
Jam - A Smooth Extension of Java with Mixins

?

Davide Anona, Giovanni Lagorio, and Elena Zua

Dipartimento di Informatia e Sienze dell'Informazione

Via Dodeaneso, 35,16146 Genova (Italy)

email: davide,zua�disi.unige.it

fax: +39 010-3536699

Abstrat. In this paper we present Jam, an extension of the Java language support-

ing mixins, that is, parametri heir lasses. A mixin delaration in Jam is similar to

a Java heir lass delaration, apart that it does not extend a �xed parent lass, but

simply spei�es the set of �elds and methods a generi parent should provide. In this

way, the same mixin an be instantiated on many parent lasses, produing di�erent

heirs, thus avoiding ode dupliation and largely improving modularity and reuse.

Moreover, as happens for lasses and interfaes, mixin names are referene types, and

all the lasses obtained instantiating the same mixin are onsidered subtypes of the

orresponding type, hene an be handled in a uniform way through the ommon

interfae. This possibility allows a programming style where di�erent ingredients are

\mixed" together in de�ning a lass; this paradigm is partly similar to that based on

multiple inheritane, but avoids its ompliation.

The language has been designed with the main objetive in mind to obtain, rather

than a new theoretial language, a working and smooth extension of Java. That

means, on the design side, that we have faed the hallenging problem of integrating

the Java overall priniples and omplex type system with this new notion; on the

implementation side, that we have developed a Jam to Java translator whih makes

Jam soures exeutable on every Java Virtual Mahine.

1 Introdution

In the last years, the notion of parametri heir lass or mixin (following the terminology

originally introdued in [17,16℄) has deserved great interest in the programming languages

ommunity. As the �rst name suggests, a mixin is a uniform extension of many di�erent

parent lasses with the same set of �elds and methods, that is, a lass-to-lass funtion. To

be more onrete, let us onsider a shemati lass delaration in Java.

lass H1 extends P1 f des g

where P1 is some parent lass and des denotes a set of �eld and method delarations. In

Java, as in most other objet-oriented programming languages, if we want to extend another

parent lass, say P2, with the same set of �elds and methods, then we have to write a new

independent delaration, dupliating the ode in des .

lass H2 extends P2 f des g

Assume now to have a language allowing to give a name, say M, to des , and to instantiate

M on di�erent parent lasses, e.g. P1 and P2, obtaining di�erent heir lasses equivalent to H1

and H2 above.

mixin M f des g

lass H1 = M extends P1 ;

lass H2 = M extends P2 ;

?

Partially supported by Murst - Tenihe formali per la spei�a, l'analisi, la veri�a, la sintesi e

la trasformazione di sistemi software

Then we say that M is a mixin.

A mixin delaration resembles a usual heir lass delaration, apart that a mixin does

not refer to a �xed parent lass, but simply spei�es the set of �elds and methods a generi

parent should provide. The fat that the same mixin an be instantiated on many parent

lasses avoids ode dupliation and largely improves modularity and reuse. The name refers

to the fat that in a language supporting mixins it is possible to \mix", in some sense,

di�erent ingredients during lass reation, as niely illustrated through the jigsaw puzzle

metaphor in [6℄. This paradigm is partly similar to that based on multiple inheritane, but

avoids its ompliation.

Mixin-based programming has been now extensively studied both on the methodologial

and foundational point of view [7,6,8,4,2,3℄. The results an be summarized as follows.

First, the mixin notion is not stritly related to objet-oriented programming but an be

formulated in general in the ontext of module omposition (a mixin module is a module

where some omponents are not de�ned but expeted to be provided by some other module).

This notion allows to have a lean and unifying view of di�erent linguisti mehanisms

for omposing modules. Finally, the intuitive understanding of a mixin as a lass-to-lass

funtion (or, in the general ase, module-to-module funtion) an be atually supported by

a rigorous mathematial model [2,3℄.

Despite of this advaned state of the art, few attempts have been made at designing

real programming languages supporting mixins. As already mentioned, the �rst use of the

word mixin as a tehnial term originates with the LISP ommunity [16,19℄. After that, at

our knowledge, there exist only a proposal for extending ML [13℄, a working extension for

Smalltalk [9℄ and a proposal for a Java-like mixin language [14℄ (whose relation with our

work will be disussed in detail in Set.5.2).

In this paper, we present Jam

1

, a working and smooth extension of Java with mixins. By

these two adjetives we mean that our main aim is to produe an exeutable and minimal

extension of Java, rather than de�ne a new theoretial language supporting mixins. More

preisely, Jam is an upward-ompatible extension of Java 1.0 (apart from two new keywords),

a great e�ort has been spent in integrating mixin-related features with the Java overall design

priniples, the type system is a natural extension of the Java type system with a new kind

of types (mixin types), the dynami semantis is diretly de�ned by translation into Java

and, �nally, this translation has been implemented by a Jam to Java translator whih makes

Jam immediately exeutable on every Java Virtual Mahine.

The struture of the presentation is as follows. In Set.2 we provide a user introdution

to Jam, through some examples, and illustrate and motivate in detail our design hoies.

In Set.3 we formally de�ne the language, giving (a part of) the abstrat syntax and the

stati semantis (the full de�nition an be �nd in [1℄). The Jam type system is de�ned

as a onservative extension of the Java type system. For what onerns the Java part, we

basially follow the type system proved sound in [12℄, even though we over some more

features and take a somewhat di�erent style of presentation. In Set.4 we de�ne a formal

translation from Jam into Java and state the orretness of this translation w.r.t. stati

semantis (that is, orret Jam programs are expanded into orret Java programs; this

also ensures the soundness of the Jam type system). Finally in Set.5.1 we briey desribe

the implementation, provide a detailed omparison with the proposals in [9,14℄ and outline

further researh diretions.

An extended version of this paper, inluding the full type system, the proof of orretness

of the translation and more examples and disussions, is [1℄.

The Jam ompiler and the soures are available at: http://gio.libertyline.

om/jam.

1

Java + mixin = jam

2 User Introdution and Rationale

In this setion we provide a user introdution to Jam and illustrate and motivate our design

hoies. In 2.1 we give an overall view of the apabilities added to Java by the introdution

of mixins, in 2.2-2.5 we disuss some more spei� points, and �nally in 2.6 we point out

the main limitations of the language.

2.1 An example

Fig. 1 shows the delaration of the mixin Undo. We use typewriter style for ode fragments.

This mixin, as the name suggests, provides an \undo" mehanism that permits to restore the

mixin Undo f

inherited String getText() ;

inherited void setText(String s) ;

String lastText ;

void setText(String s) f

lastText = getText() ;

super.setText(s) ;

g

void undo() f

setText(lastText) ;

g

g

Fig. 1. Mixin delaration

text before the last modi�ation. As shown in the example, a mixin delaration is logially

split in two parts: the delarations of the omponents whih are expeted to be provided by

the parent lass, pre�xed by the inheritedmodi�er, and the delarations of the omponents

de�ned in the mixin. Note that de�ned omponents an override/hide inherited omponents,

as it happens for usual heir lasses.

The mixin Undo an be instantiated on lasses that de�ne two non-abstrat methods

getText and setText, with types as spei�ed in the inherited delaration. Fig. 2 shows

lass Textbox extends Component f

String text ;

...

