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Prediction and Bias  

 Bias: on data preparation, preprocessing (complex!), Bias: on data preparation, preprocessing (complex!), 
classificationclassification 

 E Petricoin, A Ardekani, B Hitt, P Levine, B Fusaro, S Steinberg, G Mills, E Petricoin, A Ardekani, B Hitt, P Levine, B Fusaro, S Steinberg, G Mills, 
C Simone, D Fishman, E Kohn, and L Liotta. Use of proteomic patterns C Simone, D Fishman, E Kohn, and L Liotta. Use of proteomic patterns 
in serum to identify ovarian cancer. Lin serum to identify ovarian cancer. Lancetancet, 359:572-577, 2002., 359:572-577, 2002.

 K Baggerly, J Morris, and K Coombes. K Baggerly, J Morris, and K Coombes. ReproducibilityReproducibility of SELDI-TOF protein  of SELDI-TOF protein 
patterns in serum: comparing datasets from different experiments. patterns in serum: comparing datasets from different experiments. 
BioinformaticsBioinformatics, 20(5):777-785, 2004., 20(5):777-785, 2004.

 Controversy: Controversy: J Natl Cancer InstJ Natl Cancer Inst 2005; 97 2005; 97
 K Baggerly, JS Morris, SR Edmonson, KR Coombes. Signal in Noise: Evaluating K Baggerly, JS Morris, SR Edmonson, KR Coombes. Signal in Noise: Evaluating 

Reported Reproducibility of Serum Proteomic Tests for Ovarian Cancer Reported Reproducibility of Serum Proteomic Tests for Ovarian Cancer 
 LA Liotta, M Lowenthal, A Mehta, TP Conrads, TD Veenstra, DA Fishman, EFIII LA Liotta, M Lowenthal, A Mehta, TP Conrads, TD Veenstra, DA Fishman, EFIII 

Petricoin. Importance of Communication Between Producers and Consumers of Petricoin. Importance of Communication Between Producers and Consumers of 
Publicly Available Experimental Data Publicly Available Experimental Data 

 DF Ransohoff. Lessons from Controversy: Ovarian Cancer Screening and Serum DF Ransohoff. Lessons from Controversy: Ovarian Cancer Screening and Serum 
ProteomicsProteomics

 DF. Ransohoff. DF. Ransohoff. Bias as a threat to the validity of cancer molecular-marker researchBias as a threat to the validity of cancer molecular-marker research. . 
NatureNature, 5:142-149, 2005, 5:142-149, 2005.



The selection bias problem

(*): similar results of near perfect classification 
with few genes published in PNAS, Machine 
Learning, Genome Research, BMC 
Bioinformatics,  etc.  

(*) Colon cancer data: 
2000 genes, 62 tissues 
22 normal and 40 tumor cases 
(Alon et. al,1999)

Pervasive in the first years of microarray classification studies:
use CV to evaluate models, pick up best probes, compute again 
expected error with CV … 

A zero error (CV) may be obtained 
with only 8 genes (*).

But when repeating the experiment 
after a label randomization, a very 
similar result is reached: 14 genes are 
sufficient to get a zero error estimate. 

The same effect can be reproduced 
with no-information datasets !!

METHODOLOGY
- Ambroise & McLachlan, 2002
- Simon et. al 2003
- Furlanello et. al 2003



COMPLETE VALIDATION
To avoid selection bias (p>>n): *

• externally a stratified random partitioning,
• internally a model selection based on a K-fold cross-validation
• high computational costs due to replicates (105 --106  models)**

** Binary classification, on a 20 000 
genes x 45 cDNA array, 400 loops 

* Ambroise & McLachlan, 2002, 
Simon et. al 2003, 
Furlanello et. al 2003

OFS-M:  Model tuning and Feature ranking

ONF:  Optimal gene panel estimator

ATE:  Average Test Error
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E-RFE with SVM Classifiers

ACCELERATIONS
 Parametrics

 Sqrt–RFE
 Decimation-RFE

 Non-Parametrics
 E–RFE: adapting to 

weight distribution by 
thresholding the SVM 
weights at w*

fe
at

ur
es

stepsChunk 1 …

…

1-step RFE

20K20K

 MODEL: Support Vector 
Machines (SVM)

 RANKING  SELECTION 
Recursive Feature Elimination 
(RFE): a stepwise backward 
selection procedure. 

