
Jam - A Smooth Extension of Java with Mixins

?

Davide An
ona, Giovanni Lagorio, and Elena Zu

a

Dipartimento di Informati
a e S
ienze dell'Informazione

Via Dode
aneso, 35,16146 Genova (Italy)

email: davide,zu

a�disi.unige.it

fax: +39 010-3536699

Abstra
t. In this paper we present Jam, an extension of the Java language support-

ing mixins, that is, parametri
 heir
lasses. A mixin de
laration in Jam is similar to

a Java heir
lass de
laration, apart that it does not extend a �xed parent
lass, but

simply spe
i�es the set of �elds and methods a generi
 parent should provide. In this

way, the same mixin
an be instantiated on many parent
lasses, produ
ing di�erent

heirs, thus avoiding
ode dupli
ation and largely improving modularity and reuse.

Moreover, as happens for
lasses and interfa
es, mixin names are referen
e types, and

all the
lasses obtained instantiating the same mixin are
onsidered subtypes of the

orresponding type, hen
e
an be handled in a uniform way through the
ommon

interfa
e. This possibility allows a programming style where di�erent ingredients are

\mixed" together in de�ning a
lass; this paradigm is partly similar to that based on

multiple inheritan
e, but avoids its
ompli
ation.

The language has been designed with the main obje
tive in mind to obtain, rather

than a new theoreti
al language, a working and smooth extension of Java. That

means, on the design side, that we have fa
ed the
hallenging problem of integrating

the Java overall prin
iples and
omplex type system with this new notion; on the

implementation side, that we have developed a Jam to Java translator whi
h makes

Jam sour
es exe
utable on every Java Virtual Ma
hine.

1 Introdu
tion

In the last years, the notion of parametri
 heir
lass or mixin (following the terminology

originally introdu
ed in [17,16℄) has deserved great interest in the programming languages

ommunity. As the �rst name suggests, a mixin is a uniform extension of many di�erent

parent
lasses with the same set of �elds and methods, that is, a
lass-to-
lass fun
tion. To

be more
on
rete, let us
onsider a s
hemati

lass de
laration in Java.

lass H1 extends P1 f de
s g

where P1 is some parent
lass and de
s denotes a set of �eld and method de
larations. In

Java, as in most other obje
t-oriented programming languages, if we want to extend another

parent
lass, say P2, with the same set of �elds and methods, then we have to write a new

independent de
laration, dupli
ating the
ode in de
s .

lass H2 extends P2 f de
s g

Assume now to have a language allowing to give a name, say M, to de
s , and to instantiate

M on di�erent parent
lasses, e.g. P1 and P2, obtaining di�erent heir
lasses equivalent to H1

and H2 above.

mixin M f de
s g

lass H1 = M extends P1 ;

lass H2 = M extends P2 ;

?

Partially supported by Murst - Te
ni
he formali per la spe
i�
a, l'analisi, la veri�
a, la sintesi e

la trasformazione di sistemi software

Then we say that M is a mixin.

A mixin de
laration resembles a usual heir
lass de
laration, apart that a mixin does

not refer to a �xed parent
lass, but simply spe
i�es the set of �elds and methods a generi

parent should provide. The fa
t that the same mixin
an be instantiated on many parent

lasses avoids
ode dupli
ation and largely improves modularity and reuse. The name refers

to the fa
t that in a language supporting mixins it is possible to \mix", in some sense,

di�erent ingredients during
lass
reation, as ni
ely illustrated through the jigsaw puzzle

metaphor in [6℄. This paradigm is partly similar to that based on multiple inheritan
e, but

avoids its
ompli
ation.

Mixin-based programming has been now extensively studied both on the methodologi
al

and foundational point of view [7,6,8,4,2,3℄. The results
an be summarized as follows.

First, the mixin notion is not stri
tly related to obje
t-oriented programming but
an be

formulated in general in the
ontext of module
omposition (a mixin module is a module

where some
omponents are not de�ned but expe
ted to be provided by some other module).

This notion allows to have a
lean and unifying view of di�erent linguisti
 me
hanisms

for
omposing modules. Finally, the intuitive understanding of a mixin as a
lass-to-
lass

fun
tion (or, in the general
ase, module-to-module fun
tion)
an be a
tually supported by

a rigorous mathemati
al model [2,3℄.

Despite of this advan
ed state of the art, few attempts have been made at designing

real programming languages supporting mixins. As already mentioned, the �rst use of the

word mixin as a te
hni
al term originates with the LISP
ommunity [16,19℄. After that, at

our knowledge, there exist only a proposal for extending ML [13℄, a working extension for

Smalltalk [9℄ and a proposal for a Java-like mixin language [14℄ (whose relation with our

work will be dis
ussed in detail in Se
t.5.2).

In this paper, we present Jam

1

, a working and smooth extension of Java with mixins. By

these two adje
tives we mean that our main aim is to produ
e an exe
utable and minimal

extension of Java, rather than de�ne a new theoreti
al language supporting mixins. More

pre
isely, Jam is an upward-
ompatible extension of Java 1.0 (apart from two new keywords),

a great e�ort has been spent in integrating mixin-related features with the Java overall design

prin
iples, the type system is a natural extension of the Java type system with a new kind

of types (mixin types), the dynami
 semanti
s is dire
tly de�ned by translation into Java

and, �nally, this translation has been implemented by a Jam to Java translator whi
h makes

Jam immediately exe
utable on every Java Virtual Ma
hine.

The stru
ture of the presentation is as follows. In Se
t.2 we provide a user introdu
tion

to Jam, through some examples, and illustrate and motivate in detail our design
hoi
es.

In Se
t.3 we formally de�ne the language, giving (a part of) the abstra
t syntax and the

stati
 semanti
s (the full de�nition
an be �nd in [1℄). The Jam type system is de�ned

as a
onservative extension of the Java type system. For what
on
erns the Java part, we

basi
ally follow the type system proved sound in [12℄, even though we
over some more

features and take a somewhat di�erent style of presentation. In Se
t.4 we de�ne a formal

translation from Jam into Java and state the
orre
tness of this translation w.r.t. stati

semanti
s (that is,
orre
t Jam programs are expanded into
orre
t Java programs; this

also ensures the soundness of the Jam type system). Finally in Se
t.5.1 we brie
y des
ribe

the implementation, provide a detailed
omparison with the proposals in [9,14℄ and outline

further resear
h dire
tions.

An extended version of this paper, in
luding the full type system, the proof of
orre
tness

of the translation and more examples and dis
ussions, is [1℄.

The Jam
ompiler and the sour
es are available at: http://gio.libertyline.

om/jam.

1

Java + mixin = jam

2 User Introdu
tion and Rationale

In this se
tion we provide a user introdu
tion to Jam and illustrate and motivate our design

hoi
es. In 2.1 we give an overall view of the
apabilities added to Java by the introdu
tion

of mixins, in 2.2-2.5 we dis
uss some more spe
i�
 points, and �nally in 2.6 we point out

the main limitations of the language.

2.1 An example

Fig. 1 shows the de
laration of the mixin Undo. We use typewriter style for
ode fragments.

This mixin, as the name suggests, provides an \undo" me
hanism that permits to restore the

mixin Undo f

inherited String getText() ;

inherited void setText(String s) ;

String lastText ;

void setText(String s) f

lastText = getText() ;

super.setText(s) ;

g

void undo() f

setText(lastText) ;

g

g

Fig. 1. Mixin de
laration

text before the last modi�
ation. As shown in the example, a mixin de
laration is logi
ally

split in two parts: the de
larations of the
omponents whi
h are expe
ted to be provided by

the parent
lass, pre�xed by the inheritedmodi�er, and the de
larations of the
omponents

de�ned in the mixin. Note that de�ned
omponents
an override/hide inherited
omponents,

as it happens for usual heir
lasses.

The mixin Undo
an be instantiated on
lasses that de�ne two non-abstra
t methods

getText and setText, with types as spe
i�ed in the inherited de
laration. Fig. 2 shows

lass Textbox extends Component f

String text ;

...

String getText() f ... g

void setText(String s) f ... g

g

lass TextboxWithUndo = Undo extends Textbox fg

Fig. 2. Mixin instantiation

an example of instantiation; we have used as parent a
lass Textbox whi
h extends a

generi

lass Component. In the instantiation no
onstru
tors are spe
i�ed for the new
lass

TextboxWithUndo (they should be de
lared between the
urly bra
es) and so, as in Java, it

is assumed that the
lass has only the default
onstru
tor. To obtain a
orre
t instantiation

Textbox must de�ne the mixin inherited part by implementing the methods getText and

setText. These methods must have the same return and arguments type and equivalent

2

throws
lause w.r.t. the
orresponding inherited de
laration. The
lasses obtained by in-

stantiating the mixin provide, in addition to the methods getText (inherited from parent

lass) and setText (inherited and overridden), all other �elds and methods of the
lass

Textbox, the method undo and the �eld lastText.

The expe
ted semanti
s of mixin instantiation
an be informally expressed by the fol-

lowing
opy prin
iple:

A
lass obtained instantiating a mixin M on a parent
lass P

should have the same behavior as a usual heir of P whose body

ontains a
opy of all the
omponents de�ned in M .

