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Abstract

Constraint databases have recently been proposed as a

powerful framework to model and retrieve spatial data. The

use of constraint databases should be supported by access

data structures that make effective use of secondary storage

and reduce query processing time. In this paper, we con-

sider the indexing problem for objects represented by con-

junctions of two-variable linear constraints and we analyze

the problem of determining all generalized tuples whose ex-

tension intersects or is contained in the extension of a given

half-plane. In [4], we have shown that both selection prob-

lems can be reduced to a point location problem by using a

dual transformation [4, 10]. If the angular coefficient of the

half-plane belongs to a predefined set, we have proved that

a dynamic optimal indexing solution, based on B+-trees, ex-

ists. In this paper we propose two approximation techniques

that can be used to find the result when the angular coeffi-

cient does not belong to the predefined set. We also experi-

mentally compare the proposed techniques with R-trees.

1 Introduction

Constraint programming is very attractive from a data-

base point of view since it is completely declarative and

since it allows to homogeneously model spatial and tem-

poral concepts [3, 12]. Constraintscan be added to relational

database systems at different levels. At the data level, they

finitely represent possibly infinite sets of relational tuples.

For example, the constraint 2x + y � 2, where x and y

are real variables, represents all the points (x; y) such that

2x + y � 2. A conjunction of constraints is called gen-

eralized tuple. The set of solutions of a generalized tuple

is called extension of the generalized tuple. At the query

language level, constraints increase the expressive power of

simple relational languages by allowing mathematical com-

putations.

Constraint databases should preserve all the good fea-

tures of relational databases. In particular, new data struc-

tures should be defined for querying and updating constraint

databases with time and space comparable to those of B+-

trees [7]. For 1-dimensional data, B+-trees process range

queries inO(log
B

n+t) I/O operations, requireO(n) blocks

of secondary storage, and perform insertions/deletions in

O(log

B

n) I/O operations.1

Since constraint databases are often used to store spatial

objects, at least two constraint language features should be

supported by index structures: ALL selection, retrieving all

generalized tuples whose extension is contained in the ex-

tension of a given generalized tuple; EXIST selection, re-

trieving all generalized tuples whose extension has a non-

empty intersection with the extension of a given generalized

tuple.

Most of the existing indexing techniques for constraint

databases, with optimal worst-case performance, only sup-

port EXIST selection and assume that index values are in-

tervals [2, 13, 16]. Some other solutions are based on the

approximation of the extension of generalized tuples (which

must be closed) [5, 18] and on the use of some typical spa-

tial data structures (such as R-trees and R+-trees [11, 17]).

The aim of this paper is to propose a simple indexing mech-

anism for both EXIST and ALL selections against two-

dimensional linear constraints, representing both closed and

open objects. The query generalized tuple is assumed to be

a half-plane (also called query half-plane). In linear con-

straint databases this kind of query is very important since

each inequality constraint, expressed by using the linear

polynomial constraint theory, represents a half-plane. From

an applicationpoint of view, this query is often used in linear

programming problems and in spatial database applications.

1In the given complexity bounds,N is the number of items in the data-

base;B is the number of items per disk block; T is the number of items in

the problem solution; n = N=B is the optimal number of blocks required

to store the database; t = T=B is the optimal number of blocks to access

for reporting the problem result.



In [4], we have shown how ALL and EXIST selections

with respect to a query half-plane can be uniformly reduced

to a point location problem [15] by using the concept of geo-

metric duality [8]. If the angular coefficient of the line asso-

ciated with a query half-plane belongs to a fixed set of car-

dinality k (simplified problem), we have proposed a solu-

tion in external storage, based on B+-trees, requiringO(k n)

pages, performing ALL and EXIST selections inO(log
B

n+

t) and updates in O(k log

B

n) I/O operations [4].

In this paper, we go one step forwards and, if the angu-

lar coefficient of the line associated with a query half-plane

does not belong to the predefined set, we use the dual repres-

entation to define two approximationstrategies, based on the

technique we have defined to solve the simplified problem.

The first technique we propose replaces the original query

with two new queries. The second technique replaces the

original query with a single new query. The first technique

can be always applied, whatever the database. The second

technique can be applied only if the database satisfies some

specific requirements. The two techniques are then experi-

mentally compared with R-trees, a well known spatial data

structure [11].