At each step, eliminate the 
“least interesting variable” and 
retrain 
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High Throughput Computing 
Complete validation 

on cluster/ Grid 

BIODCV
http://biodcv.itc.it

for National Institute 
of Cancer

1. COMPLETE VALIDATION CURES THE 
SELECTION BIAS

2. Computational solutions: Clusters and GRID
3. The by-products of complete validation

Accuracy estimates

Set of lists:
• aggregation
• stability
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PREVIOUS WORK ON
MICROARRAY DATA

Neural Networks
BMC Bioinformatics
IEEE Trans. 

Signal 
Processing
IEEE Trans. 

Comp. 
Biology and 

Bioinformatics
Int. J. of Cancer  

http://biodcv.itc.it/


Harnessing Bias 

Data generation

Preprocessing

Complete 
Validation

Biomarkers 
identification

▪ integrate a pipeline for proteomic data preprocessing with the BioDCV 
complete validation process



Preprocessing

2 ppc: another R package – features defined by cluster centroids’ location
R. Tibshirani et al. 
Sample classification from protein mass spectrometry, by “peak probability contrasts” 
Bioinformatics 20(17):3034-3044, 2004

BatchSingle spectrum

(ms Standardization)

Peak Assignment 2

Centroid Identification 2

Peak Extraction 2

Normalization (A.U.C.)

Baseline subtraction 1

1 PROcess: an R package -- lowess for baseline subtraction 
X. Li
A package for processing protein mass spectrometry data.
http://www.bioconductor.org/packages/bioc/1.8/html/PROcess.html

Not discussed here: calibration, filtering

http://www.bioconductor.org/packages/bioc/1.8/html/PROcess.html


Complete Validation for Proteomics 

• GIVEN mz-ms data: spectra in a standardized mass spectrometry 
format; a binary label for each spectrum (e.g. +1/-1)

• FIND: Biomarkers valid on novel data & classification error estimates 

preprocessing

preprocessing 
parameters

Training: 

(development data)

New data (test) 

Class. Model
parameters

Predictor
(for new data)

PREDICTED 
ACCURACY
ESTIMATES

Test 
Accuracy

classification with 
complete validation

Across sampleWithin sample

(Standardization)

Peak assignment

Peak clustering

Peak extraction

AUC normalization

Baseline Subtraction

Within sample

BIOMARKERS
1 -1

?



Methodology

 H=5 splits (80%-20%  or 50%-50%)
 B=400 replicates
 Preprocessing

– AP0: non-batch
– AP1: batch

 Random labels exps.

Goal: study biomarker selection 
by complete validation setup

PROTEOMICPROTEOMIC
DATADATA
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classification with 
complete validation

Within sample Across sample

Within sample

preprocessing Predicted 
Accuracy

Estimates 

BIOMARKERS

Test Accuracy



Datasets

 Simulated MALDI-TOF data (Cromwell’s): 4 datasets at 
increasing levels of noise: ε=N(0, σ)  σ=(0,10, 50, 300)

tot # class 
1

class
-1

#m/z
(100Da < m/z < 20000Da)

160 80 80 17669

 Ovarian 8/7/02 (SELDI-TOF)*

 Ovarian ’05 (MALDI - TOF) 

tot # cancer control #m/z
(0Da < m/z < 20000Da)

253 162 91 15153

http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp

tot # cancer control #m/z reflectron #m/z linear
(3450Da < m/z < 28000Da)

