

Proteome profiling without selection bias

Annalisa Barla, Bettina Irler, Stefano Merler, Giuseppe Jurman, Silvano Paoli, Cesare Furlanello

ITC-irst, Trento, Italy

C. Furlanello – June 22th, 2006

Biomarkers and Predictive classification

- Prediction and Bias
- Biomarker Ranking algorithms with Support Vector Machines (kernel methods)
- The Complete Validation Platform (BioDCV)
- Pipeline of Preprocessing Procedures
- Grid application (EGEE-Biomed VO)

Experiments

- Cromwell MALDI-TOF simulated data
- SELDI-TOF Ovarian cancer (NCIFDAProteomics)
- MALDI-TOF Ovarian cancer (Keck Labs)

Bias: on data preparation, preprocessing (complex!), classification

- E Petricoin, A Ardekani, B Hitt, P Levine, B Fusaro, S Steinberg, G Mills, C Simone, D Fishman, E Kohn, and L Liotta. Use of proteomic patterns in serum to identify ovarian cancer. Lancet, 359:572-577, 2002.
- K Baggerly, J Morris, and K Coombes. Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. *Bioinformatics*, 20(5):777-785, 2004.

Controversy: J Natl Cancer Inst 2005; 97

- K Baggerly, JS Morris, SR Edmonson, KR Coombes. Signal in Noise: Evaluating Reported Reproducibility of Serum Proteomic Tests for Ovarian Cancer
- LA Liotta, M Lowenthal, A Mehta, TP Conrads, TD Veenstra, DA Fishman, EFIII Petricoin. Importance of Communication Between Producers and Consumers of Publicly Available Experimental Data
- DF Ransohoff. Lessons from Controversy: Ovarian Cancer Screening and Serum Proteomics
- DF. Ransohoff. Bias as a threat to the validity of cancer molecular-marker research. Nature, 5:142-149, 2005.

The selection bias problem

Pervasive in the first years of microarray classification studies: use CV to evaluate models, pick up best probes, compute again expected error with CV ...

METHODOLOGY	
- Ambroise & McLachlan,	2002
- Simon et. al 2003	

- Furlanello et. al 2003

A zero error (CV) may be obtained with only 8 genes (*).

But when repeating the experiment after a label randomization, a very similar result is reached: 14 genes are sufficient to get a zero error estimate.

The same effect can be reproduced with no-information datasets !!

(*): similar results of near perfect classification with few genes published in *PNAS*, *Machine Learning*, *Genome Research*, *BMC Bioinformatics*, etc.

COMPLETE VALIDATION

To avoid selection bias (p>>n): *

- externally a stratified random partitioning,
- internally a model selection based on a K-fold cross-validation
- high computational costs due to replicates (10⁵--10⁶ models)**

* Ambroise & McLachlan, 2002, Simon et. al 2003, Furlanello et. al 2003 **OFS-M:** Model tuning and Feature ranking **ONF:** Optimal gene panel estimator **ATE:** Average Test Error

** Binary classification, on a 20 000 genes x 45 cDNA array, 400 loops

E-RFE with SVM Classifiers

- MODEL: Support Vector Machines (SVM)
- RANKING → SELECTION Recursive Feature Elimination (RFE): a stepwise backward selection procedure.

At each step, eliminate the "least interesting variable" and retrain

ACCELERATIONS

- Parametrics
 - Sqrt–RFE
 - Decimation-RFE
- Non-Parametrics
 - E-RFE: adapting to weight distribution by thresholding the SVM weights at w*

High Throughput Computing

Complete validation

1. COMPLETE VALIDATION CURES THE SELECTION BIAS

- 2. Computational solutions: Clusters and GRID
- 3. The by-products of complete validation

BIODCV http://biodcv.itc.it for National Institute of Cancer

PREVIOUS WORK ON MICROARRAY DATA

Neural Networks BMC Bioinformatics IEEE Trans. Signal Processing IEEE Trans. Comp. Biology and

Bioinformatics

Harnessing Bias

integrate a pipeline for proteomic data preprocessing with the BioDCV complete validation process

Single spectrum	Batch	
Baseline subtraction 1		
	Normalization (A.U.C.)	
Peak Extraction ²		
	Centroid Identification ²	
	Peak Assignment ²	
	(ms Standardization)	