String getText() f ... g

void setText(String s) f ... g

g

lass TextboxWithUndo = Undo extends Textbox fg

Fig. 2. Mixin instantiation

an example of instantiation; we have used as parent a lass Textbox whih extends a

generi lass Component. In the instantiation no onstrutors are spei�ed for the new lass

TextboxWithUndo (they should be delared between the urly braes) and so, as in Java, it

is assumed that the lass has only the default onstrutor. To obtain a orret instantiation

Textbox must de�ne the mixin inherited part by implementing the methods getText and

setText. These methods must have the same return and arguments type and equivalent

2

throws lause w.r.t. the orresponding inherited delaration. The lasses obtained by in-

stantiating the mixin provide, in addition to the methods getText (inherited from parent

lass) and setText (inherited and overridden), all other �elds and methods of the lass

Textbox, the method undo and the �eld lastText.

The expeted semantis of mixin instantiation an be informally expressed by the fol-

lowing opy priniple:

A lass obtained instantiating a mixin M on a parent lass P

should have the same behavior as a usual heir of P whose body

ontains a opy of all the omponents de�ned in M .

A lass implementing the mixin inherited part an nevertheless be an invalid parent

for instantiation, sine there is another requirement to be met: the heir lass obtained

instantiating the mixin must be a orret Java heir lass. This leads to a set of onstraints

whih are desribed in detail in Set. 2.3.

What we have seen so far shows the use of a mixin delaration as a sheme, that is, a

parametri heir lass that an be instantiated on di�erent lasses. In this way we avoid ode

dupliation, a good result in itself, but Jam allows something more: a mixin an be used as

a type and a mixin instane

3

is a subtype of both the mixin and the parent lass on whih

it has been instantiated.

This allows the programmer to manipulate objets of any mixin instane by using the

ommon interfae spei�ed by the mixin delaration (see Fig. 3). An important onsequene

lass TextboxWithUndo = Undo extends Textbox fg

lass BreakIteratorWithUndo =

Undo extends java.text.BreakIterator fg

lass TestUndo f

void f() f

g(new TextboxWithUndo()) ;

g(new BreakIteratorWithUndo()) ;

g

void g(Undo u) f

u.setText("foo") ;

u.setText("bar") ;

System.out.println("Previous text: "+u.lastText) ;

System.out.println("Current text : "+u.getText());

g

g

Fig. 3. Use of mixin types

is that Jam supports a programming style (sometimes alled mixin-based [7℄) where di�erent

2

That is, every exeption delared in one lause must be a subtype of an exeption delared in

the other, and onversely.

3

We will all mixin instane a lass obtained instantiating a mixin, to be not onfused with an

instane of a lass.

ingredients are \mixed" together in de�ning a lass. This paradigm has been advoated [6,5℄

on the methodologial side sine it allows to partly reover the expressive power of multiple

inheritane without introduing its ompliation; however the novelty of Jam is that mixin-

based programming is rigorously introdued in the ontext of a strongly typed language.

2.2 Other omponents of a mixin delaration

In the simple example presented in the previous setion we have not inluded all the kinds

of omponents whih an appear in a mixin delaration.

Indeed, following the design priniple that a mixin should be as similar as possible to a

usual heir lass, mixins should provide all their features. In the sequel we illustrate eah of

them in detail highlighting and justifying some restritions.

Interfaes A mixin an implement an interfae in exatly the same way a lass does.

Construtors A onstrutor invoation in Java takes plae in three ases: in an objet re-

ation expression new C(: : :), inside another onstrutor of the same lass via this and

inside an heir's onstrutor via super. However, reating objets whih are instanes of

mixins makes no sense. Moreover, in Jam mixin instanes are not onsidered heirs of the

orresponding mixin. Hene, for mixins the invoation inside an heir's onstrutor never o-

urs. In summary, it makes no sense to delare onstrutors in mixins; however, it is possible

to delare onstrutors for eah partiular mixin instane at the point of instantiation.

Inherited instane �elds In a mixin it is possible to aess inherited (instane) �elds in the

same way as a usual heir lass does: using the �eld name id or the forms this.id and

super.id (the latter is needed when a de�ned �eld hides an inherited one).

Stati members Although in Jam stati omponents are delared in the same way as instane

omponents exept, of ourse, the use of the stati modi�er, their visibility is di�erent:

they are not onsidered part of the mixin type. Consider, for example, the following ode

fragment:

mixin M f

stati void m() fg

stati int f ;

g

We do not allow in Jam invoations M.m() or e.m() with e of type M. However, for eah

lass H obtained instantiating M, invoations H.m() or e.m()

4

with e of type H are legal. The

same rule holds for �elds. In other words, every lass that is an instane of M has \its own

opy" of stati omponents delared in the mixin. Other hoies are tehnially possible:

{ sharing only one opy of the stati omponents delared in the mixin between all mixin

instanes; in this ase it should be allowed aessing stati members through the mixin

type too;

{ leave to the programmer (introduing a new keyword, or analogous mehanisms) the

deision whether a omponent should be shared between all the mixin instanes or not.

In Jam, we have hosen the \unshared" version beause, in this way, a mixin instantiation

on a parent lass is equivalent to that obtained by opying the mixin body in the delaration

of the new lass, as requested by the opy priniple. Stati omponents an be inherited (of

ourse, they are not part of mixin type either) but, like in Java, stati methods annot be

abstrat.

4

We maintain this alternative syntax for ompatibility reasons only, see 15.10.1 of [15℄

2.3 Constrains on instantiation

As mentioned in Set. 2.1, the fat that a lass P provides an implementation for the

inherited part of a mixin M is not enough for ensuring that P an be orretly used as

a parent for M. Indeed, in addition to methods delared inherited in M, the lass P an

ontain some other methods whih ould interfere, in various ways, with methods in M. Let

us briey illustrate the di�erent interferene ases.

Unexpeted overriding/hiding A method in P is inidentally overridden (hidden) by a method

de�ned in M if it has the same name, arguments type, return type, kind (instane or stati)

and a ompatible

5

throws lause. For instane, instantiating the mixin Undo on a lass with

a void undo() method produes an unexpeted overriding. This situation looks somewhat

undesirable, sine there is some overriding whih was not planned when delaring the mixin;

however, our hoie for Jam has been to onsider legal these instantiations, leaving to the

programmer the are of avoiding them when the additional overriding is undesired. Indeed,

di�erent hoies would sensibly ompliate either the stati (if the hoie is to forbid) or

dynami (if the hoie is to keep both versions) semantis, while ours is the natural extension

to mixins of what happens for usual heir lasses. See Set.5.2 for some further disussion on

this point.

Illegal overriding/hiding A method in P is illegally overridden (hidden)

6

by a de�ned method

in M if it has the same signature (name and arguments type) but either di�erent return type,

or di�erent kind or inompatible throws lause. This is not orret in Jam.

Ambiguous overloading There exist ontexts in whih the presene of the method in P makes

ambiguous, w.r.t. overloading resolution, an invoation of the method in M. Let us larify this

ase with an example. Assume that the method Undo.undo ontains the all setText(null);

this invoation is statially orret. Suppose now to instantiate Undo on a lass Boom whih

de�nes, besides the methods String getText() and void setText(String), the method

void setText(Integer). In this ase the all setText(null) beomes ambiguous. Indeed,

null an be impliitly onverted to any referene type, hene both methods are appliable

and neither is more spei�

7

.

In general, if two methods have the same name, then the addition of one may make

ambiguous, w.r.t. overloading resolution, an invoation of the other if and only if they have

the same number and type of arguments exept for some argument for whih they have

two di�erent referene types (see Fig. 13 in Set.3 for the formal de�nition). In alterna-

tive we ould have de�ned less strit rules by forbidding the instantiation only when some

method body in the mixin ontains a method invoation that would beome ambiguous (as

in the example). However, we have preferred to follow the priniple that the orretness of a

mixin instantiation should depend only on the mixin type and not on its implementation. In

this way, indeed, a modi�ation of the method bodies does not a�et the orretness of the

instantiation. Even though this approah has the drawbak of forbidding also \good" instan-

tiations, on the methodologial side it seems more onsistent with the hoie of desribing

the requirements on the parent lass via the inherited delarations.

