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Abstra
t. We de�ne a 
al
ulus for investigating the intera
tions between mixin modules

and 
omputational e�e
ts, by 
ombining the purely fun
tional mixin 
al
ulus CMS with a

monadi
 metalanguage supporting the two separate notions of simpli�
ation (lo
al rewrite

rules) and 
omputation (global evaluation able to modify the store). This distin
tion is

important for smoothly integrating the CMS rules (whi
h are all lo
al) with the rules dealing

with the imperative features.

In our 
al
ulus mixins 
an 
ontain mutually re
ursive 
omputational 
omponents whi
h are

expli
itly 
omputed by means of a new mixin operator whose semanti
s is de�ned in terms of

a Haskell-like re
ursive monadi
 binding. Sin
e we mainly fo
us on the operational aspe
ts,

we adopt a simple type system like that for Haskell, that does not dete
t dynami
 errors

related to bad re
ursive de
larations involving e�e
ts. The 
al
ulus serves as a formal basis

for de�ning the semanti
s of imperative programming languages supporting �rst 
lass mixins

while preserving the CMS equational reasoning.

1 Introdu
tion

Mixin modules (or simply mixins) are modules supporting parameterization, 
ross-module re
ur-

sion and overriding with late binding ; these three features altogether make mixin module systems

a valuable tool for promoting software reuse and in
remental programming [AZ02℄. As a 
onse-

quen
e, there have been several proposals for extending existing languages with mixins; however,

even though there already exist some prototype implementations of su
h extensions (see, e.g.,

[FF98a,FF98b,HL02℄), there are still several problems to be solved in order to fully and smoothly

integrate mixins with all the other features of a real language. For instan
e, in the presen
e of store

manipulation primitives, expressions inside mixins 
an have side-e�e
ts, but this possibility raises

some semanti
 issues:

{ be
ause of side-e�e
ts, the evaluation order of 
omponents inside a mixin must be deterministi
,

while still retaining 
ross-module-re
ursion;

{ when 
omputations inside a mixin must be evaluated and how many times?

Unfortunately, all formalizations de�ned so far [AZ99,AZ02,MT00,WV00℄ do not 
onsider these

issues, sin
e they only model mixins in purely fun
tional settings.

In this paper we propose a monadi
 mixin 
al
ulus, 
alled CMS

do

, for studying the intera
tion

between the notions of mixin and store. More pre
isely, this 
al
ulus should serve as a formal basis

both for de�ning the semanti
s of imperative programming languages supporting mixins and for

allowing equational reasoning.

Our approa
h 
onsists in 
ombining the purely fun
tional mixin 
al
ulus CMS [AZ99,AZ02℄ with a

monadi
 metalanguage [MF03℄ equipped with a Haskell-like re
ursive monadi
 binding [EL00,EL02℄

and supporting the two separate notions of simpli�
ation and 
omputation, the former 
orrespond-

ing to lo
al rewriting with no side-e�e
ts, the latter to global evaluation steps able to modify

?
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the store. This distin
tion is important for smoothly integrating the CMS rules (whi
h are all

lo
al) with the rules dealing with the imperative features; furthermore, sin
e simpli�
ation is a


ongruen
e, all CMS equations (ex
ept those related to sele
tion) hold in CMS

do

.

In CMS

do

a mixin 
an 
ontain, besides the usual CMS de�nitions, also 
omputational de�nitions of

the form x( e, where e has monadi
 type. The (simpli�
ation) rules for the standard operators on

mixins 
oin
ide with those given for CMS. However, before sele
ting 
omponents from a mixin, this

must be transformed into a re
ord. The transformation of a mixin (without deferred 
omponents)

into a re
ord is triggered by the doall primitive, and 
onsists in

{ evaluating 
omputational de�nitions x

i

( e

i

in the order they are de
lared;

{ binding the value returned by e

i

to x

i

immediately, to make it available to the subsequent


omputations e

j

with j > i.

Mutual re
ursion has the following informal semanti
s: if i � j, then e

i


an depend on the variable

x

j

, provided that the 
omputation e

i


an be su

essfully performed without knowing the value

of e

j

(whi
h is bound to x

j

only later). Formally, the semanti
s of doall is expressed in terms

of a re
ursive monadi
 binding, similar to that de�ned in [EL00,EL02℄, and a standard re
ursive

let-binding.

Sin
e the emphasis of the paper is on the operational aspe
ts, we adopt a simple type system like

that for Haskell, that does not dete
t dynami
 errors related to bad re
ursive de
larations; for

instan
e, doall([; x ( set(y; 1); y ( new(0)℄) is a well-typed term whi
h evaluates into a dynami


error. However, more re�ned type systems based on dependen
ies analysis [Bou02,HL02℄ 
ould be


onsidered for CMS

do

in order to avoid this kind of dynami
 errors.