¹PROcess: an R package -- lowess for baseline subtraction

X. Li

A package for processing protein mass spectrometry data. http://www.bioconductor.org/packages/bioc/1.8/html/PROcess.html

² ppc: another R package – features defined by cluster centroids' location
 R. Tibshirani et al.
 Sample classification from protein mass spectrometry, by "peak probability contrasts"

Bioinformatics 20(17):3034-3044, 2004

- GIVEN mz-ms data: spectra in a standardized mass spectrometry format; a binary label for each spectrum (e.g. +1/-1)
- FIND: Biomarkers valid on novel data & classification error estimates

Goal: study biomarker selection by complete validation setup

• Simulated MALDI-TOF data (Cromwell's): 4 datasets at increasing levels of noise: $\varepsilon = N(0, \sigma) \sigma = (0, 10, 50, 300)$

tot #	class	class	#m/z
	1	-1	(100Da < m/z < 20000Da)
160	80	80	17669

• Ovarian 8/7/02 (SELDI-TOF)*

tot #	cancer	control	#m/z (0Da < m/z < 20000Da)
253	162	91	15153

http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp

• Ovarian '05 (MALDI - TOF)

on #m/z linear	#m/z reflectron	control	cancer	tot #
(3450Da < m/z < 28000Da)				
36890	94780	77	93	170

Nat. Ovarian Cancer Early Detection Program Northwestern Univ. Hospital Micromass M@LDI-L/R , Keck Lab Yale (Wu et al 2005)

http://bioinformatics.med.yale.edu/MSDATA2/

* Technical and experimental design of this dataset were questioned.

Simulated Data (I)

Cromwell: a proteomic MALDI-TOF simulation engine

Configuration

- A. Default parameters:
 - Voltage between plates (20 KV)
 - Length of drift tube (L=1 m)
 - Distance between charged grids (8 mm)
 - Standard deviation on initial particles' velocity (50)
- B. Defined Parameters:
 - Peak sites (chosen from a real dataset)
 - Peak intensity (max no. of a set of particles)
 - Standard deviation on noise over intensity

Software: v 2.0 in R, from S-Plus code

http://bioinformatics.mdanderson.org/cromwell.html

Hypotheses

- Different peak intensity at a panel of m/z locations discriminates the two classes
- A "band" structure

Sample plate

Detector

K.R.Coombes et al.

Understanding the characteristics of mass spectrometry data through the use of simulation Cancer Informatics 2005:1(1) 41-52

Simulated Data (II)

CENTRO	PER LA F	RICERCA
SCIENTIF	ICA E TE	CNOLOGICA

class		Peak Intens	ity [Number of Peaks]	
	B1	В2	В3	B4
1	10000 [7]	7000 [7]	5000 [7]	1000 [60]
-1	5000 [7]	7000 [7]	10000 [7]	1000 [60]

Design: the 2 classes are discriminated by peak intensities in bands B1 and B3, but no discriminations in B2 and B4

Results: Simulated Data

Note: the 4 synthetic MALDI-TOF datasets were built each with a total of 14 discriminant peaks, but our preprocessing procedure detected only 13 of them since the first one is located too close to the inf of spectrum border.

PREPROCESSING PIPELINE RESULTS

σ=0	81 peaks detected
σ=10	
σ=50	• Two extra non-valid peaks identified in the preprocessing phase (due to poise)
σ=300	 After the BioDCV procedure one was rejected

COMPLETE VALIDATION RESULTS

- The actual 13 discriminant peaks were found among the most significant features extracted
- A list stability indicator showed that the number of relevant variables over all run is exactly 13

Results: SELDI-TOF Ovarian 8/7/02

mass spectral data. PNAS 100(25):14666-14671, December 2003.

Results: MALDI-TOF Keck Lab

AVG Error (AP0 mode) test set (14 features): 32.5% (CI 32.1,32.7) AVG Error (AP0 mode) test set (all features): 24.5%

AVG Error (AP1 mode) test set (14 features): 25.7%

Random labels: ATE on blind test=49.1% No Info=45.3%

Results compliant with:

Baolin Wu et al. Ovarian cancer classification based on mass spectrometry analysis of sera.

Cancer Informatics, 2005.