2.4 Overloading

The Java rules for overloading resolution

8

smoothly extends to Jam, just inluding mixin

types among other referene types and taking into aount in the de�nition of \more spe-

i�" the fat that every mixin instane is a subtype of (hene, an be onverted to) the

orresponding mixin type. However, some partiular are is needed for handling the situa-

tion when there is an overloading onit between an inherited and a de�ned method in a

mixin. Let us illustrate the problem on the following simple example.

5

See 8.4.4 in [15℄

6

See 8.4.6.3 in [15℄

7

See 15.11.2 in [15℄

8

See 15.11.2 in [15℄

lass A fg

lass B extends A fg

lass Parent f

void f(B b) fg

g

lass Heir extends Parent f

void f(A a) fg

g

mixin M f

inherited void f(B b) ;

void f(A a) fg

g

lass Test f

void test(Heir h, B b, M m) f

h.f(b) ; // ambiguous

m.f(b) ; // ambiguous?

g

g

Fig. 4. Overloading onit between inherited and de�ned methods

In the �rst part of the ode shown in Fig.4, B is a subtype of A and Heir is a subtype of

Parent. The lass Parent de�nes a method named f with one argument of type B, while

its sublass Heir de�nes a method with the same name and argument's type A. Due to

the symmetry of the situation, the invoation h.f(b), where h and b are of type Heir and

B, respetively, is ambiguous, sine there are two appliable methods and neither is more

spei�

9

.

If we onsider now the delaration of the mixin M, the situation is exatly analogous to the

preeding: a (parametri) heir lass de�nes a method whose argument type is a supertype

of the argument type of a method with the same name in the parent lass. Hene, we expet

the invoation of m.f(b), where m has type M, to be ambiguous as well.

For ahieving this goal, we assume that inherited methods in a mixin M are annotated

with a type (that is, onsidered to be have been delared within the orresponding module;

see [1℄ for the preise formal de�nition of annotations) whih is not M but a speial type

Parent(M) whih represents the generi parent on whih the mixin an be instantiated, and

is assumed to be a supertype of M.

2.5 Use of this in mixins

A last deliate point in the Jam type system onerns the use of the keyword this, whih

denotes, in an instane method (resp. onstrutor), the urrent objet on whih the method

has been invoked (the urrent objet to be onstruted). In a method or onstrutor delared

in a lass C, the expression this has stati type C in Java

10

. Now, we have to deide whih

should be the stati type of this in a method de�ned in a mixin M. Sine we want to be

able to type-hek the mixin delaration independently from future instantiations, the only

possibility is to assume that this has stati type M, sine this is the only type available

at mixin delaration's time. However, this is in onit with the fat that we expet that

in a lass H instane of a mixin M the expression this has stati type H, as it happens

for usual heir lasses. More preisely, the fat of having orretly type-heked the mixin

delaration under the assumption that this has type M does not guarantee that (the Java

lass H orresponding to) a mixin instane (following the opy priniple) is always a orret

Java lass, sine in Java this has type H in this lass. This an lead to unsound situations

in some subtle ases involving overloading. Let us onsider the example in Fig.5.

The lass A delares two methods named f with argument's type a mixin M and an

instane H of M, respetively. In the invoation of f inside the method g delared in M, sine

this has type M, the expression A.f(this) has type int, hene an be orretly assigned

to the variable i.

9

See 15.1.2.2 in [15℄

10

See 15.7.2. in [15℄

lass A f

stati int f(M m) f : : : g

stati boolean f(H h) f : : : g

g

mixin M f

void g() f

int i = A.f(this) ;

g

g

lass H = M extends Objet fg ;

// ``Equivalent'' delaration for H

lass H : : : f

void g() f

int i = A.f(this) ; // Boom !!!

g

g

Fig. 5. Problem in using this in mixins

Now, if the expeted semantis of H, following the opy priniple, is to be equivalent to

the lass shown in the �gure where the delaration of g has been opied into the body, then

the invoation A.f(this) has now type boolean, hene annot be used for initializing the

variable i.

This is a partiular ase of a more general problem, that is, the fat that in a mixin

delaration in Jam there is no way to refer to the parametri types of either the parent or

the heir lass resulting from the instantiation. See the following setion for more omments

about that.

In order to avoid these situations, we have taken for Jam a quite drasti design deision,

that is, to forbid the use of this as argument in method and onstrutor invoation inside

a mixin.

2.6 Limitations

The main limitation of the language is that in a mixin it is not possible to refer either to

the \generi" parent lass to whih the mixin will be applied or to the \generi" heir lass

obtained by instantiation. As an example, let us onsider the following delarations of a

parent lass P and an heir H.

lass P f

stati int ounter ;

g

lass H extends P f

stati int ounter ;

stati void inrThat() f ++P.ounter ; g

: : :

int value ;

publi boolean equals(Objet that) f

if (that instaneof H) return ((H)that).value == value ;

return false ;

g

g

The de�nition of H annot be \abstrated" in a mixin de�nition, for two reasons.

{ The method inrThat expliitly refers to the parent lass P sine the stati �eld ounter

of the superlass has been hidden by a delaration in H.

{ The method equals uses the name of the heir lass H whih is unknown for a mixin.

More generally, a lass H heir of P annot be \abstrated" into a mixin when it ontains:

{ (expliit) referenes to types H and P;

{ invoations of H/P onstrutors.

If H/P are only used for aessing stati members, then H an be \abstrated" exept for some

ases involving hiding (as shown by the example). In Set.5.3 we disuss possible solutions

to this problem.

3 The Formal De�nition

In this setion we formally de�ne the abstrat syntax and the stati semantis of Jam.

The implemented version of Jam is an upward-ompatible extension of Java 1.0 (apart the

fat that mixin and inherited are keywords in Jam); however the formal de�nition only

onsiders a subset of the language hosen in suh a way to be minimal but suÆient for our

aim, whih is to analyze how the Java type system must be enrihed in order to support mixin

types (the soundness of this extension will be proved in the next setion). Exluded features

fall in two main ategories: those whih are orthogonal w.r.t. this aim, like multithreading,

and those whose semantis an be trivially derived, like the for loop. In partiular, we

have exluded the following features: arrays, final and aess modi�ers, features related

with linking native ode and multithreading. We have inluded the following features not

onsidered in [11℄: onstrutors, stati members, heked exeptions

11

, abstrat lasses

and methods, method invoations and �eld aesses via super.

In this paper, for lak of spae, we inlude only a part of the abstrat syntax and the

type system, whose full version an be found in [1℄.

3.1 Notations

We use the typewriter style for terminal and itali for non terminal symbols. The terminals

iname, name and mname indiate, interfae, lass and mixin names respetively. A generi

name is indiated by name. We use the following notations:

{ A

�

to indiate a sequene of zero or more ourrenes of A,

{ A

+

to indiate a sequene of one or more ourrenes of A,

{ [A℄ to indiate that A is optional,

{ A

~

to indiate a set of ourrenes of A, that is, a sequene in whih there are no

repetitions and the order is immaterial,

{ A

�

to indiate a non empty set of ourrenes of A.

3.2 Abstrat syntax

Fig. 6 shows a part of the Jam abstrat syntax; the LALR grammar used in the implemen-

tation an be found in the [1℄.

The only Jam spei� produtions are the �rst three in the �gure.

In Jam an alternative way to de�ne a (possibly abstrat) lass is to instantiate a mixin

on an existing lass, speifying the onstrutors of the new lass.

