
Mixin Modules and Computational E�ets

D.Anona, S.Fagorzi, E.Moggi, E.Zua

?

DISI, Univ. of Genova, v. Dodeaneso 35, 16146 Genova, Italy

email: fdavide,fagorzi,moggi,zuag�disi.unige.it

Abstrat. We de�ne a alulus for investigating the interations between mixin modules

and omputational e�ets, by ombining the purely funtional mixin alulus CMS with a

monadi metalanguage supporting the two separate notions of simpli�ation (loal rewrite

rules) and omputation (global evaluation able to modify the store). This distintion is

important for smoothly integrating the CMS rules (whih are all loal) with the rules dealing

with the imperative features.

In our alulus mixins an ontain mutually reursive omputational omponents whih are

expliitly omputed by means of a new mixin operator whose semantis is de�ned in terms of

a Haskell-like reursive monadi binding. Sine we mainly fous on the operational aspets,

we adopt a simple type system like that for Haskell, that does not detet dynami errors

related to bad reursive delarations involving e�ets. The alulus serves as a formal basis

for de�ning the semantis of imperative programming languages supporting �rst lass mixins

while preserving the CMS equational reasoning.

1 Introdution

Mixin modules (or simply mixins) are modules supporting parameterization, ross-module reur-

sion and overriding with late binding ; these three features altogether make mixin module systems

a valuable tool for promoting software reuse and inremental programming [AZ02℄. As a onse-

quene, there have been several proposals for extending existing languages with mixins; however,

even though there already exist some prototype implementations of suh extensions (see, e.g.,

[FF98a,FF98b,HL02℄), there are still several problems to be solved in order to fully and smoothly

integrate mixins with all the other features of a real language. For instane, in the presene of store

manipulation primitives, expressions inside mixins an have side-e�ets, but this possibility raises

some semanti issues:

{ beause of side-e�ets, the evaluation order of omponents inside a mixin must be deterministi,

while still retaining ross-module-reursion;

{ when omputations inside a mixin must be evaluated and how many times?

Unfortunately, all formalizations de�ned so far [AZ99,AZ02,MT00,WV00℄ do not onsider these

issues, sine they only model mixins in purely funtional settings.

In this paper we propose a monadi mixin alulus, alled CMS

do

, for studying the interation

between the notions of mixin and store. More preisely, this alulus should serve as a formal basis

both for de�ning the semantis of imperative programming languages supporting mixins and for

allowing equational reasoning.

Our approah onsists in ombining the purely funtional mixin alulus CMS [AZ99,AZ02℄ with a

monadi metalanguage [MF03℄ equipped with a Haskell-like reursive monadi binding [EL00,EL02℄

and supporting the two separate notions of simpli�ation and omputation, the former orrespond-

ing to loal rewriting with no side-e�ets, the latter to global evaluation steps able to modify

?

Supported by MIUR projet NAPOLI, EU projet DART IST-2001-33477 and themati network

APPSEM II IST-2001-38957

the store. This distintion is important for smoothly integrating the CMS rules (whih are all

loal) with the rules dealing with the imperative features; furthermore, sine simpli�ation is a

ongruene, all CMS equations (exept those related to seletion) hold in CMS

do

.

In CMS

do

a mixin an ontain, besides the usual CMS de�nitions, also omputational de�nitions of

the form x(e, where e has monadi type. The (simpli�ation) rules for the standard operators on

mixins oinide with those given for CMS. However, before seleting omponents from a mixin, this

must be transformed into a reord. The transformation of a mixin (without deferred omponents)

into a reord is triggered by the doall primitive, and onsists in

{ evaluating omputational de�nitions x

i

(e

i

in the order they are delared;

{ binding the value returned by e

i

to x

i

immediately, to make it available to the subsequent

omputations e

j

with j > i.

Mutual reursion has the following informal semantis: if i � j, then e

i

an depend on the variable

x

j

, provided that the omputation e

i

an be suessfully performed without knowing the value

of e

j

(whih is bound to x

j

only later). Formally, the semantis of doall is expressed in terms

of a reursive monadi binding, similar to that de�ned in [EL00,EL02℄, and a standard reursive

let-binding.

Sine the emphasis of the paper is on the operational aspets, we adopt a simple type system like

that for Haskell, that does not detet dynami errors related to bad reursive delarations; for

instane, doall([; x (set(y; 1); y (new(0)℄) is a well-typed term whih evaluates into a dynami

error. However, more re�ned type systems based on dependenies analysis [Bou02,HL02℄ ould be

onsidered for CMS

do

in order to avoid this kind of dynami errors.

Summary. The rest of the paper is organized as follows. In Setion 2 we illustrate the main features

of the original CMS alulus and introdue the new CMS

do

alulus through some examples. In

Setion 3 we formally de�ne the syntax of the alulus, the type system and the two relations of

simpli�ation and omputation. We also prove standard tehnial results, inluding a bisimulation

result (simpli�ation does not a�et omputation steps) and the progress property for the ombined

relation. In Setion 4 we disuss related work and in Setion 5 we summarize the ontribution of

the paper and draw some further researh diretions.

2 An Overview of the Calulus

In this setion we give an overview of the CMS

do

alulus by means of some examples written in

a more user-friendly syntax.