Summary. The rest of the paper is organized as follows. In Se
tion 2 we illustrate the main features

of the original CMS 
al
ulus and introdu
e the new CMS

do


al
ulus through some examples. In

Se
tion 3 we formally de�ne the syntax of the 
al
ulus, the type system and the two relations of

simpli�
ation and 
omputation. We also prove standard te
hni
al results, in
luding a bisimulation

result (simpli�
ation does not a�e
t 
omputation steps) and the progress property for the 
ombined

relation. In Se
tion 4 we dis
uss related work and in Se
tion 5 we summarize the 
ontribution of

the paper and draw some further resear
h dire
tions.

2 An Overview of the Cal
ulus

In this se
tion we give an overview of the CMS

do


al
ulus by means of some examples written in

a more user-friendly syntax.

Like in CMS , a CMS

do

basi
 mixin module 
onsists of de�ned and lo
al 
omponents, bound to an

expression, and deferred 
omponents, de
lared but not yet de�ned.

Example 1. For instan
e,

M1 = mix import N2 as x, (* deferred *)

export N1 = e1[x,y℄, (* defined *)

lo
al y = e2[x,y℄ (* lo
al *)

end

denotes a mixin with one deferred, one de�ned and one lo
al

1


omponent, where e1[x,y℄ and

e2[x,y℄ denote two arbitrary expressions possibly 
ontaining the two free variables x and y.

Deferred 
omponents are asso
iated with both a 
omponent name (as N2) and a variable (as x);

1

Note that deferred, de�ned and lo
al 
omponents 
an be de
lared in any order; in parti
ular, de�nitions

of de�ned and lo
al 
omponents 
an be interleaved.
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omponent names are used for external referen
ing of deferred and de�ned 
omponents but they

are not expressions, while variables are used for a

essing deferred and lo
al 
omponents inside

mixins (for further details on the separation between variables and 
omponent names see [Ler94℄,

[HL94℄, [AZ02℄ ). Lo
al 
omponents are not visible from the outside and 
an be mutually re
ursive.

Besides this 
onstru
t, CMS

do

provides four operations on mixins: sum, freeze, delete (inherited

from CMS ) and doall .

Example 2. Two mixins 
an be 
ombined by the sum operation, whi
h performs the union of

the deferred 
omponents (in the sense that 
omponents with the same name are shared), and

the disjoint union of the de�ned and lo
al 
omponents of the two mixins. However, while de�ned


omponents must be disjoint be
ause 
lashes are not allowed by the type system, the disjoint union

of lo
al 
omponents 
an be always performed by renaming variables.

M2 = mix import N1 as x,

export N2 = e3[x,y℄,

lo
al y = e4[x,y℄

end

M3 = M1 + M2

Module M3 simpli�es to

mix import N2 as x1, N1 as x2,

export N1 = e1[x1,y1℄,

lo
al y1 = e2[x1,y1℄,

export N2 = e3[x2,y2℄,

lo
al y2 = e4[x2,y2℄

end

The sum operation supports 
ross-module re
ursion; in module M3, the de�nition of N2, whi
h is

needed by M1, is provided by M2, whereas the de�nition of N1, whi
h is needed by M2, is provided

by M1. However, in CMS

do


omponent sele
tion is permitted only if the module has no deferred


omponents, therefore the de�ned 
omponents of M3 
annot be sele
ted even though the deferred


omponents of M3 (N1 and N2) are also among the de�ned ones.

Example 3. The freeze operation 
onne
ts deferred and de�ned 
omponents having the same name

inside a mixin; in other words, it is used for resolving \external names", so that a deferred 
om-

ponent be
omes lo
al.

For instan
e, in (mix import N as x export N = e1[x,y℄ lo
al y = e2[x,y℄) ! N the deferred 
om-

ponent N has been e�e
tively bound to the 
orresponding de�ned 
omponent by freezing it, ob-

taining the following simpli�ed expression:

mix lo
al x = e1[x,y℄, export N = x, lo
al y = e2[x,y℄ end

Example 4. The delete operation is used for hiding de�ned 
omponents:

(mix import N as x, export N = e1[x,y℄, lo
al y = e2[x,y℄) \ N

simpli�es to

mix import N as x, lo
al y = e2[x,y℄ end

So far the 
al
ulus is very similar to the pure fun
tional 
al
ulus CMS de�ned in [AZ02℄; its

primitive operations 
an be used for expressing a variety of 
onvenient 
onstru
ts supporting


ross-module re
ursion and overriding with late binding.

For instan
e, M6 = (((M3 \ N2) + mix export N2 = e[℄ end) ! N1) ! N2 
orresponds to de
lare a

new mixin obtained from M3 by overriding 
omponent N2; sin
e N2 in M3 is both deferred and

3



de�ned, the de�nition of 
omponent N2 in M6 depends on the new de�nition of N2 in M6 rather than

on that in M3 (late binding). We refer to [AZ02℄ for more details on this.

In addition to the CMS operations and 
onstru
ts presented above, CMS

do

provides a new kind of

mixin 
omponent 
alled 
omputational , a new mixin operation doall to deal with 
omputational


omponents, the usual primitives on the store, and the monadi
 
onstru
ts mdo (re
ursive do) and

ret (embedding of values into 
omputations).