A mixin delaration logially onsists of two parts: the former ontains the delarations

of the de�ned omponents, while the latter ontains the inherited omponents delarations,

that is, the delarations of the omponents that should be provided by the parent lass on

whih the mixin will be instantiated. These omponents are labelled with the inherited

modi�er. Moreover, the set of the implemented interfaes is spei�ed.

3.3 Types

In Fig. 7 are de�ned the Jam types. A generi type an be a referene type, a primitive

11

Cheked exeptions have been onsidered in a reent improved version [12℄.

ref-type ::= mname

del ::= [abstrat ℄ lass name = mname extends

name fonstrutor

~

g

mdel ::= mixin name implements iname

~

f h [inherited℄ �eld i

~

h [inherited℄ meth i

~

g

prog ::= del

~

del ::= idel j del j mdel

simple-type ::= prim-type j ref-type

ref-type ::= iname j name

prim-type ::= int j boolean

ret-type ::= simple-type j void

ex-type ::= name

~

del ::= [abstrat ℄ lass name extends name

implements iname

~

f onstrutor

~

�eld

~

meth

~

g

idel ::= interfae iname extends iname

~

f imeth

~

g

imeth ::= abstrat ret-type name params throws ex-type ;

params ::= (h simple-type name i

�

)

onstrutor ::= name params throws ex-type

f super(expr

�

) ; stmts g

meth ::= [stati ℄ ret-type name params

throws ex-type mbody j

imeth

Fig. 6. Jam abstrat syntax

type ::= ref-type j prim-type j nil

�eld-type ::= �eld-kind simple-type

�eld-kind ::= instane j stati

args-type ::= simple-type

�

onstr-type ::= args-type throws ex-type

meth-type ::= meth-kind ret-type throws ex-type

meth-sig ::= name; args-type

meth-kind ::= instane j abstrat j stati

�elds-type ::= hname : �eld-typei

~

meths-type ::= hmeth-sig : meth-typei

~

onstrs-type ::= onstr-type

�

module-type ::= �elds-type meths-type

lass-type ::= lass-kind onstrs-type module-type

lass-kind ::= abstrat j onrete

interfae-type ::= meths-type

mixin-type ::= module-type inherited module-type

Fig. 7. Jam types

type (both de�ned in Fig. 6) or nil (the type of null). A �eld-type onsists of a simple

type and a (�eld) kind indiating whether the �eld is instane or stati. The arguments

type (of a method or onstrutor), args-type , is a sequene, possibly empty, of simple types.

A onstrutor type onsists of the arguments type and the set of delared exeptions (the

type ex-type is de�ned in Fig. 6). A method type onsists of the kind, the return type and

the set of delared exeptions. A �elds type is a set of �elds, that is, pairs onsisting of a

�eld name and a �eld type. A �elds type is legal if �eld names are distint. Analogously, a

methods type is a set of methods, that is, pairs onsisting of a signature (a method name

quali�ed by the types of the arguments) and a method type; it is legal when all signatures

are distint. In the following we will onsider only legal �elds and methods type. The type

onstrs-type is a non-empty set of onstrutor types. Note that a lass has always at least a

onstrutor (if it is not expliitly given the default one is assumed).

A module type onsists of a set of �elds and a set of methods. A lass type onsists of a

module type, a kind and a set of onstrutors. An interfae type onsists of a set of methods

(in our subset we do not onsider the final modi�er, hene an interfae annot have �elds).

Finally, a mixin type onsists of two module types: the de�ned type and the inherited type,

that is the expeted parent type.

3.4 Environments

A Jam program ontains both type information and information needed at runtime (that

is, the method bodies). To simplify the formal de�nition, following the approah used in

[12℄, we onsider two omponents that an be extrated in a trivial way from a program:

the environment � , that ontains the type information, and the remaining part of program

onsisting in a set of body delarations, that is, onstrutor and method bodies of lasses

and mixins (�elds information are ontained in �). The syntax of these two omponents is

given in Fig. 8. We assume that in the environment extration proess a hek is performed

env ::= basi-type-assertion

~

basi-type-assertion ::= name is

lass-type j

name <

1

name j

name �

1

i

iname j

iname is

i

interfae-type j

iname <

1

i

iname j

mname is

m

mixin-type j

name �

m

mname

body-del ::= lass name f onstrutor

~

meth

~

g j

mixin name f meth

~

g

Fig. 8. Environments and body delarations

for avoiding dupliate delarations. Hene, the stati orretness of a Jam program an be

expressed by the validity of the two following judgments:

` ��

� ` fBD

1

; : : : ; BD

n

g�

Prog

The former means that � is a well-formed environment so that, for instane, the sublass

relationship is ayli; the latter indiates that all the body delarations are well-formed

w.r.t. the type information in � . The validity of these two judgments is de�ned indutively

introduing other judgments relative to subomponents. In this paper for lak of spae, we

only give an outline of the judgments related to the environment.

An environment is a set of basi type assertions having the following informal meaning:

{ C is

KST FST MST : the lass C delares the spei�ed onstrutors (KST), �elds

(FST) and methods (MST)

{ C <

1

C

0

: the lass C diretly extends the lass C

0

{ T �

1

i

I : the module (either lass or mixin) T diretly implements the interfae I

{ I is

i

MST : the interfae I delares the methods spei�ed in MST

{ I <

1

i

I

0

: the interfae I diretly extends the interfae I

0

{ M is

m

MODT inherited MODT

0

: the mixin M delares the de�ned omponents

MODT and the inherited omponents MODT

0

{ C �

m

M : the lass C has been de�ned instantiating the mixin M

We de�ne now some auxiliary notations used in the sequel, well-de�ned on environments

whih do not ontain dupliate delarations, as we have assumed.

Set � (id) =

8

>

>

<

>

>

:

CT if id is

CT 2 �

IT if id is

i

IT 2 �

MXT if id is

m

MXT 2 �

? otherwise

{ Classes(�) the set of all lass names de�ned in � , that is, C 2 Classes(�)

i� C is

CT 2 � ,

{ Interfaes(�) the set of all interfae names de�ned in � , that is,

I 2 Interfaes(�) i� I is

i

IT 2 � ,

{ Mixins(�) the set of all mixin names de�ned in � , that is, M 2 Mixins(�)

i� M is

m

MXT 2 � .

3.5 Type system (outline)

In this subsetion, we give the �rst part of the metarules of the Jam type system, that is,

those related to environments. Metarules fall in two ategories: those whih belong to the

Java type system, and those related to features introdued by Jam, whih are distinguished

by a label. The judgments of these metarules have generi form � ` , with � an environment

and a type assertion.

Basis The following metarule provides the basis for the indutive de�nition of the validity

of judgments.

(1)

� `

 2 �

Fig. 9. Basi type assertion

Relations between types The metarules in Fig.10 all de�ne relevant relations between ref-

erene types (that is, either lasses, or interfaes, or mixins) whih an be derived from

the basi relations ontained in the environment. In partiular, the reexive (on existing

lass types) and transitive losure of the relation <

1

is the sublass relation �

; analogously

the reexive (on existing interfae types) and transitive losure of <

1

i

is the subinterfae

relation �

i

. The implementation relation from lasses to interfaes is derived from �

1

i

and

the sublass and subinterfae relations. The new relation introdued in Jam w.r.t. Java is

that of instantiation, denoted �

m

, from a mixin instane to the orresponding mixin type.

Finally, from all these relations we an derive a more general relation of widening between

referene types, denoted by �.