Like in CMS , a CMS

do

basi mixin module onsists of de�ned and loal omponents, bound to an

expression, and deferred omponents, delared but not yet de�ned.

Example 1. For instane,

M1 = mix import N2 as x, (* deferred *)

export N1 = e1[x,y℄, (* defined *)

loal y = e2[x,y℄ (* loal *)

end

denotes a mixin with one deferred, one de�ned and one loal

1

omponent, where e1[x,y℄ and

e2[x,y℄ denote two arbitrary expressions possibly ontaining the two free variables x and y.

Deferred omponents are assoiated with both a omponent name (as N2) and a variable (as x);

1

Note that deferred, de�ned and loal omponents an be delared in any order; in partiular, de�nitions

of de�ned and loal omponents an be interleaved.

2

omponent names are used for external referening of deferred and de�ned omponents but they

are not expressions, while variables are used for aessing deferred and loal omponents inside

mixins (for further details on the separation between variables and omponent names see [Ler94℄,

[HL94℄, [AZ02℄). Loal omponents are not visible from the outside and an be mutually reursive.

Besides this onstrut, CMS

do

provides four operations on mixins: sum, freeze, delete (inherited

from CMS) and doall .

Example 2. Two mixins an be ombined by the sum operation, whih performs the union of

the deferred omponents (in the sense that omponents with the same name are shared), and

the disjoint union of the de�ned and loal omponents of the two mixins. However, while de�ned

omponents must be disjoint beause lashes are not allowed by the type system, the disjoint union

of loal omponents an be always performed by renaming variables.

M2 = mix import N1 as x,

export N2 = e3[x,y℄,

loal y = e4[x,y℄

end

M3 = M1 + M2

Module M3 simpli�es to

mix import N2 as x1, N1 as x2,

export N1 = e1[x1,y1℄,

loal y1 = e2[x1,y1℄,

export N2 = e3[x2,y2℄,

loal y2 = e4[x2,y2℄

end

The sum operation supports ross-module reursion; in module M3, the de�nition of N2, whih is

needed by M1, is provided by M2, whereas the de�nition of N1, whih is needed by M2, is provided

by M1. However, in CMS

do

omponent seletion is permitted only if the module has no deferred

omponents, therefore the de�ned omponents of M3 annot be seleted even though the deferred

omponents of M3 (N1 and N2) are also among the de�ned ones.

Example 3. The freeze operation onnets deferred and de�ned omponents having the same name

inside a mixin; in other words, it is used for resolving \external names", so that a deferred om-

ponent beomes loal.

For instane, in (mix import N as x export N = e1[x,y℄ loal y = e2[x,y℄) ! N the deferred om-

ponent N has been e�etively bound to the orresponding de�ned omponent by freezing it, ob-

taining the following simpli�ed expression:

mix loal x = e1[x,y℄, export N = x, loal y = e2[x,y℄ end

Example 4. The delete operation is used for hiding de�ned omponents:

(mix import N as x, export N = e1[x,y℄, loal y = e2[x,y℄) \ N

simpli�es to

mix import N as x, loal y = e2[x,y℄ end

So far the alulus is very similar to the pure funtional alulus CMS de�ned in [AZ02℄; its

primitive operations an be used for expressing a variety of onvenient onstruts supporting

ross-module reursion and overriding with late binding.

For instane, M6 = (((M3 \ N2) + mix export N2 = e[℄ end) ! N1) ! N2 orresponds to delare a

new mixin obtained from M3 by overriding omponent N2; sine N2 in M3 is both deferred and

3

de�ned, the de�nition of omponent N2 in M6 depends on the new de�nition of N2 in M6 rather than

on that in M3 (late binding). We refer to [AZ02℄ for more details on this.

In addition to the CMS operations and onstruts presented above, CMS

do

provides a new kind of

mixin omponent alled omputational , a new mixin operation doall to deal with omputational

omponents, the usual primitives on the store, and the monadi onstruts mdo (reursive do) and

ret (embedding of values into omputations).

Example 5. Let us onsider the following mixin de�nition:

CM1 = mix loal l <= new(x-2), x = 4,

export In = mdo v <= get(l) in set(l,v+3), Val <= get(l)

end

The loal omponent l and the de�ned omponent Val has been de�ned via <= (rather than =)

and are alled omputational.

Evaluation of omputational omponents like l and Val an be performed only one by means of

the doall operation (see below), provided that there are no deferred omponents (as in this ase);

furthermore, seletion of the de�ned omponents of CM1 is possible only after l and Val have been

evaluated.

Note that In is not omputational, even though its assoiated expression ontains e�ets, therefore

the doall operation does not ompute In (see below).

The omputation new(x-2) returns a fresh loation ontaining the expression x-2, get(l) returns

the expression stored at the loation l denoted by l and set(l,v+3) updates the store by assigning

v+3 to l and returns l. Note that new(e) and set(l,e) are \lazy", in the sense that they do not

evaluate the expression e.

