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Biomarkers and Predictive classification
® Prediction and Bias

® Biomarker Ranking algorithms with
Support Vector Machines (kernel methods)

B The Complete Validation Platform (BioDCV)
® Pipeline of Preprocessing Procedures
®  Grid application (EGEE-Biomed VO)

Experiments
® Cromwell MALDI-TOF simulated data
B SELDI-TOF Ovarian cancer (NCIFDAProteomics)
® MALDI-TOF Ovarian cancer (Keck Labs)




&ITC Prediction and Bias

Bias: on data preparation, preprocessing (complex!),
classification

E Petricoin, A Ardekani, B Hitt, P Levine, B Fusaro, S Steinberg, G Mills,
C Simone, D Fishman, E Kohn, and L Liotta. Use of proteomic patterns
in serum to identify ovarian cancer. Lancet, 359:572-577, 2002.

K Baggerly, J Morris, and K Coombes. Reproducibility of SELDI-TOF protein
patterns in serum: comparing datasets from different experiments.
Bioinformatics, 20(5):777-785, 2004.

Controversy: J Natl Cancer Inst 2005; 97

K Baggerly, JS Morris, SR Edmonson, KR Coombes. Signal in Noise: Evaluating
Reported Reproducibility of Serum Proteomic Tests for Ovarian Cancer

LA Liotta, M Lowenthal, A Mehta, TP Conrads, TD Veenstra, DA Fishman, EFIII
Petricoin. Importance of Communication Between Producers and Consumers of
Publicly Available Experimental Data

DF Ransohoff. Lessons from Controversy: Ovarian Cancer Screening and Serum
Proteomics

DF. Ransohoff. Bias as a threat to the validity of cancer molecular-marker research.
Nature, 5:142-149, 2005.



The selection bias problem

Pervasive in the first years of microarray classification studies:
use CV to evaluate models, pick up best probes, compute again
expected error with CV ...
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(*) Colon cancer data:

2000 genes, 62 tissues

22 normal and 40 tumor cases
(Alon et. al,1999)
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METHODOLOGY

- Ambroise & McLachlan, 2002
- Simon et. al 2003

- Furlanello et. al 2003

A zero error (CV) may be obtained
with only 8 genes (*).

But when repeating the experiment
after a label randomization, a very
similar result is reached: 14 genes are
sufficient to get a zero error estimate.

The same effect can be reproduced
with no-information datasets !!

(*): similar results of near perfect classification
with few genes published in PNAS, Machine
Learning, Genome Research, BMC
Bioinformatics, etc.
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COMPLETE VALIDATION

To avoid selection bias (p>>n): *

e externally a stratified random partitioning,
¢ internally a model selection based on a K-fold cross-validation
e high computational costs due to replicates (10°--10% models)**
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features

E-RFE with SVM Classifiers
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MODEL: Support Vector -
. Parametrics
Machines (SVM) Sqrt-RFE

Decimation-RFE
RANKING - SELECTION

Recursive Feature Elimination Non-Parametrics
(RFE): a stepwise backward E-RFE: adapting to

selection procedure. weight distribution by
thresholding the SVM

At each step, eliminate the weights at w*

“least interesting variable” and
retrain



¢1TC High Throughput Computing

Complete validation
on cluster/ Grid

1. COMPLETE VALIDATION CURES THE
SELECTION BIAS

2. Computational solutions: Clusters and GRID
3. The by-products of complete validation
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http://biodcv.itc.it/
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integrate a pipeline for proteomic data preprocessing with the BioDCV
complete validation process
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Preprocessing

Single spectrum Batch

Baseline subtraction

Normalization (A.U.C.)

