
Safe Corecursion in coFJ

Davide Ancona
davide.ancona@unige.it

Elena Zucca
elena.zucca@unige.it

DIBRIS - Università di Genova
Via Dodecaneso, 35
16146 Genova, Italy

ABSTRACT
In previous work we have presented COFJ, an extension to Feather-
weight Java that promotes coinductive programming, a sub-paradigm
expressly devised to ease high-level programming and reasoning
with cyclic data structures.

The COFJ language supports cyclic objects and regularly core-
cursive methods, that is, methods whose invocation terminates not
only when the corresponding call trace is finite (as happens with or-
dinary recursion), but also when such a trace is infinite but cyclic,
that is, can be specified by a regular term, or, equivalently, by a
finite set of recursive syntactic equations.

In COFJ it is not easy to ensure that the invocation of a core-
cursive method will return a well-defined value, since the recursive
equations corresponding to the regular trace of the recursive calls
may not admit a (unique) solution; in such cases we say that the
value returned by the method call is undetermined.

In this paper we propose two new contributions. First, we de-
sign a simpler construct for defining corecursive methods and, cor-
respondingly, provide a more intuitive operational semantics. For
this COFJ variant, we are able to define a type system that allows
the user to specify that certain corecursive methods cannot return
an undetermined value; in this way, it is possible to prevent unsafe
use of such a value.

The operational semantics and the type system of COFJ are fully
formalized, and the soundness of the type system is proved.

1. INTRODUCTION
In previous work we have presented COFJ [7], an extension to

Featherweight Java that promotes coinductive programming, a sub-
paradigm expressly devised to ease high-level programming and
reasoning with cyclic data structures.

In COFJ objects are purely functional like in FJ, but differently
from FJ, it is possible to define cyclic objects and methods are reg-
ularly corecursive: a method invocation terminates not only when
the corresponding call trace is finite (as happens with ordinary re-
cursion), but also when such a trace is infinite but cyclic, that is,
can be specified by a regular term, or, equivalently, by a finite set
of recursive syntactic equations; similarly, the returned value of a
method invocation may correspond to a solution of a finite set of
recursive syntactic equations, therefore it may be a cyclic object.

Let us consider, as a first simple example, the following COFJ
classes.

class RepDecFact extends Object {
RepDec zero() { // returns the repeating decimal 0

new RepDec(0,zero()) with res
}

}
class RepDec extends Object {

int digit;

RepDec next;
RepDec comp() { // returns 1 - this

new RepDec(9-this.digit,this.next.comp())
with res

}
bool isZero() { // check if this is zero

(digit==0 && this.next.isZero()) with true
}

}

Class RepDec implements the closed interval [0, 1] of rational
numbers with cyclic sequences of digits (that is, repeating deci-
mals); for instance, 7

45
= 1

10
+ 1

18
is represented by the cyclic

sequence 15555
In COFJ each class is equipped with a unique implicitly declared

constructor which takes as arguments initialization values for all
inherited and declared fields, in the order they are inherited and de-
clared; for intance, the constructor for RepDec has two parameters
of type int and RepDec, respectively.

While in FJ it would not be possible to create an instance of
RepDec, since field next has type RepDec, method zero() in fac-
tory class RepDecFact returns the cyclic sequence of 0, thanks
to regular corecursion. Indeed, if o=new RepDecFact(), then
the evaluation of the expression o.zero() yields the cyclic trace
of invocations o.zero()o.zero(). . ., hence it terminates; fur-
thermore, the sub-expression with res specifies that the value
returned by the method is the solution of the recursive equation
res=new RepDec(0,res) generated by the cyclic trace. More pre-
cisely, as specified by the operational semantics presented in Sec-
tion 3, res is a special variable (like this) which denotes a well-
defined value only in case the generated recursive equations admit a
unique solution; otherwise, res denotes an undetermined value on
which field selection and method invocation are undefined (hence,
the evaluation gets stuck).

The body of a corecursive method consists of a with expression
where its rhs is evaluated only when a cycle in the call trace is
detected (that is, the method terminates corecursively).

Similarly, the expression e.comp() returns the cyclic sequence
of digits corresponding to the complement of e, that is, 1 − r, if
e denotes the rational r. For instance, let e denotes the sequence
15555 . . .; then the result of e.comp() is the solution (projected to
nxt) of the following equations:

nxt = new RepDec(8,res)
res = new RepDec(4,res)

If we consider method isZero, we notice that the rhs of with is
the literal true, rather then the variable res, because in this case
the system of equations associated with a cyclic call trace may have
more solutions. Indeed, if e=new RepDecFact().zero(), then
e.isZero() yields the cyclic trace e.isZero() e.isZero() . . .,
and the corresponding returned value is the solution of the recur-

sive equation res = (0==0) && res for which res = false and
res = true are both valid solutions, hence the value associated
with res is undetermined. In general, the existence of a unique
solution, and the ability of computing it, is guaranteed only when
the recursive equations are guarded by object constructors. When
equations are not guarded, the programmer has to specify a value
different from res in the rhs of with; for instance, for method
isZero the wanted behavior is obtained by returning the literal
true.

In this paper we propose two new contributions. First, we de-
sign a simpler construct for defining corecursive methods and, cor-
respondingly, provide a more intuitive operational semantics. For
this COFJ variant, we are able to define a type system that allows
the user to specify that certain corecursive methods cannot return
an undetermined value; in this way, it is possible to prevent unsafe
use of such a value.

In Section 2 we informally illustrate COFJ and the operational
semantics of controlled regular corecursion. In Section 3 we give
the formal definition of COFJ, in Section 4 the type system and the
related soundness result. Finally, in Section 5 we outline related
and further work.

The Appendix includes the formal definition of FJ, for reference,
and additional, more complex, examples.

In [8], we have provided a derived semantics of COFJ by trans-
lation into coinductive logic programming. A prototype imple-
menting this translation can be found at http://www.disi.
unige.it/person/AnconaD/Software/CoFJ.

2. EXAMPLES
This section is a gentle introduction to COFJ; all programs de-

fined here manipulate cyclic lists, examples on more advanced cyclic
structures can be found in Appendix 2. For the sake of clarity in the
examples we use language features not considered in the calculus
defined in Section 3 and 4; adding such features would not pose
any particularly interesting problem.

Let us consider the following class declaration:

class CycList extends Object {int el; CycList nx;}

In FJ, it is not possible to write an expression denoting an instance
of CycList, and, of course, such a problem is shared by all pos-
sible subclasses of CycList. To be more precise, there exist well-
typed expressions of type CycList, but their evaluation never ter-
minates in FJ.

class CycListFact extends Object {
CycList infOcc(int n) {new CycList(n,this.infOcc(n))}

}

The expression new CycListFact().infOcc(0) is well-typed,
but its evaluation does not terminate since method infOcc attempts
to create a list containing infinite occurrences of 0.

In mainstream object-oriented languages, cyclic objects can be
indirectly modeled by relying on imperative features. That is, field
nx is initialized with a default value (typically null), then a finite
list is constructed, and, finally, a cycle is introduced by reassigning
the proper reference to the field.1 However, method infOcc above
still does not terminate rather than returning a cyclic object, and
in general methods handling cyclic objects must explicitly check
cycles to correctly work.