The metarules in Fig. 11 de�ne subtyping relations for exeptions, �elds, methods and

module types. These relations basially express that a module type is a subtype of another

if it has more �elds and/or methods; the ommon �elds and methods must have exatly

the same type, modulo equivalene of exeptions types (� ` ET =

e

ET

0

in (22) stands for

� ` ET �

e

ET

0

and � ` ET

0

�

e

ET). Note that, in (19), it is possible that E

i

= E

j

(2)

� ` C <

1

C

0

� ` C �

C

0

(3)

� ` C is

CT

� ` C �

C

(4)

� ` C �

C

0

� ` C

0

�

C

00

� ` C �

C

00

(5)

� ` I <

1

i

I

0

� ` I �

i

I

0

(6)

� ` I is

i

IT

� ` I �

i

I

(7)

� ` I �

i

I

0

� ` I

0

�

i

I

00

� ` I �

i

I

00

(8)

� ` T �

1

i

I

� ` T �

i

I

(9)

� ` C �

C

0

� ` C

0

�

i

I

� ` C �

i

I

(10)

� ` T �

i

I � ` I �

i

I

0

� ` T �

i

I

0

(11)

� ` C �

C

0

� ` C � C

0

(12)

� ` I �

i

I

0

� ` I � I

0

(13-Jam)

� ` C �

m

M

� ` C �M

(14)

� ` T � T

� ` T � Objet

(15)

� ` T � T

� ` nil � T

(16)

� ` T �

i

I

� ` T � I

(17-Jam)

� ` M is

m

MXT

� `M �M

(18)

� ` T � T

0

� ` T

0

� T

00

� ` T � T

00

Fig. 10. Sublass, subinterfae, implementation and widening relations

(19)

� ` E

1

�

E

0

1

: : : � ` E

n

�

E

0

n

� ` fE

1

; : : : ; E

n

g �

ExType

� ` fE

0

1

; : : : ; E

0

n

g�

ExType

� ` fE

1

; : : : ; E

n

g �

e

fE

0

1

; : : : ; E

0

n

g

n � 0

(20)

� ` T�

SimpleType

� ` K T �

field

K T

(21)

� ` ff

1

: FT

1

; : : : ; f

n

: FT

n

g�

FieldsType

� ` ff

1

: FT

1

; : : : ; f

n

: FT

n

g �

fields

ff

1

: FT

1

; : : : ; f

m

: FT

m

g

m � n

(22)

� ` RT �

RetType

� ` ET =

e

ET

0

� ` K RT throws ET �

meth

K RT throws ET

0

� ` instane RT throws ET �

meth

abstrat RT throws ET

(23)

� ` fmsig

1

:MT

1

; : : : ;msig

n

:MT

n

g�

MethsType

� ` fmsig

1

:MT

0

1

; : : : ;msig

k

: MT

0

k

g�

MethsType

� `MT

1

�

meth

MT

0

1

: : : � `MT

k

�

meth

MT

0

k

� ` fmsig

1

: MT

1

; : : : ;msig

n

: MT

n

g �

meths

fmsig

1

: MT

0

1

; : : : ;msig

k

:MT

0

k

g

k � n

(24)

� ` FST �

fields

FST

0

� `MST �

meths

MST

0

� ` FST MST �

mod

FST

0

MST

0

Fig. 11. Relations on exeptions, �elds, methods and module type

or E

0

i

= E

0

j

holds for some i; j. Finally, the same �gure show subtyping relations for �eld,

method and module types.

We omit for lak of spae the metarules de�ning well-formedness of Jam types.

Type assignments The metarules in Fig.12 de�ne type assignments, that is, the fat that

some Jam module (either lass or interfae or mixin) has a given type.

We use some auxiliary funtions:

{ ParentInterfaes(�; I) = fI

0

jI <

1

i

I

0

2 �g

{ ImplementedInterfaes(�; T) = fI jT �

1

i

I 2 �g

Moreover, we use the auxiliary update operations on (legal) Jam �elds and methods

types de�ned below.

ff

1

: FT

1

; : : : ; f

n

: FT

n

g[f : FT ℄ =

def

ff

i

: FT

i

jf

i

6= fg [ff : FTg

fmsig

1

:MT

1

; : : : ;msig

n

:MT

n

g[msig :MT ℄

�

=

def

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

fmsig

i

:MT

i

jmsig

i

6= msigg [fmsig :MTg

if 8i 2 f1; : : : ; ng msig = msig

i

)

8

<

:

Kind(MT) = stati, Kind(MT

i

) = stati;

� ` Ex(MT) �

e

Ex(MT

i

);

Ret(MT) = Ret(MT

i

)

? otherwise

The funtions Kind , Ex and Ret denote the obvious projetions for methods types.

The three onditions above on updating methods types orrespond to the three following

Java rules on overriding:

{ an instane method annot override a stati method, and onversely

12

;

{ a method overriding another annot throw an exeption whih is not a subtype of some

exeption thrown by the overridden method

13

;

{ a method overriding another annot have di�erent return type

14

.

It is easy to see that the update operations an be safely generalized in the obvious way

to the ase where the seond argument is a valid �elds (resp. methods) type.

On methods types we de�ne moreover a \sum" operation

�

� whih is basially set union,

a part that, in the ase of methods with the same signature, kind, and return type, it pro-

dues just one suh method whose exeptions type is the \intersetion" of the exeptions

types, de�ned below. This operation is needed in the ase a lass inherits (from the imple-

mented interfaes) many methods whih di�er only for the throws lause.

fmsig : K RT throws ETg

�

� fmsig

0

: K

0

RT

0

throws ET

0

g =

def

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

fmsig : K RT throws ET;

msig

0

: K

0

RT

0

throws ET

0

g

if msig 6= msig

0

fmsig : K RT throws (ET

�

 ET

0

)g ifK = K

0

^ msig = msig

0

^

^RT = RT

0

? otherwise

fmsig

1

:MT

1

; : : : ;msig

n

:MT

n

g

�

� fmsig

0

1

:MT

0

1

; : : : ;msig

0

k

:MT

0

k

g =

def

fmsig

1

:MT

1

g

�

� : : :

�

� fmsig

n

:MT

n

g

�

� fmsig

0

1

:MT

0

1

g

�

� : : :

�

� fmsig

0

k

:MT

0

k

g

fE

1

; : : : ; E

n

g

�

 fE

0

1

; : : : ; E

0

m

g =

def

fE

i

j9j : � ` E

i

�

E

0

j

g[

fE

0

i

j9j : � ` E

0

i

�

E

j

g

12

See 8.4.6.1 and 8.4.6.2 in [15℄

13

See 8.4.6.3 in [15℄

14

See 8.4.6.3 in [15℄

(25)

� ` I is

i

MST

� `MST�

InterfaeType

� ` I

1

: ; MST

1

: : : � ` I

n

: ; MST

n

� ` I : ; (MST

1

�

� : : :

�

�MST

n

)[MST ℄

�

n � 0

fI

1

; : : : ; I

n

g = ParentInterfaes (�; I)

Set:

MXT = FST MST inherited FST

0

MST

0

(26-Jam)

� `M is

m

MXT

� `MXT�

MixinType

� ` I

1

: ; MST

1

: : : � ` I

n

: ; MST

n

� `M : FST

0

[FST ℄

((MST

1

�

� : : :

�

�MST

n

)[MST

0

℄

�

)[MST ℄

�

n � 0

fI

1

; : : : ; I

n

g =

ImplementedInterfaes(�;M)

(27)

� ` Objet : ; ;

Set:

FST

= FST

0

[FST ℄

MST

= ((MST

1

�

� : : :

�

�MST

n

)[MST

0

℄

�

)[MST ℄

�

CT = K KST FST MST

(28)

� ` C is

CT

� ` CT�

ClassType

� ` C <

1

C

0

� ` C

0

: FST

0

MST

0

� ` I

1

:MST

1

: : : � ` I

n

:MST

n

� ` C : FST

MST

n � 0

C �

m

M 62 �

fI

1

; : : : ; I

n

g = ImplementedInterfaes(�;C)