Let us now onsider the expression doall(CM1); its evaluation returns a reord ontaining only

the de�ned omponents In and Val. As already explained, In is not evaluated, whereas Val

is omputed as follows. Sine we require the evaluation of omputational omponents to respet

the delaration order, the expression assoiated with l is omputed before that de�ning Val; one

the value of variable l is omputed it is made immediately available to the next omputational

omponent Val.

On the other hand, the omponent In (de�ned via =) is not omputed, but its assoiated omputa-

tion is treated as a value of monadi type that an be evaluated with the mdo onstrut. Therefore,

if l is the loation generated by the evaluation of omponent l, then doall(CM1) evaluates to

the reord r={In=mdo v<=get(l) in set(l,v+3), Val=2}, where omponent In an be reeval-

uated several times, for instane, in the expression mdo l<=r.In in get(l) whih inrements

the ontents of l and evaluates to 5. Finally, note that the order of omputational omponents

matters, while that of non-omputational omponents, like x and In in CM1, does not.

Example 6. Computational omponents an be mutually reursive like in the following mixin.

CM2 = mix export Lo1=l1, Lo2=l2,

loal l1<=new(l2), l2<=new(l1)

end

The expression doall(CM2) evaluates to the reord {Lo1=l

1

, Lo2=l

2

} where l

1

and l

2

are two

loations pointing two eah other. This is possible beause new(e) does not need to evaluate e.

On the other hand, evaluation of doall(mix loal x<=set(y,1), y<=new(0) end) auses an

error beause of bad reursive delarations. In this ase the error ould be avoided by swapping x

and y, but reordering omputational omponents hanges the semantis.

4

3 CMS

do

: a monadi mixin language

Before de�ning CMS

do

, we introdue some notations and onventions.

{ If s

1

and s

2

are two �nite sequenes, then s

1

; s

2

denotes their onatenation.

{ f :A

fin

! B means that f is a partial funtion from A to B with a �nite domain, written dom(f).

We write fa

i

: b

i

ji 2 Ig for the partial funtion mapping for all i 2 I a

i

to b

i

(where the a

i

must

be di�erent, i.e. a

i

= a

j

implies i = j). We use the following operations on partial funtions:

� ; is the everywhere unde�ned partial funtion;

� f and g are ompatible when f(x) = g(x) when x 2 dom(f) \ dom(g).

� f

1

; f

2

denotes the union of two ompatible partial funtions;

� ffa: bg denotes the update of f in a;

� f n a is the partial funtion g suh that g(x)

�

=

�

f(x) if x 6= a

unde�ned otherwise

{

�

> denotes the reexive and transitive losure of a binary relation > .

{ If E is a set of terms, then FV(e) is the set of free variables of e; E

0

is the set of e 2 E s.t.

FV(e) = ;; ef�g, with � a �nite partial funtion from a set of variables Var to E, denotes the

parallel substitution of all variables x 2 dom(�) with �(x) in e (modulo �-onversion).

The syntax of CMS

do

de�nition is parametri in an in�nite set Name of omponent names X (for

reords and mixins), an in�nite set Var of variables x, and an in�nite set L of loations l.

Terms e, reursive monadi bindings � and mixin bindings � are given by

e 2 E: : = x j fog j e:X j let(�; e) j ret(e) j mdo (�; e) j doall(e)

j l j new(e) j get(e) j set(e

1

; e

2

) j e

1

+ e

2

j e!X j e nX

j [�; �℄ with � injetive and dom(�) \ DV(�) = ;

�: : = ; j �; x(e with x 62 DV(�)

�: : = ; j �;D with DV(�) \ DV(D) = DN(�) \ DN(D) = ;

D: : = X C e j xC e with C either = or (

where o:Name

fin

! E, �:Var

fin

! E and �:Var

fin

! Name. Some produtions have side-onditions,

the auxiliary funtions DV and DN return the set of variables and omponent names de�ned in a

sequene � of de�nitions, respetively. The formal de�nitions of the funtions DV, DN and FV are

given in De�nition 3 of the Appendix. The terms inlude:

{ reords fog, where o is a partial funtion (sine the order of reord omponents is irrelevant),

and seletion e:X of a reord omponent;

{ reursive bindings let(�; e) and reursive monadi bindings mdo (�; e) of [EL00℄;

{ the operations on referenes for alloation new(e), dereferening get(e) and assignment set(e

1

; e

2

);

{ basi mixins [�; �℄ with deferred omponents �, and the operations of sum e

1

+e

2

, freezing e!X

and deletion e nX of a omponent (see [AZ02℄).

The basi di�erene between a reord fog and a mixin [;; �℄ without deferred omponents is that �

may have loal (reursive) de�nitions and omputational omponents. The operation doall([;; �℄)

denotes a omputation whih fores evaluation of all omputational omponents in � (eliminates

loal de�nitions), and returns a reord. Sine omputations may have side-e�ets, the order of the

bindings in � (and �) matters.

