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Abstract— Object recognition is a key problem of artificial
vision; in robotics, it is strongly connected to that of grasping.
In fact, there is so far no general solution to either problem.
Traditionally, visual features are evaluated from camera images
and statistical methods are then trained on huge visual datasets
in order to obtain a robust object classifier. The knowledge so
obtained is then used to choose a model to perform a grasping
action.

Inspired, among others, by the neuroscientific framework of
mirror neurons, we hereby propose to enhance the model of an
object by adding to its visual features a probabilistic description
of the grasps chosen by human subjects to grasp it. Since in
a standard setting the grasps are not directly available to the
system, they must be reconstructed from the visual features, and
then used to augment the recognition system’s input space. We
achieve this by building a map from visual to motor features,
which we call a Visuo-Motor Map (VMM), practically enforced
via regression on a human grasping database.

We experimentally show that such a technique improves the
recognition rate of a standard object classifier: in case the
original motor features are used, the improvement is dramatic,
whereas when we reconstruct them via the VMM we still obtain
a statistically significant improvement.

I. INTRODUCTION

Consider the objects in Figure 1. How do we know that
they are all cups? The answer is simple: all of them can
be used to contain liquids and drink, and have actually
been designed to this end. Although very little in their
visual appearance ties them together, we all know what
can be done with such objects since we have done it at
some time in the past. The category of an object is often
determined predominantly by its function rather than by its
visual appearance alone; this led Gibson in the 70s [1], [2]
to define objects in terms of their affordances — “what can
be done with them”.

This idea could be useful to improve the classic solution
to object recognition, which uses visual features only. It is
hard to figure out what visual features could lead an object
recognition system to categorise as “cups” the three objects
above. Traditionally, this problem is solved by training
the system on a very large database of images of very
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diverse cups; but this is potentially incomplete and resource-
consuming [3]. Now, what if our machines had an idea of
how to grasp something which looks like a mug? In fact,
if this paradigm is correct, this could be the reason behind
the robustness of human object recognition. Such robustness
could be obtained by automated systems if only they knew
what to do with an object, as they see it. This implies that
an object recognition system must be able to grasp objects,
or it must know something about grasping. Once it does, it
has a wholly new way to associate a category to an object
it sees.

In order to test this hypothesis, we have first collected
a number of human grasping sequences, recording at the
same time a video sequence of the grasping act and the
hand posture (using a sensorised glove). These sequences are
collected in the CONTACT Visuo-Motor Grasping dataBase
(VMGdB)1.

Then, using the VMGdB, by means of a simple neural
network we have built a map from the image of each object
to the associated grasp(s) or, in other words, a Visuo-Motor
Map (VMM) from visual to motor features. The VMM
enables us to retrieve the “archetypal grasp” of an object
when that object is seen. The VMM is then used to build a
Visuo-Motor Classifier (VMC) which exploits the traditional
visual information plus the associated motor information,
either the “real” one, as it was recorded by the glove, or
the VMM-reconstructed one. The latter scenario is of course
more realistic, as in most real-life applications, and in real
life as well, the only available input is visual. The hope is
that this augmented object classifier performs dramatically
better than the standard one when the real motor features
are added; and significantly better when the reconstructed
ones are used. Our experimental results clearly confirm this
hypothesis.

The paper is organised like this: after an overview of
related work, in Section II we describe the Visuo-Motor
Grasping dataBase (VMGdB). Section III defines the general
multi-modal learning framework, and then it describes in
detail the instance under examination: the visual and motor
representation (III-A), the Visuo-Motor Map (VMM, Section
III-B) and the Visuo-Motor Classifier (VMC, Section III-C).
We then show the experimental results (Section IV) and draw
conclusions in Section V.

A. Related work

The capability to recognise and categorise objects is a
crucial ability for an autonomous agent; and in robotics, it

1Upon acceptance of the paper, the database will be made available online.