Peak Extraction 2

Centroid Identification 2

Peak Assignment 2

(ms Standardization)

"PROcess: an R package -- lowess for baseline subtraction

X. Li

A package for processing protein mass spectrometry data.
http://www.bioconductor.org/packages/bioc/1.8/html/PROcess.html

2ppc: another R package — features defined by cluster centroids’ location

R. Tibshirani et al.

Sample classification from protein mass spectrometry, by “peak probability contrasts”
Bioinformatics 20(17):3034-3044, 2004

Not discussed here: calibration, filtering


http://www.bioconductor.org/packages/bioc/1.8/html/PROcess.html
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Complete Validation for Proteomics

e GIVEN mz-ms data: spectra in a standardized mass spectrometry
format; a binary label for each spectrum (e.g. +1/-1)

e FIND: Biomarkers valid on novel data & classification error estimates

preprocessing classification with
raiin complete validation
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(development data) i b _
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Methodology

Goal: study biomarker selection
by complete validation setup

Predicted
Accuracy
Estimates

BIOMARKERS
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- classification with Predicted
preprocessing complete validation Accuracy
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* Simulated MALDI-TOF data (Cromwell’s): 4 datasets at
increasing levels of noise: e=N(0, o) 0=(0,10, 50, 300)

tot # class class #m/z
1 -1 (100Da < m/z < 20000Da)
160 80 80 17669

Ovarian 8/7/02 (SELDI-TOF)*

tot # | cancer | control #m/z
(ODa < m/z < 20000Da)
253 162 91 15153

http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp

Ovarian 05 (MALDI - TOF)

tot # | cancer | control | #m/z reflectron #m/z linear
(3450Da < m/z < 28000Da)
170 93 77 94780 36890

Nat. Ovarian Cancer Early Detection Program Northwestern Univ. Hospital
Micromass M@LDI-L/R, Keck Lab Yale (Wu et al 2005)

http://bicinformatics.med.yale.edu/MSDATAZ2/

* Technical and experimental design
of this dataset were questioned.


http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp
http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp
http://bioinformatics.med.yale.edu/MSDATA2/

#1TC Simulated Data (l)

Cromwell: a proteomic MALDI-TOF simulation engine

grids
Configuration Pr [P
A. Default parameters:
® \oltage between plates 20kv) || 1 Flight path
B | ength of drift tube (L=1 m)
B Distance between charged grids (8 mm) - -
ample etector

B Standard deviation on initial particles’ velocity (50) plate

_ _ K.R.Coombes et al.
B. Defined Parameters: Understanding the characteristics
B Peak sites (chosen from a real dataset) of mass spectrometry data

® Peak intensity (max no. of a set of particles) through the use of simulation
m Standard deviation on noise over intensity Cancer Informatics 2005:1(1) 41-52

Software: v 2.0 in R, from S-Plus code
http://bioinformatics.mdanderson.org/cromwell.html

Hypotheses

* Different peak intensity at a panel of m/z locations
discriminates the two classes
* A “band” structure


http://bioinformatics.mdanderson.org/cromwell.html

Simulated Data (ll)
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Results: Simulated Data

Note: the 4 synthetic MALDI-TOF datasets were built each with a total
of 14 discriminant peaks, but our preprocessing procedure detected
only 13 of them since the first one is located too close to the inf of
spectrum border.

PREPROCESSING PIPELINE RESULTS
o=0 81 peaks detected
0=10
o=50 * Two extra non-valid peaks identified in the
preprocessing phase (due to noise)
0=300 * After the BioDCV procedure one was rejected

COMPLETE VALIDATION RESULTS

e The actual 13 discriminant peaks were found among the most
significant features extracted

e A list stability indicator showed that the number of relevant
variables over all run is exactly 13




Results: SELDI-TOF Ovarian 8/7/02

| 20| APO: BioDCV ATE AVG Error on blind test set (5 features): ~3%

\ with Indip, preproc| | oo hdom labels:

ATE on blind test=41.1% (CI 34.6, 56.8)
No Info = 36%

Error (%)
10
|

Biomarker analysis

Intensity
Intensity

Number of Peaks

434
Mz Mz

Eéi?ggsrclzlb?ltis'of SELDI-TOF protein patterns in The first and the second most relevant peaks
ebonmanaring datasets from different for BioDCV classification in all the sublists
Bioinformatics, 20(5):777-785,2004. of the dataset confirm previous studies
W. Zhu et al. (and their concerns)

Detection of cancer-specific markers amid massive
mass spectral data.

PNAS 100(25):14666-14671, December 2003.