A
lass implementing the mixin inherited part
an nevertheless be an invalid parent

for instantiation, sin
e there is another requirement to be met: the heir
lass obtained

instantiating the mixin must be a
orre
t Java heir
lass. This leads to a set of
onstraints

whi
h are des
ribed in detail in Se
t. 2.3.

What we have seen so far shows the use of a mixin de
laration as a s
heme, that is, a

parametri
 heir
lass that
an be instantiated on di�erent
lasses. In this way we avoid
ode

dupli
ation, a good result in itself, but Jam allows something more: a mixin
an be used as

a type and a mixin instan
e

3

is a subtype of both the mixin and the parent
lass on whi
h

it has been instantiated.

This allows the programmer to manipulate obje
ts of any mixin instan
e by using the

ommon interfa
e spe
i�ed by the mixin de
laration (see Fig. 3). An important
onsequen
e

lass TextboxWithUndo = Undo extends Textbox fg

lass BreakIteratorWithUndo =

Undo extends java.text.BreakIterator fg

lass TestUndo f

void f() f

g(new TextboxWithUndo()) ;

g(new BreakIteratorWithUndo()) ;

g

void g(Undo u) f

u.setText("foo") ;

u.setText("bar") ;

System.out.println("Previous text: "+u.lastText) ;

System.out.println("Current text : "+u.getText());

g

g

Fig. 3. Use of mixin types

is that Jam supports a programming style (sometimes
alled mixin-based [7℄) where di�erent

2

That is, every ex
eption de
lared in one
lause must be a subtype of an ex
eption de
lared in

the other, and
onversely.

3

We will
all mixin instan
e a
lass obtained instantiating a mixin, to be not
onfused with an

instan
e of a
lass.

ingredients are \mixed" together in de�ning a
lass. This paradigm has been advo
ated [6,5℄

on the methodologi
al side sin
e it allows to partly re
over the expressive power of multiple

inheritan
e without introdu
ing its
ompli
ation; however the novelty of Jam is that mixin-

based programming is rigorously introdu
ed in the
ontext of a strongly typed language.

2.2 Other
omponents of a mixin de
laration

In the simple example presented in the previous se
tion we have not in
luded all the kinds

of
omponents whi
h
an appear in a mixin de
laration.

Indeed, following the design prin
iple that a mixin should be as similar as possible to a

usual heir
lass, mixins should provide all their features. In the sequel we illustrate ea
h of

them in detail highlighting and justifying some restri
tions.

Interfa
es A mixin
an implement an interfa
e in exa
tly the same way a
lass does.

Constru
tors A
onstru
tor invo
ation in Java takes pla
e in three
ases: in an obje
t
re-

ation expression new C(: : :), inside another
onstru
tor of the same
lass via this and

inside an heir's
onstru
tor via super. However,
reating obje
ts whi
h are instan
es of

mixins makes no sense. Moreover, in Jam mixin instan
es are not
onsidered heirs of the

orresponding mixin. Hen
e, for mixins the invo
ation inside an heir's
onstru
tor never o
-

urs. In summary, it makes no sense to de
lare
onstru
tors in mixins; however, it is possible

to de
lare
onstru
tors for ea
h parti
ular mixin instan
e at the point of instantiation.

Inherited instan
e �elds In a mixin it is possible to a

ess inherited (instan
e) �elds in the

same way as a usual heir
lass does: using the �eld name id or the forms this.id and

super.id (the latter is needed when a de�ned �eld hides an inherited one).

Stati
 members Although in Jam stati

omponents are de
lared in the same way as instan
e

omponents ex
ept, of
ourse, the use of the stati
 modi�er, their visibility is di�erent:

they are not
onsidered part of the mixin type. Consider, for example, the following
ode

fragment:

mixin M f

stati
 void m() fg

stati
 int f ;

g

We do not allow in Jam invo
ations M.m() or e.m() with e of type M. However, for ea
h

lass H obtained instantiating M, invo
ations H.m() or e.m()

4

with e of type H are legal. The

same rule holds for �elds. In other words, every
lass that is an instan
e of M has \its own

opy" of stati

omponents de
lared in the mixin. Other
hoi
es are te
hni
ally possible:

{ sharing only one
opy of the stati

omponents de
lared in the mixin between all mixin

instan
es; in this
ase it should be allowed a

essing stati
 members through the mixin

type too;

{ leave to the programmer (introdu
ing a new keyword, or analogous me
hanisms) the

de
ision whether a
omponent should be shared between all the mixin instan
es or not.

In Jam, we have
hosen the \unshared" version be
ause, in this way, a mixin instantiation

on a parent
lass is equivalent to that obtained by
opying the mixin body in the de
laration

of the new
lass, as requested by the
opy prin
iple. Stati

omponents
an be inherited (of

ourse, they are not part of mixin type either) but, like in Java, stati
 methods
annot be

abstra
t.

4

We maintain this alternative syntax for
ompatibility reasons only, see 15.10.1 of [15℄

2.3 Constrains on instantiation

As mentioned in Se
t. 2.1, the fa
t that a
lass P provides an implementation for the

inherited part of a mixin M is not enough for ensuring that P
an be
orre
tly used as

a parent for M. Indeed, in addition to methods de
lared inherited in M, the
lass P
an

ontain some other methods whi
h
ould interfere, in various ways, with methods in M. Let

us brie
y illustrate the di�erent interferen
e
ases.

Unexpe
ted overriding/hiding A method in P is in
identally overridden (hidden) by a method

de�ned in M if it has the same name, arguments type, return type, kind (instan
e or stati
)

and a
ompatible

5

throws
lause. For instan
e, instantiating the mixin Undo on a
lass with

a void undo() method produ
es an unexpe
ted overriding. This situation looks somewhat

undesirable, sin
e there is some overriding whi
h was not planned when de
laring the mixin;

however, our
hoi
e for Jam has been to
onsider legal these instantiations, leaving to the

programmer the
are of avoiding them when the additional overriding is undesired. Indeed,

di�erent
hoi
es would sensibly
ompli
ate either the stati
 (if the
hoi
e is to forbid) or

dynami
 (if the
hoi
e is to keep both versions) semanti
s, while ours is the natural extension

to mixins of what happens for usual heir
lasses. See Se
t.5.2 for some further dis
ussion on

this point.

Illegal overriding/hiding A method in P is illegally overridden (hidden)

6

by a de�ned method

in M if it has the same signature (name and arguments type) but either di�erent return type,

or di�erent kind or in
ompatible throws
lause. This is not
orre
t in Jam.

Ambiguous overloading There exist
ontexts in whi
h the presen
e of the method in P makes

ambiguous, w.r.t. overloading resolution, an invo
ation of the method in M. Let us
larify this

ase with an example. Assume that the method Undo.undo
ontains the
all setText(null);

this invo
ation is stati
ally
orre
t. Suppose now to instantiate Undo on a
lass Boom whi
h

de�nes, besides the methods String getText() and void setText(String), the method

void setText(Integer). In this
ase the
all setText(null) be
omes ambiguous. Indeed,

null
an be impli
itly
onverted to any referen
e type, hen
e both methods are appli
able

and neither is more spe
i�

7

.

In general, if two methods have the same name, then the addition of one may make

ambiguous, w.r.t. overloading resolution, an invo
ation of the other if and only if they have

the same number and type of arguments ex
ept for some argument for whi
h they have

two di�erent referen
e types (see Fig. 13 in Se
t.3 for the formal de�nition). In alterna-

tive we
ould have de�ned less stri
t rules by forbidding the instantiation only when some

method body in the mixin
ontains a method invo
ation that would be
ome ambiguous (as

in the example). However, we have preferred to follow the prin
iple that the
orre
tness of a

mixin instantiation should depend only on the mixin type and not on its implementation. In

this way, indeed, a modi�
ation of the method bodies does not a�e
t the
orre
tness of the

instantiation. Even though this approa
h has the drawba
k of forbidding also \good" instan-

tiations, on the methodologi
al side it seems more
onsistent with the
hoi
e of des
ribing

the requirements on the parent
lass via the inherited de
larations.

2.4 Overloading

The Java rules for overloading resolution

8

smoothly extends to Jam, just in
luding mixin

types among other referen
e types and taking into a

ount in the de�nition of \more spe-

i�
" the fa
t that every mixin instan
e is a subtype of (hen
e,
an be
onverted to) the

orresponding mixin type. However, some parti
ular
are is needed for handling the situa-

tion when there is an overloading
on
i
t between an inherited and a de�ned method in a

mixin. Let us illustrate the problem on the following simple example.