Fig. 1. Three very different cups: (left) the Pick Up mug by Höganäs (2009); (center) the Black Flute Half Lace coffee cup (1775) and (right) the ’Ole
mug (1997), both by Royal Copenhagen.

is inextricably woven with the ability of grasping an object.
In cognitive science, the theoretical link between vision and
manipulation was provided by Gibson, according to whom an
object is characterized by three properties: (1) it has a certain
minimal and maximal size related to the body of an agent,
(2) it shows temporal stability, and (3) it is manipulable by
the agent. These properties imply that the object is defined
in relation to an embodied agent able to manipulate the
object. Therefore the set of possible manipulation actions
are a crucial part of the object definition itself.

Interestingly, the theory of affordances has recently found
neurological evidence, it is claimed, in the mirror neurons
paradigm [4], [5]. According to it, structures exist in the high
primates’ brain which will fire if, and only if, an object is
grasped (which mainly involves the sensorimotor system) or
is seen grasped by an external agent (involving the visual
system only, [6]). In addition to the original findings in
monkeys, very recent evidence has been produced for the
existence of such structures in humans [7]. If this is true, then
the human object classification is so robust exactly because
we know what to do with the objects we see — a capability
which machines lack, so far.

This idea has so far been little exploited; among the pos-
itive cases there are [8], [9] who take an exquisitely robotic
perspective, letting their systems acquire motor information
about objects by having a humanoid robot actually manipu-
lating them. On the other hand, the vast majority of work on
object recognition and categorization models objects starting
from static images, without taking into account their 3D
structure and their manipulability [10], [3]. Few very recent
attempts try to capture the Gibson’s view. The approach
proposed in [11] presents a Bayesian framework that unifies
the inference processes involved in object categorization
and localization, action understanding and perception of
object reaction. The joint recognition of objects and actions
is based on shape and motion, and the models take as
input video data. In [12], the authors consider objects as
contextual information for recognizing manipulation actions
and vice versa. The action-object dependence is modelled
with a factorial conditional random field with a hierarchical
structure. In both approaches, objects and their affordances
are first modelled separately, and combined together in a
second step. This does not consider the embodiment of the
agent manipulating the objects.

ball pen duck pig hammer tape lego brick

cylindr. pow. X
flat X X

pinch X X X X
spherical X X
tripodal X X X X

TABLE I
MAPPING GRASPS-OBJECTS. EACH ACTOR PERFORMS GRASPING

ACTIONS ON 13 OBJECT-GRASP TYPE PAIRS.

II. THE VISUO-MOTOR GRASPING DATABASE

The VMGdB dataset is built considering 7 different objects
((see Fig. 2), top) and 5 grasps ((see Fig. 2), bottom). 20
different actors participated to the acquisition, during which
each object was grasped in one or more ways, according to
the many-to-many relationship reported in Table I. In total
we consider 13 different pairs (grasp,object), and, for each
triple (object, grasp, actor), we acquired 20 replicates of the
grasping experiment.

We obtained 5200 experiments (object, grasp, actor, exp-
num), and for each of them the VMGdB stores the following
information:
• Visual information. 2 video sequences acquired by

2 color cameras with different focus – one is the
object, the other one is the grasping action. The video
sequences are associated to 2 data files reporting the
video frames time-stamps, allowing for synchronization
with the sensor data;

• Hand posture sensor information. 1 data file con-
taining the hand posture sensor data acquired by a
CyberGlove [13]. For each posture the glove returns 22
8-bit numbers linearly related to the angles of the actor’s
hand joints. The sensors describe the position of the
three phalanxes of each finger (for the thumb, rotation
and two phalanxes), the four finger-to-finger abductions,
the palm arch, the wrist pitch and the wrist yaw. Again,
the sensor data are associated to acquisition time-stamps
for synchronization.

III. THEORETICAL FRAMEWORK

We deal here with the problem of augmenting visual
information about an object with motor information about
it, that is the way the object can be grasped by a human
being. This can be seen as an instance of a more general



Fig. 2. Top row: the objects used in our experiments. Bottom, the grasp types we consider: (left to right) cylindric power grasp, flat grasp, pinch grip,
spherical and tripodal grip.

framework for multi-modal learning. Although a formal,
abstract definition of this framework is out of scope here,
we outline it in order to clearly frame the point of view
from which we hope to improve classical object modelling
and recognition.