While mainstream object-oriented languages lack any direct sup-
port for manipulating cyclic structures, languages like Haskell [12]
1It is still possible, e.g., in Java, to create instances of CycList
even when both fields are final, but a considerable amount of
boilerplate code could be required.

support potentially infinite data structures by exploiting the expres-
sive power of lazy evaluation [13]. Note that cyclic objects are
a very particular case of infinite objects, corresponding to regular
terms (or trees)2: for instance, the list made of infinite occurrences
of a given number n is regular, whereas the list of all prime numbers
(or, simply, all natural numbers) is not. By lazy evaluation we can
express all infinite lists, both regular and non regular. However, the
aim is rather different: lazy functions can correctly handle, without
looping, all (finite) prefixes of an infinite list (for instance, we can
obtain the sum of the first n natural numbers), but cannot handle
whole cyclic lists. For instance, a lazy function for the previous
example allPos would not give the correct result, but only all its
approximations.

What we propose here is a minimal extension to FJ to support
cyclic objects and methods for their direct manipulation. Such a
novel programming paradigm is inspired by the recent results con-
cerning the operational semantics of coinductive Prolog [17, 19,
18] and the implementation of regular corecursion on top of the
standard interpreter based on the inductive semantics of the lan-
guage [2]. The semantic model we consider differs from the con-
ventional FJ semantics in three main aspects:

• objects can be cyclic, hence values can take an equational
shape; for instance, X=new C (X) is an instance of class C
whose unique field contains the object itself.

• methods are regularly corecursive: if a recursive method call
v.m(v) corresponds to a previous call which is still active on
the stack, then then we say that a coinductive hypothesis is
applied, and such a call terminates immediately.

• moreover, differently from what happens in Prolog, regular
corecursion is controlled, that is, method declarations have
shape C m(C x) {e with e′;}, where e′ is returned in place
of e, when a coinductive hypothesis is applied (see the exam-
ples below). Standard regular corecursion is obtained when
e′ is the special variable res, hence, in the sequel the syntax
{e;} for method bodies is just a shortcut for {e with res;}.

Our proposed approach smoothly integrates standard recursion
and non cyclic (that is, inductively defined) objects, with corecur-
sion and cyclic (that is, coinductively defined) objects. For sim-
plicity, in the examples that follow, and in the semantics defined in
Section 3 we consider only corecursive methods, but in practice,
for both performance and semantic reasons, it is possible to adopt
a hybrid approach where the user can specify if a method has to
exhibit a corecursive behavior or not.

Let us consider again the example of lists:

class List extends Object { }
class EList extends List { }
class NEList extends List {int el; List nx;}
class CycListFact extends Object {

NEList infOcc(int n) {
new NEList(n,this.infOcc(n))}

}

In COFJ one can construct finite lists, as in new NEList(2,new EList()),
but also cyclic ones, as in new CycListFact().infOcc(0); such
a call terminates in COFJ and returns the intended value; since the
recursive call is the same as the initial one, a cyclic object is re-
turned, that is, L = new NEList(0,L).

Similarly, we can add to CycListFact, method infAltOcc()

defined as follows:

2Finitely branching trees whose depth can be infinite, but that can
contain only a finite set of subtrees.

http://www.disi.unige.it/person/AnconaD/Software/CoFJ
http://www.disi.unige.it/person/AnconaD/Software/CoFJ

NEList infAltOcc(int n1,int n2) {
new NEList(n1,this.infAltOcc(n2,n1))}

Then, new CycListFact().infAltOcc(1,-1) returns the fol-
lowing cyclic list

L = new NEList(1,new NEList(-1,L)).

A method body has shape {e with e′;}, where e′ denotes the
value returned when a coinductive hypothesis is applied, whereas
the value denoted by e is returned in all other cases. Inside e′ the
special variable res can be used to denote the standard value that
would be returned by corecursion.

For instance, as anticipated in the Introduction, the following
method correctly works for both non cyclic and cyclic lists:

bool allPos() {
if(this.el <= 0)

false
else

this.nx.allPos()}
with

true
}

The same pattern used for allPos can be adopted for defining
method member, but in this case false is returned when a coin-
ductive hypothesis is applied, as happens (not by coincidence, in
this case) in the base case for non cyclic lists.
class EList extends List {

bool member(int i) { false }
}
class NEList extends List {

int el; List nx;
bool member(int i) {

if(this.el == i)
true

else
this.nx.member(i)

with
false}

}

To show an example where the default value is not a boolean, we
define the method noRep which, invoked on a possibly cyclic (that
is, infinite) list, returns the corresponding non cyclic (finite) list
with no repeated elements.
class EList extends List {

EList noRep() { new EList() }
}
class NEList extends List {

int el; List nx;
List noRep() {

let l = this.nx.noRep() in
if(l.member(this.el))

l
else

new NEList(this.el,l)
with

new EList()
}

}

For brevity we have used the let in construct, with the stan-
dard semantics. Note that, in case noRep is invoked on the cyclic
list L = new NEList(0,L), the invocation this.nx.noRep()
in the body of noRepwould be on exactly the same list, hence, if the
with expression is omitted (hence, res is returned when a coinduc-
tive hypothesis is applied), then the result of this.nx.noRep()
is the undetermined value, hence the evaluation of the expression
l.member(this.el) that follows the corecursive invocation would
fail (that is, the semantics would be undefined, see the formaliza-
tion below).

We end this section with two more examples: the former is method
isCyc, which checks whether a list is cyclic, showing an example

where the value returned in the inductive base case is different from
the value returned when a coinductive hypothesis is applied.

class EList extends List {
bool isCyc() { false }

}
class NEList extends List {

int el; List nx;
bool isCyc() {isCyc(this.nx) with true}

}

As a last example, we define a method for removing all positive
integers occurring in a list. In particular, if a list is cyclic and con-
tains at least one non positive element, then the method is expected
to return a cyclic list. For brevity we only consider the definition of
the method in class NEList, which is the most interesting case:

List wrongRemPos() {
if(this.el > 0)

this.nx.wrongRemPos()
else

new NEList(this.el,this.nx.wrongRemPos())
with

new EList()
}

This naive solution fails to behave correctly in some cases.
For instance, (L = new NEList(1,new NEList(-1,L))).wrongRemPos()

returns the non cyclic list new NEList(-1,new EList()), in-
stead of the cyclic list L = new NEList(-1,L) (representing the
list of infinite occurrences of -1). Indeed, if a list is cyclic, then res
should be returned, except when the list contains only positive ele-
ments; in this last case the empty list has to be returned. Hence, we
can correct the code above by using the previously defined method
allPos.

class EList extends List {
List remPos() { new EList() }

}
class NEList extends List {

int el; List nx;
List remPos() {

if(this.el > 0)
this.nx.remPos()

else
new NEList(this.el,this.nx.remPos())

with
if(this.allPos())

new EList()
else

res
}

}

The check this.allPos() must be necessarily performed after
the coinductive hypothesis has been applied: any earlier attempt is
bound to fail, since the cycle may begin at any arbitrary position
in the list, and the beginning of the cycle is detected only when the
corecursive hypothesis is applied. For instance, if l=new NEList(-1,L=new NEList(1,L)),
then l.allPos() evaluates to false, while l.nx.allPos() eval-
uates to true; therefore, as expected, l.remPos() returns new NEList(-1,new EList()).