Results: MALDI-TOF Keck Lab

AVG Error (APO mode) test set (14 features): 32.5% (CI 32.1,32.7)
AVG Error (APO mode) test set (all features): 24.5%

AVG Error (AP1 mode) test set (14 features): 25.7%

Random labels: ATE on blind test=49.1%
No Info=45.3%

Results compliant with: Biomarker analysis:

AV G cancer

0.5

AVG control =/
95% cancer ——— -

Baolin Wu et al. 95% control = = = -
Ovarian cancer classification based on mass \
spectrometry analysis of sera.
Cancer Informatics, 2005.
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The first and the fifth most relevant peaks in the Keck Lab dataset



CJIEICJC) BioDCV SubVersion Repository

Enabling Grids for E-sciencE

v DCV Home - Mozilla Firefox

FEile Edit View Go Bookmarks Tools Help

Qg . [} - @ @ |u http:/ /biodev.ite.it/ |"‘ ©co “Q' |

BleDCV http://biodcv.itc.it

Introduction
We investigate the problem of ping a complete setup for predictive molecular profiling, and of implementing it as a GRID enabled application. Profiling from high-throughput
systems requires to deal with high-dimensional data and small samples (p==n): to avoid selection bias effects, practitioners need access to a complex learning process coupled with its
complete validation. The E-RFE complete validation setup has been developed at ITC-irst for Support Vector Machine classifiers: it was redesigned fo obtain BioDCV, a distributed version for
clusters and virtual GRID facilities. A specific feature of the BioDCV system is its portability on a range of computational platforms: single workstations, local Linux clusters, facilities
computational Grids. We develop BioDCV within the AIRC Bicinformatic Center Grant (BICG), in collaboration with the IFOM-FIR C Institute for Molecular Oncology.
e
z
BioDCV
% I I ' . BioDCV is a distributed computing system for the complete validation of gene profiles. The system is composed on a suite of software modules that allow to
’3;-."‘. ™ define, manage and analyze a complete experiment on DNA microarray data. In particular, the BioDCV system supports the high throughput computing (HTC)
}&;\\’ I rst needed to build predictive classification models and select the most important genes.
For more details:
e Wind t
I n OWS n a Ive ® Presentation (Pdf, 3314 KB): Integrating machine learning and database files on grid for high throughput functional genomics
Ve rs i O n a Va i | a b I e (INFN-grid/EMBRACE-Grid/Egee Workshop on Grid data ication, consistency and requirements. Pisa, Italy. May 20086).
- Supplementary material of: Proteome profiling without selection bias (CEMS 2006 IEEE. Salt Lake City, Utah)
T -
. ® Technical report (Pdf, 96 KB): Semisupervised Profiling of Gene Expressions and Clinical Data (CIBE 2005. Crema, ltaly).
e C. Furlanello, M. Serafini,
#® The BioDCV Poster (Pdf, 390 KB): A complete validation setup for predictive molecular profiling on computational grid (BITS 2005. Milano, ltaly).
S. Merler and G. Jurman. ! S BAOrE frefingoncang L L
Sem|-supervised Iea rn|ng ® 1 Sc. thesis (Pdf, 522 KB): "BiocDCV: a Distributed Computing System for the Complete Validation of Gene Profiles" (University of Trento, March 2005) ||
for molecular profiling.
IEEE Trans. Comp. Biology
s . Cluster
and Bioinformatics,
2(2) . 1 1 O_ 1 18 2005 Qur local computing facility is the Mpba cluster, an Open Mosix cluster with 26 bi-processors units and 1 data server: 1 front-end, 22 Intel Pentium 1Il 1GHz and
. ’ .
1GB Ram, 3 Intz| Xeon 3GHz and 3GB Ram, for a fotal of 52 cpus power.
e More on http://mpa.itc.it
Grid
We have a Globus/Edg/Lcg-2 grid site, and it is composed by 5 bi-processor units: 1 CE+WMN+SE and 4 WN. Our grid sile is linked with the Eqrid Testbed. Other
relevant Grid organizations are:
® |NFN-GRID =
s -
—d




Grid Computing for Proteomics

Enabling Grids for E-sciencE

IEEE CBMS 2006: series of experiments on proteomics data
standard complete validation analysis
random labels analysis