The first and the fifth most relevant peaks in the Keck Lab dataset

BioDCV SubVersion Repository

Enabling Grids for E-sciencE

GGGGG

We have a Globus/Edg/Lcg-2 grid site, and it is composed by 5 bi-processor units: 1 CE+WN+SE and 4 WN. Our grid site is linked with the Egrid Testbed. Other relevant Grid organizations are:

• INFN-GRID

1. IEEE CBMS 2006: series of experiments on proteomics data

- standard complete validation analysis
- random labels analysis
- 2. A strict deadline for the final version

Solution:

- We used the EGEE Biomed grid infrastructure
- 20 cpus/job, for a total of 100+120 jobs
- BioDCV jobs were run on many Biomed Sites in all Europe

Grid implementation

Enabling Grids for E-sciencE

eGee

BioDCV jobs on CEs in Europe

Enabling Grids for E-sciencE

BioDCV jobs was run on these Biomed's CEs in Europe:

 Destination: Destination: Destination: •Destination: •Destination: •Destination: Destination: Destination: Destination: Destination: •Destination: Destination: Destination: Destination: Destination: Destination: Destination: •Destination: Destination: Destination: Destination: Destination: Destination: •Destination: Destination: •Destination: •Destination: Destination: Destination: Destination: •Destination: Destination: •Destination: Destination: •Destination:

mars-ce.mars.lesc.doc.ic.ac.uk:2119/iobmanager-sge-3hr cluster.pnpi.nw.ru:2119/jobmanager-pbs-biomed helmsley.dur.scotgrid.ac.uk:2119/jobmanager-lcgpbs-biomed ce101.grid.ucy.ac.cy:2119/jobmanager-lcgpbs-biomed grid-ce.ii.edu.mk:2119/jobmanager-lcgpbs-biomed ce01.kallisto.hellasgrid.gr:2119/jobmanager-pbs-biomed mars-ce.mars.lesc.doc.ic.ac.uk:2119/jobmanager-sge-3hr lcgce01.gridpp.rl.ac.uk:2119/jobmanager-lcgpbs-bioL ce01.ariagni.hellasgrid.gr:2119/jobmanager-pbs-biomed lcg-ce.its.uiowa.edu:2119/jobmanager-lcgpbs-biomed lcgce01.gridpp.rl.ac.uk:2119/jobmanager-lcgpbs-bioL ce01.grid.acad.bg:2119/jobmanager-lcgpbs-biomed mu6.matrix.sara.nl:2119/jobmanager-pbs-short cluster.pnpi.nw.ru:2119/jobmanager-pbs-biomed mars-ce.mars.lesc.doc.ic.ac.uk:2119/jobmanager-sge-3hr gridba2.ba.infn.it:2119/jobmanager-lcgpbs-long ce1.pp.rhul.ac.uk:2119/jobmanager-pbs-biomedgrid cluster.pnpi.nw.ru:2119/jobmanager-pbs-biomed fal-pygrid-18.lancs.ac.uk:2119/jobmanager-lcgpbs-biomed grid012.ct.infn.it:2119/jobmanager-lcglsf-short ce1.pp.rhul.ac.uk:2119/jobmanager-pbs-biomedgrid ce01.grid.acad.bg:2119/jobmanager-lcgpbs-biomed grid-ce.ii.edu.mk:2119/jobmanager-lcgpbs-biomed grid0.fe.infn.it:2119/jobmanager-lcgpbs-grid grid012.ct.infn.it:2119/jobmanager-lcglsf-short ce01.ariagni.hellasgrid.gr:2119/jobmanager-pbs-biomed grid0.fe.infn.it:2119/jobmanager-lcgpbs-grid mars-ce.mars.lesc.doc.ic.ac.uk:2119/jobmanager-sge-12hr epgce1.ph.bham.ac.uk:2119/jobmanager-lcgpbs-biomed epgce1.ph.bham.ac.uk:2119/jobmanager-lcgpbs-biomed ramses.dsic.upv.es:2119/jobmanager-pbs-biomedg t2ce02.physics.ox.ac.uk:2119/jobmanager-lcgpbs-biomed ce1.pp.rhul.ac.uk:2119/jobmanager-pbs-biomedgrid ce01.kallisto.hellasgrid.gr:2119/jobmanager-pbs-biomed grid10.lal.in2p3.fr:2119/jobmanager-pbs-biomed