3. FORMAL DEFINITION
The syntax of COFJ is given in Figure 1. We follow the FJ no-

tations and conventions: we assume infinite sets of class names
C , including the special class name Object, field names f , method
names m, and variables x , including the special variables this and
res, and we write cd as a shorthand for a possibly empty sequence
cd1 . . . cdn, and analogously for other sequences. The length of a
sequence x is written #x , and the domain and image of a map are
written dom and img , respectively.

p ::= cd e
cd ::= class C extends C ′ { fd md }
fd ::= C f ;
md ::= C m(C x) {e with e′;}
e ::= x | e.f | e.m(e) | new C (e)

u, v ::= new C (v) | X=v | X
r ::= v | w

C[] ::= [] | C[].f | C[].m(e) | e.m(e, C[], e′) |
new C (e, C[], e′)

Figure 1: COFJ syntax

Every class has an implicit constructor as in FJ, and the FJ well-
formedness conditions on a program p are assumed: names of de-
clared classes are distinct and different from Object, hence p can be
seen as a map from class names into class declarations s.t. Object 6∈
dom(p). The inheritance relation (transitive closure of the extends
relation) is acyclic. Method names and field names in a class, and
parameter names in a method, are distinct and different from this
and res, and field names declared in a class are distinct from those
declared in its superclasses (no field hiding). Finally, for every class
name C (except Object) occurring in p, we have C ∈ dom(p).

The syntax deviates from FJ in the following aspects: an infinite
set of labels X is used, cast expressions have been omitted, method
bodies consist of a with expression where the special variable res
can be used in the rhs, and the definition of values is more general.

In our previous proposal [7] corecursion was handled at call
rather than at declaration site, thus making the operational seman-
tics more complex, without any apparent gain in expressive power.
More importantly, this simplification in the design of the language
allowed us to define the type system presented in Section 4.

In FJ values have shape new C (v), that is, are (a concrete repre-
sentation of) inductive terms built by constructor invocations. Here,
values are allowed to be cyclic, that is, they can be annotated with
labels, and a (sub)value can be a (reference to a) label, expected to
annotate an enclosing value. Objects are values which are not la-
bels, that is, of form X1= . . . Xn=new C (v), abbreviated X = new C (v)
with our convention.3

We expect the result of evaluating a top-level expression to be
closed, that is, with all references bound to existing labels. Values
corresponding to cyclic objects as X=new C (X) are not valid ex-
pressions, but can be obtained as results of a method invocation, as
shown in the examples of previous section. This choice allows us to
keep the language minimal; we leave for further work the investi-
gation of more compact linguistic mechanisms for denoting cyclic
objects.

Closed values are a concrete representation of regular terms built
by constructor invocations, except for the undetermined value which
is denoted by all equations having shape X1= . . . Xn=Xi, with i ∈
1..n. In the semantic rules, all closed values representing the same
regular term, as, for instance, the following:

new C(Y=X=new C(new C(X)))
Y=new C(X=new C(Y))
Z=new C(Z)

are considered equal, and an analogous assumption holds for open
values as well. As a consequence, if the results of two closed ex-
pressions e and e′ are the same modulo this equivalence, then e and
3Values annotated with more than one label, like, e.g.,
X=Y=new C(X), can be obtained by reduction, see Figure 4.

e′ can replace each other in any context.
Open values and the undetermined value cannot be safely used

as receivers in field accesses and method invocations, but can be
passed as arguments and obtained as result of field access and method
invocation.

We formalize COFJ in a big-step style for simplicity. In order
to distinguish stuck execution from non termination, we use the
standard technique of introducing a special wrong result w.

The big-step semantics e, σ, π ⇓ r returns the result r, if any, of
evaluating an expression e in the context of a call trace σ, and of a
frame π defining the values of all local variables (that is, all formal
parameters, and the special variables this and res). The relation
should be indexed over programs, however for brevity we leave
implicit such an index in all judgments defined in the paper. A
call trace is an injective map from expressions of the form v.m(v),
called (invocation) redexes, to labels X which represent the corre-
sponding value returned by the method invocation; a frame is a map
from variables to values.

Rules without and with error handling are given in Figure 2 and
Figure 3, respectively. Some standard technical details have been
omitted: the formal definitions of parallel substitution e[v/x] and
the auxiliary functions fields and mbody . We write e, σ ⇓ v as a
shorthand for the set of judgments e1, σ⇓v1 . . . en, σ⇓vn.

Rule (FIELD) models field access. Recall that, with the FJ con-
vention, C f ; stands for C1 f1; . . .Cn fn;. The receiver expres-
sion is evaluated, and its result is expected to be an object. The
standard FJ function fields retrieves the sequence of the fields of
its class, starting from those inherited, and, if the selected field is
actually a field of the class, the corresponding value is returned as
result. Note that this value could contain references to the enclosing
receiver object, which must be unfolded.

For instance, given class C extends Object { C f; } if
v = X=new C(Y=new C(X)), then v.f is reduced to

u = Y=new C(X=new C(Y=new C(X)))

since fields(C) = f and (Y=new C(X))[v/X] = u.
There are two rules for method invocation. In both, the receiver

and argument expressions are evaluated first to obtain the invo-
cation redex v.m(v). Then, the behaviour is different depending
whether a cycle is detected in the call trace σ.

If this is not the case, then the method invocation is handled as
usual (rule (INVK)): the result of the receiver expression is ex-
pected to be an object, and method look-up is performed, starting
from its class, by the standard function mbody , getting the cor-
responding method parameters and body. Then, the result of the
invocation is obtained by evaluating the lhs expression e′ of with
where the receiver object replaces this and the arguments replace
the parameters. Evaluation of e′ is performed in the call trace σ
updated with the redex corresponding to the current invocation, as-
sociated with a fresh label X. Finally, when the evaluation of the
method body is completed, references to the label X in the result-
ing value (due to termination by coinduction of the method, see
(COREC)) are bound. In this way a cyclic object can be obtained as
the result of a method invocation.

Rule (COREC) is applied when the method terminates corecur-
sively, that is, a cycle in σ is detected; the rhs expression e′ of with
in the body of the method is evaluated in the new frame where this
is associated with the receiver object, res is associated with the label
X found in the call trace, and the formal parameters are associated
with the arguments.