The paper is organized as follows. Section 2 introduces

constraint databases and the dual transformation. Section 3

proposes an indexing technique based on this representation

to solve the simplified problem. Approximation techniques

are introduced in Section 4 whereas experimental results are

discussed in Section 5. Finally, Section 6 presents some con-

clusions and outlines future work.

2 Constraint databases and dual transforma-

tion

Constraint databases. A two-dimensional linear con-

straint in variables x and y is a formula of the form a

1

x +

a

2

y + c � 0, where coefficients a
1

; a

2

; c are real numbers

and � 2 f=; 6=;�; <; �; >g. A conjunction of m two-

dimensional linear constraints in variables x; y has the form

^

m

i=1

a

i

1

x + a

i

2

y + c

i

�

i

0, where �i 2 f=;6=;�; <; �;

>g and is called generalized tuple. In this paper, we as-

sume �i 2 f=;�; �g2 and replace each equality constraint

a

i

1

x + a

i

2

y + c

i

= 0 by the equivalent conjunction of con-

straints ai
1

x+ a

i

2

y + c

i

� 0 ^ a

i

1

x+ a

i

2

y + c

i

� 0. A con-

straint y � a

i

x+b

i

(y � a

i

x+b

i

) is called down-constraint

(up-constraint). A generalized tuple is satisfiable if it ad-

mits at least one solution. A set of generalized tuples forms a

generalized relation. If each generalized tuple is interpreted

as a set of points in the 2-dimensional space, the constraint

database can be seen as a spatial database.

In this paper, we are interested in two types of queries

for constraint databases, EXIST and ALL selections. For a

2The approach can be easily extended to the case �i 2 f=; 6=;�; <;

�; >g.

given generalized relation r, they are defined as follows:3

ALL selection. It retrieves all tuples in r whose extension

is contained in the extension of a given tuple q, called query

tuple. If the extension of t is contained in the extension of

q, we denote this fact by ALL(q; t) and, given a relation r,

we let ALL(q; r) = ft 2 rj ALL(q; t)g.

EXIST selection. It retrieves all tuples in rwhose extension

has a non-empty intersection with the extension of a query

tuple q. If the extensions of t and q have a non-empty inter-

section, we denote this fact with EXIST(q; t) and, given a

relation r, we let EXIST(q; r) = ft 2 rjEXIST(q; t)g.

In the following, we analyze ALL and EXIST selections

with respect to a non-vertical query half-planewhich has the

form y�ax + b, where � �‘�’ (down-query) or � �‘�’

(up-query). Given a half-plane q, a relation r and Q 2

fALL;EXISTg, Q(q; r), or Q(q) when r is not specified,

is called a query whereas Q is called the type ofQ(q; r). We

denote with p(t) (p(C)) the boundary of the extension of a

tuple t (a constraint C). Given a constraint C and a tuple

t, we say that C is redundant with respect to t if the tuple

t

0

= t^C is equivalent to t. Satisfiable tuples of the type de-

scribed above, without redundant constraints, and relations

containing only such tuples, are called regular. In the fol-

lowing, since we deal only with regular tuples and relations,

we omit the word “regular”.

Dual transformation. Duality is a fundamental geometric

method widely used in various domains [8, 10]. Let l be a

line y = ax + b in the primal plane P. In the dual plane

D, l is transformed in point D(l) = (a; b). Due to the same

transformation, a point p in P is transformed in a line in D.

If the point p inP is (a; b), the corresponding dual lineD(p)

is y = �ax + b.4 Such transformation can be extended

to deal with a tuple t by transforming each constraint of t

into a point and connecting such points depending on the

type of the constraint (up- or down-) and the type of the ob-

ject representing the extension of the tuple (closed or open).

Each tuple t is then transformed in a pair of disjoint and con-

vex open domains, whose boundaries are an upward open

(UP (t)) and a downward open (DOWN (t)) polygons (see

Figure 1(b)), such thatDOWN (t) is underUP (t).5 Due to

space constraints, we refer the reader to [4, 10] for additional

details about the construction of the dual representation.

Since the boundary of a query half-plane corresponds to

a point inD, the dual transformation reduces both ALL and

EXIST selections to a point location problem in plane D.