In everyday life, living beings use distal sensory modali-
ties as their only means of “on-line” gathering information
about the world (by distal here we mean, senses which
operate at long distance such as, e.g., vision, hearing, smell,
etc.). This is coherent with the basic needs of avoiding
predators, finding food, mating and so on. Of course, (distal)
sensorial information is multi-modal in nature, as, e.g., the
smell, sight and noise characteristic of a predator come
together in experience. But to our end, a more subtle form
of multi-modal learning is considered, that is, associating
distal and proximal modalities in the infanthood, where by
proximal we mean sensorimotor and proprioceptive: those
modalities which appeal to manipulation. Following Gib-
son’s idea, for example, the sight of an object would be
inextricably associated by a human being to the ways it can
be used. This association is primed by manipulation in the
early development: at first randomly, then in a more and more
refined way. According to this, human object recognition is
so good also because we can reconstruct motor information
associated to visual information, and use it too when dealing
with a new object.

With the goal of applying this idea to automated object
recognition, we propose to build an object classification
system on a set of visual and motor features. Whenever the
motor features are not perceived by the system (i.e. the agent
is not grasping the object in the field of view), we infer them
from the visual input through a mapping function, learned
during training. This scheme mimics the early-development
training mentioned above. We now proceed to illustrate in
detail our framework, that is summarized schematically in
Figure 3. We first describe the learning processes that occur
during training, and then we describe the object classification
procedure during testing.

Training Figure 3, left, illustrates the learning processes
activated during training. The system receives as input visual
and motor data. These data are used to learn

The Visuo-Motor Map (VMM) between the two modal-

ities via regression.
The Visuo-Motor Classifier (VMC) that recognizes ob-
jects using visual and motor features.

Testing Figure 3, right, illustrates the two possible scenarios
during testing:

The system receives as input vision and motor features.
This corresponds to the case when the agent sees and
grasps the object. Here the classifier receives both
modalities, and it classifies the object using these
informations.
The system receives as input vision features only. This
corresponds to the case when the agent sees the object
but does not grasp it. In this situation, the system first
generates an archetypal grasp from the perceived visual
features, using the VMM. Then, it uses the two features
(one perceived, one inferred) to classify the object.

We now proceed to describe in detail each component of
the system. We begin from the vision and motor features
(section III-A). We then describe the algorithmic implemen-
tation of the VMM (section III-B) and we conclude the
section with the algorithm behind the VMC (section III-C).

A. Perceptual representations

This section describes the visual and motor features used
in our framework. We begin with the visual features (Section
III-A.1) and then continue with the motor features (Section
III-A.2).

1) Visual Features: The visual appearance of objects is
captured by a dedicated item of the framework, which can be
sketched as follows. We first select from the video sequence
a set of interesting frames where the object is clearly visible.
To avoid contamination due to background elements, we
apply change detection by comparing the selected frames
against a background model, and then restrict our attention
on the region of interest (ROI) defined by the object bound-
ing box. We apply to the ROI a bag-of-keypoints object
description [14] designed as a two steps procedure [15]:
• We build the global vocabulary, by putting together

keypoints extracted from images of all the objects into
the dataset. As keypoints, we consider a set of randomly
sampled points whose patch is modeled with a vector



Fig. 3. A schematic representation of the theoretical framework. During training (left), the system receives in input visual and motor data, and it learns
simultaneously a Visuo-Motor Map (VMM) and Visuo-Motor Classifier (VMC). During testing (right), whenever the agent sees but does not grasp the
object, the VMM generates an archetypal grasp from the visual input, that is then used as input to the multi modal classifier jointly with the perceived
visual features.

valued descriptor which can be seen as a fixed scale
SIFT [16]. K-means is adopted to cluster the descriptors:
the centroids (or virtual features) become the words of
the visual vocabulary.