For instance, given the classes

class C extends Object { Object f; }
class A extends Object {

(PROG)
e, ∅, ∅⇓v

cd e⇓v
(VAR)

x , σ, π⇓v
π(x) = v (FIELD)

e, σ, π⇓v

e.f , σ, π⇓vi[v/X]

v = X = new C (v)
fields(C) = C f ;
f = fi, i ∈ 1..n

(INVK)
e, σ, π⇓v e, σ, π⇓v e′, σ[v.m(v):X], [this:v, x :v]⇓u

e.m(e), σ, π⇓X=u

v = X = new C (_)
mbody(C ,m) = (x , e′ with _)
v.m(v) 6∈ dom(σ)
X fresh

(COREC)
e, σ, π⇓v e, σ, π⇓v e′, σ, [this:v, res:X, x :v]⇓r

e.m(e), σ, π⇓r

v = X = new C (_)
mbody(C ,m) = (x , _ with e′)
σ(v.m(v)) = X

(NEW)
e, σ, π⇓v

new C (e), σ, π⇓new C (v)
#fields(C) = #e

Figure 2: COFJ big-step rules (without error handling)

(W-FIELD)
e, σ, π⇓v

e.f , σ, π⇓w

¬guarded(v) or
v = X = new C (_) and
fields(C) = C f ; and f 6= fi for all i ∈ 1..n

(W-INVK)
e, σ, π⇓v

e.m(e), σ, π⇓w

¬guarded(v) or
v = X = new C (_) and
(mbody(C ,m) undefined or

mbody(C ,m) = (x , e) and #x 6= #e)

(W-INVK2)
e, σ, π⇓v e, σ, π⇓v e′, σ[v.m(v):X], [this:v, x :v]⇓w

e.m(e), σ, π⇓w

v = X = new C (_)
mbody(C ,m) = (x , e′ with _)
v.m(v) 6∈ dom(σ)
X fresh

(W-NEW)
new C (e), σ, π⇓w

#fields(C) 6= #e (PROP)
e, σ, π⇓w
C[e], σ, π⇓w

C[] 6= []

Figure 3: COFJ big-step rules for error handling

C m1() {this.m2()) with res;}
C m2() {new C(this.m1()) with res;}

}

new A().m1() is reduced to the cyclic object X=Y=new C(X) (equiv-
alent to X=new C(X)) as shown in Figure 4.

If method m1 were C m1() {this.m2()) with new A();}

then the proof

(VAR)
res,σ2,π[res:X]⇓X

would be replaced by the proof

(NEW)
new A(),σ2,π[res:X]⇓new A()

and new A().m1() would be reduced to the non cyclic object
X=Y=new C(new A()) (equivalent to new C(new A())).

Finally, (NEW) is the standard rule for constructor invocation.
The side condition ensures that the constructor is invoked with the
appropriate number of arguments.

Rules (W-FIELD), (W-INVK) and (W-NEW) model the cases in
which field access, method invocation, and constructor invocation,
respectively, cannot be performed. The predicate guarded(v) holds
whenever v is an object, that is, of shape X = new C (v).

Field access fails if the receiver is not an object (first alternative
in the side condition) or it is an instance of a class which does not
provide a field with the required name (second alternative). Anal-
ogously, method invocation fails if the receiver is not an object, or
it is an instance of a class which either does not provide a method
with the required name, or it provides a method with a wrong num-
ber of parameters. Constructor invocation fails if the constructor
has a wrong number of parameters.

Rules (PROP) and (W-INVK2) model propagation of the w re-
sult. The former handles standard contextual propagation, whereas
the latter handles the case when a method invocation fails since
the execution of the corresponding method body fails; while rule
(COREC) in Figure 2 includes also error propagation (by simply us-
ing the meta-variable r), for rule (INVK) the extra rule (W-INVK2)
is needed, since X=w is not a syntactically valid value.

We show the consistency of the calculus by the following two
theorems. The former states that the evaluation of an expression re-
turns, if any, a value whose free labels are defined in the call trace
(hence, in particular, if the call trace is empty, then the returned
value is closed). The latter states that COFJ semantics conserva-
tively extends the FJ semantics, that is, if we get a result by FJ
semantics, then we get the same result by the COFJ semantics. Of
course the converse does not hold, since corecursive semantics can
return a value in cases where recursive semantics does not termi-
nate.

Let us denote by FL(v) the set of free labels in value v, defined
in the obvious way.

THEOREM 3.1. If e, σ, π⇓v, then FL(v) ⊆ img(σ).

PROOF. By induction on the rules defining e, σ, π⇓v, which are
those in Figure 2.

• (FIELD) By inductive hypothesis FL(v) ⊆ img(σ), hence
FL(vi[v/X]) ⊆ img(σ).

• (INVK) By inductive hypothesis FL(u) ⊆ img(σ) ∪ {X},
hence FL(X=u) ⊆ img(σ) .

• (COREC) Trivially by the side condition.

• (NEW): trivially by inductive hypothesis.

T ::= C g

g ::= + | −
fd ::= T f ;
md ::= U1 with U2 m(T x) {e with e′;}
U ::= T | T?
Γ ::= x :U

Figure 5: COFJ types and type environments

The standard syntax and recursive semantics e ⇓FJ r of FJ in big-
step style are reported in the Appendix.

THEOREM 3.2. For e expression and r result in FJ, if e ⇓FJ r,
then e, σ, ∅⇓r for all σ.

PROOF. By induction on the rules defining e⇓FJ r.

• (FJ-FIELD) The premise of rule (FIELD) holds by inductive
hypothesis, hence the consequence as well, where, since X is
the empty sequence, vi[v/X] = vi.

• (FJ-INVK) By inductive hypothesis the premises of rule (INVK)
hold, hence the consequence as well, where, since u is an FJ
value, hence does not contain labels, X=u is equivalent to u.

• Every remaining rule is exactly analogous, or can be obtained
as special instance, of the corresponding COFJ rule, hence
the thesis trivially holds.

4. TYPE SYSTEM
We present a compositional type system which is an extension

of the standard nominal type system of FJ, able to statically dis-
tinguish expressions whose values are guaranteed to be closed and
different from the undetermined value, from those that may evalu-
ate to the undetermined value or to an open value.

Types and type environments for COFJ are defined in Figure 5.
In COFJ a closed type T is a standard FJ nominal type C tagged

by either ‘+’, or ‘−’: C + specifies all closed values of typeC (and
its subclasses) other than the undetermined value, whereas C− is a
proper supertype of C + that includes also the undetermined value
(but not the open values).

An open type T? is associated with those expressions whose
values are possibly open, but will eventually evolve to closed values
of type T ; such values originate from the evaluation of the special
variable res in the rhs of with. The type associated with res is
always of shapeC−?; this is a conservative assumption, since if the
open value associated with res is not guarded by a constructor in the
lhs e of with, then the closed value that will be eventually returned
after evaluating e will be undetermined, hence the correct type of
the returned value is C−; however, if the open value associated
with res is always guarded by a constructor, then the type of the
closed value that will be finally returned is allowed to be C+.

