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Motivations

There are many processes for which an explicit modeling is unfeasible

We can learn a predictive model from a training set of input-output
examples.

Many processes require the estimation of several related outputs
simultaneously

We show a unified framework to solve them efficiently.

Multi-output learning problems

Multi-class classification: classify a datum into one of several
categories. Face Recognition

Multi-task learning: many related scalar regression tasks, each
provided with its own training set. Consumer preferences

Vector-valued learning: a regression task where we have multiple
outputs but only one training set. Velocity field
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Main ingredients for Multi-Output Learning

Key Requirements

1 Generalization: ability to predict outside the training set.

2 Methods that deal with few and noisy data.

3 Model-free methods that

4 allow for the incorporation of prior information.

5 Consistency: guarantee that increasing the number of examples
leads to optimal estimators.

Key Ingredients

1 Proper Hypothesis Spaces where to search for estimators

2 Robust and efficient estimation methods
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Supervised learning

Training set

z = {(x1, y1), ..., (xn, yn)} ⊂ X × Y

X = Rp input space
Y = Rd output space

Estimator

The goal is to learn a function that generalizes well to unseen examples

f n
z : Rp → Rd

Unknown Probability Distribution

We suppose that the given examples and the future data are identically,
independently sampled from an unknown probability distribution

p(x , y) = p(y |x)p(x) on X × Y
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Estimator

The goal is to learn a function that generalizes well to unseen examples

f n
z : Rp → Rd

Scalar case

The theory of supervised learning in the scalar case (i.e. Y = R) has been
extensively treated ([Vapnik and Chervonenkis, 1974, Girosi et al., 1995,
Evgeniou et al., 2000, Cucker and Smale, 2001]), but still presents some
interesting challenges.
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Estimator

The goal is to learn a function that generalizes well to unseen examples

f n
z : Rp → Rd

Multi-output case

A comprehensive theory for multi-output learning is still at its infancy
([Micchelli and Pontil, 2005, Carmeli et al., 2006,
Caponnetto et al., 2008]), despite some extensions of scalar methods have
been proposed.
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Some definitions

Hypothesis space - where we look for candidate estimators

H ⊆ {f : Rp → Rd}

Expected risk - evaluates the performance of a candidate estimator

I[f ] =

∫
X×Y

||y − f (x)||2dp(x , y)dxdy

Regression function and best estimator in H

fρ(x) =

∫
Y

yp(y |x)dy , I[fρ] = min
f

I[f ], fH = argmin
f ∈H

I[f ]

Empirical Risk - all we have access to

IS[f ] =
1

n

n∑
i=1

||yi − f (xi )||2d

Luca Baldassarre (SlipGuru) Multi-Output Learning March 26, 2010 8 / 38



Some definitions

Hypothesis space - where we look for candidate estimators

H ⊆ {f : Rp → Rd}

Expected risk - evaluates the performance of a candidate estimator

I[f ] =

∫
X×Y

||y − f (x)||2dp(x , y)dxdy

Regression function and best estimator in H

fρ(x) =

∫
Y

yp(y |x)dy , I[fρ] = min
f

I[f ], fH = argmin
f ∈H

I[f ]

Empirical Risk - all we have access to

IS[f ] =
1

n

n∑
i=1

||yi − f (xi )||2d

Luca Baldassarre (SlipGuru) Multi-Output Learning March 26, 2010 8 / 38



Some definitions

Hypothesis space - where we look for candidate estimators

H ⊆ {f : Rp → Rd}

Expected risk - evaluates the performance of a candidate estimator

I[f ] =

∫
X×Y

||y − f (x)||2dp(x , y)dxdy

Regression function and best estimator in H

fρ(x) =

∫
Y

yp(y |x)dy , I[fρ] = min
f

I[f ], fH = argmin
f ∈H

I[f ]

Empirical Risk - all we have access to

IS[f ] =
1

n

n∑
i=1

||yi − f (xi )||2d

Luca Baldassarre (SlipGuru) Multi-Output Learning March 26, 2010 8 / 38



Some definitions

Hypothesis space - where we look for candidate estimators

H ⊆ {f : Rp → Rd}

Expected risk - evaluates the performance of a candidate estimator

I[f ] =

∫
X×Y

||y − f (x)||2dp(x , y)dxdy

Regression function and best estimator in H

fρ(x) =

∫
Y

yp(y |x)dy , I[fρ] = min
f

I[f ], fH = argmin
f ∈H

I[f ]

Empirical Risk - all we have access to

IS[f ] =
1

n

n∑
i=1

||yi − f (xi )||2d

Luca Baldassarre (SlipGuru) Multi-Output Learning March 26, 2010 8 / 38



Kernels and RKHS

Kernel for vector valued functions

A kernel is a symmetric matrix valued function

Γ : Rp × Rp → Rd×d

that satisfies a positivity constraint.

Given some points {x1, . . . , xn}, we can write a function f : Rp → Rd as

f (x) =
n∑

i=1

Γ(x , xi )ci , ci ∈ Rd .