Example 5. Let us 
onsider the following mixin de�nition:

CM1 = mix lo
al l <= new(x-2), x = 4,

export In
 = mdo v <= get(l) in set(l,v+3), Val <= get(l)

end

The lo
al 
omponent l and the de�ned 
omponent Val has been de�ned via <= (rather than =)

and are 
alled 
omputational.

Evaluation of 
omputational 
omponents like l and Val 
an be performed only on
e by means of

the doall operation (see below), provided that there are no deferred 
omponents (as in this 
ase);

furthermore, sele
tion of the de�ned 
omponents of CM1 is possible only after l and Val have been

evaluated.

Note that In
 is not 
omputational, even though its asso
iated expression 
ontains e�e
ts, therefore

the doall operation does not 
ompute In
 (see below).

The 
omputation new(x-2) returns a fresh lo
ation 
ontaining the expression x-2, get(l) returns

the expression stored at the lo
ation l denoted by l and set(l,v+3) updates the store by assigning

v+3 to l and returns l. Note that new(e) and set(l,e) are \lazy", in the sense that they do not

evaluate the expression e.

Let us now 
onsider the expression doall(CM1); its evaluation returns a re
ord 
ontaining only

the de�ned 
omponents In
 and Val. As already explained, In
 is not evaluated, whereas Val

is 
omputed as follows. Sin
e we require the evaluation of 
omputational 
omponents to respe
t

the de
laration order, the expression asso
iated with l is 
omputed before that de�ning Val; on
e

the value of variable l is 
omputed it is made immediately available to the next 
omputational


omponent Val.

On the other hand, the 
omponent In
 (de�ned via =) is not 
omputed, but its asso
iated 
omputa-

tion is treated as a value of monadi
 type that 
an be evaluated with the mdo 
onstru
t. Therefore,

if l is the lo
ation generated by the evaluation of 
omponent l, then doall(CM1) evaluates to

the re
ord r={In
=mdo v<=get(l) in set(l,v+3), Val=2}, where 
omponent In
 
an be reeval-

uated several times, for instan
e, in the expression mdo l<=r.In
 in get(l) whi
h in
rements

the 
ontents of l and evaluates to 5. Finally, note that the order of 
omputational 
omponents

matters, while that of non-
omputational 
omponents, like x and In
 in CM1, does not.

Example 6. Computational 
omponents 
an be mutually re
ursive like in the following mixin.

CM2 = mix export Lo
1=l1, Lo
2=l2,

lo
al l1<=new(l2), l2<=new(l1)

end

The expression doall(CM2) evaluates to the re
ord {Lo
1=l

1

, Lo
2=l

2

} where l

1

and l

2

are two

lo
ations pointing two ea
h other. This is possible be
ause new(e) does not need to evaluate e.

On the other hand, evaluation of doall(mix lo
al x<=set(y,1), y<=new(0) end) 
auses an

error be
ause of bad re
ursive de
larations. In this 
ase the error 
ould be avoided by swapping x

and y, but reordering 
omputational 
omponents 
hanges the semanti
s.
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3 CMS

do

: a monadi
 mixin language

Before de�ning CMS

do

, we introdu
e some notations and 
onventions.

{ If s

1

and s

2

are two �nite sequen
es, then s

1

; s

2

denotes their 
on
atenation.

{ f :A

fin

! B means that f is a partial fun
tion from A to B with a �nite domain, written dom(f).

We write fa

i

: b

i

ji 2 Ig for the partial fun
tion mapping for all i 2 I a

i

to b

i

(where the a

i

must

be di�erent, i.e. a

i

= a

j

implies i = j). We use the following operations on partial fun
tions:

� ; is the everywhere unde�ned partial fun
tion;

� f and g are 
ompatible when f(x) = g(x) when x 2 dom(f) \ dom(g).

� f

1

; f

2

denotes the union of two 
ompatible partial fun
tions;

� ffa: bg denotes the update of f in a;

� f n a is the partial fun
tion g su
h that g(x)

�

=

�

f(x) if x 6= a

unde�ned otherwise

{

�

> denotes the re
exive and transitive 
losure of a binary relation > .

{ If E is a set of terms, then FV(e) is the set of free variables of e; E

0

is the set of e 2 E s.t.

FV(e) = ;; ef�g, with � a �nite partial fun
tion from a set of variables Var to E, denotes the

parallel substitution of all variables x 2 dom(�) with �(x) in e (modulo �-
onversion).

The syntax of CMS

do

de�nition is parametri
 in an in�nite set Name of 
omponent names X (for

re
ords and mixins), an in�nite set Var of variables x, and an in�nite set L of lo
ations l.