170 93 77 94780 36890

http://bioinformatics.med.yale.edu/MSDATA2/

Nat. Ovarian Cancer Early Detection Program Northwestern Univ. Hospital 
Micromass M@LDI-L/R , Keck Lab Yale (Wu et al 2005)

* Technical and experimental design 
of this dataset were questioned.

http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp
http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp
http://bioinformatics.med.yale.edu/MSDATA2/


Simulated Data (I) 

Configuration
A. Default parameters: 

 Voltage between plates (20 KV)
 Length of drift tube (L=1 m)
 Distance between charged grids (8 mm)
 Standard deviation on initial particles’ velocity (50) 

B. Defined Parameters:  
 Peak sites (chosen from a real dataset)
 Peak intensity (max no. of a set of particles)
 Standard deviation on noise over intensity

 Software: v 2.0 in R, from S-Plus code

K.R.Coombes et al.
Understanding the characteristics 

of mass spectrometry data 
through the use of simulation

Cancer Informatics 2005:1(1) 41-52

Hypotheses
• Different peak intensity at a panel of m/z locations 

discriminates the two classes
• A “band” structure

http://bioinformatics.mdanderson.org/cromwell.html

Cromwell: a proteomic MALDI-TOF simulation engine

Sample
plate

Detector

grids

Drift region
D1 D2

Flight path

http://bioinformatics.mdanderson.org/cromwell.html


Simulated Data (II) 
Design: the 2 classes are Design: the 2 classes are 
discriminated by peak intensities discriminated by peak intensities 
in bands B1 and B3, but no in bands B1 and B3, but no 
discriminations in B2 and B4discriminations in B2 and B4

200 400 600 800 1000 1200 1400

0
20

00
40

00
60

00
80

00
In

te
ns

ity

class Peak Intensity [Number of Peaks]

B1 B2 B3 B4

1 10000  [7] 7000 [7] 5000 [7] 1000 [60]

-1 5000 [7] 7000 [7] 10000  [7] 1000 [60]

σ=(0,10,50,300)

0 5000 10000 15000 20000

0
2000

4000
6000

8000

M/Z

Inten
sity

200 400 600 800 1000 1200 1400

0
20

00
40

00
60

00
80

00

M/Z
In

te
ns

ity

200 400 600 800 1000 1200 1400

0
20

00
40

00
60

00
80

00

M/Z

In
te

ns
ity



Results: Simulated Data

σ=0 81 peaks detected

σ=10

σ=50  Two extra non-valid peaks identified in the 
preprocessing phase (due to noise) 

 After the BioDCV procedure one was rejected σ=300

• The actual 13 discriminant peaks were found among the most 
significant features extracted

• A list stability indicator showed that the number of relevant 
variables over all run is exactly 13

Note: the 4 synthetic MALDI-TOF datasets were built each with a total 
of 14 discriminant peaks, but our preprocessing procedure detected 
only 13 of them since the first one is located too close to the inf of 
spectrum border.

PREPROCESSING PIPELINE RESULTS

COMPLETE VALIDATION RESULTS



Results: SELDI-TOF Ovarian 8/7/02

The first and the second most relevant peaks 
for BioDCV classification in all the sublists 

of the dataset confirm previous studies 
(and their concerns)

K. Baggerly et al.
Reproducibility of SELDI-TOF protein patterns in 
serum: comparing datasets from different 
experiments.
Bioinformatics, 20(5):777-785,2004.

W. Zhu et al.
Detection of cancer-specific markers amid massive 
mass spectral data.
PNAS 100(25):14666-14671, December 2003.

AVG Error on blind test set (5 features): ~3%
Random labels: 
ATE on blind test=41.1% (CI 34.6, 56.8) 
No Info = 36%

Biomarker analysis 

AP0: BioDCV ATE 
with Indip. preproc

AP1: Batch. preproc
Blind test set error



Results: MALDI-TOF Keck Lab  

The first and the fifth most relevant peaks in the Keck Lab dataset

AVG cancer
AVG control
95% cancer
95% control

Results compliant with:

Baolin Wu et al.
Ovarian cancer classification based on mass 
spectrometry analysis of sera.
Cancer Informatics, 2005.