Types are de�ned by � 2 T: : = : : : j M� j ref� j f�g j [� ; �

0

℄ where � :Name

fin

! T. The set

of types inludes omputational types M� , referene types, reord types f�g and mixin types

5

(var)

� `

�

x: �

� (x) = � (ret)

� `

�

e: �

� `

�

ret(e):M�

(mdo)

f�; �

�

`

�

e:M� j (x(e) 2 � ^ � = �

�

(x)g

�; �

�

`

�

e

0

:M�

0

� `

�

mdo (�; e

0

) :M�

0

dom(�

�

) = DV(�)

(let)

f�; �

�

`

�

e: � j e = �(x) ^ � = �

�

(x)g

�; �

�

`

�

e

0

: �

� `

�

let(�; e

0

): �

dom(�

�

) = dom(�)

(l)

� `

�

l: ref�

�(l) = � (new)

� `

�

e: �

� `

�

new(e):M(ref�)

(get)

� `

�

e: ref�

� `

�

get(e):M�

(set)

� `

�

e

2

: � � `

�

e

1

: ref�

� `

�

set(e

1

; e

2

):M(ref�)

(reord)

f� `

�

e: � j e = o(X) ^ � = �(X)g

� `

�

fog: f�g

dom(�) = dom(o)

(selet)

� `

�

e: f�g

� `

�

e:X: �

� = �(X) (doall)

� `

�

e: [;; �℄

� `

�

doall(e):Mf�g

(mixin)

f�; �

1

; �

2

`

�

e: � j (X = e) 2 � ^ � = �

0

(X)g

f�; �

1

; �

2

`

�

e:M� j (X (e) 2 � ^ � = �

0

(X)g

f�; �

1

; �

2

`

�

e: � j (x = e) 2 � ^ � = �

2

(x)g

f�; �

1

; �

2

`

�

e:M� j (x(e) 2 � ^ � = �

2

(x)g

� `

�

[�; �℄: [�; �

0

℄

img(�) = dom(�)

�

1

�

= � Æ �

DN(�) = dom(�

0

)

DV(�) = dom(�

2

)

(sum)

� `

�

e

1

: [�

1

; �

0

1

℄ � `

�

e

2

: [�

2

; �

0

2

℄

� `

�

e

1

+ e

2

: [�

1

; �

2

; �

0

1

; �

0

2

℄

�

1

ompatible with �

2

dom(�

0

1

) \ dom(�

0

2

) = ;

(freeze)

� `

�

e: [�; �

0

℄

� `

�

e!X: [� nX; �

0

℄

�(X) = �

0

(X)

(delete)

� `

�

e: [�; �

0

℄

� `

�

e nX: [�; �

0

nX℄

X 2 dom(�

0

)

Table 1. Type system

6

[� ; �

0

℄. Table 1 gives the typing rules for deriving judgments of the form � `

�

e: � , whih mean

\e is a well-typed term of type � in � and �", where � :Var

fin

! T is a type assignment, and

�: L

fin

! T is a signature for loations. The type system enjoys the usual properties of weakening

(w.r.t. � and �) and substitution.

3.1 Simpli�ation

We de�ne a onuent relation on terms (and other syntati ategories), alled simpli�ation, whih

indues a ongruene on terms. There is no need to de�ne a deterministi simpli�ation strategy,

sine omputational e�ets (in our ase they amount to store hanges) are insensitive to further

simpli�ation (see Theorem 1). Simpli�ation e

1

> e

2

is the ompatible relation on E indued

by the rewrite rules in Table 2.

(R) fog:X > e provided e = o(X)

(L) let(�; e) > efx: let(�; �(x))jx 2 dom(�)g

(S) [�

1

; �

1

℄ + [�

2

; �

2

℄ > [�

1

; �

2

; �

1

; �

2

℄ provided [�

1

; �

2

; �

1

; �

2

℄ is well-formed, i.e.

� DN(�

1

) \ DN(�

2

) = DV(�

1

) \ DV(�

2

) = dom(�

1

; �

2

) \ DV(�

1

; �

2

) = ;

� �

1

; �

2

is an injetion (therefore �

1

is ompatible with �

2

)

� FV(�

1

) \ (dom(�

2

) [DV(�

2

)) = FV(�

2

) \ (dom(�

1

) [DV(�

1

)) = ;

(F) [�; x:X; �;X C e;�

0

℄!X > [�; �; xC e;X = x;�

0

℄

(D) [�; �;X C e;�

0

℄ nX > [�; �;�

0

℄

(A) doall([;; �℄) > mdo (j�j; retfo

1

; o

2

g)fx: let(�;x)jx 2 dom(�)g where

� � = fx: ej(x = e) 2 �g

� o

1

= fX: ej(X = e) 2 �g, o

2

= fX: x

X

jX (e 2 �g with x

X

freshly hosen

� j�j is de�ned by indution on � as follows:

� j;j = ;

� j(�;X = e)j = j(�; x = e)j = j�j

� j(�;X (e)j = j�j; x

X

(e

� j(�; x(e)j = j�j; x(e

Table 2. Simpli�ation rules

In mixin sum (S), deferred omponents an be shared whereas for the other omponents disjoint

union is performed (reall example 2 in Setion 2). Note that, exept for DN(�

1

) \ DN(�

2

), all

other onditions an be satis�ed by an appropriate �-onversion. The last ondition avoids apture

of free variables.

In (F), like in example 3, the deferred omponent X an be frozen only if X is also de�ned; then,

the deferred omponent x:X is deleted and the loal omponent x C e is inserted, whih means

either x (e if X is de�ned by X (e, or x = e if X is de�ned by X = e. Furthermore X C e is

transformed into X = x sine if X is omputational, then e must be evaluated only one

2

.

