
Declarative Programming, (Co)Induction and Monads
Module 2

Prolog lab 1

Davide Ancona, Giovanni Lagorio, Eugenio Moggi and Elena Zucca
University of Genova

PhD Course, DISI, June 29, 2012

Easy exercises Consider natural numbers defined by the functors z/0 and s/1, and list defined by the standard Prolog
functors.
Define the Horn clauses for the following predicates.

1. is_nat/1 s.t. is_nat(t) holds iff t is a natural number defined either inductively or coinductively. The same
definition should work for both interpretations. Verify that the query I = s(I), is_nat(I) does not terminate,
whereas the query cosld((I = s(I), is_nat(I))) (beware of the initial double parentheses!) succeeds.

2. geq/2 s.t. geq(t1, t2) holds iff t1 is a natural number greater or equal than the natural number t2. The predicate
must not hold if t1 or t2 is not a natural number. The same definition should work for the inductive and coinductive
interpretation. Verify that the query I = s(I), geq(I, s(z)) does not terminate, whereas the query cosld((I =
s(I), geq(I, s(z)))) succeeds.

3. Same as point 2, but with the predicate leq/2 (less or equal than).

4. gth/2 s.t. gth(t1, t2) holds iff t1 is a natural number greater than the natural number t2 (only in the inductive case).
The predicate must not hold if t1 or t2 is not a natural number.

Change the definition to accommodate the coinductive case.

5. Same as point 4, but with predicate lth/2 (less than).

6. eq/2 s.t. eq(t1, t2) holds iff t1 is a natural number equal to the natural number t2. Try to define the predicate
directly, without using other predicates. The predicate must not hold if t1 or t2 is not a natural number. The same
definition should work for the inductive and coinductive interpretation.

7. odd/1 s.t. odd(t) holds iff t is an odd natural number (only for the inductive case).

Change the definition to accommodate the coinductive case.

8. even/1 s.t. even(t) holds iff t is an even natural number (only for the inductive case).

Change the definition to accommodate the coinductive case.

9. parent/2 s.t. parent(t1, t2) holds iff t1 is the parent node of t2; assume that there is a predefined predicate child/2
s.t. child(t1, t2) holds iff t1 is a child node of t2.

Compare the inductive and coinductive interpretations for the same definition.

10. eq_list/2 s.t. eq_list(t1, t2) holds iff t1 and t2 are two identical lists. The same definition should work for the
inductive and coinductive interpretation.

11. all_even/1 s.t. all_even(t1) holds iff t1 is a list containing just even natural numbers.

The same definition should work for the inductive and coinductive interpretation. For instance, the query cosld((L =
[z, s(z)|L], all_even(L) must succeed. Verify that in Haskell you cannot easily define such a predicate by using
the built-in all function if you want it to work correctly on infinite regular lists.

12. is_in/2 s.t. is_in(t1, t2) holds iff t1 is an element of the list t2.

Verify that such a definition works properly only for the inductive case.



Less easy exercises

1. descendant/2 which is the transitive closure of child/2; assume that there is a predefined predicate child/2 s.t.
child(t1, t2) holds iff t1 is a child node of t2.

Compare the inductive and coinductive interpretations for the same definition.

2. ancestor/2 which is the transitive closure of parent/2; assume that there is a predefined predicate parent/2 s.t.
parent(t1, t2) holds iff t1 is the parent node of t2.

Compare the inductive and coinductive interpretations for the same definition.

3. div/2 s.t. div(t1, t2) holds iff the natural number t1 divides the natural number t2 (only for the inductive case).

Hint: define first the predicate sub/3 s.t. sub(t1, t2, t3) holds iff t1, t2, and t3 are natural numbers s.t. t3 = t1− t2.

2