AVG Error (AP0 mode) test set (14 features): 32.5% (CI 32.1,32.7)
AVG Error (AP0 mode) test set (all features): 24.5% 

AVG Error (AP1 mode) test set (14 features): 25.7%

Random labels: ATE on blind test=49.1%
No Info=45.3%

Biomarker analysis: 



Enabling Grids for E-sciencE

BioDCV SubVersion  Repository

http://biodcv.itc.it

• C. Furlanello, M. Serafini, 
S. Merler and G. Jurman. 
Semi-supervised learning 
for molecular profiling. 
IEEE Trans. Comp. Biology 
and Bioinformatics, 
2(2):110-118, 2005.

• More on http://mpa.itc.it 

• Windows native 
version available 



Enabling Grids for E-sciencE

Grid Computing for Proteomics

1. IEEE CBMS 2006: series of experiments on proteomics data 
• standard complete validation analysis 
• random labels analysis 

2. A strict deadline for the final version

Solution:
• We used the EGEE Biomed grid infrastructure
• 20 cpus/job, for a total of 100+120 jobs 
• BioDCV jobs were run on many Biomed Sites in all Europe



Enabling Grids for E-sciencE

Grid implementation 

The BioDCV system

2-50 MB

50-400 MB

grid-ftp

scpgrid-ftp

grid-ftp

grid-ftp

scp

Commands:
1.grid-url-copy/lcg-cp db from 

local to SE
2.edg-job-submit BioDCV.jdl
3.grid-url-copy/lcg-cp db from 

SE to local



Enabling Grids for E-sciencE

BioDCV jobs on CEs in Europe 
BioDCV jobs was run on these Biomed’s CEs in Europe:
•Destination:        mars-ce.mars.lesc.doc.ic.ac.uk:2119/jobmanager-sge-3hr
•Destination:        cluster.pnpi.nw.ru:2119/jobmanager-pbs-biomed
•Destination:        helmsley.dur.scotgrid.ac.uk:2119/jobmanager-lcgpbs-biomed
•Destination:        ce101.grid.ucy.ac.cy:2119/jobmanager-lcgpbs-biomed
•Destination:        grid-ce.ii.edu.mk:2119/jobmanager-lcgpbs-biomed
•Destination:        ce01.kallisto.hellasgrid.gr:2119/jobmanager-pbs-biomed
•Destination:        mars-ce.mars.lesc.doc.ic.ac.uk:2119/jobmanager-sge-3hr
•Destination:        lcgce01.gridpp.rl.ac.uk:2119/jobmanager-lcgpbs-bioL
•Destination:        ce01.ariagni.hellasgrid.gr:2119/jobmanager-pbs-biomed
•Destination:        lcg-ce.its.uiowa.edu:2119/jobmanager-lcgpbs-biomed
•Destination:        lcgce01.gridpp.rl.ac.uk:2119/jobmanager-lcgpbs-bioL
•Destination:        ce01.grid.acad.bg:2119/jobmanager-lcgpbs-biomed
•Destination:        mu6.matrix.sara.nl:2119/jobmanager-pbs-short
•Destination:        cluster.pnpi.nw.ru:2119/jobmanager-pbs-biomed
•Destination:        mars-ce.mars.lesc.doc.ic.ac.uk:2119/jobmanager-sge-3hr
•Destination:        gridba2.ba.infn.it:2119/jobmanager-lcgpbs-long
•Destination:        ce1.pp.rhul.ac.uk:2119/jobmanager-pbs-biomedgrid
•Destination:        cluster.pnpi.nw.ru:2119/jobmanager-pbs-biomed
•Destination:        fal-pygrid-18.lancs.ac.uk:2119/jobmanager-lcgpbs-biomed
•Destination:        grid012.ct.infn.it:2119/jobmanager-lcglsf-short
•Destination:        ce1.pp.rhul.ac.uk:2119/jobmanager-pbs-biomedgrid
•Destination:        ce01.grid.acad.bg:2119/jobmanager-lcgpbs-biomed
•Destination:        grid-ce.ii.edu.mk:2119/jobmanager-lcgpbs-biomed
•Destination:        grid0.fe.infn.it:2119/jobmanager-lcgpbs-grid
•Destination:        grid012.ct.infn.it:2119/jobmanager-lcglsf-short
•Destination:        ce01.ariagni.hellasgrid.gr:2119/jobmanager-pbs-biomed
•Destination:        grid0.fe.infn.it:2119/jobmanager-lcgpbs-grid
•Destination:        mars-ce.mars.lesc.doc.ic.ac.uk:2119/jobmanager-sge-12hr
•Destination:        epgce1.ph.bham.ac.uk:2119/jobmanager-lcgpbs-biomed
•Destination:        epgce1.ph.bham.ac.uk:2119/jobmanager-lcgpbs-biomed
•Destination:        ramses.dsic.upv.es:2119/jobmanager-pbs-biomedg
•Destination:        t2ce02.physics.ox.ac.uk:2119/jobmanager-lcgpbs-biomed
•Destination:        ce1.pp.rhul.ac.uk:2119/jobmanager-pbs-biomedgrid
•Destination:        ce01.kallisto.hellasgrid.gr:2119/jobmanager-pbs-biomed
•Destination:        grid10.lal.in2p3.fr:2119/jobmanager-pbs-biomed