A strict deadline for the final version

Solution:
We used the EGEE Biomed grid infrastructure
20 cpus/job, for a total of 100+120 jobs
BioDCV jobs were run on many Biomed Sites in all Europe




Cy Grid implementation

Enabling Grids for E-sciencE

Commands: The B|ODCV SYStem

grid-url-copy/lcg-cp db from
local to SE

edg-job-submit BioDCV.jdI
grid-url-copy/lcg-cp db from

SE to local 1+3 ! B
E E . (slice)
i \J
Configuration run Output
File | Database
. 5 o > (slice) tracking
Setu A
exp > Datab;se > g - | o gggg?sg
o Output ‘unify
Data . = B  Database | :
(training) (slice)
2-50 MB
Additional Data ﬂaﬂ’l ‘ Dca)t:mbaue:e
-y ™) 50-400 MB
PSR T 7 i e i nrausT i Rl b yr i
: grid-ftp scp :
i - :
I E I
5 I i 1
\,. grid-ftp|: ; S _ P |
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Egrid infrastructure




BioDCV jobs on CEs in Europe
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Enabling Grids for E-sciencE

BioDCV jobs was run on these Biomed’s CEs in Europe:

mars-ce.mars.lesc.doc.ic.ac.uk:2119/jobmanager-sge-3hr
cluster.pnpi.nw.ru:2119/jobmanager-pbs-biomed