Terms e, re
ursive monadi
 bindings � and mixin bindings � are given by

e 2 E: : = x j fog j e:X j let(�; e) j ret(e) j mdo (�; e) j doall(e)

j l j new(e) j get(e) j set(e

1

; e

2

) j e

1

+ e

2

j e!X j e nX

j [�; �℄ with � inje
tive and dom(�) \ DV(�) = ;

�: : = ; j �; x( e with x 62 DV(�)

�: : = ; j �;D with DV(�) \ DV(D) = DN(�) \ DN(D) = ;

D: : = X C e j xC e with C either = or (

where o:Name

fin

! E, �:Var

fin

! E and �:Var

fin

! Name. Some produ
tions have side-
onditions,

the auxiliary fun
tions DV and DN return the set of variables and 
omponent names de�ned in a

sequen
e � of de�nitions, respe
tively. The formal de�nitions of the fun
tions DV, DN and FV are

given in De�nition 3 of the Appendix. The terms in
lude:

{ re
ords fog, where o is a partial fun
tion (sin
e the order of re
ord 
omponents is irrelevant),

and sele
tion e:X of a re
ord 
omponent;

{ re
ursive bindings let(�; e) and re
ursive monadi
 bindings mdo (�; e) of [EL00℄;

{ the operations on referen
es for allo
ation new(e), dereferen
ing get(e) and assignment set(e

1

; e

2

);

{ basi
 mixins [�; �℄ with deferred 
omponents �, and the operations of sum e

1

+e

2

, freezing e!X

and deletion e nX of a 
omponent (see [AZ02℄).

The basi
 di�eren
e between a re
ord fog and a mixin [;; �℄ without deferred 
omponents is that �

may have lo
al (re
ursive) de�nitions and 
omputational 
omponents. The operation doall([;; �℄)

denotes a 
omputation whi
h for
es evaluation of all 
omputational 
omponents in � (eliminates

lo
al de�nitions), and returns a re
ord. Sin
e 
omputations may have side-e�e
ts, the order of the

bindings in � (and �) matters.

Types are de�ned by � 2 T: : = : : : j M� j ref� j f�g j [� ; �

0

℄ where � :Name

fin

! T. The set

of types in
ludes 
omputational types M� , referen
e types, re
ord types f�g and mixin types

5



(var)

� `

�

x: �

� (x) = � (ret)

� `

�

e: �

� `

�

ret(e):M�

(mdo)

f�; �

�

`

�

e:M� j (x( e) 2 � ^ � = �

�

(x)g

�; �

�

`

�

e

0

:M�

0

� `

�

mdo (�; e

0

) :M�

0

dom(�

�

) = DV(�)

(let)

f�; �

�

`

�

e: � j e = �(x) ^ � = �

�

(x)g

�; �

�

`

�

e

0

: �

� `

�

let(�; e

0

): �

dom(�

�

) = dom(�)

(l)

� `

�

l: ref�

�(l) = � (new)

� `

�

e: �

� `

�

new(e):M(ref� )

(get)

� `

�

e: ref�

� `

�

get(e):M�

(set)

� `

�

e

2

: � � `

�

e

1

: ref�

� `

�

set(e

1

; e

2

):M(ref� )

(re
ord)

f� `

�

e: � j e = o(X) ^ � = �(X)g

� `

�

fog: f�g

dom(�) = dom(o)

(sele
t)

� `

�

e: f�g

� `

�

e:X: �

� = �(X) (doall)

� `

�

e: [;; �℄

� `

�

doall(e):Mf�g

(mixin)

f�; �

1

; �

2

`

�

e: � j (X = e) 2 � ^ � = �

0

(X)g

f�; �

1

; �

2

`

�

e:M� j (X ( e) 2 � ^ � = �

0

(X)g

f�; �

1

; �

2

`

�

e: � j (x = e) 2 � ^ � = �

2

(x)g

f�; �

1

; �

2

`

�

e:M� j (x( e) 2 � ^ � = �

2

(x)g

� `

�

[�; �℄: [�; �

0

℄

img(�) = dom(�)

�

1

�

= � Æ �

DN(�) = dom(�

0

)

DV(�) = dom(�

2

)

(sum)

� `

�

e

1

: [�

1

; �

0

1

℄ � `

�

e

2

: [�

2

; �

0

2

℄

� `

�

e

1

+ e

2

: [�

1

; �

2

; �

0

1

; �

0

2

℄

�

1


ompatible with �

2

dom(�

0

1

) \ dom(�

0

2

) = ;

(freeze)

� `

�

e: [�; �

0

℄

� `

�

e!X: [� nX; �

0

℄

�(X) = �

0

(X)

(delete)

� `

�

e: [�; �

0

℄

� `

�

e nX: [�; �

0

nX℄

X 2 dom(�

0

)

Table 1. Type system
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[� ; �

0

℄. Table 1 gives the typing rules for deriving judgments of the form � `

�

e: � , whi
h mean

\e is a well-typed term of type � in � and �", where � :Var

fin

! T is a type assignment, and

�: L

fin

! T is a signature for lo
ations. The type system enjoys the usual properties of weakening

(w.r.t. � and �) and substitution.

3.1 Simpli�
ation

We de�ne a 
on
uent relation on terms (and other synta
ti
 
ategories), 
alled simpli�
ation, whi
h

indu
es a 
ongruen
e on terms. There is no need to de�ne a deterministi
 simpli�
ation strategy,

sin
e 
omputational e�e
ts (in our 
ase they amount to store 
hanges) are insensitive to further

simpli�
ation (see Theorem 1). Simpli�
ation e

1

> e

2

is the 
ompatible relation on E indu
ed

by the rewrite rules in Table 2.