•Destination:        mars-ce.mars.lesc.doc.ic.ac.uk:2119/jobmanager-sge-6hr
•Destination:        ce01.grid.acad.bg:2119/jobmanager-lcgpbs-biomed
•Destination:        scaicl0.scai.fraunhofer.de:2119/jobmanager-lcgpbs-biomed
•Destination:        mars-ce.mars.lesc.doc.ic.ac.uk:2119/jobmanager-sge-12hr
•Destination:        grid-ce.ii.edu.mk:2119/jobmanager-lcgpbs-biomed
•Destination:        gw39.hep.ph.ic.ac.uk:2119/jobmanager-lcgpbs-biomed
•Destination:        grid0.fe.infn.it:2119/jobmanager-lcgpbs-grid
•Destination:        mars-ce.mars.lesc.doc.ic.ac.uk:2119/jobmanager-sge-12hr
•Destination:        grid10.lal.in2p3.fr:2119/jobmanager-pbs-biomed
•Destination:        t2ce02.physics.ox.ac.uk:2119/jobmanager-lcgpbs-biomed
•Destination:        prod-ce-01.pd.infn.it:2119/jobmanager-lcglsf-grid
•Destination:        ce01.grid.acad.bg:2119/jobmanager-lcgpbs-biomed
•Destination:        testbed001.grid.ici.ro:2119/jobmanager-lcgpbs-biomed
•Destination:        mars-ce.mars.lesc.doc.ic.ac.uk:2119/jobmanager-sge-3hr
•Destination:        lcg06.sinp.msu.ru:2119/jobmanager-lcgpbs-biomed
•Destination:        ce01.isabella.grnet.gr:2119/jobmanager-pbs-biomed
•Destination:        ce2.egee.cesga.es:2119/jobmanager-lcgpbs-biomed
•Destination:        obsauvergridce01.univ-bpclermont.fr:2119/jobmanager-lcgpbs-biomed
•Destination:        dgc-grid-40.brunel.ac.uk:2119/jobmanager-lcgpbs-short
•Destination:        dgc-grid-40.brunel.ac.uk:2119/jobmanager-lcgpbs-short
•Destination:        testbed001.grid.ici.ro:2119/jobmanager-lcgpbs-biomed
•Destination:        ce01.isabella.grnet.gr:2119/jobmanager-pbs-biomed
•Destination:        ce01.ariagni.hellasgrid.gr:2119/jobmanager-pbs-biomed
•Destination:        obsauvergridce01.univ-bpclermont.fr:2119/jobmanager-lcgpbs-biomed
•Destination:        ce01.marie.hellasgrid.gr:2119/jobmanager-pbs-biomed
•Destination:        ce01.pic.es:2119/jobmanager-lcgpbs-biomed
•Destination:        t2ce02.physics.ox.ac.uk:2119/jobmanager-lcgpbs-biomed
•Destination:        ce01.kallisto.hellasgrid.gr:2119/jobmanager-pbs-biomed
•Destination:        mu6.matrix.sara.nl:2119/jobmanager-pbs-short
•Destination:        mars-ce.mars.lesc.doc.ic.ac.uk:2119/jobmanager-sge-12hr
•Destination:        ce01.marie.hellasgrid.gr:2119/jobmanager-pbs-biomed
•Destination:        mallarme.cnb.uam.es:2119/jobmanager-pbs-biomed
•Destination:        ce01.grid.acad.bg:2119/jobmanager-lcgpbs-biomed
•Destination:        clrlcgce03.in2p3.fr:2119/jobmanager-lcgpbs-biomed
•Destination:        grid001.ics.forth.gr:2119/jobmanager-lcgpbs-biomed