K = onrete)

Kind(MST

) = onrete

Set:

FST

= FST

0

[FST

d

℄

MST

= ((MST

1

�

� : : :

�

�MST

n

)[MST

0

℄

�

)[MST

d

℄

�

MST

m

= ((MST

1

�

� : : :

�

�MST

n

)[MST

i

℄

�

)[MST

d

℄

�

CT = K KST ; ;

(29-Jam)

� ` C is

CT

� ` CT�

ClassType

� ` C �

m

M

� `M is

m

FST

d

MST

d

inherited FST

i

MST

i

� ` C <

1

C

0

� ` C

0

: FST

0

MST

0

� ` FST

0

MST

0

�

mod

FST

i

MST

i

� ` I

1

: MST

1

: : : � ` I

n

:MST

n

� ` C : FST

MST

n � 0

fI

1

; : : : ; I

n

g =

ImplementedInterfaes(�;M)

K = onrete)

Kind(MST

) = onrete

:MayBeAmbig(MST

0

;MST

m

)

Fig. 12. Type assignments

The metarule (44) de�nes the type of an interfae, whih is a pair onsisting of an empty

�elds type and a methods type. This type onsists of the sum of the methods types of the

superinterfaes, updated by the methods delared in the interfae.

The metarule (45-Jam) de�nes the type of a mixin, whih is a pair onsisting of a

�elds and a methods type. The �elds type onsists of the inherited �elds type, updated by

the de�ned �elds type; the methods type onsists of the sum of the methods types of the

implemented interfaes, updated by the inherited methods, updated in turn by the de�ned

methods.

Fig.13 shows the de�nition of the prediate MayBeAmbig , whih is true whenever the

two arguments type may ause ambiguity (hene make inompatible two methods in mixin

instantiation as explained in Set.2.3). The funtion Args denotes the obvious projetion for

method signatures.

IsPrim(T) =

def

T 2 fboolean; intg

IsRef (T) =

def

:IsPrim(T)

MayBeAmbig(AT

1

; AT

2

) =

def

8

>

>

>

>

<

>

>

>

>

:

AT

1

= T

0

1

: : : T

0

n

AT

2

= T

00

1

: : : T

00

n

9i : T

0

i

6= T

00

i

8i 2 f1; : : : ng IsRef (T

0

i

)) IsRef (T

00

i

) ^

IsPrim(T

0

i

)) T

0

i

= T

00

i

MayBeAmbig(MST;MST

0

) =

def

8

>

>

>

>

<

>

>

>

>

:

MST = fmsig

1

: MT

1

; : : : ;msig

n

: MT

n

g

MST

0

= fmsig

0

1

: MT

0

1

; : : : ;msig

0

k

: MT

0

k

g

9i 2 f1; : : : ; ng; j 2 f1; : : : ; kg t::

msig

i

= msig

0

j

^

MayBeAmbig(Args(msig

i

);Args(msig

0

j

))

Fig. 13. De�nitions of MayBeAmbig

The three metarules (46-48) de�ne the type of a lass, whih is a pair onsisting of a

�elds and a methods type.

46. For simpliity, we have ignored all the prede�ned methods of Objet, de�ned in [15℄

20.1.

47. For a standard Java heir lass, the �elds type onsists of the �elds type of the superlass

updated by the �elds delared in the lass. The methods type onsists of the sum of the

methods types of the implemented interfaes, updated by the methods of the superlass,

updated in turn by the methods delared in the lass.

48. For a mixin instane, the �elds type onsists of the �elds type of the superlass updated

by the �elds de�ned in the mixin. The methods type onsists of the sum of the methods

types of the implemented interfaes, updated by the methods of the superlass, updated

in turn by the methods de�ned in the mixin.

We assume that the metarules in Fig. 12 an be instantiated only in the ases where

update operations are de�ned.

Well-formedness of environments The metarules in Fig. 14 express the fat that a Jam

environment is well-formed. More preisely, the judgment � ` �

0

� denotes that the dela-

rations in �

0

are well-formed in the larger environment � . We follow the approah in [11℄

of onsidering larger environment in order to orretly deal with mutual reursion between

delarations. An environment � is well-formed if � ` ��; in this ase we will also use the

abbreviation � ` �.

Fig.14 shows the metarules de�ning the well-formedness of lass, interfae and mixin

delarations.

(30)

� ` ;�

(31)

� ` �

0

� � ` C : FST MST

� ` �

0

[fC is

CT; C <

1

C

0

;

C �

1

i

I

1

; : : : ; C �

1

i

I

n

g�

�

0

(C) = ?

� 6` C

0

�

C

(32)

� ` �

0

� � ` C : FST MST

� ` �

0

[fC is

K KST ; ;; C <

1

C

0

; C �

m

M;

C �

1

i

I

1

; : : : ; C �

1

i

I

n

g�

�

0

(C) = ?

� 6` C

0

�

C

(33)

� ` �

0

� � ` I : FST MST

� ` �

0

[fI is

i

IT;

I <

1

i

I

1

; : : : ; I <

1

i

I

n

g�

�

0

(I) = ?

8j 2 f1; : : : ; ng � 6` I

j

�

i

I

(34-Jam)

� ` �

0

� � `M : FST MST

� ` �

0

[fM is

m

MXT;M �

1

i

I

1

; : : : ;M �

1

i

I

n

g�

�

0

(M) = ?

Fig. 14. Well-formed lass, interfae and mixin delarations

4 Jam to Java translation

In this setion, we give a formal de�nition of the dynami semantis of Jam diretly by

translation in Java. The same approah of de�ning a Java extension by translation into Java

as been taken for Pizza [18℄, a superset of Java whih inorporates parametri polymorphism,

higher-order funtions and algebrai data types, and its reent evolution GJ (for \Generi

Java") [10℄.

We �rst illustrate informally the basi ideas through some examples (Set.4.1), then

provide the formal de�nition (Set.4.2); �nally in Set.4.3 we state that the translation

preserves stati orretness.

4.1 An informal overview

The translation from Jam to Java must be de�ned in suh a way to orrespond to the

informal Jam semantis we have illustrated in Set.2. Hene, the two basi properties of

mixins must be preserved, that is:

{ the behavior of a lass H obtained by instantiating a mixin M on a parent P must be

\equivalent" to that of a lass obtained extending P by all the de�ned omponents of

the mixins (opy priniple);

{ mixin names an be used as referene types (independently from the existene of some

mixin instane), and every lass whih is instane of a mixin must be subtype of both

the mixin and the parent type.

The �rst point immediately gives an easy translation diretive, that is, every instantiation

of a mixin M on a parent P must be expanded to a usual Java delaration of a lass extending

P and delaring all the de�ned omponents of M (plus the onstrutors possibly delared in

the instantiation).

The seond point is less trivial to be ahieved. Indeed, mixin types in Jam are a new

kind of types, not existing in Java, hene they must be translated in either lass or interfae

types.

A simple way to get \for free" the property that a mixin instane turns out to be a

subtype of both the mixin and the parent type is to translate a mixin delaration by an

interfae delaration, and every instantiation by a Java lass whih (besides extending the

parent) implements this interfae; however, this hoie introdues the problem that mixins in

Jam an delare �elds, while interfaes annot (stati omponents do not ause an analogous

problem sine they are not part of the mixin type, see Set.2.2, but only need to be opied

at every instantiation).

On the other side, translating a mixin delaration by a lass delaration would have the

advantage to make possible the delarations of �elds, but would require to simulate in Java

the impliit Jam type onversion from the mixin instane type to the mixin type.