Proposition 1 [4] Let t be a tuple. Let q(�) be a query tuple

3In the remainder of the paper we consider generalized tuples and gen-

eralized relations only; for brevity, we will omit the adjective generalized.
4The dual transformation cannot be applied to vertical lines, therefore

we assume that tuples do not contain constraints like x � a or x � a.
5This means that, if a vertical line x = a in D intersects both

DOWN(t) andUP (t), the point of intersection with the former is always

under the point of the intersection with the latter.
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Figure 1. A tuple and some query examples
in: (a) the primal plane P, (b) the dual plane
D

y � ax+ b, where � 2 f�;�g. Then:

- ALL(q(�); t) iff b � DOWN (t)(a);6

- ALL(q(�); t) iff b � UP (t)(a);

- EXIST(q(�); t) iff b � UP (t)(a);

- EXIST(q(�); t) iff b � BOT (t)(a): 2

Example 1 Figure 1 presents an example of dual trans-

formation for a tuple t. Given the half-plane queries q
1

�

y � �x � 1, q
2

� y � x, q
3

� y � 4:5, one can see in

Figure 1(b) that�1 < DOWN (t)(�1), 4:5 = TUP (t)(0)

and DOWN (t)(1) < 0 < UP (t)(1). It follows from Pro-

position 1 that ALL(q
1

; t), EXIST(q
2

; t) and EXIST(q
3

; t)

are satisfied. Figure 1(a) confirms these results. Similarly,

if we consider the queries q0

1

� y � �x � 1, q0

2

� y � x,

and q

0

3

� y � 4:5, it follows from Proposition 1 that

EXIST(q0

2

; t) and ALL(q0

3

; t) are satisfied (see Figure 1(a)).

3

3 A technique to solve simplified ALL and

EXIST problems

As we have seen in the previous section, the dual trans-

formation uniformly reduces both ALL and EXIST selec-

tions to a point location problem. For this problem, some ef-

ficient in-memory algorithms have been proposed (see [14]

for a survey). However, similar algorithms designed for ex-

ternal storage are still far from being adequately efficient

[1, 2, 9, 10].

When the angular coefficient of the line associated with

the query half-plane belongs to a predefined set S, an op-

timal dynamic solution to this problem exists [4].7 The ap-

proach is based on the following considerations. For each

value a 2 S, we construct two sets containing the highest

(lowest) intersection points of line x = a in D with all

6

DOWN(t)(a) (UP (t)(a)) denotes the highest (lowest)

y-coordinate of the point of DOWN(t) (UP (t)) having a as

x-coordinate.
7This type of selection is typical of VLSI and CAD design.

DOWN (t)

0

s and all UP (t)0s, respectively. Each set con-

tains at most N points that can be organized in two lists, de-

noted by L
down

and L
up

, ordered with respect to increasing

y values. Given a query tuple y � ax + b, by Proposition

1, the position of b in the total order allows to determine the

result of the query. Indeed:

� ALL(q(�); t) is represented by all the tuples associ-

ated with points following or equal to b in L
down

.

� ALL(q(�); t) is represented by all the tuples associ-

ated with points preceding or equal to b in L
up

.

� EXIST(q(�); t) is represented by all the tuples associ-

ated with points following or equal to b in L
up

.

� EXIST(q(�); t) is represented by all the tuples associ-

ated with points preceding or equal to b in L
down

.

Thus, to perform selections against a set of tuples, it is

sufficient to maintain two ordered sets of values in two B+-

trees, Bup and Bdown, for each value in set S.

Given a query Q(y � ax + b; r), such that Q 2

fALL,EXISTg, the search algorithm first selects the corres-

ponding B+-tree associated with value a, that is, Bup for

queries ALL(q(�); r) and EXIST(q(�); r) and Bdown for

queries ALL(q(�); r) and EXIST(q(�); r). Then, value b

is searched in the selected B+-tree and all leaf values are

swept in the direction corresponding to the query.8

Theorem 1 Let r be a relation containing N tuples. Let q

be a query half-plane. Let T be the cardinality of the set

ALL(q; r) (EXIST(q; r)). If the angular coefficient of p(q)

is contained in a predefined set of cardinality k, there is an

indexing structure for storing r in O(k N=B) pages such

that ALL(q; r) and EXIST(q; r) selections are performed in

O(log

B

N=B + T=B) and updates in O(k log

B

N=B) I/O

operations. 2

4 Approximation techniques to solve ALL

and EXIST problems

The technique we have proposed in the previous section

works only for queries whose angular coefficient belongs to

a predefined set. In the following, we propose two solutions

overcoming such limitation, based on a filtering/refinement

approach. The first technique (denoted by T1) replaces the

original query with two new queries whereas the second

technique (denoted by T2) replaces the original query with

only one new query.