(R) fog:X > e provided e = o(X)

(L) let(�; e) > efx: let(�; �(x))jx 2 dom(�)g

(S) [�

1

; �

1

℄ + [�

2

; �

2

℄ > [�

1

; �

2

; �

1

; �

2

℄ provided [�

1

; �

2

; �

1

; �

2

℄ is well-formed, i.e.

� DN(�

1

) \ DN(�

2

) = DV(�

1

) \ DV(�

2

) = dom(�

1

; �

2

) \ DV(�

1

; �

2

) = ;

� �

1

; �

2

is an inje
tion (therefore �

1

is 
ompatible with �

2

)

� FV(�

1

) \ (dom(�

2

) [ DV(�

2

)) = FV(�

2

) \ (dom(�

1

) [ DV(�

1

)) = ;

(F) [�; x:X; �;X C e;�

0

℄!X > [�; �; xC e;X = x;�

0

℄

(D) [�; �;X C e;�

0

℄ nX > [�; �;�

0

℄

(A) doall([;; �℄) > mdo (j�j; retfo

1

; o

2

g)fx: let(�;x)jx 2 dom(�)g where

� � = fx: ej(x = e) 2 �g

� o

1

= fX: ej(X = e) 2 �g, o

2

= fX: x

X

jX ( e 2 �g with x

X

freshly 
hosen

� j�j is de�ned by indu
tion on � as follows:

� j;j = ;

� j(�;X = e)j = j(�; x = e)j = j�j

� j(�;X ( e)j = j�j; x

X

( e

� j(�; x( e)j = j�j; x( e

Table 2. Simpli�
ation rules

In mixin sum (S), deferred 
omponents 
an be shared whereas for the other 
omponents disjoint

union is performed (re
all example 2 in Se
tion 2). Note that, ex
ept for DN(�

1

) \ DN(�

2

), all

other 
onditions 
an be satis�ed by an appropriate �-
onversion. The last 
ondition avoids 
apture

of free variables.

In (F), like in example 3, the deferred 
omponent X 
an be frozen only if X is also de�ned; then,

the deferred 
omponent x:X is deleted and the lo
al 
omponent x C e is inserted, whi
h means

either x ( e if X is de�ned by X ( e, or x = e if X is de�ned by X = e. Furthermore X C e is

transformed into X = x sin
e if X is 
omputational, then e must be evaluated only on
e

2

.

In (D), the de�ned 
omponent is simply removed, as in example 4.

Rule (A) expresses doall in terms of mdo: �rst, all 
omputational 
omponents are evaluated a

ord-

ing to the order given in the mixin (re
all example 5), then a re
ord value is returned 
ontaining

both the non 
omputational (o

1

) and the 
omputational de�ned 
omponents (o

2

) of the mixin;

substitution of the non 
omputational lo
al 
omponents (�) is needed in order to avoid variables to

2

For simpli
ity, this transformation is always applied, even though is really needed only when X is


omputational.
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es
ape from their s
ope (the let 
onstru
t is used be
ause lo
al variables 
an be mutually re
ursive).

Finally, note that ea
h 
omputational de�ned 
omponent X ( e is transformed into X = x

X

, with

x

X

freshly 
hosen variable, be
ause e must be evaluated only on
e.

Simpli�
ation enjoys the Chur
h Rosser and Subje
t Redu
tion properties.

Proposition 1 (CR for > ). The relation > is 
on
uent.

Proof. The simpli�
ation rules are left-linear and non-overlapping. ut

Proposition 2 (SR for > ). If � `

�

e: � and e > e

0

, then � `

�

e

0

: � .

Proof. By 
ase analysis on the simpli�
ation rules. ut

3.2 Computation

We now de�ne 
on�gurations Id 2 Conf, that represent snapshots of the exe
ution of a program,

and the 
omputation relation > (see Table 3), that des
ribes how program exe
ution evolves.

Over these 
on�gurations we give an operational semanti
s that ensures the 
orre
t sequen
ing of


omputational e�e
ts, by adopting some well-established te
hnique for spe
ifying the operational

semanti
s of programming languages (see [WF94℄).

{ Stores � 2 S

�

= L

fin

! E map lo
ations to their 
ontent.

{ Evaluation Contexts E 2 EC: : = � j E[mdo (x( �; �; e)℄ for terms of 
omputational type.

{ A 
on�guration (�; e; E) 2 Conf

�

= S� E� EC is a snapshot of the exe
ution of a program:

� is the 
urrent store, e is the program fragment under 
onsideration and E is the evaluation


ontext for e.