• Both training and test images are thus represented with
respect to the vocabulary, with a simple nearest neighbor
approach. At the end, visual appearance of objects is
summarized with a frequency histogram, whose peaks
should indicate which virtual features are the most
important in modelling a specific object.

Notice that the vocabulary size is a system parameter
which should be tuned with respect to the complexity of ob-
jects, to find a trade-off between sparsity of the descriptions
and capability of characterizing the objects.

Finally a remark is in order. From the point of view
of appearance-based object recognition, the experimental
scenario is not challenging. We opted for such a setting in
order to keep the focus of the work on the joint modelling
of visual and motor inputs.

2) Motor Features: The MPR are simply the 22 angles
returned by the dataglove, considered at the time of contact
of the subject’s hand with the object2. The MPR is therefore
a “snapshot” of the subject’s hand in the instant of grasping
the object.

B. Learning the Visuo-Motor Map

The VMM is supposed to be a regression strategy from
visual to motor features, as defined above. Since the output
is multivariate (the motor features, consisting of 22 numbers)
and the input is very highly dimensional (the visual features,
consisting of 200 numbers), we decided to enforce the VMM
using neural networks. Each network was kept as simple
as possible: one hidden layer with 20 neurons, log-sigmoid
transfer function and scaled conjugate gradient backpropaga-
tion. The training procedure used the early stopping strategy,
i.e. the training set was divided in a new training and
validation set. The network is evaluated on the validation
set: when the performance stops improving, the algorithm
halts.

2A force-sensing resistor was used to determine the instant of contact.

Most of these settings are inspired by the work of Rich-
mond and others [17], [18] on audio-to-motor mapping. In
fact, since each object may correspond to several grasps as it
happens in reality (recall the Section above), the relationship
between the visual and the motor features is highly non-
functional and it is in general hard, if not pointless, to model
it using a single NN. Richmond’s idea was to model a
probability distribution rather than a functional map; here
we follow a somewhat more naive approach: we define an
“archetipal grasp” related to the specific object observed. In
the case of an object that can be grasped in only one way
(for instance “pig”), then the archetipal grasp will correspond
to it. In case of an object graspable in different ways, then
the archetipal grasp will correspond to an “average” grasp
between those possible. We expect that this reconstructed
grasp will have a positive effect on the overall performance
of our object recognition system; at the same time we hope
that such representation won’t get messed up with other ones
since the output space is also rather high-dimensional.

C. Learning the Visuo-Motor Classifier

Our goal in classification is to demonstrate that the motor
information is useful in object learning and recognition.
Specifically, we want to show that integrating it with the
visual information can produce a better performance, namely
higher classificaton rate and robusteness.

To this end we consider both the visual and the motor fea-
tures labelled in terms of objects. The idea is that a classifier
should predict which is the inspected object when the input is
visual, motor or the combination of the two. Algorithmically,
this implies building a classifier over multiple cues.

In the computer vision and pattern recognition literature
some authors have suggested different methods to combine
multiple cues. They can be all reconducted to one of the
following three approaches: low-level, mid-level and high-
level integration [19], [20]. In the low-level case the features
are concatenated to define a single vector. In the mid-level
approach the different features descriptor are kept separated
but they are integrated in a single classifier generating the
final hypothesis. The high-level method starts from the output



of different classifiers each dealing with one feature: the
hypotheses produced are then combined together to achieve
a consensus decision.

To learn the Visuo-Motor Classifier here we decided to
implement these three strategies in an SVM-based frame-
work, and to evaluate experimentally their suitability for the
task. Specifically, we used the Discriminative Accumulation
Scheme (DAS, [21]) for the high-level, and the Multi-Cue
Kernel (MCK, [22]) for the mid-level integration. As already
mentioned, the low-level integration consisted only in the
feature concatenation, with the new vector fed to a standard
SVM.

DAS. It is based on a weak coupling method called accumu-
lation. Its main idea is that information from different cues
can be summed together.