Both techniques use the indexing structures defined in

Section 3. The first technique can always be applied,

8Another solution to the same problem can be provided by reducing

ALL and EXIST selections to the 1-dimensional interval management

problem (see [4] for additional details).
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whatever the database is. The second technique can be ap-

plied only if the database satisfies some specific require-

ments. In the following, we denote with S a predefined set

of angular coefficients, and assume that B+-trees Bup and

B

down are constructed for each value in S. We consider a

query half-plane q � y � ax+ b, where a 62 S.

4.1 Approximating the query with two

new queries

From Figure 2, we can see that the original query can

be approximated with two new queries (called app-queries),

with half-planes q
1

� y �

1

a

1

x+b

1

and q
2

� y �

2

a

2

x+b

2

,

a

1

; a

2

2 S, such that the union of q
1

and q
2

covers the ori-

ginal query half-plane. The latter feature guarantees that any

tuple in the result of query q appears in the result of at least

one app-query, ensuring the correctness of approximation

(see Figure 2). Such approximation raises two main issues:

Duplications: as two app-queries may intersect, some

tuples are returned twice.

False fits: not all the tuples satisfying the app-queries sat-

isfy also the original one, thus a refinement step is re-

quired to discard such false hits.

The number of duplicates and false hits produced by

the approximation depends on the choice of app-queries.

Moreover, app-query pairs reducing the number of false hits

often increase the number of duplicates and vice versa. In

the following, we minimize false fits rather than duplica-

tions. Indeed, we argue that the generation of duplicates is

generally less painful than the retrieval of tuples which do

not satisfy the query at all.

For a given query q, the optimal choice of the app-queries

q

1

and q

2

is performed by choosing: (1) the lines associ-

ated with q
1

and q

2

(coefficients a
1

; a

2

; b

1

; b

2

), (2) operat-

ors �
1

, �
2

and (3) query type (EXIST/ALL), which guaran-

tee the correct approximation and minimize the number of

false hits. All these choices will be discussed by consider-

ing a down-query y � ax + b (similar conditions can be

given for up-queries).

Choice of the angular coefficients a
1

; a

2

. In order to min-

imize false hits, the lines associated with q
1

and q
2

must be

chosen in such a way that the false hit area would contain

none or few tuples. If the tuple distribution in E2 is close

to uniform or unknown, this task is equivalent to minimize

Conditions on a;a
1

; a

2

Values for �
1

and �
2

a

1

< a < a

2

�

1

� �, �
2

� �

a

1

< a; a

2

< a �

1

� �, �
2

� :�

a < a

1

; a < a

2

�

1

� :�, �
2

� �

Table 1. Choice of the half-plane app-queries

y >= ax + b
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Figure 3. Choice of the type of app-queries for
an original ALL query

the size of the false hit area. Thus, we choose coefficients

a

1

and a

2

from S which are nearest to a; we denote with

a

1

(a
2

) the angular coefficient in S which is encountered by

performing a clockwise (anti-clockwise, respectively) rota-

tion of line y = ax+ b (see Figure 2).

Choice of b
1

; b

2

. Given the angular coefficients a
1

and a
2

,

coefficients b
1

and b
2

are determined by choosing a point P

on line y = ax+ b and making p(q
1

) and p(q
2

) passing for

P . The optimal choice of P depends on the tuple distribu-

tion on the plane. We omit details due to space limitations.

Choice of the half-planes (�
1

and �

2

). Given the lines for

app-queries q
1

and q
2

, we select the operators �
1

and �
2

in

such a way that the union of the points belonging to q
1

and

q

2

covers the original query half-plane. Three possible cases

may arise. Table 1 shows the values for �
1

and �
2

for each

possible combination of a; a
1

and a
2

. In the table, :� cor-

responds to ‘�’ if � is ‘�’ and ‘�’ if � is ‘�’.

Type of the app-queries. Finally, a proper type should be

assigned to app-queries q
1

and q

2

to guarantee the correct

approximation; the types are derived from the type of the

original query q:

� EXIST query: the approximation of an original EXIST

query with two EXIST app-queries is correct; indeed,

each tuple satisfying the original query is returned by

at least one of the app-queries.

� ALL query: the replacement of an original ALL query

with two ALL app-queries may not be correct (see Fig-

ure 3). To preserve correctness, we approximate an

ALL query with one EXIST and one ALL app-query.