{ Bad terms b are terms that are stu
k be
ause they depend on a variable

b 2 BE: : = x j b:X j b+ e j e+ b j b!X j b nX j doall(b) j get(b) j set(b; e)

{ Computational Redexes r are terms that enable 
omputation (with no need for simpli�
ation);

when r is a bad term, we raise a run-time error.

r 2 R: : = mdo (�; e) j ret(e) j new(e) j get(l) j set(l; e) j b

De�nition 1. The sets CV(E) and FV(E) of 
aptured and free variables are

{ CV(�)

�

= FV(�)

�

= ;

{ CV(E[mdo (x( �; �; e)℄)

�

= CV(E) [ fxg [ DV(�) and

FV(E[mdo (x( �; �; e)℄)

�

= FV(E) [ (FV(�; e) n CV(E[mdo (x( �; �; e)℄))

Rules for monadi
 binding deserve some explanations. Rule (M.0) deals with the spe
ial 
ase

of empty binding; rule (M.1) starts the 
omputation when the binding is not empty: the �rst

expression of the binding is evaluated and renaming is needed in order to avoid 
lashes due to

nested monadi
 bindings; rule (M.2) 
ompletes the 
omputation of the binding variables: when the

last variable has been 
omputed, it 
an be substituted with its \value" (the let 
onstru
t is used

be
ause of mutual re
ursion) in both the store and the body of mdo whi
h now 
an be evaluated;

�nally, (M.3) is used for 
ontinuing the 
omputation by 
onsidering the next binding variable and

is similar to (M.2).

8



Completion step

(done) (�; ret(e);�) > done

Re
ursive monadi
 binding steps

(M.0) (�;mdo (;; e) ; E) > (�; e; E)

(M.1) (�;mdo (x

1

( e

1

; �; e) ; E) > (�; e

1

; E[mdo (x

1

( �; �; e)℄)

with the variables in DV(x

1

( e

1

; �) renamed to avoid 
lashes with CV(E)

(M.2) (�; ret(e

1

); E[mdo (x

1

( �; e)℄) > (�f�g; ef�g; E) where �

�

= fx

1

: let(x

1

: e

1

;x

1

)g

(M.3) (�; ret(e

1

); E[mdo (x

1

( �; x

2

( e

2

; �; e)℄) >

(�f�g; e

2

f�g; E[mdo (x

2

( �; �; e)f�g℄) where �

�

= fx

1

: let(x

1

: e

1

; x

1

)g

Imperative steps

(I.1) (�; new(e); E) > (�fl: eg; ret(l); E) where l 62 dom(�)

(I.2) (�; get(l); E) > (�; ret(e); E) provided e = �(l)

(I.3) (�; set(l; e); E) > (�fl: eg; ret(l); E) provided l 2 dom(�)

Error step 
aused by a bad term

(err) (�; b; E) > err

Table 3. Computation Relation

The 
on
uent simpli�
ation relation > on terms extends in the obvious way to a 
on
uent

relation (still denoted > ) on stores, evaluation 
ontexts, 
omputational redexes and 
on�gu-

rations.

A 
omplete program 
orresponds to a 
losed term e 2 E

0

(with no o

urren
es of lo
ations l), and

its evaluation starts from the initial 
on�guration (;; e;�). The following properties ensure that

only 
losed 
on�gurations are rea
hable (by > and > steps) from the initial one.

Lemma 1.

1. If (�; e; E) > (�

0

; e

0

; E

0

), then dom(�) = dom(�

0

), CV(E) = CV(E

0

),

FV(�

0

) � FV(�), FV(e

0

) � FV(e) and FV(E

0

) � FV(E).

2. If (�; e; E) > (�

0

; e

0

; E

0

) and FV(e; �) � CV(E) and FV(E) = ;, then

FV(e

0

; �

0

) � CV(E

0

), FV(E

0

) = ; and dom(�) � dom(�

0

).

Bad terms and 
omputational redexes are 
losed w.r.t. simpli�
ation.

Lemma 2. If b > e, then e 2 BE. If r > e, then e 2 R.

When the program fragment under 
onsideration is a 
omputational redex, it is irrelevant whether

simpli�
ation is done before or after a step of 
omputation.

Theorem 1 (Bisimulation). If (�

1

; r

1

; E

1

)

�

> (�

2

; r

2

; E

2

), then

1. (�

1

; r

1

; E

1

) > Id

1

implies 9Id

2

s.t. (�

2

; r

2

; E

2

) > Id

2

and Id

1

�

> Id

2

2. (�

2

; r

2

; E

2

) > Id

2

implies 9Id

1

s.t. (�

1

; r

1

; E

1

) > Id

1

and Id

1

�

> Id

2

where Id

1

and Id

2

range over Conf [ fdone; errg.

Proof. An equivalent statement, but easier to prove, is obtained by repla
ing

�

> with one-step

parallel redu
tion. A key observation for proving the bisimulation result is that simpli�
ation applied

to a 
omputational redex r and an evaluation 
ontext E does not 
hange the relevant stru
ture (of

r and E) for determining the 
omputation step among those in Table 3. ut
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3.3 Type safety

We go through the proof of type safety for CMS

do

. The result is standard, but we make some

adjustments to the Subje
t Redu
tion and Progress properties for ===)

�

= > [ > , in

order to stress the di�erent role of simpli�
ation > and 
omputation > . First of all, we

de�ne well-formedness for evaluation 
ontexts �;�:M� `

�

E:M�

0

(in Table 4) and 
on�gurations

� `

�

(�; e; E).