The meta-variable U denotes either a closed or an open type.
The syntax of the typed language is specified in Figure 5): field

and method declarations are annotated with types. In particular, for
ensuring the soundness of the system, fields and formal parameters
can only be annotated with closed types. The type of a value re-
turned by a method is specified by the pair U1 with U2, where U1

and U2 are derived from the lhs and rhs part, respectively, of the
with expression. The subtyping relation U1 ≤ U2 must be always
satisfied to guarantee soundness; the two return types are used in

(INVK)

(NEW)
new A(),∅,∅⇓new A()

(INVK)

(VAR)
this,σ1,π⇓new A()

(NEW)

(COREC)

(VAR)
this,σ2,π⇓new A()

(VAR)
res,σ2,π[res:X]⇓X

this.m1(),σ2,π⇓X

new C(this.m1()),σ2,π⇓new C(X)

this.m2(),σ1,π⇓Y=new C(X)

new A().m1(),∅,∅⇓X=Y=new C(X)

Figure 4: Example of reduction, where σ1 = [new A().m1():X], σ2 = σ1[new A().m2():Y], π = [this:new A()]

(SUB-TAGGED)
C1 ≤ C2 g1 ≤ g2

C g1
1 ≤ C g2

2

(SUB-TAG)
g1 = + ∨ g2 = −

g1 ≤ g2

(EMB-FROZEN)
T ≤ T?

(SUB-FROZEN)
T1 ≤ T2

T1? ≤ T2?

Figure 6: COFJ subtyping rules

different contexts: U1 is only used for top-level method invoca-
tions contained in the main expression e of the program; in this
case the returned value is always closed, because all invocations
necessarily originate from e. In all other cases the less specific
type U2 is used, corresponding to the conservative assumption that
the returned value may be open. This approach can be overly con-
servative in some cases; however, a more accurate static analysis
could be employed to partition methods into strata of mutually re-
cursive methods. This would allow a more permissive typing rule
for method invocation in case the invoked method belongs to a dif-
ferent stratum.

Finally, a type environment Γ is a finite map from variables (in-
cluding the special variables this and res) to types U .

The straightforward subtyping rules are defined in Figure 6; we
have omitted the standard definition of nominal subtyping between
class names. The following chain of subtyping relation holds for
any class C : C + ≤ C +? ≤ C−? ≤ C−. All pairs are intuitive
except for the last C−? ≤ C− that can be explained by the fact that
the closed value which an open value will eventually evolve to, may
be undetermined or not, depending on the context. For instance, the
open value X can evolve either toX = X (undetermined, type C−)
or to X = new C(X) (determined, type C +). The undetermined
value is a closed value that cannot evolve, and, therefore, it will
always be undetermined (see rules (T-NEW1) and (T-NEW2)).

Typing rules significantly deviates from FJ and are defined in
Figure 7. For brevity we leave implicit the dependency of all judg-
ments from the enclosing program.

The typing judgment for expressions has shape g ; Γ ` e : T ,
where g is a tag that indicates the context where a method is in-
voked: + corresponds to the main expression of the program, whereas
− specifies any other context (that is, any method body); Γ is the
type environment, e is the expression to be typed, and T is its cor-
responding type.

Typechecking a program corresponds to typecheck all its class
declarations, and its main expression. This is the only case where
an expressions is typechecked with tag + because at top-level it is
always safe assuming that the value returned by a method invoca-
tion is closed.

Typechecking for class declarations is standard, and is defined on
top of the typing judgment for method declarations which depends
on the class where the method is declared.

A method declaration is well-typed if the type annotations of the
method are respected. Both the lsh and rhs of the with expression
are typechecked with tag −, since there is no guarantee that the
returned value is closed. The type environment for both e and e′

assigns the type C+ to this, where C is the class containing the
method to be checked; indeed, method invocations are type safe
only if the expression denoting the target object has type C+ (see
rule T-INVK); furthermore, the Γ contains all formal parameters
with their corresponding declared types. Finally, for expression e′

only, Γ contains also the special variable res; its type is conserva-
tively assumed to be C ′

−
?, where C ′ is the underlying class name

of the type U1 of the expression e. The lhs return type U ′1 must be
a supertype of the type U1⇓ obtained by removing (if present) the
? constructor from U1 (see the definition of the _⇓ operator at the
bottom); recall that the lhs return type can be used only under the
assumption that the value returned by the method is closed.

The side condition ok_override(C ,m) is the standard check
on method overriding as defined in FJ (for this reason the defini-
tion of ok_override(C ,m) has been omitted), while the condition
U ′1 ≤ U ′2 ensures that the rhs return type is always a conservative
approximation of the corresponding lhs type.

Rule (T-VAR) for variables is standard; rule (T-FIELD) states that
field selection is type safe only if e has type C +, that is, e can-
not evaluates to the undetermined value, neither to an open value.
Except for this, the rule is the same as the corresponding FJ rule.

As happens for rule (T-FIELD), rule (T-INVK) requires the ex-
pression e0 denoting the target object of a method invocation to
have type C +, to avoid that e could evaluate to the undetermined
value or to an open value. The returned type depends on the con-
text, specified by the tag g , where the expression is typechecked: if
g = +, then the lhs return type is considered, otherwise the lhs is
taken. All other checks are standard, as well as the auxiliary func-
tion mtype (whose definition has been omitted) returning the type
of method m of class C .

For object creation two different typing rules are provided. Rule
(T-NEW1) is applicable when no argument has an open type; in this
case the resulting type of the expression is C+. However, if some
argument has an open type, then rule (T-NEW2) can be applied in
place of (T-NEW1), in this case the types of all arguments can be
narrowed by means of the operator _⇓+ (defined after the typing
rules); narrowing has effect only on open types, and convert them
in closed types tagged with +. This is sound because in COFJ con-
structors it is not possible to access the field or to invoke the method
of an object passed as an argument. The returned type of the whole
expression is the open type C +? because there is no guarantee that
the corresponding value is closed, since there could be some pend-
ing method invocation4 that still needs to be completed; however,
at the top-level all method invocations will be completed and the
value will be closed, hence its type will be C + (recall the side con-

4X1 = new C (X2) (with X1 6= X2) is an example of value of type
C +?.

(T-PROG)
` cd1 . . . ` cdn +; ∅ ` e : U

` cd e
(T-CDEC)

C ` md1 . . .C ` mdn
` class C extends C ′ { fd md }

(T-MDEC)

−; this:C +, x :T ` e : U1

−; this:C +, res:class(U1)−?, x :T ` e′ : U2

C ` U ′1 with U ′2 m(T x) {e with e′;}
U1⇓ ≤ U ′1,U2 ≤ U ′2,U

′
1 ≤ U ′2

ok_override(C ,m)

(T-VAR)
g ; Γ ` x : U

Γ(x) = U (T-FIELD)
g ; Γ ` e : C +

g ; Γ ` e.f : Ti

fields(C) = T f ;
f = fi, i ∈ 1..n

(T-INVK)
g ; Γ ` e0 : C + g ; Γ ` e : T

′

g ; Γ ` e0.m(e) : U ′

mtype(C ,m) = T → T with U

T ′ ≤ T

U ′ =

T if g = +
U if g = −

(T-NEW1)
g ; Γ ` e : T ′

g ; Γ ` new C (e) : C +

fields(C) = T f ;
T ′ ≤ T

(T-NEW2)
g ; Γ ` e : U

g ; Γ ` new C (e) : C +?

fields(C) = T f ;
U⇓+ ≤ T

T⇓ = T T?⇓ = T T⇓+ = T C g?⇓+ = C + class(C g) = C

Figure 7: COFJ typing rules

dition U1⇓ ≤ U ′1 in rule (T-MDEC)). In this way, the type system
prevents field selection, method invocation and argument passing
(to methods, but not to constructors) of open values.