Hene, we have adopted the �rst hoie, solving the problem of �eld delarations by a

quite standard tehnique, whih is the simulation of �elds by a pair of aessor methods, for

seleting (getter) and updating (setter) a �eld. For eah �eld f in a mixin delaration, the

methods get f and set f are delared in the interfae orresponding to the mixin

delaration; then, in every lass translating a mixin instane, f is delared as a �eld and the

two methods are implemented in the obvious way.

Let us now illustrate how the translation works in pratie on the mixin Undo introdued

in Set.2.1.

interfae Parent$Undo f

String getText() ;

void setText(String s) ;

g

interfae Undo extends Parent$Undo f

// Field "lastText"

String get lastText() ;

String set lastText(String newValue) ;

// Methods:

void setText(String s) ;

void undo() ;

g

Fig. 15. Translation of a mixin delaration

Note that, in the translation (shown in Fig.15), together with the interfae Undo orre-

sponding to the mixin type, there is a seond interfae Parent$Undo whih is extended by

Undo and ontains only the delarations of inherited methods.

This interfae represents the translation of the type Parent(Undo) introdued in Set.2.4,

that is, the generi parent type on whih the mixin an be instantiated, and is neessary for

the Java translation to orretly simulate the Jam extended rule for overloading resolution

(an inherited method in a mixin M must be onsidered as it had been delared in a \generi"

superlass of M, hene onsidered less spei� of a de�ned method with the same signature).

We onsider now an instantiation of the mixin Undo in Fig.16, and the orresponding

translation in Fig.17.

As shown by the example, the lass translating an instantiation of the mixin M on a

parent P extends P and implements the interfae M; moreover, the lass ontains a opy of

all the �elds and methods de�ned in M, inluding stati members and abstrat methods, and

the implementation of the aessor methods for eah �eld.

Note that, inside the mixin, no aessor invoation is used in the translation for aessing

the �elds. On the ontrary, this invoation is neessary in ase of aess from external ode.

Moreover, using aessors is only needed when the �eld aess is on an expression of the

mixin type, while the ode remains unhanged if the expression type is a mixin instane

type. For instane, the following ode would be kept as it stands by the translation proess:

ExampleWithUndo e = new ExampleWithUndo() ;

System.out.println(e. lastText) ;

lass Example f

String donald = "duk" ;

String getText() f

return donald ;

g

void setText(String donald) f

this.donald = donald ;

g

g

lass ExampleWithUndo = Undo extends Example fg

Fig. 16. Undo instantiation example

lass Example f

// ... (unmodified)

g

lass ExampleWithUndo extends Example implements Undo f

// Field "lastText"

String lastText ;

String get lastText() f

return lastText ;

g

String set lastText(String newValue) f

return lastText = newValue ;

g

//

void setText(String s) f

lastText=getText() ;

super.setText(s) ;

g

void undo() f

setText(lastText) ;

g

g

Fig. 17. Translation of a mixin instantiation

Inherited �elds Although inherited �elds logially di�er from de�ned �elds, they are trans-

lated in exatly the same way: a pair of method aessors is generated.

Stati �elds As shown in Set.2.2, stati �elds do not belong to the mixin type. Therefore

delarations of stati �elds within a mixin matter only for mixin instanes. As a onsequene,

the pair of interfaes orresponding to a mixin does not ontain any aessor for stati �elds.

Instead, stati �elds will be inserted in every lass orresponding to a mixin instane.

4.2 Formal translation

In this setion we formally de�ne the translation of Jam into Java outlined above. The aim

is twofold. First, we de�ne in this way the dynami semantis of Jam. Seond, we get the

soundness of the Jam type system from the soundness of the Java type system [11℄ and

Theorem 1 whih states that the translation preserves the stati semantis.

As usual, for proving preservation of stati orretness we need to provide a formal

translation not only for Jam programs (environments and body delarations), but also for

all judgments, hene for type assertions. In this paper, for lak of spae, we omit translation

lauses related to body delarations.

Translation of environments We denote by [[� ℄℄ the translation of a Jam environment � .

Sine assertions in � may be mutually reursive, analogously to what happens for the

stati semantis, the translation of � (Fig. 18) uses an auxiliary funtion taking an additional

argument whih is a larger environment.

[[� ℄℄ = [[� ℄℄

�

[[

1

; : : : ;

n

℄℄

�

=

S

i2f1;::: ;ng

[[

i

℄℄

�

Fig. 18. Translation of environments

The translation of a Jam type assertion is a set of Java type assertions, and is de�ned in

Fig.19. For all the type assertions for whih there is no translation lause, we impliitly

assume that:

[[℄℄

�

= fg

[[T �

1

i

I ℄℄

�

= fT <

1

i

Ig if T 2 Mixins(�)

[[T �

i

I ℄℄

�

= fT �

i

Ig if T 2 Mixins(�)

[[C �

m

M ℄℄

�

= fC �

1

i

Mg

[[M is

m

FST MST inherited FST

0

MST

0

℄℄

�

=

fM is

i

AessorDes (FST

0

[FST ℄) [MST;Parent(M) is

i

MST

0

;M <

1

i

Parent(M)g

[[C is

K KST ; ; ℄℄

�

= fC is

K KST FSTMSTg

if � ` C �

m

M;� `M is

m

FST MST inherited FST

0

MST

0

[[C : FST

MST

℄℄

�

= fC : FST

MST

[AessorDes (FST

0

[FST ℄)g

if � ` C �

m

M;� `M is

m

FST MST inherited FST

0

MST

0

[[M : FST

m

MST

m

℄℄

�

= fM : ; MST

m

[AessorDes(FST

0

[FST ℄)g

if � `M is

m

FST MST inherited FST

0

MST

0

Fig. 19. Translation of type assertions

The translation of the type assertions having form T�

1

i

I and T�

i

I depends on the type of

the module T . If T is a mixin then the assertions are translated into subinterfae assertions,

otherwise, if T is a lass, they remain the same. The instantiation assertion beomes an

implementation assertion. A mixin delaration is transformed into the delaration of two

interfaes (the �rst being a subinterfae of the seond). A lass delaration C is modi�ed

only in the ase C is an instane of a mixin M ; the translation in this ase orresponds

to the opy priniple. A well-formed mixin type is translated into the two orresponding

well-formed interfae types. Finally, type assignments for mixin instanes and mixins are

translated by introduing aessors. Of ourse, we assume that there are no name onits

between aessors and user de�ned methods. The funtion AessorDes is de�ned in Fig.20.

AessorDes (f

1

: FT

1

; : : : ; f

n

: FT

n

) =

S

i2f1;::: ;ng

AessorDe(f

i

: FT

i

)

AessorDe(f : stati ST) = ;

AessorDe(f : instane ST) = f get f; �:instane ST throws ;;

set f; ST :instane ST throws ; g

Fig. 20. De�nition of AessorDes

4.3 Soundness of the Translation

In this setion our aim is to show that the translation from Jam into Java is atually a

\good" translation.

First of all, it is immediate to see that the translation is onservative, in the sense that

every Java program is translated into itself.

More importantly, we state that the translation preserves the stati semantis, in the

sense that a statially orret Jam program is translated into a statially orret Java pro-

gram. In order to prove that, we need the stronger property that every valid Jam judgment

is translated into a set of valid Java judgments.

Theorem 1. Let � be a well-formed Jam environment (that is, ` �� is valid), then:

1. for every valid judgment � ` �, [[℄℄

�

is well-de�ned and [[� ℄℄ ` [[℄℄

�

is valid.

2. [[� ℄℄ is a well-formed Java environment (that is, ` [[� ℄℄ � is valid).

The proof an be found in [1℄.

5 Conlusion

In the preeding setions, we have desribed Jam, a smooth extension of Java supporting

mixins, and we have formally de�ned its stati semantis and a translation into Java. The

latter has been implemented by a Jam to Java translator whih makes Jam exeutable on

every platform implementing a Java Virtual Mahine.