(�)

;;�:M� `

�

�:M�

(mdo)

f�; x

1

: �

1

; �

�

`

�

e

0

:M�

0

j (x

0

( e

0

) 2 � ^ �

0

= �

�

(x

0

)g

�; x

1

: �

1

; �

�

`

�

e:M�

2

�;�:M�

2

`

�

E:M�

�; x

1

: �

1

; �

�

;�:M�

1

`

�

E[mdo (x

1

( �; �; e)℄:M�

dom(�

�

) = DV(�)

Table 4. Well-formed evaluation 
ontexts

De�nition 2 (Well-formed 
on�gurations). � `

�

(�; e; E)

�

()

{ dom(�) = dom(�) and dom(� ) = CV(E);

{ �(l) = e

l

and �(l) = �

l

imply � `

�

e

l

: �

l

;

{ exists � su
h that � `

�

e:M� derivable;

{ exists �

0

su
h that �;�:M� `

�

E:M�

0

derivable (see Table 4).

The formation rules of Table 4 for deriving �;�:M� `

�

E:M�

0

ensure that

{ � assigns a type to all 
aptured variables of E, indeed dom(� ) = CV(E);

{ E has no free variables and 
annot 
apture a variable x twi
e.

Proposition 3 (SR).

1. If � `

�

(�; e; E) and (�; e; E) > (�

0

; e

0

; E

0

), then � `

�

(�

0

; e

0

; E

0

).

2. If � `

�

(�; e; E) and (�; e; E) > (�

0

; e

0

; E

0

), then

there exist �

0

� � and �

0


ompatible with � su
h that �

0

`

�

0

(�

0

; e

0

; E

0

).

Theorem 2 (Progress). If � `

�

(�; e; E), then one of the following 
ases holds

1. e 2 R and (�; e; E) > , or

2. e 62 R and e >

Proof. See the Appendix.

4 Related Work

The notion of mixin module was �rstly introdu
ed in Bra
ha's PhD thesis [Bra92℄ as a generaliza-

tion of the notion of mixin 
lass (see for instan
e [BC90℄). The semanti
s of the mixin language in

[Bra92℄ is based on the early work on denotational semanti
s of inheritan
e [Coo89,Red88℄ and is

de�ned by a translation into an untyped �-
al
ulus equipped with a �xpoint operator and a rather
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ri
h set of re
ord operators. Furthermore, imperative features are only marginally 
onsidered by

impli
itly using the te
hnique developed in [Hen93℄ for extending the semanti
s of inheritan
e given

in [Coo89,Red88℄ to obje
t-oriented languages with state.

After this pioneer work, some proposals for extending existing languages with a system of mixin

modules were 
onsidered: [DS96℄ and [FF98a,FF98b℄ go in this dire
tion; however, imperative

features are not 
onsidered and re
ursion problems are solved by separating initialization from


omponent de�nition.

The �rst 
al
uli based on the notion of mixin modules appeared in [AZ99,AZ02℄ and then in

[WV00,MT00℄, but all of them are de�ned in a purely fun
tional setting. More re
ently, [HL02℄

has 
onsidered a CMS-like 
al
ulus, 
alled CMS

v

, with a re�ned type system in order to avoid

bad re
ursion in a 
all-by-value setting. A separate 
ompilation s
hema for CMS

v

has been also

investigated by means of a translation down to a 
all-by-value �-
al
ulus �

B

extended with a

non-standard let re
 
onstru
t, inspired by the 
al
ulus de�ned in [Bou02℄.

Like CMS

do

, both �

B

and the 
al
ulus of Boudol serve as semanti
 basis for programming lan-

guages supporting mixins and introdu
e non-standard 
onstru
ts for re
ursion whi
h 
an produ
e

terms having an unde�ned semanti
s. However, �

B

does not have imperative features, whereas

the 
al
ulus in [Bou02℄ does not allow re
ursion in the presen
e of side-e�e
ts. For instan
e, in

CMS

do

the term mdo (x( new(x); ret(x)) has a well-de�ned semanti
s, whereas the 
orresponding

translated term let re
 x = ref x in x in Boudol's 
al
ulus is not well-typed; indeed, the evaluation

of this term gets stu
k. Another advantage of our approa
h is that the separation of 
on
erns made

possible by the monadi
 metalanguage allows us to retain the equational reasoning of CMS.

On the other hand, the more re�ned type systems adopted in [HL02,Bou02℄ are able to stati
ally

dete
t all bad re
ursive de
larations.

As already mentioned, the de�nition of the mdo 
onstru
t in CMS

do

is inspired by the work on the

semanti
s of re
ursive monadi
 bindings in Haskell [EL00,ELM01,ELM02,EL02℄. Our semanti
s

is partly related to that in [ELM01℄, however the notion of heap in our 
al
ulus has been made

impli
it (thanks to the let re
 
onstru
t), sin
e we are interested in a more abstra
t approa
h;

and furthermore, the re
ursive do in [EL02℄ does not perform an in
remental binding as happens

in our semanti
s, but rather all values are bound to the 
orresponding variables only after all


omputations in the re
ursive monadi
 binding have been evaluated.