Suppose we are given M object classes and for each class,
a set of N j training data {I j

i }
N j
i=1, j = 1, . . .M. For each, we

have a set of P different features so that for an object j
we have P new training sets. We train an SVM on every
set. Kernel functions may differ from cue to cue and model
parameters can be estimated during the training step via
cross validation. Given a test image Î and assuming M ≥ 2,
for each single-cue SVM we compute the distance from the
separating hyperplane D j(p), p = 1 . . .P. After collecting all
the distances {D j(p)}P

p=1 for all the M objects and the P
cues, we classify the image Î using the linear combination:

j∗ =
M

argmax
j=1

{
P

∑
p=1

apD j(p)

}
,

P

∑
p=1

ap = 1. (1)

The coefficients {ap}P
p=1 ∈ ℜ+ are determined via cross

validation during the training step.

MCK. The Multi Cue Kernel is positively weighted linear
combination of Mercer kernels, thus a Mercer kernel itself:

KMC({Tp(Ii)}p,{Tp(I)}p)=
P

∑
p=1

apKp(Tp(Ii),Tp(I)),
P

∑
p=1

ap = 1.

(2)
In this way it is possible to perform only one classification
step, identifying the best weighting factors ap ∈ℜ+ through
cross validation while determining the optimal separating hy-
perplane. This means that the coefficients ap are guaranteed
to be optimal.

IV. EXPERIMENTAL RESULTS

This section reports the experimental validation of our
model. We begin by testing the model on real data (section
IV-A), showing that by joint modeling visual and motor
information it is possible to achieve a significant boost in
recognition, compared to using visual information only. We
proceed evaluating the quality of the reconstructed archetypal
grasp via regression (section IV-B). We then show that,
whenever the motor information is not perceived by the
agent, it is still possible to get a better performance by using
our VMM to generate an archetypal grasp as input for the
classifier (section IV-C).

A. Results with real motor data

The first set of experiments was conducted on real data,
namely motor data registered by the users when grasping the
objects, and the corresponding images. Our goal here was to
show the advantage in recognition achieved by modelling the
object on both modalities, and at the same time compare the
three possible joint modelling strategies presented in section
III-C, to chose the best one.

Experiments were performed considering the whole set of
5200 data and choosing randomly 130 samples for training
and 2600 samples for testing. The random extraction was
repeated defining 10 different splits and the classification was
executed using SVM, one-vs-all multiclass extension. We
used the Gaussian Kernel for the visual and motor modalities,
both when considered separately and in the integration ap-
proach (two Gaussian Kernels combined in MCK). The best
learning parameters were selected through cross validation.

Figure 4-a shows the overall recognition results obtained
by using only visual information (V), only motor information
(M), or the two combined together, with the three proposed
approaches (LOW, MID, HIGH). We see in general that using
the visual information we obtain better average performance
(86.37%± 1.91%) than using the motor one (75.53%±
1.22%), and that their integration is clearly beneficial. The
mid-level integration produces the best result (93.94%±
0.77%): the gain in accuracy between MCK and only using
visual features is 7.57% (difference in accuracy evaluated per
split and then averaged on the 10 splits). The second best
result is obtained by using DAS (92.65%±1.22%); we see
that the difference in performance between DAS and MCK
is not statistically significant, and therefore both are suitable
candidates for the VMC module.

Figure 4-b, -f shows the confusion matrices obtained by
the vision only classifier (Figure 4-b), by the motor only
classifier (Figure 4-c) and by the three integration methods:
low-level (Figure 4-d), MCK (Figure 4-e) and DAS (Figure
4-f). It is clear that the combination of the two modalities
leads to considerable advantages in the recognition of each
object, for all methods. Consider for instance the objects
“ball” and “pig”: the mean accuracy is respectively 88.6%
and 75.1% using visual features and 77.2% and 96.6% using
motor information. The ball was grasped in two different
ways (with a ‘tripodal” and a “spherical” grasp) while the
pig was manipulated only with the “cylindric” grasp, which
was used just for this object. Thus, the grasp information
is object-specific for the pig. This led to an impressive
increase in performance when using MCK, as we achieved
a 100% classification rate. Using visuo-motor information is
beneficial also for the ball, for which we obtained a multi
modal recognition rate of 96.5%. Analogous considerations
can be done for the two other approaches, and are omitted
here for space reasons.