• And 50 more sites ….
• Production based on benchmarks
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High-Throughput: Summary 

 Predictive profiling Predictive profiling 
for high-throughput proteomics for high-throughput proteomics 

 Selection BiasSelection Bias

 Computational procedures forComputational procedures for
complete validation (BioDCV)complete validation (BioDCV)

 Biomarker Lists: reproducibility, stability, correlationBiomarker Lists: reproducibility, stability, correlation

 Modify machine learning algorithm to directly link Modify machine learning algorithm to directly link 
selection to target functions (new kernel selection to target functions (new kernel 
methods, or maybe simpler classifiers) methods, or maybe simpler classifiers) 

 Consider the problem of batch preprocessing for Consider the problem of batch preprocessing for 
true reproducibilitytrue reproducibility

 Use simulator to tune systems Use ensemble Use simulator to tune systems Use ensemble 
methods to achieve stabilitymethods to achieve stability
of selected listsof selected lists

 ApplicationsApplications
 Grid Computing as a viable resource for prediction with Grid Computing as a viable resource for prediction with 

Mass spectrometry (SELDI-TOF, MALDI-TOF)Mass spectrometry (SELDI-TOF, MALDI-TOF)



Details  Details  



Preprocessing – peak Preprocessing – peak 
identificationidentification

Yasui 2003
Tibshirani 2004



 Using peaks across multiple spectra can generate Using peaks across multiple spectra can generate 
thousands of features.thousands of features.

 The number of examples required to learn a “reasonable” The number of examples required to learn a “reasonable” 
hypothesis increases exponentially with the number of hypothesis increases exponentially with the number of 
features.features.

 Clustering reduces these features and has a rough Clustering reduces these features and has a rough 
correction for spectrometer resolution or drift of m/z correction for spectrometer resolution or drift of m/z 
between spectra.between spectra.

Extracting Common Extracting Common 
FeaturesFeatures



Peak Alignment - ClusteringPeak Alignment - Clustering
(Tibshirani 2004) (Tibshirani 2004) 

 Complete hierarchical clustering on Complete hierarchical clustering on 
log(m/z) axis over all spectralog(m/z) axis over all spectra

 Build a dendrogramBuild a dendrogram
 Cut at treshold T Cut at treshold T 

 induces centroids position induces centroids position



Spectra with extracted Spectra with extracted 
centroidscentroids



Error Curve vs. Features Error Curve vs. Features 
numbernumber

Blind test set
Sim. Preproc spectra
Ind. Preproc spectra



Top discriminant peaksTop discriminant peaks
Control

Cancer

95% 
confidence
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