5 Con
lusion and Future Work

We have de�ned CMS

do

, a monadi
 mixin 
al
ulus in whi
h mixin modules 
an 
ontain 
omponents

of three kinds: de�ned (bound to an expression), deferred (de
lared but not yet de�ned) and


omputational (bound to a 
omputation whi
h must be performed before a
tually using the module

for 
omponent sele
tion). Mixin modules 
an be 
ombined by the sum, freeze and restri
t operators

of CMS; moreover, a doall operator triggers all the 
omputations in a mixin module.

We have provided a simple type system for the language, a simpli�
ation relation de�ned by lo
al

rewrite rules with no side-e�e
ts (satisfying the CR and SR properties), and a 
omputation relation

whi
h models global evaluation able to modify the store (satisfying the SR property). Moreover,

we have stated a bisimulation result (simpli�
ation does not a�e
t 
omputation steps) and the

progress property for the 
ombined relation; however, errors due to bad re
ursive de
larations are

only dynami
ally dete
ted, sin
e here we have preferred to keep a simple type system.

We envisage at least two possibilities whi
h deserve investigation in the dire
tion of de�ning more

re�ned type systems. First, the dynami
 errors due to bad re
ursive de
larations mentioned above


ould be dete
ted by introdu
ing a type system similar to that in [HL02,Bou02℄ keeping expli
it

tra
e of dependen
ies between the evaluation of two 
omputational 
omponents. On a di�erent side,

a type system distinguishing between modules possibly 
ontaining some 
omputational 
omponents

11



(or variables) and those with no 
omputational 
omponents (and variables), would allow sele
tion

on CMS mixins, so that CMS 
ould be more dire
tly embedded into CMS

do

.

For what 
on
erns appli
ations, CMS

do


an be 
onsidered a powerful kernel 
al
ulus allowing to

express, on one side, a variety of di�erent operators for 
ombination of software modules (in-


luding linking, parameterized modules as ML fun
tors, overriding in the sense of obje
t-oriented

languages, see [AZ02℄ for details), on the other side di�erent 
hoi
es in the evaluation of 
ompu-

tations. In parti
ular, we mention at least two relevant s
enarios of appli
ation: the modeling of

obje
t-oriented features, in
luding the di�eren
e between 
omputations whi
h must be performed

before instantiating a 
lass, as �eld initializers, and 
omputations whi
h are evaluated ea
h time

they are sele
ted, as methods; and the possibility of expressing di�erent poli
ies for dynami
 linking

and veri�
ation.
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A Auxiliary fun
tions

De�nition 3. We de�ne the set FV( ) of free variables, and (for �, � and D) the sets DV( ) and

DN( ) of de�ned variables and de�ned 
omponent names:

e 2 E FV( ) �

fin

Var

x fxg

l ;

ret(e) j new(e) j get(e)

doall(e) j e:X j e!X j e nX

FV(e)

set(e

1

; e

2

)

e

1

+ e

2

FV(e

1

) [ FV(e

2

)

mdo (�; e) (FV(�) [ FV(e)) nDV(�)

let(�; e) (FV(�) [ FV(e)) n dom(�)

fog FV(o)

[�; �℄ FV(�) n (DV(�) [ dom(�))

where FV(f)

�

= [fFV(f(a))ja 2 dom(f)g when f :A

fin

! E

D=�=� FV( ) �

fin

Var DV( ) �

fin

Var DN( ) �

fin

Name

X C e FV(e) ; fXg

xC e FV(e) fxg ;

; ; ; ;

�;D FV(�) [ FV(D) DV(�) [ DV(D) DN(�) [ DN(D)

�; x( e FV(�) [ FV(e) DV(�) [ fxg ;

B Progress theorem: sket
h of proof

The proof uses the following Lemma.

Lemma 3. If � `

�

e: � and e is a > -normal form, then

{ � �M�

0

implies e 2 R

{ � � ref�

0

implies e: : = l j b

{ � � f�g implies e: : = fog j b
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{ � � [� ; �

0

℄ implies e: : = [�; �℄ j b

Proof. Indu
tion on the derivation of � `

�

e: � .

The base 
ases are: x, ret(e), mdo (�; e), l, fog, [�; �℄ and new(e).

The indu
tive steps are: e:X , get(e), set(e

1

; e

2

), e

1

+ e

2

, e!X , e nX and doall(e).

The 
ase let(�; e) is impossible, sin
e it is never in > -normal form. ut

Progress theorem (sket
h or proof). If e 2 R, then (�; e; E) > , in parti
ular when e is

get(l) or set(l; e

0

), we have that l 2 dom(�), be
ause the 
on�guration is well-formed.

When e 62 R, then e 
annot be in > -normal form, otherwise (by Lemma 3) we get a 
ontra-

di
tion with � `

�

e:M� . ut
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