5

See 8.4.4 in [15℄

6

See 8.4.6.3 in [15℄

7

See 15.11.2 in [15℄

8

See 15.11.2 in [15℄

lass A fg

lass B extends A fg

lass Parent f

void f(B b) fg

g

lass Heir extends Parent f

void f(A a) fg

g

mixin M f

inherited void f(B b) ;

void f(A a) fg

g

lass Test f

void test(Heir h, B b, M m) f

h.f(b) ; // ambiguous

m.f(b) ; // ambiguous?

g

g

Fig. 4. Overloading
on
i
t between inherited and de�ned methods

In the �rst part of the
ode shown in Fig.4, B is a subtype of A and Heir is a subtype of

Parent. The
lass Parent de�nes a method named f with one argument of type B, while

its sub
lass Heir de�nes a method with the same name and argument's type A. Due to

the symmetry of the situation, the invo
ation h.f(b), where h and b are of type Heir and

B, respe
tively, is ambiguous, sin
e there are two appli
able methods and neither is more

spe
i�

9

.

If we
onsider now the de
laration of the mixin M, the situation is exa
tly analogous to the

pre
eding: a (parametri
) heir
lass de�nes a method whose argument type is a supertype

of the argument type of a method with the same name in the parent
lass. Hen
e, we expe
t

the invo
ation of m.f(b), where m has type M, to be ambiguous as well.

For a
hieving this goal, we assume that inherited methods in a mixin M are annotated

with a type (that is,
onsidered to be have been de
lared within the
orresponding module;

see [1℄ for the pre
ise formal de�nition of annotations) whi
h is not M but a spe
ial type

Parent(M) whi
h represents the generi
 parent on whi
h the mixin
an be instantiated, and

is assumed to be a supertype of M.

2.5 Use of this in mixins

A last deli
ate point in the Jam type system
on
erns the use of the keyword this, whi
h

denotes, in an instan
e method (resp.
onstru
tor), the
urrent obje
t on whi
h the method

has been invoked (the
urrent obje
t to be
onstru
ted). In a method or
onstru
tor de
lared

in a
lass C, the expression this has stati
 type C in Java

10

. Now, we have to de
ide whi
h

should be the stati
 type of this in a method de�ned in a mixin M. Sin
e we want to be

able to type-
he
k the mixin de
laration independently from future instantiations, the only

possibility is to assume that this has stati
 type M, sin
e this is the only type available

at mixin de
laration's time. However, this is in
on
i
t with the fa
t that we expe
t that

in a
lass H instan
e of a mixin M the expression this has stati
 type H, as it happens

for usual heir
lasses. More pre
isely, the fa
t of having
orre
tly type-
he
ked the mixin

de
laration under the assumption that this has type M does not guarantee that (the Java

lass H
orresponding to) a mixin instan
e (following the
opy prin
iple) is always a
orre
t

Java
lass, sin
e in Java this has type H in this
lass. This
an lead to unsound situations

in some subtle
ases involving overloading. Let us
onsider the example in Fig.5.

The
lass A de
lares two methods named f with argument's type a mixin M and an

instan
e H of M, respe
tively. In the invo
ation of f inside the method g de
lared in M, sin
e

this has type M, the expression A.f(this) has type int, hen
e
an be
orre
tly assigned

to the variable i.

9

See 15.1.2.2 in [15℄

10

See 15.7.2. in [15℄

lass A f

stati
 int f(M m) f : : : g

stati
 boolean f(H h) f : : : g

g

mixin M f

void g() f

int i = A.f(this) ;

g

g

lass H = M extends Obje
t fg ;

// ``Equivalent'' de
laration for H

lass H : : : f

void g() f

int i = A.f(this) ; // Boom !!!

g

g

Fig. 5. Problem in using this in mixins

Now, if the expe
ted semanti
s of H, following the
opy prin
iple, is to be equivalent to

the
lass shown in the �gure where the de
laration of g has been
opied into the body, then

the invo
ation A.f(this) has now type boolean, hen
e
annot be used for initializing the

variable i.

This is a parti
ular
ase of a more general problem, that is, the fa
t that in a mixin

de
laration in Jam there is no way to refer to the parametri
 types of either the parent or

the heir
lass resulting from the instantiation. See the following se
tion for more
omments

about that.

In order to avoid these situations, we have taken for Jam a quite drasti
 design de
ision,

that is, to forbid the use of this as argument in method and
onstru
tor invo
ation inside

a mixin.

2.6 Limitations

The main limitation of the language is that in a mixin it is not possible to refer either to

the \generi
" parent
lass to whi
h the mixin will be applied or to the \generi
" heir
lass

obtained by instantiation. As an example, let us
onsider the following de
larations of a

parent
lass P and an heir H.

lass P f

stati
 int
ounter ;

g

lass H extends P f

stati
 int
ounter ;

stati
 void in
rThat() f ++P.
ounter ; g

: : :

int value ;

publi
 boolean equals(Obje
t that) f

if (that instan
eof H) return ((H)that).value == value ;

return false ;

g

g

The de�nition of H
annot be \abstra
ted" in a mixin de�nition, for two reasons.

{ The method in
rThat expli
itly refers to the parent
lass P sin
e the stati
 �eld
ounter

of the super
lass has been hidden by a de
laration in H.

{ The method equals uses the name of the heir
lass H whi
h is unknown for a mixin.

More generally, a
lass H heir of P
annot be \abstra
ted" into a mixin when it
ontains:

{ (expli
it) referen
es to types H and P;

{ invo
ations of H/P
onstru
tors.

If H/P are only used for a

essing stati
 members, then H
an be \abstra
ted" ex
ept for some

ases involving hiding (as shown by the example). In Se
t.5.3 we dis
uss possible solutions

to this problem.

3 The Formal De�nition

In this se
tion we formally de�ne the abstra
t syntax and the stati
 semanti
s of Jam.

The implemented version of Jam is an upward-
ompatible extension of Java 1.0 (apart the

fa
t that mixin and inherited are keywords in Jam); however the formal de�nition only

onsiders a subset of the language
hosen in su
h a way to be minimal but suÆ
ient for our

aim, whi
h is to analyze how the Java type system must be enri
hed in order to support mixin

types (the soundness of this extension will be proved in the next se
tion). Ex
luded features

fall in two main
ategories: those whi
h are orthogonal w.r.t. this aim, like multithreading,

and those whose semanti
s
an be trivially derived, like the for loop. In parti
ular, we

have ex
luded the following features: arrays, final and a

ess modi�ers, features related

with linking native
ode and multithreading. We have in
luded the following features not

onsidered in [11℄:
onstru
tors, stati
 members,
he
ked ex
eptions

11

, abstra
t
lasses

and methods, method invo
ations and �eld a

esses via super.

In this paper, for la
k of spa
e, we in
lude only a part of the abstra
t syntax and the

type system, whose full version
an be found in [1℄.

3.1 Notations

We use the typewriter style for terminal and itali
 for non terminal symbols. The terminals

iname,
name and mname indi
ate, interfa
e,
lass and mixin names respe
tively. A generi

name is indi
ated by name. We use the following notations:

{ A

�

to indi
ate a sequen
e of zero or more o

urren
es of A,

{ A

+

to indi
ate a sequen
e of one or more o

urren
es of A,

{ [A℄ to indi
ate that A is optional,

{ A

~

to indi
ate a set of o

urren
es of A, that is, a sequen
e in whi
h there are no

repetitions and the order is immaterial,

{ A

�

to indi
ate a non empty set of o

urren
es of A.

3.2 Abstra
t syntax

Fig. 6 shows a part of the Jam abstra
t syntax; the LALR grammar used in the implemen-

tation
an be found in the [1℄.

The only Jam spe
i�
 produ
tions are the �rst three in the �gure.

In Jam an alternative way to de�ne a (possibly abstra
t)
lass is to instantiate a mixin

on an existing
lass, spe
ifying the
onstru
tors of the new
lass.

A mixin de
laration logi
ally
onsists of two parts: the former
ontains the de
larations

of the de�ned
omponents, while the latter
ontains the inherited
omponents de
larations,

that is, the de
larations of the
omponents that should be provided by the parent
lass on

whi
h the mixin will be instantiated. These
omponents are labelled with the inherited

modi�er. Moreover, the set of the implemented interfa
es is spe
i�ed.

3.3 Types

In Fig. 7 are de�ned the Jam types. A generi
 type
an be a referen
e type, a primitive

11

Che
ked ex
eptions have been
onsidered in a re
ent improved version [12℄.

ref-type ::= mname

de
l ::= [abstra
t ℄
lass
name = mname extends

name f
onstru
tor

~

g

mde
l ::= mixin name implements iname

~

f h [inherited℄ �eld i

~

h [inherited℄
meth i

~

g

prog ::= de
l

~

de
l ::= ide
l j
de
l j mde
l

simple-type ::= prim-type j ref-type

ref-type ::= iname j
name

prim-type ::= int j boolean

ret-type ::= simple-type j void

ex
-type ::=
name

~

de
l ::= [abstra
t ℄
lass
name extends
name

implements iname

~

f
onstru
tor

~

�eld

~

meth

~

g

ide
l ::= interfa
e iname extends iname

~

f imeth

~

g

imeth ::= abstra
t ret-type name params throws ex
-type ;

params ::= (h simple-type name i

�

)

onstru
tor ::=
name params throws ex
-type

f super(expr

�

) ; stmts g

meth ::= [stati
 ℄ ret-type name params

throws ex
-type mbody j

imeth

Fig. 6. Jam abstra
t syntax

type ::= ref-type j prim-type j nil

�eld-type ::= �eld-kind simple-type

�eld-kind ::= instan
e j stati

args-type ::= simple-type

�

onstr-type ::= args-type throws ex
-type

meth-type ::= meth-kind ret-type throws ex
-type

meth-sig ::= name; args-type

meth-kind ::= instan
e j abstra
t j stati

�elds-type ::= hname : �eld-typei

~

meths-type ::= hmeth-sig : meth-typei

~

onstrs-type ::=
onstr-type

�

module-type ::= �elds-type meths-type

lass-type ::=
lass-kind
onstrs-type module-type

lass-kind ::= abstra
t j
on
rete

interfa
e-type ::= meths-type

mixin-type ::= module-type inherited module-type

Fig. 7. Jam types

type (both de�ned in Fig. 6) or nil (the type of null). A �eld-type
onsists of a simple

type and a (�eld) kind indi
ating whether the �eld is instan
e or stati
. The arguments

type (of a method or
onstru
tor), args-type , is a sequen
e, possibly empty, of simple types.