From these experiments we can conclude that: (a) using
a joint visual and motor object model leads to a very
concrete advantage in performance during recognition, and
(b) the MCK algorithm seems the most suitable for the joint



(a) (b) (c)

(d) (e) (f)
Fig. 4. (a) Classification mean accuracy of the seven objects averaged on the ten splits; (b) confusion matrix using visual features; (c) confusion matrix
using motor features; (d) confusion matrix using the low level feature integration; (e) confusion matrix using the mid level feature integration; (f) confusion
matrix using the high level feature integration.

modelling of the two modalities.

B. Evaluation of reconstructed data

We now turn to the evaluation of the archetypal grasps
generated by the VMM. We learn a neural network for
each object seen during training; this results here in seven
specific VMMs. If an object can be grasped in only one
way, the reconstructed motor data correspond to an estimate
of this grasp type. If the possible grasps are more than one,
the reconstructed motor data represent an estimate of the
“average” grasp for that object.

To evaluate the goodness of the VMM in producing
“archetypal grasps”, we performed the following experiment:
we divided the whole dataset in two halves (2600 data each),
using one for training and the other for testing. Specifically
we used the samples to:

(a) Train the neural networks and predict the motor feature
vectors of the testing set, for each VMM associated to
its specific object.

(b) Train a “grasp classifier” on the real motor information.
The testing phase consisted in predicting the grasp
label of the reconstructed motor vectors obtained from
(a). We counted as an error every time the predicted
grasp was not one of the possible grasps associated
with the relative object.

We run the experiment on 10 splits of the whole dataset
and we obtained an average error rate of 10.7%. This is
significantly low with respect to a random grasp labelling
(error rate of 63%). We can conclude that the reconstructed
grasp information is coherent with the real one, and therefore
we expect that the archetypal grasp will turn out to be an
informative feature when used for classification.

C. Results with reconstructed data

The most frequent case is of course that of an agent seeing
an object without grasping it. In that case, our approach still
permits to take advantage of the VMC, using as motor input
the archetypal grasp generated by the VMM. More in detail,
the system performs three steps (see Figure 5 for a schematic
representation):

1) We extract the visual features from the object’s view.
Based upon it, we generate an hypothesis on the label
of the object using only visual data.

2) The hypothesis is used to choose the appropriate
VMM.

3) The VMM reconstructs the grasp associated with the
object. This motor feature is then used, alone or jointly
with the visual feature, to recognize the object.

We evaluated this strategy by repeating the experiments
described in Section IV-A, using as input only visual data.
For the implementation of the first step described above,
we used the vision only classifier trained on real data (see
Section IV-A).

Results are reported in Figure 6. Figure 6-a shows the
recognition rates obtained by using only visual information
(V – the same shown in the previous section), only motor in-
formation (M), and the two combined together (LOW, MID,
HIGH). We see that using the archetypal grasps as motor
information, the performance of the motor only classifier
slightly decreases compared to what we obtained on real
motor features: 71.90%±2.06% obtained with the archetypal
grasps, as opposed to the 75.53%± 1.22% obtained using
real motor features. Still the performance of the multi-modal
classifiers show an increase in the overall performance,
compared to the vision only approach. Once again, the best
performance is achieved by MCK (88.77%± 1.29%), closely
followed by DAS (88.38%± 1.31%).



(a) (b) (c)

(d) (e) (f)
Fig. 6. (a) Classification mean accuracy of the seven objects averaged on the ten splits; (b) confusion matrix using visual features; (c) confusion matrix
using motor features; (d) confusion matrix using the low-level feature integration; (e) confusion matrix using the mid-level feature integration; (f) confusion
matrix using the high-level feature integration.