A kernel uniquely defines a Hilbert space of functions f : Rp → Rd called
Reproducing Kernel Hilbert Space.
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Empirical Risk Minimization

Empirical risk

IS[f ] =
1

n

n∑
i=1

||yi − f (xi )||2d

Minimizer in RKHS with kernel Γ

f n
z (x) =

n∑
i=1

Γ(x , xi )ci

where the coefficients ci ∈ Rd satisfy

ΓC = Y

Γ is a n × n block matrix, whose d × d (i , j) block is Γ(xi , xj)

C = (c1, . . . , cn)

Y = (y1, . . . , yn)
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Empirical Risk Minimization and Overfitting

Overfitting

If H is too large, by minimizing the Empirical Risk, we will fit the noise in
the data and will generalize poorly on new data.
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Control Overfitting

Regularization

A technique borrowed from the Inverse Problems Theory literature
[Tikhonov and Arsenin, 1977, Engl et al., 1996, De Vito et al., 2005].

1

n

n∑
i=1

||yi − f (xi )||2d + λ||f ||2H

The norm usually controls the smoothness of the estimator.
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Tikhonov regularization or Regularized Least Squares

Tikhonov functional - avoids overfitting - stable solution

1

n

n∑
i=1

||yi − f (xi )||2d + λ||f ||2Γ

Minimizer in RKHS with kernel Γ [Micchelli and Pontil, 2005]

f n
z (x) =

n∑
i=1

Γ(x , xi )ci , ci ∈ Rd

C = (Γ + nλI)−1Y.

The penalty term helps stabilizing the inverse of Γ.
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Spectral Filters

Idea

Instead of (Γ + λnI)−1, use other regularized matrices gλ(Γ), defined by
the spectral filters gλ, such that

lim
λ→0

gλ(Γ) = Γ−1

C = gλ(Γ)Y

Advantages

1 Strong statistical properties derived from Inverse Problems

2 Computational efficiency of iterative algorithms

3 Regularization achieved by early stopping [Yao et al., 2007]

4 Not necessary to run the whole algorithm for every regularization
parameter value
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Iterative spectral filters

Landweber or L2 Boosting [Bühlmann and Yu, 2002, Yao et al., 2007]

Essentially it is gradient descent of the empirical risk with early stopping

C0 = 0

Ct = Ct−1 + η(Y − ΓCt−1)

ν-method or Accelerated L2 Boosting [Lo Gerfo et al., 2008]

Accelerated version of the previous algorithm.

C0 = 0

Ct = Ct−1 + ut(Ct−1 − Ct−2) +
ωt

n
(Y − ΓCt−1)
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Error Analysis

Expected risk - evaluates the performance of a candidate estimator

I[f ] =

∫
X×Y

||y − f (x)||2dp(x , y)dxdy

Regression function - fρ

I[fρ] = min
f

I[f ]

Excess Risk - how well we are doing compared to the best

I[f n
z ]− I[fρ]
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Consistency of spectral filters [Baldassarre et al., 2010b]

Theorem - Finite sample bound on the Excess Risk

Let fλn
z be the estimator obtained with a spectral filter gλn ,

where λ(n) = λn. Fix a confidence 0 < η < 1.
Given reasonable assumptions on fρ, Y and the kernel Γ, we have

I(f λn
z )− I(fρ) ≤ C log 4/η√

n

with probability 1− η.
C is a constant that depends on the assumptions and other constants
characterizing the spectral filters.

Theorem - Consistency

lim
n→∞

P
[
I(f λn

z )− I(fρ) > ε
]

= 0

for any ε > 0
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Results for a special class of kernels

Decomposable kernels [Caponnetto et al., 2008]

Γ(x , x ′) = K (x , x ′)A

K : Rp × Rp → R is a scalar kernel that encodes the similarity
between the input points.

A is a positive semi-definite d × d matrix that encodes the
relationships between the outputs

Decomposition scheme [Baldassarre et al., 2010b]

The vector valued learning problem can be decomposed into d essentially
independent scalar problems, where the output data is projected onto the
eigenvectors of the matrix A, with a reduction in computational
complexity (i.e. speed).
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Helmholtz Theorem and kernels

Helmoltz Theorem

A vector field that is

1 twice continuous differentiable and

2 vanishes faster than 1/r at infinity

can be decomposed into a divergence-free and a curl-free part.

Divergence-free and curl-free kernels

[Macêdo and Castro, 2008] introduced two kernels, Γdf and Γcf , that yield
vector fields that are either divergence-free or curl-free.