A
onstru
tor type
onsists of the arguments type and the set of de
lared ex
eptions (the

type ex
-type is de�ned in Fig. 6). A method type
onsists of the kind, the return type and

the set of de
lared ex
eptions. A �elds type is a set of �elds, that is, pairs
onsisting of a

�eld name and a �eld type. A �elds type is legal if �eld names are distin
t. Analogously, a

methods type is a set of methods, that is, pairs
onsisting of a signature (a method name

quali�ed by the types of the arguments) and a method type; it is legal when all signatures

are distin
t. In the following we will
onsider only legal �elds and methods type. The type

onstrs-type is a non-empty set of
onstru
tor types. Note that a
lass has always at least a

onstru
tor (if it is not expli
itly given the default one is assumed).

A module type
onsists of a set of �elds and a set of methods. A
lass type
onsists of a

module type, a kind and a set of
onstru
tors. An interfa
e type
onsists of a set of methods

(in our subset we do not
onsider the final modi�er, hen
e an interfa
e
annot have �elds).

Finally, a mixin type
onsists of two module types: the de�ned type and the inherited type,

that is the expe
ted parent type.

3.4 Environments

A Jam program
ontains both type information and information needed at runtime (that

is, the method bodies). To simplify the formal de�nition, following the approa
h used in

[12℄, we
onsider two
omponents that
an be extra
ted in a trivial way from a program:

the environment � , that
ontains the type information, and the remaining part of program

onsisting in a set of body de
larations, that is,
onstru
tor and method bodies of
lasses

and mixins (�elds information are
ontained in �). The syntax of these two
omponents is

given in Fig. 8. We assume that in the environment extra
tion pro
ess a
he
k is performed

env ::= basi
-type-assertion

~

basi
-type-assertion ::=
name is

lass-type j

name <

1

name j

name �

1

i

iname j

iname is

i

interfa
e-type j

iname <

1

i

iname j

mname is

m

mixin-type j

name �

m

mname

body-de
l ::=
lass
name f
onstru
tor

~

meth

~

g j

mixin name f
meth

~

g

Fig. 8. Environments and body de
larations

for avoiding dupli
ate de
larations. Hen
e, the stati

orre
tness of a Jam program
an be

expressed by the validity of the two following judgments:

` ��

� ` fBD

1

; : : : ; BD

n

g�

Prog

The former means that � is a well-formed environment so that, for instan
e, the sub
lass

relationship is a
y
li
; the latter indi
ates that all the body de
larations are well-formed

w.r.t. the type information in � . The validity of these two judgments is de�ned indu
tively

introdu
ing other judgments relative to sub
omponents. In this paper for la
k of spa
e, we

only give an outline of the judgments related to the environment.

An environment is a set of basi
 type assertions having the following informal meaning:

{ C is

KST FST MST : the
lass C de
lares the spe
i�ed
onstru
tors (KST), �elds

(FST) and methods (MST)

{ C <

1

C

0

: the
lass C dire
tly extends the
lass C

0

{ T �

1

i

I : the module (either
lass or mixin) T dire
tly implements the interfa
e I

{ I is

i

MST : the interfa
e I de
lares the methods spe
i�ed in MST

{ I <

1

i

I

0

: the interfa
e I dire
tly extends the interfa
e I

0

{ M is

m

MODT inherited MODT

0

: the mixin M de
lares the de�ned
omponents

MODT and the inherited
omponents MODT

0

{ C �

m

M : the
lass C has been de�ned instantiating the mixin M

We de�ne now some auxiliary notations used in the sequel, well-de�ned on environments

whi
h do not
ontain dupli
ate de
larations, as we have assumed.

Set � (id) =

8

>

>

<

>

>

:

CT if id is

CT 2 �

IT if id is

i

IT 2 �

MXT if id is

m

MXT 2 �

? otherwise

{ Classes(�) the set of all
lass names de�ned in � , that is, C 2 Classes(�)

i� C is

CT 2 � ,

{ Interfa
es(�) the set of all interfa
e names de�ned in � , that is,

I 2 Interfa
es(�) i� I is

i

IT 2 � ,

{ Mixins(�) the set of all mixin names de�ned in � , that is, M 2 Mixins(�)

i� M is

m

MXT 2 � .

3.5 Type system (outline)

In this subse
tion, we give the �rst part of the metarules of the Jam type system, that is,

those related to environments. Metarules fall in two
ategories: those whi
h belong to the

Java type system, and those related to features introdu
ed by Jam, whi
h are distinguished

by a label. The judgments of these metarules have generi
 form � `
, with � an environment

and
 a type assertion.

Basis The following metarule provides the basis for the indu
tive de�nition of the validity

of judgments.

(1)

� `

 2 �

Fig. 9. Basi
 type assertion

Relations between types The metarules in Fig.10 all de�ne relevant relations between ref-

eren
e types (that is, either
lasses, or interfa
es, or mixins) whi
h
an be derived from

the basi
 relations
ontained in the environment. In parti
ular, the re
exive (on existing

lass types) and transitive
losure of the relation <

1

is the sub
lass relation �

; analogously

the re
exive (on existing interfa
e types) and transitive
losure of <

1

i

is the subinterfa
e

relation �

i

. The implementation relation from
lasses to interfa
es is derived from �

1

i

and

the sub
lass and subinterfa
e relations. The new relation introdu
ed in Jam w.r.t. Java is

that of instantiation, denoted �

m

, from a mixin instan
e to the
orresponding mixin type.

Finally, from all these relations we
an derive a more general relation of widening between

referen
e types, denoted by �.

The metarules in Fig. 11 de�ne subtyping relations for ex
eptions, �elds, methods and

module types. These relations basi
ally express that a module type is a subtype of another

if it has more �elds and/or methods; the
ommon �elds and methods must have exa
tly

the same type, modulo equivalen
e of ex
eptions types (� ` ET =

e

ET

0

in (22) stands for

� ` ET �

e

ET

0

and � ` ET

0

�

e

ET). Note that, in (19), it is possible that E

i

= E

j

(2)

� ` C <

1

C

0

� ` C �

C

0

(3)

� ` C is

CT

� ` C �

C

(4)

� ` C �

C

0

� ` C

0

�

C

00

� ` C �

C

00

(5)

� ` I <

1

i

I

0

� ` I �

i

I

0

(6)

� ` I is

i

IT

� ` I �

i

I

(7)

� ` I �

i

I

0

� ` I

0

�

i

I

00

� ` I �

i

I

00

(8)

� ` T �

1

i

I

� ` T �

i

I

(9)

� ` C �

C

0

� ` C

0

�

i

I

� ` C �

i

I

(10)

� ` T �

i

I � ` I �

i

I

0

� ` T �

i

I

0

(11)

� ` C �

C

0

� ` C � C

0

(12)

� ` I �

i

I

0

� ` I � I

0

(13-Jam)

� ` C �

m

M

� ` C �M

(14)

� ` T � T

� ` T � Obje
t

(15)

� ` T � T

� ` nil � T

(16)

� ` T �

i

I

� ` T � I

(17-Jam)

� ` M is

m

MXT

� `M �M

(18)

� ` T � T

0

� ` T

0

� T

00

� ` T � T

00

Fig. 10. Sub
lass, subinterfa
e, implementation and widening relations

(19)

� ` E

1

�

E

0

1

: : : � ` E

n

�

E

0

n

� ` fE

1

; : : : ; E

n

g �

Ex
Type

� ` fE

0

1

; : : : ; E

0

n

g�

Ex
Type

� ` fE

1

; : : : ; E

n

g �

e

fE

0

1

; : : : ; E

0

n

g

n � 0

(20)

� ` T�

SimpleType

� ` K T �

field

K T

(21)

� ` ff

1

: FT

1

; : : : ; f

n

: FT

n

g�

FieldsType

� ` ff

1

: FT

1

; : : : ; f

n

: FT

n

g �

fields

ff

1

: FT

1

; : : : ; f

m

: FT

m

g

m � n

(22)

� ` RT �

RetType

� ` ET =

e

ET

0

� ` K RT throws ET �

meth

K RT throws ET

0

� ` instan
e RT throws ET �

meth

abstra
t RT throws ET

(23)

� ` fmsig

1

:MT

1

; : : : ;msig

n

:MT

n

g�

MethsType

� ` fmsig

1

:MT

0

1

; : : : ;msig

k

: MT

0

k

g�

MethsType

� `MT

1

�

meth

MT

0

1

: : : � `MT

k

�

meth

MT

0

k

� ` fmsig

1

: MT

1

; : : : ;msig

n

: MT

n

g �

meths

fmsig

1

: MT

0

1

; : : : ;msig

k

:MT

0

k

g

k � n

(24)

� ` FST �

fields

FST

0

� `MST �

meths

MST

0

� ` FST MST �

mod

FST

0

MST

0

Fig. 11. Relations on ex
eptions, �elds, methods and module type

or E

0

i

= E

0

j

holds for some i; j. Finally, the same �gure show subtyping relations for �eld,

method and module types.