To better explain how the type system works, we show few exam-
ples of typings. We start with the following simple class declaration
(assuming that class C is defined in the same program):
class H extends Object {

C− with C− m() { this.m() with res; }
}

According to rule (T-MDEC) we have−; this:H+ ` this.m() : C−

and −; this:H+, res:C−? ` res : C−?; because C−? ≤ C−, the
only return type derivable for the method is C− with C− (by the
side condition U ′1 ≤ U ′2 of rule (T-MDEC)) for any class C defined
in the program.

Let us consider the following variation of class H in a program
where class C has just one field, and its type is C +:
class H extends Object {

C+ with C−? m() { new C(this.m()) with res; }
}

The class is well-typed thanks to rule (T-NEW2); indeed, we have
−; this:H+ ` new C(this.m()) : C+?, therefore we can derive the
return type C+ with C− (by the side condition U1⇓ ≤ U ′1 of rule
(T-MDEC)).

Let us now consider a class that cannot be typed.
class C extends Object {

U f;

U with C−? m() { new C(this.m().f) with res; }
}

Independently from the type U , we have−; this:H+ ` this.m() :
C−?, hence this.m().f cannot be correctly typed according to
rule (T-FIELD).

Assuming to replace primitive types int and bool with classes
implementing the standard encoding of these types with objects,
the example in Section 1 can be typed with the following type an-
notations:

class RepDecFact extends Object {

RepDec+ with RepDec−? zero() {
new RepDec(0,zero()) with res

}
}
class RepDec extends Object {

Int+ digit;

RepDec+ next;

RepDec+ with RepDec−? compl() {
new RepDec(9-this.digit,this.next.compl())
with res

}

Bool+ with Bool+ isZero() {
digit==0 && this.next.isZero() with true

}
}

We conclude this section by stating the soundness claim.

THEOREM 4.1. If ∅ ` e : T , and e, ∅, ∅⇓r, then r 6= w.

5. RELATED WORK AND CONCLUSION
This paper represents a further step towards the integration of the

object-oriented paradigm with coinductive programming, a promis-
ing sub-paradigm originating from logic programming, and expressly
devised to ease high-level programming and reasoning with cyclic
data structures. More precisely, we have enhanced our previous
proposal by defining a simpler construct for dealing with regular
corecursion, and, consequently, a cleaner operational semantics.
More importantly, such a simplification has allowed us to define
a type system able to conservatively prevent unsafe use of spurious
values (that is, open values and the undetermined value) that may
be returned by corecursive methods.

This paper is inspired by recent work on coinductive logic pro-
gramming and regular recursion in Prolog. Simon et al. [17, 19, 18]
have proposed coinductive SLD resolution (abbreviated by coSLD)
as an operational semantics for logic programs interpreted coinduc-
tively: the coinductive Herbrand model is the greatest fixed-point

of the one-step inference operator. This can be proved equivalent to
the set of all ground atoms for which there exists either a finite or an
infinite SLD derivation [19]. Coinductive logic programming has
proved to be useful for formal verification [14, 15], static analysis
and symbolic evaluation of programs [5, 4, 6].

Regular corecursion in Prolog has been investigated by one of the
authors of this paper as a useful abstraction for programming with
cyclic data structures. To our knowledge, no similar approaches
have been considered for functional programming; although the
problem has been already considered [21, 11], the proposed so-
lutions are based on the use of specific and complex datatypes, but
no new programming abstraction is proposed.

A related stream of work is that on initialization of circular data
structures [20, 10, 16].

In comparison with the more foundational studies [1, 3] on the
use of coinductive big-step operational semantics of Java-like lan-
guages for proving type soundness properties, this paper is more
focused on the challenge of extending object-oriented languages to
support coinductive programming.

There exist several interesting directions for further research on
the integration of coinductive programming with the object-oriented
paradigm. On the foundational side, it would be important to ex-
plore techniques to prove the correctness of corecursive methods,
possibly integrated with proof assistants, as Coq [9], that provide
built-in support for coinductive definitions and proofs by coinduc-
tion.

On the more practical side, although the proposed type anno-
tations are not particularly heavy, an inference algorithm able to
derive part of them would be useful; furthermore, as already men-
tioned in Section 4, a more accurate analysis on mutual dependen-
cies between methods would allow a more permissive type system.
Another important issue is the extension of the semantics of core-
cursive methods to the imperative setting, and the study of a corre-
sponding effective implementation.

6. REFERENCES
[1] D. Ancona. Coinductive big-step operational semantics for

type soundness of Java-like languages. In FTfJP ’11, pages
5:1–5:6. ACM, 2011.

[2] D. Ancona. Regular corecursion in Prolog. In SAC 2012,
pages 1897–1902, 2012. An extended version submitted for
journal publication is available at
ftp://ftp.disi.unige.it/person/AnconaD/
AnconaExtendedSAC12.pdf.

[3] D. Ancona. Soundness of object-oriented languages with
coinductive big-step semantics. In ECOOP 2012, pages
459–483, 2012.

[4] D. Ancona, A. Corradi, G. Lagorio, and F. Damiani. Abstract
compilation of object-oriented languages into coinductive
CLP(X): can type inference meet verification? In FoVeOOS
2010, Revised Selected Papers, volume 6528 of LNCS, 2011.

[5] D. Ancona and G. Lagorio. Coinductive type systems for
object-oriented languages. In ECOOP 2009, volume 5653 of
LNCS, pages 2–26, 2009.

[6] D. Ancona and G. Lagorio. Idealized coinductive type
systems for imperative object-oriented programs. RAIRO -
Theoretical Informatics and Applications, 45(1):3–33, 2011.

[7] D. Ancona and E. Zucca. Corecursive Featherweight Java. In
FTfJP ’12, 2012.

[8] Davide Ancona and Elena Zucca. Translating corecursive
Featherweight Java in coinductive logic programming. In
Co-LP 2012 - A workshop on Coinductive Logic

Programming, 2012.
[9] Y. Bertot and P. Castéran. Interactive Theorem Proving and

Program Development. Coq’Art: The Calculus of Inductive
Constructions. Texts in Theoretical Computer Science.
Springer Verlag, 2004.

[10] M. Fähndrich and S. Xia. Establishing object invariants with
delayed types. In OOPSLA 2007, pages 337–350. ACM
Press, 2007.

[11] N. Ghani, M. Hamana, T. Uustalu, and V. Vene.
Representing cyclic structures as nested datatypes. In TFP,
pages 173–188, 2006.

[12] P. H., J. H., S. L. Peyton Jones, and P. Wadler. A history of
haskell: being lazy with class. In History of Programming
Languages Conference (HOPL-III), pages 1–55, 2007.

[13] John Launchbury. A natural semantics for lazy evaluation. In
POPL, pages 144–154, 1993.