mars-ce.mars.lesc.doc.ic.ac.uk:2119/jobmanager-sge-6hr Destination: ce01.grid.acad.bg:2119/jobmanager-lcgpbs-biomed Destination: •Destination: scaicl0.scai.fraunhofer.de:2119/jobmanager-lcgpbs-biomed mars-ce.mars.lesc.doc.ic.ac.uk:2119/jobmanager-sge-12hr Destination: Destination: grid-ce.ii.edu.mk:2119/jobmanager-lcgpbs-biomed Destination: gw39.hep.ph.ic.ac.uk:2119/jobmanager-lcgpbs-biomed Destination: grid0.fe.infn.it:2119/jobmanager-lcgpbs-grid Destination: mars-ce.mars.lesc.doc.ic.ac.uk:2119/jobmanager-sge-12hr •Destination: grid10.lal.in2p3.fr:2119/jobmanager-pbs-biomed t2ce02.physics.ox.ac.uk:2119/jobmanager-lcgpbs-biomed Destination: •Destination: prod-ce-01.pd.infn.it:2119/jobmanager-lcglsf-grid •Destination: ce01.grid.acad.bg:2119/jobmanager-lcgpbs-biomed testbed001.grid.ici.ro:2119/jobmanager-lcgpbs-biomed Destination: Destination: mars-ce.mars.lesc.doc.ic.ac.uk:2119/jobmanager-sge-3hr Destination: lcg06.sinp.msu.ru:2119/jobmanager-lcgpbs-biomed •Destination: ce01.isabella.grnet.gr:2119/jobmanager-pbs-biomed Destination: ce2.egee.cesga.es:2119/jobmanager-lcgpbs-biomed Destination: obsauvergridce01.univ-bpclermont.fr:2119/jobmanager-lcgpbs-biomed dgc-grid-40.brunel.ac.uk:2119/jobmanager-lcgpbs-short Destination: Destination: dgc-grid-40.brunel.ac.uk:2119/jobmanager-lcgpbs-short testbed001.grid.ici.ro:2119/jobmanager-lcgpbs-biomed Destination: •Destination: ce01.isabella.grnet.gr:2119/jobmanager-pbs-biomed ce01.ariagni.hellasgrid.gr:2119/jobmanager-pbs-biomed Destination: Destination: obsauvergridce01.univ-bpclermont.fr:2119/jobmanager-lcgpbs-biomed •Destination: ce01.marie.hellasgrid.gr:2119/jobmanager-pbs-biomed ce01.pic.es:2119/jobmanager-lcgpbs-biomed Destination: Destination: t2ce02.physics.ox.ac.uk:2119/jobmanager-lcgpbs-biomed Destination: ce01.kallisto.hellasgrid.gr:2119/jobmanager-pbs-biomed Destination: mu6.matrix.sara.nl:2119/jobmanager-pbs-short Destination: mars-ce mars less doc is as uk:2110/johmanager-sge-12hr Destination: And 50 more sites Destination:

Production based on benchmarks

•Destination: grid001.ics.forth.gr:2119/jobmanager-lcgpbs-biomed

Predictive profiling for high-throughput proteomics

- Selection Bias
 - Computational procedures for complete validation (BioDCV)

Biomarker Lists: reproducibility, stability, correlation

- Modify machine learning algorithm to directly link selection to target functions (new kernel methods, or maybe simpler classifiers)
- Consider the problem of batch preprocessing for true reproducibility
- Use simulator to tune systems Use ensemble methods to achieve stability of selected lists

Applications

Grid Computing as a viable resource for prediction with Mass spectrometry (SELDI-TOF, MALDI-TOF)

Preprocessing – peak identification

Extracting Common Features

- Using peaks across multiple spectra can generate thousands of features.
- The number of examples required to learn a "reasonable" hypothesis increases exponentially with the number of features.
- Clustering reduces these features and has a rough correction for spectrometer resolution or drift of m/z between spectra.

Peak Alignment - Clustering

(Tibshirani 2004)

- Complete hierarchical clustering on log(m/z) axis over all spectra
- Build a dendrogram
- Cut at treshold T
 - \rightarrow induces centroids position

Spectra with extracted centroids

Error Curve vs. Features number

Top discriminant peaks