We omit for la
k of spa
e the metarules de�ning well-formedness of Jam types.

Type assignments The metarules in Fig.12 de�ne type assignments, that is, the fa
t that

some Jam module (either
lass or interfa
e or mixin) has a given type.

We use some auxiliary fun
tions:

{ ParentInterfa
es(�; I) = fI

0

jI <

1

i

I

0

2 �g

{ ImplementedInterfa
es(�; T) = fI jT �

1

i

I 2 �g

Moreover, we use the auxiliary update operations on (legal) Jam �elds and methods

types de�ned below.

ff

1

: FT

1

; : : : ; f

n

: FT

n

g[f : FT ℄ =

def

ff

i

: FT

i

jf

i

6= fg [ff : FTg

fmsig

1

:MT

1

; : : : ;msig

n

:MT

n

g[msig :MT ℄

�

=

def

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

fmsig

i

:MT

i

jmsig

i

6= msigg [fmsig :MTg

if 8i 2 f1; : : : ; ng msig = msig

i

)

8

<

:

Kind(MT) = stati
, Kind(MT

i

) = stati
;

� ` Ex
(MT) �

e

Ex
(MT

i

);

Ret(MT) = Ret(MT

i

)

? otherwise

The fun
tions Kind , Ex
 and Ret denote the obvious proje
tions for methods types.

The three
onditions above on updating methods types
orrespond to the three following

Java rules on overriding:

{ an instan
e method
annot override a stati
 method, and
onversely

12

;

{ a method overriding another
annot throw an ex
eption whi
h is not a subtype of some

ex
eption thrown by the overridden method

13

;

{ a method overriding another
annot have di�erent return type

14

.

It is easy to see that the update operations
an be safely generalized in the obvious way

to the
ase where the se
ond argument is a valid �elds (resp. methods) type.

On methods types we de�ne moreover a \sum" operation

�

� whi
h is basi
ally set union,

a part that, in the
ase of methods with the same signature, kind, and return type, it pro-

du
es just one su
h method whose ex
eptions type is the \interse
tion" of the ex
eptions

types, de�ned below. This operation is needed in the
ase a
lass inherits (from the imple-

mented interfa
es) many methods whi
h di�er only for the throws
lause.

fmsig : K RT throws ETg

�

� fmsig

0

: K

0

RT

0

throws ET

0

g =

def

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

fmsig : K RT throws ET;

msig

0

: K

0

RT

0

throws ET

0

g

if msig 6= msig

0

fmsig : K RT throws (ET

�

 ET

0

)g ifK = K

0

^ msig = msig

0

^

^RT = RT

0

? otherwise

fmsig

1

:MT

1

; : : : ;msig

n

:MT

n

g

�

� fmsig

0

1

:MT

0

1

; : : : ;msig

0

k

:MT

0

k

g =

def

fmsig

1

:MT

1

g

�

� : : :

�

� fmsig

n

:MT

n

g

�

� fmsig

0

1

:MT

0

1

g

�

� : : :

�

� fmsig

0

k

:MT

0

k

g

fE

1

; : : : ; E

n

g

�

 fE

0

1

; : : : ; E

0

m

g =

def

fE

i

j9j : � ` E

i

�

E

0

j

g[

fE

0

i

j9j : � ` E

0

i

�

E

j

g

12

See 8.4.6.1 and 8.4.6.2 in [15℄

13

See 8.4.6.3 in [15℄

14

See 8.4.6.3 in [15℄

(25)

� ` I is

i

MST

� `MST�

Interfa
eType

� ` I

1

: ; MST

1

: : : � ` I

n

: ; MST

n

� ` I : ; (MST

1

�

� : : :

�

�MST

n

)[MST ℄

�

n � 0

fI

1

; : : : ; I

n

g = ParentInterfa
es (�; I)

Set:

MXT = FST MST inherited FST

0

MST

0

(26-Jam)

� `M is

m

MXT

� `MXT�

MixinType

� ` I

1

: ; MST

1

: : : � ` I

n

: ; MST

n

� `M : FST

0

[FST ℄

((MST

1

�

� : : :

�

�MST

n

)[MST

0

℄

�

)[MST ℄

�

n � 0

fI

1

; : : : ; I

n

g =

ImplementedInterfa
es(�;M)

(27)

� ` Obje
t : ; ;

Set:

FST

= FST

0

[FST ℄

MST

= ((MST

1

�

� : : :

�

�MST

n

)[MST

0

℄

�

)[MST ℄

�

CT = K KST FST MST

(28)

� ` C is

CT

� ` CT�

ClassType

� ` C <

1

C

0

� ` C

0

: FST

0

MST

0

� ` I

1

:MST

1

: : : � ` I

n

:MST

n

� ` C : FST

MST

n � 0

C �

m

M 62 �

fI

1

; : : : ; I

n

g = ImplementedInterfa
es(�;C)

K =
on
rete)

Kind(MST

) =
on
rete

Set:

FST

= FST

0

[FST

d

℄

MST

= ((MST

1

�

� : : :

�

�MST

n

)[MST

0

℄

�

)[MST

d

℄

�

MST

m

= ((MST

1

�

� : : :

�

�MST

n

)[MST

i

℄

�

)[MST

d

℄

�

CT = K KST ; ;

(29-Jam)

� ` C is

CT

� ` CT�

ClassType

� ` C �

m

M

� `M is

m

FST

d

MST

d

inherited FST

i

MST

i

� ` C <

1

C

0

� ` C

0

: FST

0

MST

0

� ` FST

0

MST

0

�

mod

FST

i

MST

i

� ` I

1

: MST

1

: : : � ` I

n

:MST

n

� ` C : FST

MST

n � 0

fI

1

; : : : ; I

n

g =

ImplementedInterfa
es(�;M)

K =
on
rete)

Kind(MST

) =
on
rete

:MayBeAmbig(MST

0

;MST

m

)

Fig. 12. Type assignments

The metarule (44) de�nes the type of an interfa
e, whi
h is a pair
onsisting of an empty

�elds type and a methods type. This type
onsists of the sum of the methods types of the

superinterfa
es, updated by the methods de
lared in the interfa
e.

The metarule (45-Jam) de�nes the type of a mixin, whi
h is a pair
onsisting of a

�elds and a methods type. The �elds type
onsists of the inherited �elds type, updated by

the de�ned �elds type; the methods type
onsists of the sum of the methods types of the

implemented interfa
es, updated by the inherited methods, updated in turn by the de�ned

methods.

Fig.13 shows the de�nition of the predi
ate MayBeAmbig , whi
h is true whenever the

two arguments type may
ause ambiguity (hen
e make in
ompatible two methods in mixin

instantiation as explained in Se
t.2.3). The fun
tion Args denotes the obvious proje
tion for

method signatures.

IsPrim(T) =

def

T 2 fboolean; intg

IsRef (T) =

def

:IsPrim(T)

MayBeAmbig(AT

1

; AT

2

) =

def

8

>

>

>

>

<

>

>

>

>

:

AT

1

= T

0

1

: : : T

0

n

AT

2

= T

00

1

: : : T

00

n

9i : T

0

i

6= T

00

i

8i 2 f1; : : : ng IsRef (T

0

i

)) IsRef (T

00

i

) ^

IsPrim(T

0

i

)) T

0

i

= T

00

i

MayBeAmbig(MST;MST

0

) =

def

8

>

>

>

>

<

>

>

>

>

:

MST = fmsig

1

: MT

1

; : : : ;msig

n

: MT

n

g

MST

0

= fmsig

0

1

: MT

0

1

; : : : ;msig

0

k

: MT

0

k

g

9i 2 f1; : : : ; ng; j 2 f1; : : : ; kg t:
:

msig

i

= msig

0

j

^

MayBeAmbig(Args(msig

i

);Args(msig

0

j

))

Fig. 13. De�nitions of MayBeAmbig

The three metarules (46-48) de�ne the type of a
lass, whi
h is a pair
onsisting of a

�elds and a methods type.

46. For simpli
ity, we have ignored all the prede�ned methods of Obje
t, de�ned in [15℄

20.1.