[14] R. Min and G. Gupta. Coinductive logic programming and
its application to boolean sat. In FLAIRS Conference, 2009.

[15] N.Saeedloei and G. Gupta. Verifying complex continuous
real-time systems with coinductive CLP(R). In LATA 2010,
LNCS. Springer, 2010.

[16] Xin Qi and Andrew C. Myers. Masked types for sound
object initialization. In Z. Shao and B. C. Pierce, editors,
POPL 2009, pages 53–65. ACM Press, 2009.

[17] L. Simon. Extending logic programming with coinduction.
PhD thesis, University of Texas at Dallas, 2006.

[18] L. Simon, A. Bansal, A. Mallya, and G. Gupta. Co-logic
programming: Extending logic programming with
coinduction. In ICALP 2007, pages 472–483, 2007.

[19] L. Simon, A. Mallya, A. Bansal, and G. Gupta. Coinductive
logic programming. In ICLP 2006, pages 330–345, 2006.

[20] A. J. Summers and P. Müller. Freedom before commitment -
a lightweight type system for object initialisation. In
OOPSLA 2011. ACM Press, 2011.

[21] F. A. Turbak and J. B. Wells. Cycle therapy: A prescription
for fold and unfold on regular trees. In PPDP, pages
137–149, 2001.

APPENDIX
A. FJ FORMAL DEFINITION

2. PROGRAMMING WITH COFJ
We present some more significant examples of COFJ program-

ming, that show the usefulness of regular terms and controlled reg-
ular corecursion.

2.1 Finite automata and regular languages
We consider a classical application from formal languages, by

defining a method that succeeds if and only if the language gen-
erated by an extended right linear grammar is included in the lan-
guage recognized by a finite deterministic automaton. Cyclic ob-
jects can be exploited for representing automata and regular gram-
mars.

An automaton is represented by its unique initial state.
class State extends Object {

bool isFinal; AdjList trans;
}
class AdjList extends Object { }
class EAdjList extends AdjList{ }
class NEAdjList extends AdjList{

char sym; State st; AdjList nx;
}

ftp://ftp.disi.unige.it/person/AnconaD/AnconaExtendedSAC12.pdf
ftp://ftp.disi.unige.it/person/AnconaD/AnconaExtendedSAC12.pdf

e ::= x | e.f | e.m(e) | new C (e)
u, v ::= new C (v)
r ::= v | w
C[] ::= [] | C[].f | C[].m(e) | e.m(e, C[], e′) | new C (e, C[], e′)

(FJ-FIELD)
e⇓FJ v

e.f ⇓FJ vi

v = new C (v)
fields(C) = C f ;
f = fi, i ∈ 1..n

(FJ-INVK)
e⇓FJ v e⇓FJ v e[v/this][v/x]⇓FJ u

e.m(e)⇓FJ u
v = new C (_)
mbody(C ,m)=(x , e)

(FJ-NEW)
e⇓FJ v

new C (e)⇓FJ new C (v)
#fields(C) = #e

(FJ-W-FIELD)
e⇓FJ v

e.f ⇓FJ w

v = new C (_)

fields(C) = C f ;
f 6= fi for all i ∈ 1..n

(FJ-W-INVK)
e⇓FJ v

e.m(e) [with _]⇓FJ w

v = new C (_)
mbody(C ,m) undefined or

mbody(C ,m) = (x , _) and
#x 6= #e

(FJ-PROP)
e⇓FJ w

C[e]⇓FJ w
C[] 6= []

(FJ-P-INVK)
e⇓FJ v e⇓FJ v e[v/this][v/x]⇓FJ w

e.m(e)⇓FJ w

v = new C (_)
mbody(C ,m) = (x , e)

Figure 8: FJ syntax and big-step rules

S2S1

a

b

Figure 9: A deterministic finite automaton recognizing the lan-
guage a*b

Let us consider the automaton depicted in Figure 9, where S1 (pointed
by the straight arrow in the picture) is the initial state, and S2 (with
a thicker circle) is final. Such an automaton can be represented by
the following instance of State:

S = new State(false,
new NEAdjList(’a’,S,
new NEAdjList(’b’,new State(true,new EAdjList()),
new EAdjList())))

The instance variable isFinal indicates whether a state is final or
not, whereas trans corresponds to the list of possible transitions,
that is, the adjacency list of the current state: each item of the list
consists of a symbol (represented by char) and of the correspond-
ing target state. Class AdjList represents adjacency lists, where
the subclasses EAdjList and NEAdjList represent empty and non
empty lists, respectively.

We recall that an extended right linear grammar is a grammar
where all productions have shape either N1 ::= a, or N1 ::= ε,
or N1 ::= wN2, where N1 and N2 are two non-terminal symbols,

a is a terminal symbol, w is a (possibly empty) string of terminal
symbols, and ε is the empty string.

A grammar is represented by its main non-terminal symbol.

class NonTermDef extends Object { }
class EmptyString extends NonTermDef { }
class Concat extends NonTermDef{

char sym; NonTermDef nx; }
class Union extends NonTermDef {

NonTermDef nt1; NonTermDef nt2; }

The encoding of the definition of a non-terminal symbol (that is,
all its productions) is based on the conventional mapping to set
expressions built on top of the singleton set containing the empty
string (EmptyString), and the concatenation (Concat) and union
(Union) operator. For instance, let us consider the following right
linear grammar:

A ::= b | aA

Such a grammar can be encoded by the following cyclic object:

N = new Union(new Concat(’b’,new EmptyString()),
new Concat(’a’,N))

Given the encoding of automata and grammars as described above,
it is possible to define the method included for NonTermDef ob-
jects that takes as parameter an automaton (that is, an instance of
class State), and returns true iff the language generated by the
grammar is included in the language recognized by the automaton.

class EmptyString extends NonTermDef {
bool included(State s) { s.isFinal }}

class Concat extends NonTermDef {
char sym; NonTermDef nx;
bool included(State s) {

let ns = s.trans.getState(this.sym)
in if (ns == null) false

else this.nx.included(ns)
with true

}}
class Union extends NonTermDef {

NonTermDef nt1; NonTermDef nt2;
bool included(State s) {

this.nt1.included(s) with true
&&
this.nt2.included(s) with true

}}

The case for the empty string is straightforward: the empty string
is accepted only if the initial state of the automaton is also final.

For concatenation, the auxiliary method getState (whose defi-
nition has been omitted) is employed: it is invoked on an adjacency
list with an argument sym of type char, to find an outgoing edge la-
beled with sym; if found, the corresponding target state is returned,
otherwise null is returned.5

The case for union is simple: the union of two languages is con-
tained in the automaton iff both are contained in it.

For all corecursive invocations (both in Concat and Union) the
default value true is specified by the with clause. This corre-
sponds to the intuition that if an active invocation of included is
encountered again, then a cyclic path in the automaton has been
detected corresponding to the acceptance of the language.

