Machine learning approaches for molecular data analysis

Annalisa Barla

Medicine and Genomic Medicine

Medicine and Genomic Medicine

Genomic Medicine: dealing with high-throughput data

- Typical scenario is n<<d
- Number of samples is **limited** (e.g. rare diseases and expensive technology)
- (mostly) High-throughput data
 - * new technologies (DNA microarrays, CGH, SNP, etc.)
 - * possibility to measure the whole genome
 - * most of the times the data are noisy (getting better any day now..)

Analysis Workflow

Feature Selection Step

snowledge extraction

labels

Statistical Analysis

data matrix

0.5779	0.5035	0.0938	0.4064	0.8184	0.7848	+1
0.3457	0.4131	0.5515	0.0046	0.6842	0.6159	+1
0.8035	0.6612	0.0870	0.1205	0.7088	0.5677	+1
0.8568	0.0304	0.9938	0.6638	0.0162	0.5096	+1
0.4309	0.9815	0.4585	0.5874	0.2894	0.7539	+1
0.0616	0.0028	0.7594	0.9018	0.0610	0.8240	+1
0.0356	0.5365	0.7559	0.1312	0.6758	0.8992	-1
0.5348	0.8569	0.4018	0.7751	0.8999	0.9637	-1
0.8493	0.6705	0.3569	0.4694	0.3314	0.3283	-1
0.0924	0.5027	0.6009	0.9251	0.1063	0.8210	-1

Statistical Analysis

knowledge extraction

Learning from examples paradigm

the GOAL is not to memorize but to GENERALIZE, e.g. predict

given a set of **examples**:

$$\{(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)\}$$

find a function:

f(x)~y

such that **f** is a **good predictor on new data** as well as on the given dataset

and possibly identify the most discriminating variables (gene signature)

Feature Selection

- Search problem in a space of feature subsets
- •Alleviating the effect of the curse of dimensionality.
- Enhancing generalization capability.
- Speeding up learning process.
- Improving model interpretability.

Feature Selection Methods

Editor: Leslie Pack Kaelbling

Vol. 23 no. 19 2007, pages 2507–2517 doi:10.1093/bioinformatics/btm344

Gene expression

A review of feature selection techniques in bioinformatics

Yvan Saeys^{1,*}, Iñaki Inza² and Pedro Larrañaga²

BIOINFORMATICS REVIEW

Filter Approaches

- Filter methods do not incorporate learning: they are based on an evaluation function that relies solely on **properties of the data**, thus is independent on any particular algorithm
- Filter methods are fast
- Usually based on classical statistical techniques and often univariate

Filter Approaches

- Criterion: Measure feature/feature subset relevance
- Search: Usually sort features (individual feature ranking or nested subsets of features)
- Assessment: By means of statistical tests
- **PRO:** Are (relatively) robust against overfitting
- **CON:** May fail to select the most meaningful features

- Most of the known diseases are of system nature
- Univariate methods may neglect the interplay among biologically related variables
- The final aim is the understanding of the molecular pathways (from the transcription to the signaling inside the cells).

Wrapper Approaches

- Wrapper methods use a learning machine to measure the quality of subsets of features
- They do not incorporate knowledge about the specific structure of the classification or regression function, and can therefore be combined with any learning machine:
 - 1.a classifier is trained

2.it obtains an estimation of the accuracy in predicting a class label that is known 3.if the accuracy is **good** then the subset of features is retained

Wrapper Approaches

- Criterion: Measure feature subset prediction ability (usefulness)
- Search: Search the space of all feature subsets
- Assessment: Use cross-validation
- **PRO:** Can in principle find the most meaningful features
- CON: Are prone to overfitting

Embedded Approaches

 The learning part and the feature selection part can not be separated

Embedded Approaches

- Criterion: Measure feature subset "usefulness"
- Search: Search guided by the learning process
- Assessment: Use cross-validation
- PRO: Less prone to overfitting than wrappers
- CON: Need many training data

Result Assessment: Validation

Result Assessment: K-fold Cross Validation

data set					
split l	split2	split3	split4	split5	
train	ing			test	
trair	ning		test		
trair	ning	test			

Result Assessment: Leave One Out Cross Validation

Zou, H, Hastie, T. **Regularization and variable selection via the elastic net.** Journal of the Royal Statistical Society, 2005.