helmsley.dur.scotgrid.ac.uk:2119/jobmanager-lcgpbs-biomed

ce101.grid.ucy.ac.cy:2119/jobmanager-lcgpbs-biomed
grid-ce.ii.edu.mk:2119/jobmanager-lcgpbs-biomed
ce01.kallisto.hellasgrid.gr:2119/jobmanager-pbs-biomed
mars-ce.mars.lesc.doc.ic.ac.uk:2119/jobmanager-sge-3hr
lcgce01.gridpp.rl.ac.uk:2119/jobmanager-lcgpbs-bioL
ce01.ariagni.hellasgrid.gr:2119/jobmanager-pbs-biomed
Icg-ce.its.uiowa.edu:2119/jobmanager-lcgpbs-biomed
lcgce01.gridpp.rl.ac.uk:2119/jobmanager-lcgpbs-bioL
ce01.grid.acad.bg:2119/jobmanager-lcgpbs-biomed
mu6.matrix.sara.nl:2119/jobmanager-pbs-short
cluster.pnpi.nw.ru:2119/jobmanager-pbs-biomed
mars-ce.mars.lesc.doc.ic.ac.uk:2119/jobmanager-sge-3hr
gridba2.ba.infn.it:2119/jobmanager-lcgpbs-long
cel.pp.rhul.ac.uk:2119/jobmanager-pbs-biomedgrid
cluster.pnpi.nw.ru:2119/jobmanager-pbs-biomed
fal-pygrid-18.lancs.ac.uk:2119/jobmanager-lcgpbs-biomed
grid012.ct.infn.it:2119/jobmanager-lcglsf-short
cel.pp.rhul.ac.uk:2119/jobmanager-pbs-biomedgrid
ce01.grid.acad.bg:2119/jobmanager-lcgpbs-biomed
grid-ce.ii.edu.mk:2119/jobmanager-lcgpbs-biomed
grid0.fe.infn.it:2119/jobmanager-lcgpbs-grid
grid012.ct.infn.it:2119/jobmanager-Icglsf-short
ce01.ariagni.hellasgrid.gr:2119/jobmanager-pbs-biomed
grid0.fe.infn.it:2119/jobmanager-lcgpbs-grid
mars-ce.mars.lesc.doc.ic.ac.uk:2119/jobmanager-sge-12hr
epgce1.ph.bham.ac.uk:2119/jobmanager-lcgpbs-biomed
epgce1.ph.bham.ac.uk:2119/jobmanager-lcgpbs-biomed
ramses.dsic.upv.es:2119/jobmanager-pbs-biomedg
t2ce02.physics.ox.ac.uk:2119/jobmanager-lcgpbs-biomed
cel.pp.rhul.ac.uk:2119/jobmanager-pbs-biomedgrid
ce01.kallisto.hellasgrid.gr:2119/jobmanager-pbs-biomed
grid10.lal.in2p3.fr:2119/jobmanager-pbs-biomed
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mars-ce.mars.lesc.doc.ic.ac.uk:2119/jobmanager-sge-6hr
ce01.grid.acad.bg:2119/jobmanager-lcgpbs-biomed
scaiclO.scai.fraunhofer.de:2119/jobmanager-lcgpbs-biomed
mars-ce.mars.lesc.doc.ic.ac.uk:2119/jobmanager-sge-12hr
grid-ce.ii.edu.mk:2119/jobmanager-lcgpbs-biomed
gw39.hep.ph.ic.ac.uk:2119/jobmanager-lcgpbs-biomed
grid0.fe.infn.it:2119/jobmanager-lcgpbs-grid
mars-ce.mars.lesc.doc.ic.ac.uk:2119/jobmanager-sge-12hr
grid10.lal.in2p3.fr:2119/jobmanager-pbs-biomed
t2ce02.physics.ox.ac.uk:2119/jobmanager-lcgpbs-biomed
prod-ce-01.pd.infn.it:2119/jobmanager-Icglsf-grid
ce01.grid.acad.bg:2119/jobmanager-lcgpbs-biomed
testbed001.grid.ici.ro:2119/jobmanager-lcgpbs-biomed
mars-ce.mars.lesc.doc.ic.ac.uk:2119/jobmanager-sge-3hr
lcg06.sinp.msu.ru:2119/jobmanager-lcgpbs-biomed
ce01.isabella.grnet.gr:2119/jobmanager-pbs-biomed
ce2.egee.cesga.es:2119/jobmanager-lcgpbs-biomed
obsauvergridce01.univ-bpclermont.fr:2119/jobmanager-lcgpbs-biomed
dgc-grid-40.brunel.ac.uk:2119/jobmanager-lcgpbs-short
dgc-grid-40.brunel.ac.uk:2119/jobmanager-lcgpbs-short
testbed001.grid.ici.ro:2119/jobmanager-lcgpbs-biomed
ce01.isabella.grnet.gr:2119/jobmanager-pbs-biomed
ce01.ariagni.hellasgrid.gr:2119/jobmanager-pbs-biomed
obsauvergridce01.univ-bpclermont.fr:2119/jobmanager-lcgpbs-biomed
ce01.marie.hellasgrid.gr:2119/jobmanager-pbs-biomed
ce01.pic.es:2119/jobmanager-lcgpbs-biomed
t2ce02.physics.ox.ac.uk:2119/jobmanager-lcgpbs-biomed
ce01.kallisto.hellasgrid.gr:2119/jobmanager-pbs-biomed
mu6.matrix.sara.nl:2119/jobmanager-pbs-short

And 50 more sites ....
Production based on benchmarks

grid001.ics.forth.gr:2119/jobmanager-lcgpbs-biomed



High-Throughput: Summary

Predictive profiling
for high-throughput proteomics

B Selection Bias

®  Computational procedures for
complete validation (BioDCV)

B  Biomarker Lists: reproducibility, stability, correlation

¥ Modify machine learning algorithm to directly link
selection to target functions (new kernel
methods, or maybe simpler classifiers)

Consider the problem of batch preprocessing for
true reproducibility

Use simulator to tune systems Use ensemble
methods to achieve stability
of selected lists

Applications

" Grid Computing as a viable resource for prediction with
Mass spectrometry (SELDI-TOF, MALDI-TOF)







Intensity

Preprocessing - peak
identification

Yasui 2003
Tibshirani 2004
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Extracting Common
Features

Using peaks across multiple spectra can generate
thousands of features.

n

The number of examples required to learn a “reasonable
hypothesis increases exponentially with the number of
features.

Clustering reduces these features and has a rough
correction for spectrometer resolution or drift of m/z
between spectra.



Peak Alignment - Clustering

(Tibshirani 2004)

Complete hierarchical clustering on
log(m/z) axis over all spectra

Build a dendrogram

Cut at treshold T
- induces centroids position



Spectra with extracted
centroids
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Error Curve vs. Features

Error (%)
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Top discriminant peaks
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