With a kernel Γ = γΓdf + (1− γ)Γcf it is possible to learn a vector field
that satisfies the hypothesis of Helmholtz Theorem and reconstruct the
two parts separately.
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Vector Field [Baldassarre et al., 2010b]
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1 Compute the gradient and the field perpendicular to it
2 Consider a convex combination of these two vector fields, controlled

by a parameter γ
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Vector Field

Gamma = 0 Gamma = 0.3

Gamma = 0.6 Gamma = 1
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Experimental Protocol

Field computed on a 70× 70 grid on the [−2 2]2 square

Sampling of 10, 20, . . . , 100, 150, 200, 400, 600 points for training

Remaining points used for evaluating performance

Model parameters found via 5-fold Cross Validation

Luca Baldassarre (SlipGuru) Multi-Output Learning March 26, 2010 23 / 38



Experimental Protocol

Field computed on a 70× 70 grid on the [−2 2]2 square

Sampling of 10, 20, . . . , 100, 150, 200, 400, 600 points for training

Remaining points used for evaluating performance

Model parameters found via 5-fold Cross Validation

Luca Baldassarre (SlipGuru) Multi-Output Learning March 26, 2010 23 / 38



Evaluation

We use the ν-method for learning (it is the fastest!)

We use the divergence-free and curl-free kernels

Model parameters:

Number of iterations
Weight balancing the two kernels

We first consider the case without output noise

Secondly we treat the case with independent gaussian noise of
standard deviation 0.3
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Vector field - γ = 0.5
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Vector field - γ = 0.5

Reconstruction with my method Reconstruction with interpolation
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Vector field - Results I [Baldassarre et al., 2010b]
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Vector field - Results II [Baldassarre et al., 2010b]
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MID - The medical problem

The treatment of Thalassemia and
Hemochromatosis requires the
evaluation of the iron overload in
the patient liver.

The biosusceptometer MID can
evaluate the iron overload in a
non-invasive manner
[Marinelli et al., 2006,
Marinelli et al., 2007].

The transductor measures the
magnetic field variation when the
patient is positioned between the
magnet and the pickup.

The magnetic field variation depends
on the geometry of the patient, on
the magnetic properties of the
tissues and on the patient position
(X axis).
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MID - The signal

STEP 1: Measurement of the patient’s
magnetic signal;

STEP 2 : Estimation of the patient’s
magnetic track without iron overload
(background signal).

STEP 3: The amount of iron overload is
obtained using the difference between the
two signals

Luca Baldassarre (SlipGuru) Multi-Output Learning March 26, 2010 30 / 38



MID - The signal

STEP 1: Measurement of the patient’s
magnetic signal;

STEP 2 : Estimation of the patient’s
magnetic track without iron overload
(background signal).

STEP 3: The amount of iron overload is
obtained using the difference between the
two signals

Luca Baldassarre (SlipGuru) Multi-Output Learning March 26, 2010 30 / 38



MID - The signal

STEP 1: Measurement of the patient’s
magnetic signal;

STEP 2 : Estimation of the patient’s
magnetic track without iron overload
(background signal).

STEP 3: The amount of iron overload is
obtained using the difference between the
two signals

Luca Baldassarre (SlipGuru) Multi-Output Learning March 26, 2010 30 / 38



MID - The model I

The idea

The background signal of a patient is similar to the magnetic signal of
a healthy person with similar anthropometric features (height, weight,
body shape, BMI etc).

The data

In order to estimate the background signal, we used the magnetic signals
recorded from a pool of 84 volunteers.
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MID - The model II [Baldassarre et al., 2008]

Vector valued model

The input examples contain the anthropometric features.

The output examples contain the measures of the magnetic signal.

Each measure is considered as a component of a vector.

The measures lie on a parabola with a small approximation error.

We design a matrix-valued kernel that imposes a parabolic correlation
among the components

Γ(x , x ′)pq = (x · x ′)(1 + tptq + t2
pt2

q)

with t indicating the measurement position.

It is of the form Γ = KA, with K a simple linear kernel.
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MID - The Experimental Protocol

No test set available to compare the algorithms.

A first Leave-One-Out Cross Validation to evaluate performance.

On the remaining N-1 examples perform another LOOCV to select
optimal algorithm parameters.

Compare vector valued Tikhonov (RLS), Landweber, ν-method and
scalar Tikhonov on each measure separately.
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Algorithm Average Time [s]
Tikhonov 4.4

Landweber 1.2
ν-method 0.31

Independent Tikhonov 0.17

Table: Average computation times for each loop of the first LOOCV.
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MID - Results (84 volunteers) [Baldassarre et al., 2008]
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MID - Considerations

Considerations

Our model is now used at the Hospital since it has proven more robust
in estimating the signal for patients that are poorly represented by the
volunteer populations (i.e. small kids, very fat or very slim people).

Our model seems to generalize better...

and is faster!

The kernel adopted might not reflect the real dependencies among
the measures.

The anthropometric features measure do not correlate enough with
the magnetic signal.
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Conclusions

Main contributions

Connection between the norm in a vector valued RKHS to
regularization terms on the components.

Finite sample bound on the excess risk.

Faster learning scheme when Γ = KA.

Complexity analysis.

Multi-class and Multi-task extensions.

Real world applications:
1 MID [Baldassarre et al., 2008]
2 HAND [Noceti et al., 2009, Baldassarre et al., 2010a]

Open problems

No kernel good for all seasons, especially for multi-class.

Estimation of the kernel from the data.

Incorporation of prior information not in the kernel.
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