In (D), the de�ned omponent is simply removed, as in example 4.

Rule (A) expresses doall in terms of mdo: �rst, all omputational omponents are evaluated aord-

ing to the order given in the mixin (reall example 5), then a reord value is returned ontaining

both the non omputational (o

1

) and the omputational de�ned omponents (o

2

) of the mixin;

substitution of the non omputational loal omponents (�) is needed in order to avoid variables to

2

For simpliity, this transformation is always applied, even though is really needed only when X is

omputational.

7

esape from their sope (the let onstrut is used beause loal variables an be mutually reursive).

Finally, note that eah omputational de�ned omponent X (e is transformed into X = x

X

, with

x

X

freshly hosen variable, beause e must be evaluated only one.

Simpli�ation enjoys the Churh Rosser and Subjet Redution properties.

Proposition 1 (CR for >). The relation > is onuent.

Proof. The simpli�ation rules are left-linear and non-overlapping. ut

Proposition 2 (SR for >). If � `

�

e: � and e > e

0

, then � `

�

e

0

: � .

Proof. By ase analysis on the simpli�ation rules. ut

3.2 Computation

We now de�ne on�gurations Id 2 Conf, that represent snapshots of the exeution of a program,

and the omputation relation > (see Table 3), that desribes how program exeution evolves.

Over these on�gurations we give an operational semantis that ensures the orret sequening of

omputational e�ets, by adopting some well-established tehnique for speifying the operational

semantis of programming languages (see [WF94℄).

{ Stores � 2 S

�

= L

fin

! E map loations to their ontent.

{ Evaluation Contexts E 2 EC: : = � j E[mdo (x(�; �; e)℄ for terms of omputational type.

{ A on�guration (�; e; E) 2 Conf

�

= S� E� EC is a snapshot of the exeution of a program:

� is the urrent store, e is the program fragment under onsideration and E is the evaluation

ontext for e.

{ Bad terms b are terms that are stuk beause they depend on a variable

b 2 BE: : = x j b:X j b+ e j e+ b j b!X j b nX j doall(b) j get(b) j set(b; e)

{ Computational Redexes r are terms that enable omputation (with no need for simpli�ation);

when r is a bad term, we raise a run-time error.

r 2 R: : = mdo (�; e) j ret(e) j new(e) j get(l) j set(l; e) j b

De�nition 1. The sets CV(E) and FV(E) of aptured and free variables are

{ CV(�)

�

= FV(�)

�

= ;

{ CV(E[mdo (x(�; �; e)℄)

�

= CV(E) [fxg [DV(�) and

FV(E[mdo (x(�; �; e)℄)

�

= FV(E) [(FV(�; e) n CV(E[mdo (x(�; �; e)℄))

Rules for monadi binding deserve some explanations. Rule (M.0) deals with the speial ase

of empty binding; rule (M.1) starts the omputation when the binding is not empty: the �rst

expression of the binding is evaluated and renaming is needed in order to avoid lashes due to

nested monadi bindings; rule (M.2) ompletes the omputation of the binding variables: when the

last variable has been omputed, it an be substituted with its \value" (the let onstrut is used

beause of mutual reursion) in both the store and the body of mdo whih now an be evaluated;

�nally, (M.3) is used for ontinuing the omputation by onsidering the next binding variable and

is similar to (M.2).

8

Completion step

(done) (�; ret(e);�) > done

Reursive monadi binding steps

(M.0) (�;mdo (;; e) ; E) > (�; e; E)

(M.1) (�;mdo (x

1

(e

1

; �; e) ; E) > (�; e

1

; E[mdo (x

1

(�; �; e)℄)

with the variables in DV(x

1

(e

1

; �) renamed to avoid lashes with CV(E)

(M.2) (�; ret(e

1

); E[mdo (x

1

(�; e)℄) > (�f�g; ef�g; E) where �

�

= fx

1

: let(x

1

: e

1

;x

1

)g

(M.3) (�; ret(e

1

); E[mdo (x

1

(�; x

2

(e

2

; �; e)℄) >

(�f�g; e

2

f�g; E[mdo (x

2

(�; �; e)f�g℄) where �

�

= fx

1

: let(x

1

: e

1

; x

1

)g

Imperative steps

(I.1) (�; new(e); E) > (�fl: eg; ret(l); E) where l 62 dom(�)

(I.2) (�; get(l); E) > (�; ret(e); E) provided e = �(l)

(I.3) (�; set(l; e); E) > (�fl: eg; ret(l); E) provided l 2 dom(�)

Error step aused by a bad term

(err) (�; b; E) > err

Table 3. Computation Relation

The onuent simpli�ation relation > on terms extends in the obvious way to a onuent

relation (still denoted >) on stores, evaluation ontexts, omputational redexes and on�gu-

rations.

A omplete program orresponds to a losed term e 2 E

0

(with no ourrenes of loations l), and

its evaluation starts from the initial on�guration (;; e;�). The following properties ensure that

only losed on�gurations are reahable (by > and > steps) from the initial one.

Lemma 1.