47. For a standard Java heir
lass, the �elds type
onsists of the �elds type of the super
lass

updated by the �elds de
lared in the
lass. The methods type
onsists of the sum of the

methods types of the implemented interfa
es, updated by the methods of the super
lass,

updated in turn by the methods de
lared in the
lass.

48. For a mixin instan
e, the �elds type
onsists of the �elds type of the super
lass updated

by the �elds de�ned in the mixin. The methods type
onsists of the sum of the methods

types of the implemented interfa
es, updated by the methods of the super
lass, updated

in turn by the methods de�ned in the mixin.

We assume that the metarules in Fig. 12
an be instantiated only in the
ases where

update operations are de�ned.

Well-formedness of environments The metarules in Fig. 14 express the fa
t that a Jam

environment is well-formed. More pre
isely, the judgment � ` �

0

� denotes that the de
la-

rations in �

0

are well-formed in the larger environment � . We follow the approa
h in [11℄

of
onsidering larger environment in order to
orre
tly deal with mutual re
ursion between

de
larations. An environment � is well-formed if � ` ��; in this
ase we will also use the

abbreviation � ` �.

Fig.14 shows the metarules de�ning the well-formedness of
lass, interfa
e and mixin

de
larations.

(30)

� ` ;�

(31)

� ` �

0

� � ` C : FST MST

� ` �

0

[fC is

CT; C <

1

C

0

;

C �

1

i

I

1

; : : : ; C �

1

i

I

n

g�

�

0

(C) = ?

� 6` C

0

�

C

(32)

� ` �

0

� � ` C : FST MST

� ` �

0

[fC is

K KST ; ;; C <

1

C

0

; C �

m

M;

C �

1

i

I

1

; : : : ; C �

1

i

I

n

g�

�

0

(C) = ?

� 6` C

0

�

C

(33)

� ` �

0

� � ` I : FST MST

� ` �

0

[fI is

i

IT;

I <

1

i

I

1

; : : : ; I <

1

i

I

n

g�

�

0

(I) = ?

8j 2 f1; : : : ; ng � 6` I

j

�

i

I

(34-Jam)

� ` �

0

� � `M : FST MST

� ` �

0

[fM is

m

MXT;M �

1

i

I

1

; : : : ;M �

1

i

I

n

g�

�

0

(M) = ?

Fig. 14. Well-formed
lass, interfa
e and mixin de
larations

4 Jam to Java translation

In this se
tion, we give a formal de�nition of the dynami
 semanti
s of Jam dire
tly by

translation in Java. The same approa
h of de�ning a Java extension by translation into Java

as been taken for Pizza [18℄, a superset of Java whi
h in
orporates parametri
 polymorphism,

higher-order fun
tions and algebrai
 data types, and its re
ent evolution GJ (for \Generi

Java") [10℄.

We �rst illustrate informally the basi
 ideas through some examples (Se
t.4.1), then

provide the formal de�nition (Se
t.4.2); �nally in Se
t.4.3 we state that the translation

preserves stati

orre
tness.

4.1 An informal overview

The translation from Jam to Java must be de�ned in su
h a way to
orrespond to the

informal Jam semanti
s we have illustrated in Se
t.2. Hen
e, the two basi
 properties of

mixins must be preserved, that is:

{ the behavior of a
lass H obtained by instantiating a mixin M on a parent P must be

\equivalent" to that of a
lass obtained extending P by all the de�ned
omponents of

the mixins (
opy prin
iple);

{ mixin names
an be used as referen
e types (independently from the existen
e of some

mixin instan
e), and every
lass whi
h is instan
e of a mixin must be subtype of both

the mixin and the parent type.

The �rst point immediately gives an easy translation dire
tive, that is, every instantiation

of a mixin M on a parent P must be expanded to a usual Java de
laration of a
lass extending

P and de
laring all the de�ned
omponents of M (plus the
onstru
tors possibly de
lared in

the instantiation).

The se
ond point is less trivial to be a
hieved. Indeed, mixin types in Jam are a new

kind of types, not existing in Java, hen
e they must be translated in either
lass or interfa
e

types.

A simple way to get \for free" the property that a mixin instan
e turns out to be a

subtype of both the mixin and the parent type is to translate a mixin de
laration by an

interfa
e de
laration, and every instantiation by a Java
lass whi
h (besides extending the

parent) implements this interfa
e; however, this
hoi
e introdu
es the problem that mixins in

Jam
an de
lare �elds, while interfa
es
annot (stati

omponents do not
ause an analogous

problem sin
e they are not part of the mixin type, see Se
t.2.2, but only need to be
opied

at every instantiation).

On the other side, translating a mixin de
laration by a
lass de
laration would have the

advantage to make possible the de
larations of �elds, but would require to simulate in Java

the impli
it Jam type
onversion from the mixin instan
e type to the mixin type.

Hen
e, we have adopted the �rst
hoi
e, solving the problem of �eld de
larations by a

quite standard te
hnique, whi
h is the simulation of �elds by a pair of a

essor methods, for

sele
ting (getter) and updating (setter) a �eld. For ea
h �eld f in a mixin de
laration, the

methods get f and set f are de
lared in the interfa
e
orresponding to the mixin

de
laration; then, in every
lass translating a mixin instan
e, f is de
lared as a �eld and the

two methods are implemented in the obvious way.

Let us now illustrate how the translation works in pra
ti
e on the mixin Undo introdu
ed

in Se
t.2.1.

interfa
e Parent$Undo f

String getText() ;

void setText(String s) ;

g

interfa
e Undo extends Parent$Undo f

// Field "lastText"

String get lastText() ;

String set lastText(String newValue) ;

// Methods:

void setText(String s) ;

void undo() ;

g

Fig. 15. Translation of a mixin de
laration

Note that, in the translation (shown in Fig.15), together with the interfa
e Undo
orre-

sponding to the mixin type, there is a se
ond interfa
e Parent$Undo whi
h is extended by

Undo and
ontains only the de
larations of inherited methods.

This interfa
e represents the translation of the type Parent(Undo) introdu
ed in Se
t.2.4,

that is, the generi
 parent type on whi
h the mixin
an be instantiated, and is ne
essary for

the Java translation to
orre
tly simulate the Jam extended rule for overloading resolution

(an inherited method in a mixin M must be
onsidered as it had been de
lared in a \generi
"

super
lass of M, hen
e
onsidered less spe
i�
 of a de�ned method with the same signature).

We
onsider now an instantiation of the mixin Undo in Fig.16, and the
orresponding

translation in Fig.17.

As shown by the example, the
lass translating an instantiation of the mixin M on a

parent P extends P and implements the interfa
e M; moreover, the
lass
ontains a
opy of

all the �elds and methods de�ned in M, in
luding stati
 members and abstra
t methods, and

the implementation of the a

essor methods for ea
h �eld.

Note that, inside the mixin, no a

essor invo
ation is used in the translation for a

essing

the �elds. On the
ontrary, this invo
ation is ne
essary in
ase of a

ess from external
ode.

Moreover, using a

essors is only needed when the �eld a

ess is on an expression of the

mixin type, while the
ode remains un
hanged if the expression type is a mixin instan
e

type. For instan
e, the following
ode would be kept as it stands by the translation pro
ess:

ExampleWithUndo e = new ExampleWithUndo() ;

System.out.println(e. lastText) ;

lass Example f

String donald = "du
k" ;

String getText() f

return donald ;

g

void setText(String donald) f

this.donald = donald ;

g

g

lass ExampleWithUndo = Undo extends Example fg

Fig. 16. Undo instantiation example

lass Example f

// ... (unmodified)

g

lass ExampleWithUndo extends Example implements Undo f

// Field "lastText"

String lastText ;

String get lastText() f

return lastText ;

g

String set lastText(String newValue) f

return lastText = newValue ;

g

//

void setText(String s) f

lastText=getText() ;

super.setText(s) ;

g

void undo() f

setText(lastText) ;

g

g

Fig. 17. Translation of a mixin instantiation

Inherited �elds Although inherited �elds logi
ally di�er from de�ned �elds, they are trans-

lated in exa
tly the same way: a pair of method a

essors is generated.

Stati
 �elds As shown in Se
t.2.2, stati
 �elds do not belong to the mixin type. Therefore

de
larations of stati
 �elds within a mixin matter only for mixin instan
es. As a
onsequen
e,

the pair of interfa
es
orresponding to a mixin does not
ontain any a

essor for stati
 �elds.

Instead, stati
 �elds will be inserted in every
lass
orresponding to a mixin instan
e.

4.2 Formal translation

In this se
tion we formally de�ne the translation of Jam into Java outlined above. The aim

is twofold. First, we de�ne in this way the dynami
 semanti
s of Jam. Se
ond, we get the

soundness of the Jam type system from the soundness of the Java type system [11℄ and

Theorem 1 whi
h states that the translation preserves the stati
 semanti
s.

As usual, for proving preservation of stati

orre
tness we need to provide a formal

translation not only for Jam programs (environments and body de
larations), but also for

all judgments, hen
e for type assertions. In this paper, for la
k of spa
e, we omit translation

lauses related to body de
larations.