I1I2 variable selection method

De Mol, C. Devito, E., Rosasco, L. *Elastic-net regularization in learning theory* Journal of Complexity, 2009

Empirical Risk minimization combined with a mixed penalty:

- 11 norm (sum of absolute values of β) enforcing **sparsity**
- I2 norm (sum of squared values of β) preserving **correlation**

Consistency guaranteed (the more samples available the better the estimator)

Not univariate: takes into account behavior of many genes at once.

Zou, H, Hastie, T. **Regularization and variable selection via the elastic net.** Journal of the Royal Statistical Society, 2005.

I1I2 variable selection method

De Mol, C. Devito, E., Rosasco, L. *Elastic-net regularization in learning theory* Journal of Complexity, 2009

Empirical Risk minimization combined with a mixed penalty:

- 11 norm (sum of absolute values of β) enforcing **sparsity**
- I2 norm (sum of squared values of β) preserving correlation

$$\phi_{\tau,\mu} = ||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||^2 + \tau ||\boldsymbol{\beta}||_1 + \mu ||\boldsymbol{\beta}||_2^2$$

Consistency guaranteed (the more samples available the better the estimator)

Not univariate: takes into account behavior of many genes at once.

The Selection Bias Problem

Monday, January 9, 2012

Pathway Enrichment Step

Pathway Enrichment (functional characterization of the signature)

Pathway Enrichment (functional characterization of the signature)

- The biological interpretation of selected genes (ranging in size from hundreds to thousands of genes) is still a challenging task
- Lots of biological knowledge was accumulated in public databases in the last decade (Gene Ontology, KEGG, UniProt, ...)
- Bioinformatics enrichment tools have played a very important and successful role contributing to the gene functional analysis of large gene lists

WebGestalt

- WebGestalt is a "WEB-based GEne SeT AnaLysis Toolkit". The tool is available at: <u>http://bioinfo.vanderbilt.edu/webgestalt/</u>
- The analysis consists in performing a Gene Set Enrichment Analysis on Gene Ontology and/or KEGG, provided the gene signature obtained in the Feature Selection step.
- The result is a set of relevant GO nodes/KEGG pathways

1. Zhang, B., Kirov, S.A., Snoddy, J.R. WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res, 33(Web Server issue), W741-748. 2005 2. Duncan, D.T., Prodduturi, N., Zhang, B. WebGestalt2: an updated and expanded version of the Web-based Gene Set Analysis Toolkit. BMC Bioinformatics, 11(Suppl 4):P10. 2010

WebGestalt

 GSEA is a computational method that determines whether an a priori defined set of genes shows statistically significant, concordant differences between two biological states

http://www.broadinstitute.org/gsea/

Alzheimer's as a case study

M Squillario and A Barla, BMC Med Gen 2011

Alzheimer's disease (AD) as a case study

	controls	cases	technology	notes
Proteo	90	85	ELISA	2 separate test sets
GSE1297	9	22	Affymetrix HG- U133 A	various stages
GSE5281	62	68	Affymetrix HG- U133 Plus 2.0	late stage

Results: accuracy, selected genes and pathways

	#genes	CV a	ccurac	су (%)	#KEGG pathways
			test	sets	00
Proteo	21	81	92	79	23
GSE1297	11		83		6
GSE5281	39		95		13

Despite the small (4) number of common genes across datasets, we have a consensus at the functional level

KEGG pathway	KEGG Category	Protein	GSE1297	GSE5281
Cytokine-cytokine receptor interaction		•		0
Neuroactive ligand-receptor migration	Signaling Molecules and Interaction	0	0	0
ECM-receptor interaction			•	0
Antigen processing and presentation			0	0
Hematopoietic cell lineage	Immune System	•	0	0
Leukocyte transendothelial migration		0		0
MAPK signaling pathway	Signal Transduction	•	0	0
Focal adhesion	Cell Communication	0	0	0

Functional Analysis: common characteristics

Some comments on Microarray and what's on next..

Microarrays: a success story

- Better understanding of response to drug
- Discover different phenotypes of a disease
- Classify the patients based on more or less aggressive phenotypes

Nature Reviews Neuroscience (Oct 2004)

"DNA-microarray-based technologies have already begun to uncover previously unrecognized patient subsets that differ in their survival."