1. If (�; e; E) > (�

0

; e

0

; E

0

), then dom(�) = dom(�

0

), CV(E) = CV(E

0

),

FV(�

0

) � FV(�), FV(e

0

) � FV(e) and FV(E

0

) � FV(E).

2. If (�; e; E) > (�

0

; e

0

; E

0

) and FV(e; �) � CV(E) and FV(E) = ;, then

FV(e

0

; �

0

) � CV(E

0

), FV(E

0

) = ; and dom(�) � dom(�

0

).

Bad terms and omputational redexes are losed w.r.t. simpli�ation.

Lemma 2. If b > e, then e 2 BE. If r > e, then e 2 R.

When the program fragment under onsideration is a omputational redex, it is irrelevant whether

simpli�ation is done before or after a step of omputation.

Theorem 1 (Bisimulation). If (�

1

; r

1

; E

1

)

�

> (�

2

; r

2

; E

2

), then

1. (�

1

; r

1

; E

1

) > Id

1

implies 9Id

2

s.t. (�

2

; r

2

; E

2

) > Id

2

and Id

1

�

> Id

2

2. (�

2

; r

2

; E

2

) > Id

2

implies 9Id

1

s.t. (�

1

; r

1

; E

1

) > Id

1

and Id

1

�

> Id

2

where Id

1

and Id

2

range over Conf [fdone; errg.

Proof. An equivalent statement, but easier to prove, is obtained by replaing

�

> with one-step

parallel redution. A key observation for proving the bisimulation result is that simpli�ation applied

to a omputational redex r and an evaluation ontext E does not hange the relevant struture (of

r and E) for determining the omputation step among those in Table 3. ut

9

3.3 Type safety

We go through the proof of type safety for CMS

do

. The result is standard, but we make some

adjustments to the Subjet Redution and Progress properties for ===)

�

= > [> , in

order to stress the di�erent role of simpli�ation > and omputation > . First of all, we

de�ne well-formedness for evaluation ontexts �;�:M� `

�

E:M�

0

(in Table 4) and on�gurations

� `

�

(�; e; E).

(�)

;;�:M� `

�

�:M�

(mdo)

f�; x

1

: �

1

; �

�

`

�

e

0

:M�

0

j (x

0

(e

0

) 2 � ^ �

0

= �

�

(x

0

)g

�; x

1

: �

1

; �

�

`

�

e:M�

2

�;�:M�

2

`

�

E:M�

�; x

1

: �

1

; �

�

;�:M�

1

`

�

E[mdo (x

1

(�; �; e)℄:M�

dom(�

�

) = DV(�)

Table 4. Well-formed evaluation ontexts

De�nition 2 (Well-formed on�gurations). � `

�

(�; e; E)

�

()

{ dom(�) = dom(�) and dom(�) = CV(E);

{ �(l) = e

l

and �(l) = �

l

imply � `

�

e

l

: �

l

;

{ exists � suh that � `

�

e:M� derivable;

{ exists �

0

suh that �;�:M� `

�

E:M�

0

derivable (see Table 4).

The formation rules of Table 4 for deriving �;�:M� `

�

E:M�

0

ensure that

{ � assigns a type to all aptured variables of E, indeed dom(�) = CV(E);

{ E has no free variables and annot apture a variable x twie.

Proposition 3 (SR).

1. If � `

�

(�; e; E) and (�; e; E) > (�

0

; e

0

; E

0

), then � `

�

(�

0

; e

0

; E

0

).

2. If � `

�

(�; e; E) and (�; e; E) > (�

0

; e

0

; E

0

), then

there exist �

0

� � and �

0

ompatible with � suh that �

0

`

�

0

(�

0

; e

0

; E

0

).

Theorem 2 (Progress). If � `

�

(�; e; E), then one of the following ases holds

1. e 2 R and (�; e; E) > , or

2. e 62 R and e >

Proof. See the Appendix.

4 Related Work

The notion of mixin module was �rstly introdued in Braha's PhD thesis [Bra92℄ as a generaliza-

tion of the notion of mixin lass (see for instane [BC90℄). The semantis of the mixin language in

[Bra92℄ is based on the early work on denotational semantis of inheritane [Coo89,Red88℄ and is

de�ned by a translation into an untyped �-alulus equipped with a �xpoint operator and a rather

10

rih set of reord operators. Furthermore, imperative features are only marginally onsidered by

impliitly using the tehnique developed in [Hen93℄ for extending the semantis of inheritane given

in [Coo89,Red88℄ to objet-oriented languages with state.

After this pioneer work, some proposals for extending existing languages with a system of mixin

modules were onsidered: [DS96℄ and [FF98a,FF98b℄ go in this diretion; however, imperative

features are not onsidered and reursion problems are solved by separating initialization from

omponent de�nition.

The �rst aluli based on the notion of mixin modules appeared in [AZ99,AZ02℄ and then in

[WV00,MT00℄, but all of them are de�ned in a purely funtional setting. More reently, [HL02℄

has onsidered a CMS-like alulus, alled CMS

v

, with a re�ned type system in order to avoid

bad reursion in a all-by-value setting. A separate ompilation shema for CMS

v

has been also

investigated by means of a translation down to a all-by-value �-alulus �

B

extended with a

non-standard let re onstrut, inspired by the alulus de�ned in [Bou02℄.