Translation of environments We denote by [[� ℄℄ the translation of a Jam environment � .

Sin
e assertions in � may be mutually re
ursive, analogously to what happens for the

stati
 semanti
s, the translation of � (Fig. 18) uses an auxiliary fun
tion taking an additional

argument whi
h is a larger environment.

[[� ℄℄ = [[� ℄℄

�

[[

1

; : : : ;

n

℄℄

�

=

S

i2f1;::: ;ng

[[

i

℄℄

�

Fig. 18. Translation of environments

The translation of a Jam type assertion is a set of Java type assertions, and is de�ned in

Fig.19. For all the type assertions
 for whi
h there is no translation
lause, we impli
itly

assume that:

[[
 ℄℄

�

= f
g

[[T �

1

i

I ℄℄

�

= fT <

1

i

Ig if T 2 Mixins(�)

[[T �

i

I ℄℄

�

= fT �

i

Ig if T 2 Mixins(�)

[[C �

m

M ℄℄

�

= fC �

1

i

Mg

[[M is

m

FST MST inherited FST

0

MST

0

℄℄

�

=

fM is

i

A

essorDe
s (FST

0

[FST ℄) [MST;Parent(M) is

i

MST

0

;M <

1

i

Parent(M)g

[[C is

K KST ; ; ℄℄

�

= fC is

K KST FSTMSTg

if � ` C �

m

M;� `M is

m

FST MST inherited FST

0

MST

0

[[C : FST

MST

℄℄

�

= fC : FST

MST

[A

essorDe
s (FST

0

[FST ℄)g

if � ` C �

m

M;� `M is

m

FST MST inherited FST

0

MST

0

[[M : FST

m

MST

m

℄℄

�

= fM : ; MST

m

[A

essorDe
s(FST

0

[FST ℄)g

if � `M is

m

FST MST inherited FST

0

MST

0

Fig. 19. Translation of type assertions

The translation of the type assertions having form T�

1

i

I and T�

i

I depends on the type of

the module T . If T is a mixin then the assertions are translated into subinterfa
e assertions,

otherwise, if T is a
lass, they remain the same. The instantiation assertion be
omes an

implementation assertion. A mixin de
laration is transformed into the de
laration of two

interfa
es (the �rst being a subinterfa
e of the se
ond). A
lass de
laration C is modi�ed

only in the
ase C is an instan
e of a mixin M ; the translation in this
ase
orresponds

to the
opy prin
iple. A well-formed mixin type is translated into the two
orresponding

well-formed interfa
e types. Finally, type assignments for mixin instan
es and mixins are

translated by introdu
ing a

essors. Of
ourse, we assume that there are no name
on
i
ts

between a

essors and user de�ned methods. The fun
tion A

essorDe
s is de�ned in Fig.20.

A

essorDe
s (f

1

: FT

1

; : : : ; f

n

: FT

n

) =

S

i2f1;::: ;ng

A

essorDe
(f

i

: FT

i

)

A

essorDe
(f : stati
 ST) = ;

A

essorDe
(f : instan
e ST) = f get f; �:instan
e ST throws ;;

set f; ST :instan
e ST throws ; g

Fig. 20. De�nition of A

essorDe
s

4.3 Soundness of the Translation

In this se
tion our aim is to show that the translation from Jam into Java is a
tually a

\good" translation.

First of all, it is immediate to see that the translation is
onservative, in the sense that

every Java program is translated into itself.

More importantly, we state that the translation preserves the stati
 semanti
s, in the

sense that a stati
ally
orre
t Jam program is translated into a stati
ally
orre
t Java pro-

gram. In order to prove that, we need the stronger property that every valid Jam judgment

is translated into a set of valid Java judgments.

Theorem 1. Let � be a well-formed Jam environment (that is, ` �� is valid), then:

1. for every valid judgment � `
�, [[
 ℄℄

�

is well-de�ned and [[� ℄℄ ` [[
 ℄℄

�

is valid.

2. [[� ℄℄ is a well-formed Java environment (that is, ` [[� ℄℄ � is valid).

The proof
an be found in [1℄.

5 Con
lusion

In the pre
eding se
tions, we have des
ribed Jam, a smooth extension of Java supporting

mixins, and we have formally de�ned its stati
 semanti
s and a translation into Java. The

latter has been implemented by a Jam to Java translator whi
h makes Jam exe
utable on

every platform implementing a Java Virtual Ma
hine.

In this last se
tion, we brie
y des
ribe the implementation (Se
t.5.1), provide some

detailed
omparison with related work (Se
t.5.2) and dis
uss some alternative design
hoi
es

and dire
tions for further investigation (Se
t.5.3).

5.1 Implementation

The translator (
alled jam
) has been implemented in Java.

It performs a
omplete synta
ti
 analysis and only a partial type-
he
king of Jam input

sour
e �les. This means that every lexi
al or synta
ti
 error in the sour
e
ode will be

dete
ted by jam
, whereas the most of stati
 errors will be found later on by the Java

ompiler when trying to
ompile the Java sour
e �les produ
ed by jam
.

For more details see [1℄.

5.2 Related work

At our knowledge, the only existing proposals for extensions of obje
t-oriented languages

with mixins are [9℄ and [14℄.

In [9℄, the authors present an extension of Smalltalk with mixins. The design prin
iples

of this extension are very similar to those we have followed in Jam. Indeed, mixins are seen

as fun
tions from super
lasses into heir
lasses, instantiation is possible only if the
andidate

parent
lass
ontains all the methods invoked via super in the mixin, mixins do not in
uen
e

the behavior of existing Smalltalk programs, hen
e the extension is fully upward-
ompatible.

The great di�eren
e is that, being Smalltalk an untyped language, most of the problems we

had to fa
e in the design of Jam simply do not exist for Smalltalk; the most remarkable of

these problems is that mixins introdu
e a new kind of referen
e type. As in our approa
h

(see Se
t. 2.3) overriding takes pla
e uniformly both for methods whi
h are invoked via

super and for others. Following our same prin
iple that mixin instantiation should produ
e

a
orre
t heir
lass, the
andidate parent
lass must not
ontain instan
e variables with

the same name of some de�ned in the mixin (indeed in Smalltalk hiding parent variables

is forbidden). Moreover, mixins
an be easily eliminated from a program by automati
ally

reating a
lass for ea
h mixin invo
ation and dupli
ating the mixins
ode for it (in other

words, mixins have a pure
opy semanti
s,
orresponding to �-rule for fun
tion appli
ation),

while for Jam this is not enough sin
e mixins are types so they
annot be just eliminated.

In [9℄, a mixin
an be
omposed with another mixin (the expe
ted semanti
s is exa
tly

fun
tion
omposition) and a mixin
an also be \extra
ted" from an existing
lass: in this
ase,

its
omponents are those de
lared in the
lass. Both the possibilities seem very useful and

adding them to Jam will be matter of further work, even though a generalization allowing

full mixin
omposition seems in the Java
ase not trivial, on both design and implementation

side.

The authors have developed a working extension whi
h has been used for real appli
a-

tions.

In [14℄, the authors des
ribe MixedJava, a theoreti
al language whi
h has a Java-like

syntax where it is only possible to de
lare either mixins or interfa
es, while usual
lasses are

seen as parti
ular mixins whi
h de�ne all the
omponents.

In MixedJava, there are two kinds of mixins.

{ Atomi
 mixins, whose de
laration, similar to that of a usual Java
lass,
ontains �elds,

methods and an interfa
e whi
h spe
i�es the expe
ted super
lass. This interfa
e plays

the same role of the inherited part of mixins in Jam, with the di�eren
e that it must

be expli
itly de
lared by the programmer, while in Jam the interfa
e is
reated during

the translation pro
ess.

A basi
 di�eren
e (see Se
t.2.3) is that in mixin instantiation (whi
h in MixedJava is

just a spe
ial
ase of mixin
omposition, see below) methods in the heir override methods

in the parent only if they are expli
itly mentioned in the inheritan
e interfa
e, while in

ase of unexpe
ted overriding both the versions are kept.

{ Compound mixins, roughly based on fun
tion
omposition, as happens for the Smalltalk

extension des
ribed above, but a
tually more involved, for the
onstraints on method

overriding explained above.

The work presented in [14℄ sensibly di�ers from ours for many reasons.

{ The proposed language is theoreti
al, while Jam is designed to be a working upward-

ompatible extension of Java (1.0).

{ In MixedJava inherited
omponents
an be only methods, sin
e they are spe
i�ed via

an interfa
e. The authors motivate this
hoi
e by the
onsideration that programming

via interfa
es is
leaner; in Jam, we have
hosen as privileged prin
iple that mixins

should be similar as mu
h as possible to usual heir
lasses.

{ In Jam mixins
an be only instantiated on
lasses, and there is no notion of mixin

omposition. As already stated, this is an important possibility of extension of Jam to

be investigated in the future.