See [6] for additional details.

Since the angular coefficients of the new app-queries be-

long to S, the technique presented in Section 3 can be ap-

plied to execute them. Thus, we obtain the following result.

Theorem 2 Let r be a relation containing N tuples. Let

q be a query half-plane. Let T be the cardinality of the



set ALL(q; r) (EXIST (q; r)). If the angular coefficient of

p(q) is not contained in a predefined set of cardinality k,

there is an indexing structure for storing r in O(k N=B)

pages such that ALL(q; r) and EXIST (q; r) selections

are performed in O(log
B

N=B + T

1

=B + T

2

=B) I/O oper-

ations, where T
1

and T
2

represent the number of tuples re-

turned by the app-queries generated as above, and updates

are performed in O(klog
B

N=B) I/O operations. 2

4.2 Approximating the query with a single

new query

From Figure 2 we can see that the query can be approx-

imated by using a single new query if it is possible to replace

the original query half-plane with a new half-plane such that

the part of the original half-plane not covered by the new one

does not contain the extension of any tuple. This is possible

if we know something about the distribution of the exten-

sion of the tuples in the plane. The notion of direction half-

plane gives this kind of information, specifying that none is

present in a given region of space.

Definition 1 Let r be a relation. A line l is a direction line

for r if the extension of r is contained in a single half-plane

with respect to l. Such half-plane is called direction half-

plane for r. 2

Given a query Q(q), such that Q 2 fALL,EXISTg, if at

least one direction half-plane q
1

exists such that p(q
1

) and

p(q) are not parallel lines, at least one query Q(q

0

) exists

approximating Q(q), such that p(q) and p(q

0

) are not par-

allel lines. Note that if the original query line and the direc-

tion line are parallel, the direction line does not give enough

information to find a new query approximating the original

one, excluding queries whose query half-plane contains the

direction half-plane (thus, retrieving all database objects). If

p(q) and p(q

1

) are not parallel lines, we say that q
1

is ap-

proximating for q.

Given a query Q(y � ax + b), in order to construct the

new query Q(y �0

a

0

x+ b

0

), the following choices must be

taken.

Choice of the direction half-plane. In order to detect dir-

ection lines, a (possibly open) minimum bounding polybox

of the relation extension can be maintained. If such a poly-

box does not exist, the relation does not admit any direction

line. Otherwise, the lines on which the edges of the poly-

box lay represent direction lines for the relation. Of course,

direction lines with different angular coefficient may exist.

Some heuristics can be applied to choose the direction line

generating the lowest number of false hits. See [6] for de-

tails.

Choice of the point. Let y �
1

a

1

x+ b

1

be the approximat-

ing direction half-plane. Since we assume that a
1

6= a, the

direction line and the query line y � ax + b intersect. We

Conditions on a;a
1

�

1

a

0

�

0

a

1

> a � maxfa

0

ja

0

2 S; a

0

< ag or �

maxfa

0

ja

0

2 S; a

0

� a

1

g �

a

1

< a � maxfa

0

ja

0

2 S; a

0

> ag or �

maxfa

0

ja

0

2 S; a

0

� a

1

g �

a

1

> a � minfa

0

ja

0

2 S; a < a

0

� a

1

g �

a

1

< a � maxfa

0

ja

0

2 S; a

1

� a

0

< ag �

Table 2. Choice of the app-query half-plane,
for an original down-query

choose their intersection point to construct the new query.

The reason of this choice is due to the fact that for each query

half-plane, whose associated line passes for this point, it is

immediate to establish if the part of the original query half-

plane not covered by the new one contains the extension of

some tuple.

Choice of the app-query. Table 2 summarizes the various

cases for constructing the app-query half-plane for an ori-

ginal down-query. Similar conditions can be given for an

up-query. The type of the app-query coincides with the type

of the original one. Note that, if no app-query can be found,

T2 cannot be applied.

Theorem 3 Let S be a set of angular coefficients. Let r be

a relation containingN tuples. Let q be a query half-plane.

Let T be the cardinality of the set ALL(q; r) (EXIST(q; r)).