Like CMS

do

, both �

B

and the alulus of Boudol serve as semanti basis for programming lan-

guages supporting mixins and introdue non-standard onstruts for reursion whih an produe

terms having an unde�ned semantis. However, �

B

does not have imperative features, whereas

the alulus in [Bou02℄ does not allow reursion in the presene of side-e�ets. For instane, in

CMS

do

the term mdo (x(new(x); ret(x)) has a well-de�ned semantis, whereas the orresponding

translated term let re x = ref x in x in Boudol's alulus is not well-typed; indeed, the evaluation

of this term gets stuk. Another advantage of our approah is that the separation of onerns made

possible by the monadi metalanguage allows us to retain the equational reasoning of CMS.

On the other hand, the more re�ned type systems adopted in [HL02,Bou02℄ are able to statially

detet all bad reursive delarations.

As already mentioned, the de�nition of the mdo onstrut in CMS

do

is inspired by the work on the

semantis of reursive monadi bindings in Haskell [EL00,ELM01,ELM02,EL02℄. Our semantis

is partly related to that in [ELM01℄, however the notion of heap in our alulus has been made

impliit (thanks to the let re onstrut), sine we are interested in a more abstrat approah;

and furthermore, the reursive do in [EL02℄ does not perform an inremental binding as happens

in our semantis, but rather all values are bound to the orresponding variables only after all

omputations in the reursive monadi binding have been evaluated.

5 Conlusion and Future Work

We have de�ned CMS

do

, a monadi mixin alulus in whih mixin modules an ontain omponents

of three kinds: de�ned (bound to an expression), deferred (delared but not yet de�ned) and

omputational (bound to a omputation whih must be performed before atually using the module

for omponent seletion). Mixin modules an be ombined by the sum, freeze and restrit operators

of CMS; moreover, a doall operator triggers all the omputations in a mixin module.

We have provided a simple type system for the language, a simpli�ation relation de�ned by loal

rewrite rules with no side-e�ets (satisfying the CR and SR properties), and a omputation relation

whih models global evaluation able to modify the store (satisfying the SR property). Moreover,

we have stated a bisimulation result (simpli�ation does not a�et omputation steps) and the

progress property for the ombined relation; however, errors due to bad reursive delarations are

only dynamially deteted, sine here we have preferred to keep a simple type system.

We envisage at least two possibilities whih deserve investigation in the diretion of de�ning more

re�ned type systems. First, the dynami errors due to bad reursive delarations mentioned above

ould be deteted by introduing a type system similar to that in [HL02,Bou02℄ keeping expliit

trae of dependenies between the evaluation of two omputational omponents. On a di�erent side,

a type system distinguishing between modules possibly ontaining some omputational omponents

11

(or variables) and those with no omputational omponents (and variables), would allow seletion

on CMS mixins, so that CMS ould be more diretly embedded into CMS

do

.

For what onerns appliations, CMS

do

an be onsidered a powerful kernel alulus allowing to

express, on one side, a variety of di�erent operators for ombination of software modules (in-

luding linking, parameterized modules as ML funtors, overriding in the sense of objet-oriented

languages, see [AZ02℄ for details), on the other side di�erent hoies in the evaluation of ompu-

tations. In partiular, we mention at least two relevant senarios of appliation: the modeling of

objet-oriented features, inluding the di�erene between omputations whih must be performed

before instantiating a lass, as �eld initializers, and omputations whih are evaluated eah time

they are seleted, as methods; and the possibility of expressing di�erent poliies for dynami linking

and veri�ation.

Referenes

[AZ99℄ D. Anona and E. Zua. A primitive alulus for module systems. In G. Nadathur, editor,

Priniples and Pratie of Delarative Programming, 1999, number 1702 in Leture Notes in

Computer Siene, pages 62{79. Springer Verlag, 1999.

[AZ02℄ D. Anona and E. Zua. A alulus of module systems. Journal of Funtional Programming,

12(2):91{132, Marh 2002.

[BC90℄ G. Braha and W. Cook. Mixin-based inheritane. In Pro. of the Joint ACM Conf. on Objet-

Oriented Programming, Systems, Languages and Appliations and the European Conferene on

Objet-Oriented Programming, Otober 1990.

[Bou02℄ G. Boudol. The reursive reord semantis of objets revisited. To appear in Journal of Funtional

Programming, 2002.

[Bra92℄ G. Braha. The Programming Language JIGSAW: Mixins, Modularity and Multiple Inheritane.

PhD thesis, Department of Comp. Si., Univ. of Utah, 1992.

[Coo89℄ W.R. Cook. A Denotational Semantis of Inheritane. PhD thesis, Dept. of Computer Siene,

Brown University, 1989.

[DS96℄ D. Duggan and C. Sourelis. Mixin modules. In Intl. Conf. on Funtional Programming, Philadel-

phia, May 1996. ACM Press.

[EL00℄ L. Erk�ok and J. Launhbury. Reursive monadi bindings. In Intl. Conf. on Funtional Program-

ming 2000, pages 174{185, 2000.

