of queries based on relationships with other objects in the same

space

�

F

X Y

0 0

6 ;

0 0 0 0

6 ;

j j

11

(=)

Table 6.

2

[]

(=)

11

[] []

Measure queries

X;Y

s

P

Ar

s

X ;Y X ;Y

R

Km

� � AT R P A >

R

� AT

IsPoly

R

% �

6 Conclusions and Future Work

s

spatial

spatial

spatial

spatial

X ;Y r s

g

s X; Y

R

� AT

IsPoly

R

AT

IsPoly

R

R

5.3 Queries Based on Spatial Properties

Shape Selection

Adjacent Union

Nearest Neighbor

Type Query GRA expr. Conditions

SIZE

SELECTION

select all spatial ob-

jects in that have

an area greater that

100 .

((())) = (100)

SHAPE

SELECTION

select all spatial ob-

jects in that are

polygons

(())

Examples of queries based on spatial properties

Note that the used operator can be de�ned as a function

contained in . In this case, the user does not have to deal with renaming.

tuple on). In order to check the intersection, and must be rep-

resented with the same variables. For this reason, function renames the

variables of , that become .

1. MEASURE QUERIES: These queries retrieve all spatial objects that have

some given properties concerning their size or their shape.

EXAMPLE:

DESCRIPTION: \Select all spatial objects in that are polygons."

GRA expression:

(())

COMMENTS: The application of function to , for each d-

generalized tuple in , returns: the same tuple, if it represents a polygon; an

inconsistent d-generalized tuple, otherwise. The external set selection then

removes inconsistent tuples from the generated relation.

Note that not all the useful spatial queries can be expressed in GRA .

Consider for example the query that, given a set of polygons,

generates a new polygon by merging the adjacent polygons that share some

properties. The detection of all adjacent polygons requires a transitive closure

computation that cannot be expressed in GRA . Another query that cannot

be expressed in GRA is the query that, given a set of

spatial objects, returns the nearest one to a query point or to a query object. In

this case, the query explicitly needs the use of aggregate functions, not available

in GRA .

Constraint databases model in�nite sets of tuples, �nitely represented by con-

straints. In this paper, we have presented a constraint relational model and a

F

F

L C

�;

�

yri

References

Proc. of the 19th VLDB Conference

Proc. of the ACM SIGMOD Int. Conf. on Management of Data

Proc. of the ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems

Journal of Computer and System Sciences

Spatial Information Theory: a

Theoretical Basis for GIS Lectures Notes in Computer Sciences

Proc. of the 4th Symp. on Spatial Data

Handling

Proc. of the

2nd Symp. on Advances in Spatial Databases

Information Systems

Fernuniversit�at Hagen

VLDB Journal

Computer Languages

family of constrained languages, GRA(). Each language in this family is ob-

tained by specifying a decidable logical theory and a set of functions, each

representing an operator considered useful in a given application domain. Thus,

the languages we introduce consist of an application independent set of operators

and of a set of application dependent ones. Some operators are classi�ed into set

and tuple operators, with respect to the way in which d-generalized tuples are

used.

We have then analyzed the issues concerning the modeling of spatial data in

the proposed constraint data model and the application of the proposed language

to spatial queries modeling [5, 8, 9, 21, 22].

Much work is still to be done. The de�nition of a declarative calculus equiv-

alent to the proposed algebra is a �rst important aspect. This calculus should

be equivalent to the one proposed in [13], but more suitable from a user point

of view. The de�nition of an application dependent integrity constraint theory

is another interesting topic. A related issue is the de�nition of a transaction

language for generalized databases. Finally, the development of optimization

methods for generalized databases [1, 3] is included in future work.

1. A. Brodsky, J. Ja�ar, and M.J. Maher. Toward Practical Constraint Databases.

In , pages 567{579, Dublin, Ireland, 1993.

2. A. Brodsky and Y. Kornatzky. The Language: Querying Constraint Ob-

jects. In , 1995.

3. A. Brodsky, C. Lassez, J.L. Lassez, and M.Maher. Separability of Polyhedra and

a New Approach to Spatial Storage. In

, San Jose, California,

1995.

4. A.K. Chandra and D. Harel. Computable Queries for Relational Data Bases.

, 21:156{178, 1980.

5. L. De Floriani, P. Marzano, and E. Puppo. Spatial Queries and Data Model. In

A.U. Frank, I. Campari, U. Formentini, editors,

, volume 716 of ,

Springer-Verlag, pages 123{138, September 1993.

6. M. J. Egenhofer and J. R. Herring. A Mathematical Framework for the De�-

nition of Topological Relationships. In

, pages 803-813, 1990.

7. M.J. Egenhofer. Reasoning about Binary Topological Relations. In

, pages 143-160, 1991.

8. M. Gargano, E. Nardelli, and M. Talamo. Abstract Data Types for the Logical

Modeling of Complex Data. , 16(6):565{583, 1991.

9. R.H. Gueting and M. Schneider. Realm-Based Spatial Data Types: The ROSE

Algebra. Informatik-Report 141, 1993. To appear in the

.

10. M.R. Hansen, B.S. Hansen, P. Lucas, and P. van Emde Boas. Integrating Rela-

tional Databases and Constraint Languages. , 14(2):63{82,

1989.

a

�

Handbook of Theoretical Computer Science

Journal of Computer and System Sciences Proc. of the

9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems

Proc.

of the ACM SIGMOD Int. Conf. on Management of Data

Proc. of the Int. Conf. on Data Engineering

Proc. of the 11th ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems

Proc. First Symposium Large Spatial Databases

Lecture Notes in Computer Science

Proc. of the ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems

Computational Geometry - an Introduction

Proc. of the Symp. on

the Design and Implementation of Large Spatial Databases

Proc.

of the 2nd Symp. on Advances in Spatial Databases

11. P. Kanellakis. Elements of Relational Database Theory. In J. van Leeuwen,

editor, , Chapter 17, 1990.

12. P.C. Kanellakis and D.Q. Goldin. Constraint Programming and Database Query

Languages. Technical Report CS-94-31, Brown University, Providence, USA,

1994.

13. P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint Query Languages.

, to appear. See also

, pages 299{313, Dever, Colorado, April 1990.

14. M. Kifer, W. Kim, and Y. Sagiv. Querying Object-Oriented Databases. In

, pages 393{402, 1992.

15. M. Koubarakis. Representation and Querying in Temporal Databases: the Power

of Temporal Constraints. In , pages

327{334, 1993.

16. J.L. Lassez. Querying Constraints. In

, pages 288{

298, Nashville, Tennessee, April 1990.

17. J. Nievergelt. \7 + 2 Criteria for Assessing and Comparing Spatial Data

Structures. In , pages 5-25, Santa

Barbara, California 1989.

18. J. Paredaens. Spatial Databases, The Final Frontier. In G. Gottlob and M.

Vardi, editors, volume 893 of . Springer-

Verlag, 1994.

19. J. Paredaens, J. Van den Bussche, and D. Van Gucht. Towards a Theory of

Spatial Database Queries. In

, pages 279{288, Minneapolis,

Minnesota, USA, 1994.

20. F. P. Preparata and M.I. Shamos. ,

Springer Verlag, New York, 1985.

21. M. Scholl and A. Voisard. Thematic Map Modeling. In

, 1989, pages 167{190.

22. P. Svensson. GEO-SAL: a Query Language for Spatial Data Analysis. In

, pages 119-140, 1991.

This article was processed using the LT

E

X macro package with LLNCS style