Assume that there exists at least one approximating direc-

tion half-plane for r. If the angular coefficient of p(q) is not

contained in S, there is an indexing structure for storing r

inO(kN=B) pages such that ALL(q; r) and EXIST(q; r) se-

lections are performed inO(log
B

N=B+T

1

=B) I/O opera-

tions, where T
1

represents the number of tuples returned by

the app-query constructed as above, and updates are per-

formed in O(k log
B

N=B) I/O operations. 2

When compared with technique T1, T2 does not generate

duplicates, since only one app-query is generated. However,

differently from T1, it cannot be always applied. No clear

relationship exists between the number of false hits gener-

ated by the two techniques. It essentially depends on the

choice of point P for the first technique and on the choice

of direction lines for the second one.

5 Experimental results

In order to compare the performance of the proposed

techniques, we have performed two different groups of ex-

periments, the first comparing techniques T1 and T2, the

second comparing techniques T1 and T2 with respect to the

R-tree, a well known spatial data structure [11].

In both the considered techniques, each B+-tree is asso-

ciated with two data files (called UP-file and DOWN-file)
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Figure 4. Duplicates generated by T1 (a) for an
EXIST selection; (b) for an ALL selection

containing the dual representation of the tuples, ordered fol-

lowing the ordering induced by the corresponding B+-tree.

A similar approach has been taken for implementing refine-

ment in the R-tree. Note that, even if this approach increases

the redundancy of the data representation, since tuples are

replicated 2k times, it improves the query time, since only

one leaf node per search is accessed. Moreover, even if this

solution could be not feasible from the point of view of the

space occupancy, it does not alter the results of the compar-

ison.

The experiments have been performed on a PC Pentium

200, under Windows 95. The page size is 1k. The program

has been written in C++. The considered relations contain

respectively 500, 2000, 4000, 8000, and 12000 tuples; each

tuple contains at most 30 constraints. Both ALL and EXIST

selections have been investigated.

5.1 Comparing the performance of T1 and

T2

The aim of the experiments is to analyze the trade-off ex-

istingbetween T1 and T2, in order to assess the impact of du-

plicates and false hits on the search. In doing that, we have

assumed that the set S contains angular coefficients of lines

dividing the space in 2k equal sectors. In the performed ex-

periments we have chosen k = 2; 4; 8. We have observed

that the trade-off between the techniques does not change by

changing the selectivity of the query. For this reason, all res-

ults we report here are related to a single query. Moreover,

similar results have been obtained for relations containing

closed or open objects. Open tuples have been construc-

ted in such a way to guarantee the existence of at least one

direction line. Since closed relations will be considered in

Subsection 5.2, here we report results obtained for relations
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Figure 5. False hits generated for an EXIST se-
lection by (a) T1, (b) T2

containing at least one open tuple.

Duplicates. Figure 4 shows that the number of duplicates

increases for increasing values of k. Indeed, for higher val-

ues of k, the common area of the two app-query half-planes

increases. Therefore, more tuples are returned twice.

False hits. Figure 5 shows that the number of false hits de-

creases for increasing values of k, for an EXIST selection.

Similar results have been obtained for the ALL selections.

This behavior is reasonable since higher values for k corres-

pond to smaller false hits areas. Note that T2 generates the

lowest number of false hits. This is mainly due to the par-

ticular type of relations used in the experiments.

Page accesses. Similar results have been obtained for all k-

values. Figure 6 reports results obtained for k = 2. It can

be observed that T2 performs better than T1. This is mainly

due to the fact that T2 does not generate duplicates.

5.2 Comparing the performance of T1,

T2, and R-trees

In order to establish the practical applicability of the pro-

posed techniques, we have compared their performance with

respect to the performance of the R-tree [11], a well known

spatial data structure for closed objects. The R-tree can be

used to answer EXIST and ALL queries. However, in order

to safely execute an ALL selection with respect to a query

half-plane, the selection has to be replaced by the corres-

ponding EXIST selection; the result has then to be refined

with respect to the original ALL query.

Several experiments have been performed, by varying

the following parameters:

� The average size of the considered objects. Three dif-

ferent groups of objects have been considered: large
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Figure 6. Page accesses for k = 2 and (a) an
EXIST selection, (b) an ALL selection

objects, i.e., objects intersecting almost all other ob-

jects; medium objects, i.e., objects whose area does not

exceed half the area of the bounding rectangle contain-

ing all stored ones; small objects, i.e., objects with a

very small area with respect to the bounding rectangle

containing all stored ones. All objects are uniformly

distributed in the space. Since spatial databases typic-

ally deal with small objects, the size of the considered

objects is a good parameter to analyze how the per-

formance of R-trees changes by changing the average

size of the considered objects. In this paper, due to

space constraints, we only report results obtained for

small rectangles.