The careful reader will notice that the definition of included is
not completely correct, since it fails to correctly deal with gram-
mars that generate the empty set. Consider for instance the gram-
mar A ::= aA: its generated language is the empty set, that is rec-
ognized by any automaton; however, method included in Concat
does not succeed if there are no outgoing edges labeled with a (in
other words the presented solution works correctly when grammars

5The null reference has been introduced just to make the example
code more compact.

are interpreted coinductively, rather than inductively). To over-
come this problem, we introduce the method emptySet that checks
whether a grammar generates the empty set; then we extend meth-
ods included, to first check whether the grammar corresponding
to the object this generates the empty set; if so, true is returned.

class EmptyString extends NonTermDef {
bool included(State s) { this.emptySet() || ... }
bool emptySet() { false }

}
class Concat extends NonTermDef {

char sym; NonTermDef nx;
bool included(State s) { this.emptySet() || ... }
bool emptySet() {

this.nx.emptySet() with true;
}

}
class Union extends NonTermDef {

NonTermDef nt1; NonTermDef nt2;
bool included(State s) { this.emptySet() || ... }
bool emptySet() {

this.nt1.emptySet() with true
&&
this.nt2.emptySet() with true

}
}

2.2 Repeating decimals
It is well-known that every rational number can be represented by

a repeating decimal, that is, a cyclic lists of digits. For simplicity
we only consider the interval [0, 1], although the code presented
below can be easily extended to work with the whole set of rational
numbers.

class RepDec extends Object { int digit; RepDec next; }

As an example, the object

N = new RepDec(5,P = new RepDec(7,new RepDec(2,P)))

corresponds to the repeating decimal N = 0.572. In terms of frac-
tions, N equals 63

110
. Indeed, 10 ∗ N = 5 + 0.72, and 100 ∗ 0.72 =

72 + 0.72 (multiplying a repeating decimal by 10e, with e > 0, is
equivalent to a left shift of e positions). The above gives rise to the
following equations: 10N=5+P,100P=72+P . Therefore P= 8

11
,

and N= 5
10

+ 4
55

= 55+8
110

= 63
110

. A terminating decimal can be uni-
formly represented by a repeating decimal as well; for instance, 0.3
is represented by the object

D = new RepDec(3,Z = new RepDec(0,Z))

In Section 1 we have already considered examples of regularly
coinductive methods with repeating decimals.

class RepDecFact extends Object {
RepDec zero() { // returns the repeating decimal 0

new RepDec(0,zero()) with res
}

}
class RepDec extends Object {

int digit;
RepDec next;
RepDec compl() { // returns 1 - this

new RepDec(9-this.digit,this.next.compl())
with res

}
bool isZero() { // check if this is zero

(digit==0 && this.next.isZero()) with true
}

}

We now define a method to compute the addition between two
repeating decimals d1 and d2. Since the operands have infinite
digits, we cannot simply mimic the conventional algorithm for ad-
dition, because the notion of least significant digit does not make
sense in this case. We first define the following auxiliary method

that computes the carry of the addition of two repeating decimals
(where / denotes integer division).

class RepDec extends Object {
int digit; RepDec next;
...
int carry(RepDec d) {

(this.digit + d.digit + this.next.carry(d.next)) / 10
with 0

}
}

By regularity of this and d, method carry is always guaranteed
to terminate corecursively; when a cycle in the call trace is detected
value 0 is returned; this is correct even when the globally computed
carry must be 1, because such a carry necessarily generates from
a pair of digits whose addition is strictly greater than 9 and must
be propagated to the most significant position. For instance, if d1
and d2 represent 0.8 and 0.121, respectively, then d1.carry(d2)

yields 1, as expected.
Method add is simply defined in terms of carry (where % de-

notes the reminder operator):

class RepDec extends Object {
int digit; RepDec next;
...
RepDec add(RepDec d) {

new RepDec((this.digit +
d.digit +
this.next.carry(d.next)

) % 10,
this.next.add(d.next))

with res
}

}

As expected, the result of the addition is a new repeated decimal
where the most significant digit is obtained by computing the re-
minder by 10 of the addition of the most significant digits of the
two operands increased by the carry returned by the addition of the
remaining part of the two operands, and where the rest of the digits
are obtained by adding the remaining parts of the two operands.

Again, by regularity of this and d, method add is always guar-
anteed to terminate corecursively; differently from method carry,
the returned value is guarded, therefore the rhs of with is res.

We finally recall that repeating decimals provide no unique rep-
resentation for some rational numbers: for instance 0.49 equals 0.5;
however, method add works correctly independently of the repre-
sentation of operands. A practical way for defining the equality test
is to implement it in terms of subtraction (that can be defined in a
very similar way as addition); however, one may also consider a
normalization procedure that, for instance, prefers 0.5 over 0.49.

2.3 Graphs
Graphs are perhaps the most interesting application domain of

controlled regular corecursion: they are the prototypical example of
cyclic structure, and arise in so many important areas of computer
science.

The depth-first search algorithm, which is at the basis of sev-
eral other graph algorithms, can be conveniently implemented with
controlled regular corecursion. The following example shows the
implementation of method connectedTo for testing connectivity
of a (either directed or undirected) graph.

In a similar way as that shown for automata, a graph can be rep-
resented by one of its vertices, together with its adjacency list.

class Vertex extends Object {
int id; AdjList adjVerts;

}
class AdjList extends Object { }
class EAdjList extends AdjList{ }
class NEAdjList extends AdjList{

Vertex vert; AdjList next;
}

Every vertex is represented by its id (assumed to be unique) and
its list adjVerts of adjacent vertices.

The method invocation v.isConnected(id) returns true if and
only if there exists a (possibly empty) path from v to the vertex
identified by id. The method is defined for both vertices and adja-
cency lists.

class Vertex extends Object {
int nodeId; AdjList adjVerts;
bool isConnected(int id) {

this.id == id || this.adjVerts.isConnected()
}

}
class EAdjList extends AdjList{

bool isConnected(int id) { false }
}
class NEAdjList extends AdjList{

Vertex vert; AdjList next;
bool isConnected(int id) {

this.vert.isConnected(id) with false
||
this.next.isConnected(id)

}
}

While the definition of isConnected for the empty adjacency list
is obvious, the remaining cases deserve some explanation.

In Vertex method isConnected checks whether the identity
of the current vertex (bound to this) equals the identity of the
searched vertex, or whether there exists a path connecting the two
vertices that contains one of the adjacent vertices of this.

In NEAdjList method isConnected has to check that there ex-
ists a path connecting one of the vertices in the adjacency list with
the vertex specified by id. Since the algorithm implicitly assumes
that adjacency lists are not cyclic, the only invocation that can de-
tect a cycle is this.vert.isConnected(id); therefore, this is
also the only invocation where the with clause is required. If a
cycle is encountered, then the corresponding path is assumed not to
contain the vertex specified by id, therefore false is returned by
the method invocation.

A short-circuit evaluation for the or operator is not required for
the correctness of the implementation, even though it makes it more
efficient.

	Introduction
	Examples
	Formal definition
	Type system
	Related work and conclusion
	References
	FJ formal definition
	Programming with coFJ
	Finite automata and regular languages
	Repeating decimals
	Graphs