DNA-MICROARRAY ANALYSIS OF BRAIN CANCER: MOLECULAR CLASSIFICATION FOR THERAPY

Paul S. Mischel*, Timothy F. Cloughesy[‡] and Stanley F. Nelson[§]

Abstract | Primary brain tumours are among the most lethal of all cancers, largely as a result of their lack of responsiveness to current therapy. Numerous new therapies hold great promise for the treatment of patients with brain cancer, but the main challenge is to determine which treatment is most likely to benefit an individual patient. DNA-microarray-based technologies, which allow simultaneous analysis of expression of thousands of genes, have already begun to uncover previously unrecognized patient subsets that differ in their survival. Here, we review the progress made so far in using DNA microarrays to optimize brain cancer therapy.

Microarray workflow

Experimental design

Frame a biological question Choose a microarray platform Decide on biological and technical replicates Design the series of hybridization

Technical performance

Obtain the samples

Isolate total RNA

Label cDNA or mRNA

Perform the hybridizations

Scan the slides or chips

Statistical analysis

Extract fluorescence intensities

Normalize data to remove biases

t-tests for pairwise comparisons

ANOVA for multifactorial designs

This step determines: the structure of microarray data, the possible types of analyses, the quality of the results

} low-level analysis (data cleaning)

} high-level analysis

Data mining

Cluster analysis and pattern recognition

Study lists of genome ontologies

Search for regulatory motifs

Design validation and follow-up experiments

Microarrays: a success story?? Issues...

	BIOINFORMATICS OR	IGINAL PAPER	Vol. 22 no. 7 2006, pages 789–794 doi:10.1093/bioinformatics/btk046
	Gene expression		
	Comparison of Affymetrix Ger Rafael A. Irizarry ^{1,*} , Zhijin Wu ² and Har	eneChip expression ris A. Jaffee ¹	measures
genetics		time sity	ore, MD 21205, USA and /, 167 Angell Street,
Repeatab	ility of published microarray	gene expression	
Repeatab analyses	oility of published microarray	gene expression	
Repeatab analyses ohn P A Ioannidis fario Falchi ^{8,9} , Cer	- ³ , David B Allison ⁴ , are Furlanello ¹⁰ , Lau	gene expression	PLOS COMPUTATIONAL BIOL
Repeatab analyses ohn P A Ioannidis fario Falchi ^{8,9} , Ces fichael Nitzberg ⁵ ,	oility of published microarray ¹⁻³ , David B Allison ⁴ , are Furlanello ¹⁰ , Lau Grier P Page ^{4,12} , Enri Most Random Ge	gene expression ene Expression Sig	PLOS COMPUTATIONAL BIOL
Repeatab analyses ohn P A Ioannidis fario Falchi ^{8,9} , Ces fichael Nitzberg ⁵ ,	Access Freely available online Most Random Ge Significantly Assoc	gene expression ene Expression Sig ociated with Breas	PLOS COMPUTATIONAL BIOL gnatures Are st Cancer Outcome

Reproducibility of results depend on:

- sample collection (n of sample, characteristics of the biological samples)
- production of the data due to the person that actually does the experiment
- data preprocessing (normalization)
- method used to get the results (univariate/multivariate)
- methodological protocol used to analyze the data (selection bias)

Lesson learned

Google groups

« Groups Home

Home

Discussions 7 of 199 messages view all »

Duke Saga - Patient Lawsuits, the Economist, Retraction By Keith Baggerly - Sep 14 - 1 author - 0 replies IOM Meeting -- Duke's Institutional Response By Keith Baggerly - Aug 24 - 1 author - 0 replies www.reproducibleresearch.net By Thompson,Paul - Jul 27 - 3 authors - 4 replies Files from IOM Meeting Jun 30 By Mauro Delorenzi - Jul 11 - 3 authors - 2 replies Duke Saga on front page of NY Times; NCI Workshop; IOM Meeting #3 By Keith Baggerly - Jul 7 - 1 author - 0 replies Notes from the Council of Science Editors (CSE 2011) By Victoria Stodden - May 8 - 3 authors - 3 replies ENAR session update -- sound files! By Keith Baggerly - May 7 - 1 author - 0 replies

Report this group XML

Send email to this group: reproducible-research@googlegroups.com

Foreseeing the future: NextGen Sequencing

- NGS experiment allows for (possibly) whole DNA/RNA sequencing and is not limited as in the microarray
- Efficacy of the NGS experiment does not depend on the hybridization phase as in the microarray experiment
- More experiments can be performed at once (i.e. combine DNA, SNP, Chip on Chip microarrays)
- Cost of NGS machines is decreasing therefore in the near future they will become much affordable