� The selectivity of the considered queries. In compar-

ing T1 and T2 with R-trees, selectivity (hereafter de-

noted by s) is very important since different selectiv-

ities correspond to a different number of internal tree

nodes accessed in the R-tree. Here, we report results

obtained with s < 10% and s � 40%.

In performing the experiments, we have taken k = 2.

This assumption allows us to compare R-trees with respect

to the proposed techniques in the case when they have the

worst performance (see Subsection 5.1).

In the following, due to space constraints, we mainly re-

port the results we have obtained by considering EXIST se-

lections. See [6] for additional details. The technique sup-

ported by the R-tree data structure is denoted by R.

False hits. From the performed experiments, it follows that

R almost always generates the lowest number of false hits.

For selectivity very low (< 10%), the number of false hits

generated by T2 is very close to the number of false hits

generated by R. Often T2 generates less false hits than T1,

but this mainly depends on the chosen relation and on the
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Figure 7. False hits for an EXIST selection and
(a) s < 10%; (b) s � 40%

choice of point P . These results can be observed from Fig-

ure 7. From the same figure, we can see that, by increas-

ing the selectivity, the number of false hits generated by T1

decreases whereas the number of false hits generated by T2

and R increases. In R, the number of false hits increases

because, by augmenting the selectivity, the number of tree

paths to be searched increases. In T1, the number of false

hits decreases since the false hits area decreases whereas in

T2 increases, thus increasing the number of generated false

hits. From additional experiments, we have also observed

that R generates the lowest number of false hits when rect-

angles are small. These considerations point out an import-

ant difference between R-trees and the proposed data struc-

tures: the performance of a search based on R-trees depends

on the query selectivity whereas the performance of T1 and

T2 depends on the size of the false hits area generated by

the approximation. Thus, by choosing a good approxima-

tion, similar performance can be obtained when executing

queries with different selectivity. Similar results have been

obtained for ALL selections.

Page accesses. Different results have been obtained by con-

sidering the number of page accesses. In this case, T2 almost

always performs better than R. This is in contrast with the

result deriving from the analysis of false hits and is mainly

due to the number of tree paths that have to be analyzed in

the R-tree. Indeed, in T2, always a single path of a B+-

tree has to be analyzed. In the performed experiments, this

corresponds to at most 3 page accesses. On the other hand,

each single query may require the analysis of several paths

in the R-tree, depending on the query selectivity. From the

experimental results, it follows that the number of additional

page accesses required to search the R-tree is higher than the

number of additional pages that have to be analyzed in T2

for the additional false hits. These results can be observed



100

200

300

400

500

500 2000 4000 8000 12000

P
ag

es

N

(c)

T1
T2

R-tree

100

200

300

400

500

600

700

500 2000 4000 8000 12000

P
ag

es

N

(c)

T1
T2

R-tree

Figure 8. Page accesses for an EXIST selec-
tion and (a) s � 10%; (b) s � 40%

from Figure 8. The reported results show that, similarly to

the analysis of false hits, by augmenting the selectivity, the

number of pages accessed by T2 and R increases. However,

differently from the result obtained by the analysis of false

hits, the number of pages accessed by T1 increases by in-

creasing the selectivity. This is mainly due to the fact that

T1, besides the generation of false hits, also generates du-

plicates. This aspect, together with the fact that the num-

ber of tuples belonging to the result increases by increasing

the selectivity, increments the number of page accesses. A

similar situation arises when ALL selections are considered.

However, the performance of the R-tree is much worst for

ALL selections than for EXIST selections, with the same se-

lectivity. This is due to the fact that the search in the tree for

an ALL selection coincides with a search in the tree for a

corresponding EXIST selection and therefore the degree of

filtering is lower.

6 Conclusions and future work

The paper has proposed two new approx-

imation techniques to solve ALL and EXIST selections in

two-dimensional linear constraint databases. The proposed

solutions are based on a dual representation, first presented

in [8, 10]. We have also experimentally compared the pro-

posed techniques with R-trees. Future work includes: the

definition of new approximation techniques, not generating

duplicates and reducing the space overhead; additional ex-

perimental work, in order to compare the proposed tech-

niques with R+-trees; the extension of the proposed tech-

niques to a d-dimensional space, d > 2.
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