{ As mentioned above, MixedJava adopts an ad-ho
 solution in the
ase of unexpe
ted

overriding, while in Jam methods in the parent
lass are uniformly overridden by meth-

ods in the heir
lass. This di�erent poli
y is probably the most important di�eren
e

between the two approa
hes. A disadvantage of our approa
h is that in the
ase the

parent
lass in
identally has some method whi
h is in
on
i
t with one de�ned in the

mixin, it is left to the user the
hoi
e between either to avoid this instantiation (hen
e

the mixin be
omes useless for this parti
ular
ase) or to get an heir
lass with some

overriding whi
h was not planned when designing the mixin. However, the
on
i
ts res-

olution in [14℄, essentially based on the idea of keeping both the method versions, leads

as a matter of fa
t to ambiguity problems whi
h are typi
al of multiple inheritan
e (a

lass inherits two di�erent de�nitions for the same method), heavily
ompli
ating both

language semanti
s and a possible implementation (only outlined in [14℄). On the
on-

trary, our
hoi
e implies minimal
hanges w.r.t. Java semanti
s. A future development

ould be the analysis of intermediate solutions.

5.3 Alternative design
hoi
es and further developments

Referen
es to the parent and the heir names In Se
t. 2.6 we have seen that there are

ases where heir
lasses
annot be \abstra
ted" in a mixin de�nition. Introdu
ing
anoni
al

notation for the parametri
 names of the parent and heir
lass, say P* and H*, respe
tively,

we
ould transform the
lass H shown in Se
t. 2.6 in a mixin M as follows.

mixin M f

inherited stati
 int
ounter ;

stati
 int
ounter ;

stati
 void in
rThat() f ++P

�

.
ounter ; g

: : :

int value ;

publi
 boolean equals(Obje
t that) f

if (that instan
eof H

�

) return ((H

�

)that).value == value ;

return false ;

g

g

Obviously, the
opy prin
iple should in this
ase be modi�ed, saying that a
lass H = M

extends P should be equivalent to a
lass extending P and
ontaining the de�nitions in M

where all the o

urren
es of the parametri
 names P* and H* have been repla
ed by P and

H, respe
tively. Introdu
ing this possibility would allow a (limited to heir
lasses) form of

parametri
 polymorphism, in the same dire
tion of the extensions of Java with parametri

types proposed in [18,10℄. However, with this
hoi
e we would lose one of the two design

prin
iples of Jam, that is, the fa
t that a mixin name
an be used as a type (indeed in

this
ase it would be not a type but a type s
hema), hen
e all the mixin instan
es
an be

uniformly used through the
ommon interfa
e spe
i�ed by this type. Indeed, it is not
lear

if it
ould be possible (and how) to make
ompatible these two di�erent ways of a
hieving

abstra
tion: on one side to have parametri
 modules (
lass-to-
lass fun
tions) where this

parametri
ity is fully exploited, on the other side to be able to use ea
h module as a type.

The problem is not trivial and deserves further investigation.

Flexible mat
hing Assume that P is a supertype of H and
onsider the following de
lara-

tions.

mixin M f

inherited void f(H, H) ;

g

lass C1 f

void f(P p, H h) fg

g

In Jam it is not possible to instantiate M on C1 sin
e this
lass does not provide an

implementation for the method void f(H,H). Indeed, the mat
hing between the inherited

methods and the
orresponding methods in the parent
lass is required to be exa
t (same

arguments and return type, and equivalent throws
lause). An interesting possibility, whi
h

ould be matter of a future extension,
ould be to introdu
e a
exible mat
hing, where the

subtyping rule for method types (Fig. 11, metarule (22)) allows
ontravarian
e on arguments

type and
ovarian
e on return type. On the
ontrary, it is interesting to note that the

ex
eption types must be invariant (modulo the equivalen
e =

e

) in order to preserve the

soundness of the type-system.

Allowing this
exibility, C1 turns out to be a
orre
t parent
lass for M. However, this

kind of mat
hing leads to some new problems w.r.t. the exa
t mat
hing
ase. Let us
onsider

this other
lass de
laration.

lass C2 f

void f(P p, H h) fg

void f(H h, P p) fg

g

In this
ase, assuming that we want to instantiate M on C2, we have to de
ide in some way

whi
h of the two methods de
lared in C2 must be used as implementation of the inherited

method in M. The
hoi
e
ould either be driven, in analogy with the overloading resolution in

Java, by the notion of most spe
i�
 appli
able method, or left to the user via a me
hanism

whi
h permits to expli
itly spe
ify in the instantiation the asso
iation of inheritedmethods

with those de�ned in the parent
lass.

Shared stati

omponents In Se
t.2.2, we have seen that ea
h
lass has its own
opy of

the stati

omponents de
lared in the mixin. As already mentioned there, other two design

hoi
es would be possible: either make mixin instan
es to share a unique
opy for ea
h

stati

omponent (in this way they would be part of the mixin type), or leave to the user, by

means of a keyword shared or analogous me
hanism, the
hoi
e between the two options.

This last
hoi
e, whi
h has some appeal, would require the introdu
tion of some
onstraint,

for instan
e the fa
t that a shared stati
 method
ould not invoke a stati
 method.

Referen
es

1. D. An
ona, G. Lagorio, and E. Zu

a. Jam - a smooth extension of java

with mixins. Te
hni
al report, DISI, University of Genova, 1999. Available at

http://www.disi.unige.it/ftp/person/An
onaD/Jam.ps.gz.

2. D. An
ona and E. Zu

a. A theory of mixin modules: basi
 and derived operators. Mathemati
al

Stru
tures in Computer S
ien
e, 8(4):401{446, 1998.

3. D. An
ona and E. Zu

a. A primitive
al
ulus for module systems. In G. Nadathur, editor,

Prin
iples and Pra
ti
e of De
larative Programming, 1999, Le
ture Notes in Computer S
ien
e,

pages 62{79. Springer Verlag, 1999.

4. G. Banavar and G. Lindstrom. An appli
ation framework for module
omposition tools. In

ECOOP '96, number 1098 in Le
ture Notes in Computer S
ien
e, pages 91{113. Springer Verlag,

July 1996.

5. Grady Boo
h. Obje
t-Oriented Analysis and Design. Addison-Wesley, 1994.

6. G. Bra
ha. The Programming Language JIGSAW: Mixins, Modularity and Multiple Inheritan
e.

PhD thesis, Department of Comp. S
i., Univ. of Utah, 1992.

7. G. Bra
ha and W. Cook. Mixin-based inheritan
e. In ACM Symp. on Obje
t-Oriented Pro-

gramming: Systems, Languages and Appli
ations 1990, pages 303{311. ACM Press, O
tober

1990. SIGPLAN Noti
es, volume 25, number 10.

8. G. Bra
ha and G. Lindstrom. Modularity meets inheritan
e. In Pro
. International Conferen
e

on Computer Languages, pages 282{290, San Fran
is
o, April 1992. IEEE Computer So
iety.

9. G. Bra
ha and G. Lindstrom. Extending Smalltalk with mixins. In OOPSLA96 Work-

shop on Extending the Smalltalk Language, April 1996. Ele
troni
 note available at

http://www.javasoft.
om/people/gbra
ha/mwp.html.

10. G. Bra
ha, M. Odersky, D. Stoutmire, and P. Wadler. Making the future safe for the

past: Adding generi
ity to the Java programming language. In ACM Symp. on Obje
t-

Oriented Programming: Systems, Languages and Appli
ations 1998, O
tober 1998. Home page:

http://www.
s.bell-labs.
om/who/wadler/pizza/gj/.

11. S. Drossopoulou and S. Eisenba
h. Des
ribing the semanti
s of Java and proving type sound-

ness. In J. Alves-Foss, editor, Formal Syntax and Semanti
s of Java, number 1523 in Le
ture

Notes in Computer S
ien
e, pages 41{82. Springer Verlag, Berlin, 1999.

12. S. Drossopoulou, T. Valkevy
h, and S. Eisenba
h. Java type soundness revisited. Te
hni
al

report, Dept. of Computing - Imperial College of S
ien
e, Te
hnology and Medi
ine, O
tober

1999.

13. D. Duggan and C. Sourelis. Mixin modules. In Intl. Conf. on Fun
tional Programming, pages

262{273, Philadelphia, June 1996. ACM Press. SIGPLAN Noti
es, volume 31, number 6.

14. M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In ACM Symp. on Prin
iples

of Programming Languages 1998, pages 171{183, January 1998.

15. James Gosling, Bill Joy, and Guy Steele. The Java Language Spe
i�
ation. Addison-Wesley,

1996.

16. S.C. Keene. Obje
t Oriented Programming in Common Lisp: A Programming Guide in CLOS.

Addison-Wesley, 1989.

17. D.A. Moon. Obje
t oriented programming with Flavors. In ACM Symp. on Obje
t-Oriented

Programming: Systems, Languages and Appli
ations 1986, pages 1{8, 1986.

18. M. Odersky and P. Wadler. Pizza into Java: Translating theory into pra
ti
e. In ACM Symp.

on Prin
iples of Programming Languages 1997. January 1997.

19. A. Snyder. CommonObje
ts: An overview. SIGPLAN Noti
es, 21(10):19{28, 1986.

