Segmentation of Synovitis

C. Basso A. Verri

Dipartimento di Informatica e Scienze dell'Informazione Università di Genova

11/07/2007

- The volume of the inflamed synovia might be an early predictor for the severity of the disease (it is in the case of Osteoarthritis and Rheumatoid arthritis).
- Manual annotation of the inflamed synovia is extremely time-consuming and prone to variability.

Goal

provide a semi-automatic quantification method to *speed up* the process and *reduce variability*.

- T1W-FFE3D FAT, coronal MRI of wrists/hips, acquired at 1.5 min after injection of a contrast bolus.
- The contrast enhances the inflamed synovia, which can be segmented.
- Other structures are enhanced (blood vessels, sinew).

Approach: Segmentation as Classification

the segmentation problem is seen as a problem of classifying voxels

- manually annotated exams are used for training-validating-testing a set of classifiers, combined by bagging;
- the features are the intensities of the voxels and of their 1-neighbors (in 3D);
- each classifier is a linear combination of Gaussian kernels centered on the examples;
- the width of the kernels is chosen as the median distance between training examples;
- the training is performed by ν-method, an iterative method originally devised for solving inverse problems.

we need annotations for the whole training-validation-testing pipeline

- We provide a software tool for performing annotations.
- Freehand drawing was preferred to polylines.
- Current status:
 - 4 wrists by two clinicians (8 annotations)
 - 1 wrist annotated together

Features:

- loading and visualization of DICOM data;
- support for drawing, saving and loading freehand and elliptic annotations;
- works on different platforms: Win, Mac and Linux;
- controls on image zoom and contrast;
- misc: multiplanar view, maximum intensity projections, thresholding, ...

Inter-observer analysis

- Correlation, per slice: r = 0.92, p < 0.001
- Absolute difference per slice, avg = 30.5%, median = 14.4%
- Absolute difference per exam, avg = 15.2%, median = 12.1%
- Classification overlap = 63.0%

Computed over 4 exams, with 2 different annotations

Sensitivity to Morphological Operations

- 1px Dilation (avg), per exam: 33.3%
- 1px Erosion (avg), per exam: -31.4%

Computed over 9 annotations.

Analysis of Training Examples

Percentage of overlap between histograms of the intensities for positive and negative examples.

The lower the overlap, the easier the classification task.

	Obs. 1	Obs. 2
ITAO	46 .9%	55.3%
ITEC	29.5%	38.3%
ITMB03	35.9%	39.0%
ITMB29	35.8%	43 .1%

Analysis of Training Examples

Intensity histograms of the exemplar voxels (pos+neg).

Analysis of Training Examples

Intensity histograms of all voxels.

ITAO

ITEC

ITMB03

ITMB29

Experimental Setup

for each exam

- use the other exams for training and validation;
- train 5 classifiers on 1.000 voxels;
- validate each classifier on 5 different samples of 1.000 voxels;
- combine the classifiers by bagging (averaging);
- test the classifiers on 20.000 voxels;

the exemplar voxels are drawn from the annotated synovia (red contour) and surrounding regions (green contour).

examples from different exams have different intensity histograms

- one exam is randomly chosen as reference;
- the intensities of its voxels are sorted in an ordered list $I_r = (i_0, ..., i_N)$, where N is the number of voxels and $i_j \le i_{j+1}$ for j = 0, ..., N;
- given another exam, the intensity of each voxel is set to the intensity of its equal-rank voxel in the reference exam; that is, if a voxel has rank k in the sorted list of intensities, then its new intensity will be ik

Results

Results for classifiers trained and tested on one observer. *Normalized by ranking*. Tuning of the offset.

	b ₀	$b_0 + 0.1$	b ₀ + 0.2	$b_0 + 0.3$	$b_0 + 0.4$
	Classification Error				
ITAO	8.7%	8.9%	9.1%	9.6%	10.4%
ITEC	8.2%	7.8%	7.6%	7.4%	7.6%
ITMB03	7.7%	7.3%	7.6%	8.0%	8.4%
ITMB29	8.7%	8.9%	8.8%	9.4%	9.6%
mean	8.3%	8.2%	8.3%	8.6%	9.0%
σ	0.48%	0.81%	0.79%	1.07%	1.24%
Volume Error					
ITAO	-38.4%	-21.1%	-12.3%	6.4%	22.6%
ITEC	-49.3%	-42.7%	-36.0%	-24.8%	-11.3%
ITMB03	-27.8%	-16.2%	-2.1%	11.2%	26.4%
ITMB29	-34.8%	-20.8%	-6.5%	5.1%	25.1%
mean	-37.6%	-25.2%	-14.2%	-0.5%	15.7%
σ	9.0%	11.9%	15.1%	16.4%	18.1%

Results for classifiers trained and tested on one observer. Different normalizations.

	-	Scaling	Ranking
	Classifica	tion Error	
ITAO	9.8%	8.5%	8.7%
ITEC	9.3%	7.7%	8.2%
ITMB03	7.8%	7.0%	7.7%
ITMB29	8.7%	8.0%	8.7%
mean	8.9%	7.8%	8.3%
σ	0.86%	0.63%	0.48%
Volume Error			
ITAO	1.0%	-53.6%	-38.4%
ITEC	-64.6%	-9.7%	-49.3%
ITMB03	-71.4%	-47.2%	-27.8%
ITMB29	-6.4%	-43.1%	-34.8%
mean	-35.4%	-38.4%	-37.6%
σ	37.9%	19.6%	9.0%

Results on Unlabeled Data

Results on Unlabeled Data

Results on Unlabeled Data

$$b = b_0 - 0.3$$

Bu000 (B101)

$$b = b_0$$

 $b = b_0 + 0.3$

Basso (DISI	١

 $b = b_0 + 0.6$

Basso (DISI	١

 $b = b_0 + 0.9$

Basso (DISI	١

Other enhanced structures (blood vessels, sinew) are selected. They have to be removed

Mixed approach:

- some structures (e.g. vessels) might be detected based on their shape, and can be removed automatically;
- however, there might be structures more difficult to detect, which will have to be removed manually.