[EL02℄ L. Erk�ok and J. Launhbury. A reursive do for Haskell. In Haskell Workshop'02, pages 29{37,

2002.

[ELM01℄ L. Erk�ok, J. Launhbury, and A. Moran. Semantis of fixIO. In FICS'01, 2001.

[ELM02℄ L. Erk�ok, J. Launhbury, and A. Moran. Semantis of value reursion for monadi input/output.

Journal of Theoretial Informatis and Appliations, 36(2):155{180, 2002.

[FF98a℄ R.B. Findler and M. Flatt. Modular objet-oriented programming with units and mixins. In Intl.

Conf. on Funtional Programming 1998, September 1998.

[FF98b℄ M. Flatt and M. Felleisen. Units: Cool modules for HOT languages. In PLDI'98 - ACM Conf.

on Programming Language Design and Implementation, pages 236{248, 1998.

[Hen93℄ A. V. Hense. Denotational semantis of an objet-oriented programming language with expliit

wrappers. Formal Aspets of Computing, 5(3):181{207, 1993.

[HL94℄ R. Harper and M. Lillibridge. A type-theoreti approah to higher-order modules with sharing.

In Conferene reord of POPL '94: 21st ACM SIGPLAN-SIGACT Symposium on Priniples of

Programming Languages, pages 123{137, 1994.

[HL02℄ T. Hirshowitz and X. Leroy. Mixin modules in a all-by-value setting. In D. Le M�etayer, editor,

ESOP 2002 - Programming Languages and Systems, number 2305 in Leture Notes in Computer

Siene, pages 6{20. Springer Verlag, 2002.

[Ler94℄ X. Leroy. Manifest types, modules and separate ompilation. In Pro. 21st ACM Symp. on

Priniples of Programming Languages, pages 109{122. ACM Press, 1994.

12

[MF03℄ E. Moggi and S. Fagorzi. A Monadi Multi-stage Metalanguage. In A.D. Gordon, editor, Founda-

tions of Software Siene and Computational Strutures - FOSSACS 2003, volume 2620 of LNCS,

pages 358{374. Springer Verlag, 2003.

[MT00℄ E. Mahkasova and F.A. Turbak. A alulus for link-time ompilation. In G. Smolka, editor,

ESOP 2000 - Programming Languages and Systems, number 1782 in Leture Notes in Computer

Siene, pages 260{274, Berlin, 2000. Springer Verlag.

[Red88℄ U. S. Reddy. Objets as losures: Abstrat semantis of objet-oriented languages. In Pro. ACM

Conf. on Lisp and Funtional Programming, pages 289{297, 1988.

[WF94℄ Andrew K. Wright and Matthias Felleisen. A syntati approah to type soundness. Information

and Computation, 115(1):38{94, 1994.

[WV00℄ J.B. Wells and R. Vestergaard. Equational reasoning for linking with �rst-lass primitive modules.

In G. Smolka, editor, ESOP 2000 - Programming Languages and Systems, number 1782 in Leture

Notes in Computer Siene, pages 412{428, Berlin, 2000. Springer Verlag.

A Auxiliary funtions

De�nition 3. We de�ne the set FV() of free variables, and (for �, � and D) the sets DV() and

DN() of de�ned variables and de�ned omponent names:

e 2 E FV() �

fin

Var

x fxg

l ;

ret(e) j new(e) j get(e)

doall(e) j e:X j e!X j e nX

FV(e)

set(e

1

; e

2

)

e

1

+ e

2

FV(e

1

) [FV(e

2

)

mdo (�; e) (FV(�) [FV(e)) nDV(�)

let(�; e) (FV(�) [FV(e)) n dom(�)

fog FV(o)

[�; �℄ FV(�) n (DV(�) [dom(�))

where FV(f)

�

= [fFV(f(a))ja 2 dom(f)g when f :A

fin

! E

D=�=� FV() �

fin

Var DV() �

fin

Var DN() �

fin

Name

X C e FV(e) ; fXg

xC e FV(e) fxg ;

; ; ; ;

�;D FV(�) [FV(D) DV(�) [DV(D) DN(�) [DN(D)

�; x(e FV(�) [FV(e) DV(�) [fxg ;

B Progress theorem: sketh of proof

The proof uses the following Lemma.

Lemma 3. If � `

�

e: � and e is a > -normal form, then

{ � �M�

0

implies e 2 R

{ � � ref�

0

implies e: : = l j b

{ � � f�g implies e: : = fog j b

13

{ � � [� ; �

0

℄ implies e: : = [�; �℄ j b

Proof. Indution on the derivation of � `

�

e: � .

The base ases are: x, ret(e), mdo (�; e), l, fog, [�; �℄ and new(e).

The indutive steps are: e:X , get(e), set(e

1

; e

2

), e

1

+ e

2

, e!X , e nX and doall(e).

The ase let(�; e) is impossible, sine it is never in > -normal form. ut

Progress theorem (sketh or proof). If e 2 R, then (�; e; E) > , in partiular when e is

get(l) or set(l; e

0

), we have that l 2 dom(�), beause the on�guration is well-formed.

When e 62 R, then e annot be in > -normal form, otherwise (by Lemma 3) we get a ontra-

dition with � `

�

e:M� . ut

14