Fig. 5. A schematic representation of how the reconstructed motor features
are used in the VMC.

Figure 6-b, -f shows the confusion matrices obtained by
all classifiers, as reported in Section IV-A. We see that the
results for the reconstructed motor data are in general lower
than that obtained with the real ones (Figure 4-c). To explain
this behaviour there are two things to keep in mind: (1) the
lower is the number of possible grasps associated with an
object, the fewer are the data on which the corresponding
neural network is trained; (2) if the first step of hypothesis
generation fails, the error propagates on the motor data
reconstruction. In particular, both points give an intuition
about why the objects “pig” and “hammer” (which were
manipulated with only one grasp each) present the worst
recognition results using motor information (66.65% and
61.45% respectively). Nevertheless, in the “pig” case, the
reconstructed grasp data added to the visual features brings
the mean accuracy for object recognition from 75.1% (only

visual) to 87.0% (using MCK). As a last remark, we see
once again that MCK obtains the best performance (gain in
accuracy of 2.40%) and therefore it appears to be the most
suitable candidate for the VMC module.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a theoretical framework for joint
modelling of visual and motor data for multimodal object
recognition. The key feature of our approach is the learning
of a Visuo-Motor Map between the two modalities during
training. The existence of this map makes it possible to
benefit from the multimodal nature of the model even when
the motor data is not perceived by the system. Experiments
confirm the validity of our approach, showing a gain in
performance of up to 7.6% and 2.4% when using both
modalities, compared to results achieved using vision only.

The data upon which our experiments have been carried
on are collected in the CONTACT Visuo-Motor Grasping
dataBase (VMGdB), which we envision as a testbed and a
benchmark for all researchers interested in investigating the
nature of (human and robotic) grasping, and its ties to object
recognition.
Future Work. The current implementation of the framework
contains several simplifying assumptions, each correspond-
ing to ongoing and future research directions:

1) Dynamic of the data. In this work we have neglected
a lot of potentially useful information coming from
the dynamics associated with the reaching phase, prior
to grasping. This is well-known to carry substantial
information about it [23], [24]. We plan to include the
dynamic in the representation of motor and also visual
features: indeed the dynamic changes in the object
state associated with its manipulation are an important
cue on the object’s identity [11], [12]. This research



direction will likely lead us to move from grasping
postures to grasping actions, and therefore affordance-
based object representations.

2) Shape-based visual representations. While here we
used an appearance-based visual representation for the
object, we are fully aware that this visual information
is weakly correlated with the grasping and therefore
makes the life of the mapping function much harder.
We plan in the future to represent objects based on
shape information. This will lead to visual information
complementary to the grasp hand posture (the config-
uration of the hand at the moment of the grasp can be
seen as a motor-based information regarding the shape
of the object). We also expect that a shape-based visual
representation will make it possible to build categorical
object models based on their shape, i.e. graspability.
This might lead to better defined VMMs, and it would
greatly help in the case of large number objects.

3) Learning of the Visuo-Motor Map. Experimental re-
sults indicate that the “real” motor features, that is,
the grasping hand postures as recorded by the data
glove, contain much more information than the visual
features alone. Therefore, if one were able to extract
more (or better) motor information from the sight of
an object, that is, to build a better VMM, the situation
could improve further. One immediate direction for this
line of research is that of abandoning the somewhat
artificial notion of an archetypal grasp associated with
an object, and start training a VMM in order for it to
reconstruct a probability distribution over grasps. This
would correspond to enhancing an object model with a
possible set of grasps, rather than with one grasp only;
a further, important step toward the re-definition of an
object in terms of its affordances. We are currently
studying an extended version of the VMM architecture
based on vector-valued regression to explicitly take
into account the many-to-many relationship between
objects and grasps. In this case, instead of learning
the map between an object and an average grasp, we
would learn the map between an object and a vector
of the possible grasps. At run time this would allow
us to associate the most probable grasp to the object
under consideration.
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