In this last setion, we briey desribe the implementation (Set.5.1), provide some

detailed omparison with related work (Set.5.2) and disuss some alternative design hoies

and diretions for further investigation (Set.5.3).

5.1 Implementation

The translator (alled jam) has been implemented in Java.

It performs a omplete syntati analysis and only a partial type-heking of Jam input

soure �les. This means that every lexial or syntati error in the soure ode will be

deteted by jam, whereas the most of stati errors will be found later on by the Java

ompiler when trying to ompile the Java soure �les produed by jam.

For more details see [1℄.

5.2 Related work

At our knowledge, the only existing proposals for extensions of objet-oriented languages

with mixins are [9℄ and [14℄.

In [9℄, the authors present an extension of Smalltalk with mixins. The design priniples

of this extension are very similar to those we have followed in Jam. Indeed, mixins are seen

as funtions from superlasses into heir lasses, instantiation is possible only if the andidate

parent lass ontains all the methods invoked via super in the mixin, mixins do not inuene

the behavior of existing Smalltalk programs, hene the extension is fully upward-ompatible.

The great di�erene is that, being Smalltalk an untyped language, most of the problems we

had to fae in the design of Jam simply do not exist for Smalltalk; the most remarkable of

these problems is that mixins introdue a new kind of referene type. As in our approah

(see Set. 2.3) overriding takes plae uniformly both for methods whih are invoked via

super and for others. Following our same priniple that mixin instantiation should produe

a orret heir lass, the andidate parent lass must not ontain instane variables with

the same name of some de�ned in the mixin (indeed in Smalltalk hiding parent variables

is forbidden). Moreover, mixins an be easily eliminated from a program by automatially

reating a lass for eah mixin invoation and dupliating the mixins ode for it (in other

words, mixins have a pure opy semantis, orresponding to �-rule for funtion appliation),

while for Jam this is not enough sine mixins are types so they annot be just eliminated.

In [9℄, a mixin an be omposed with another mixin (the expeted semantis is exatly

funtion omposition) and a mixin an also be \extrated" from an existing lass: in this ase,

its omponents are those delared in the lass. Both the possibilities seem very useful and

adding them to Jam will be matter of further work, even though a generalization allowing

full mixin omposition seems in the Java ase not trivial, on both design and implementation

side.

The authors have developed a working extension whih has been used for real applia-

tions.

In [14℄, the authors desribe MixedJava, a theoretial language whih has a Java-like

syntax where it is only possible to delare either mixins or interfaes, while usual lasses are

seen as partiular mixins whih de�ne all the omponents.

In MixedJava, there are two kinds of mixins.

{ Atomi mixins, whose delaration, similar to that of a usual Java lass, ontains �elds,

methods and an interfae whih spei�es the expeted superlass. This interfae plays

the same role of the inherited part of mixins in Jam, with the di�erene that it must

be expliitly delared by the programmer, while in Jam the interfae is reated during

the translation proess.

A basi di�erene (see Set.2.3) is that in mixin instantiation (whih in MixedJava is

just a speial ase of mixin omposition, see below) methods in the heir override methods

in the parent only if they are expliitly mentioned in the inheritane interfae, while in

ase of unexpeted overriding both the versions are kept.

{ Compound mixins, roughly based on funtion omposition, as happens for the Smalltalk

extension desribed above, but atually more involved, for the onstraints on method

overriding explained above.

The work presented in [14℄ sensibly di�ers from ours for many reasons.

{ The proposed language is theoretial, while Jam is designed to be a working upward-

ompatible extension of Java (1.0).

{ In MixedJava inherited omponents an be only methods, sine they are spei�ed via

an interfae. The authors motivate this hoie by the onsideration that programming

via interfaes is leaner; in Jam, we have hosen as privileged priniple that mixins

should be similar as muh as possible to usual heir lasses.

{ In Jam mixins an be only instantiated on lasses, and there is no notion of mixin

omposition. As already stated, this is an important possibility of extension of Jam to

be investigated in the future.

{ As mentioned above, MixedJava adopts an ad-ho solution in the ase of unexpeted

overriding, while in Jam methods in the parent lass are uniformly overridden by meth-

ods in the heir lass. This di�erent poliy is probably the most important di�erene

between the two approahes. A disadvantage of our approah is that in the ase the

parent lass inidentally has some method whih is in onit with one de�ned in the

mixin, it is left to the user the hoie between either to avoid this instantiation (hene

the mixin beomes useless for this partiular ase) or to get an heir lass with some

overriding whih was not planned when designing the mixin. However, the onits res-

olution in [14℄, essentially based on the idea of keeping both the method versions, leads

as a matter of fat to ambiguity problems whih are typial of multiple inheritane (a

lass inherits two di�erent de�nitions for the same method), heavily ompliating both

language semantis and a possible implementation (only outlined in [14℄). On the on-

trary, our hoie implies minimal hanges w.r.t. Java semantis. A future development

ould be the analysis of intermediate solutions.

5.3 Alternative design hoies and further developments

Referenes to the parent and the heir names In Set. 2.6 we have seen that there are

ases where heir lasses annot be \abstrated" in a mixin de�nition. Introduing anonial

notation for the parametri names of the parent and heir lass, say P* and H*, respetively,

we ould transform the lass H shown in Set. 2.6 in a mixin M as follows.

mixin M f

inherited stati int ounter ;

stati int ounter ;

stati void inrThat() f ++P

�

.ounter ; g

: : :

int value ;

publi boolean equals(Objet that) f

if (that instaneof H

�

) return ((H

�

)that).value == value ;

return false ;

g

g

Obviously, the opy priniple should in this ase be modi�ed, saying that a lass H = M

extends P should be equivalent to a lass extending P and ontaining the de�nitions in M

where all the ourrenes of the parametri names P* and H* have been replaed by P and

H, respetively. Introduing this possibility would allow a (limited to heir lasses) form of

parametri polymorphism, in the same diretion of the extensions of Java with parametri

types proposed in [18,10℄. However, with this hoie we would lose one of the two design

priniples of Jam, that is, the fat that a mixin name an be used as a type (indeed in

this ase it would be not a type but a type shema), hene all the mixin instanes an be

uniformly used through the ommon interfae spei�ed by this type. Indeed, it is not lear

if it ould be possible (and how) to make ompatible these two di�erent ways of ahieving

abstration: on one side to have parametri modules (lass-to-lass funtions) where this

parametriity is fully exploited, on the other side to be able to use eah module as a type.

The problem is not trivial and deserves further investigation.

Flexible mathing Assume that P is a supertype of H and onsider the following delara-

tions.

mixin M f

inherited void f(H, H) ;

g

lass C1 f

void f(P p, H h) fg

g

In Jam it is not possible to instantiate M on C1 sine this lass does not provide an

implementation for the method void f(H,H). Indeed, the mathing between the inherited

methods and the orresponding methods in the parent lass is required to be exat (same

arguments and return type, and equivalent throws lause). An interesting possibility, whih

ould be matter of a future extension, ould be to introdue a exible mathing, where the

subtyping rule for method types (Fig. 11, metarule (22)) allows ontravariane on arguments

type and ovariane on return type. On the ontrary, it is interesting to note that the

exeption types must be invariant (modulo the equivalene =

e

) in order to preserve the

soundness of the type-system.

Allowing this exibility, C1 turns out to be a orret parent lass for M. However, this

kind of mathing leads to some new problems w.r.t. the exat mathing ase. Let us onsider

this other lass delaration.

lass C2 f

void f(P p, H h) fg

void f(H h, P p) fg

g

In this ase, assuming that we want to instantiate M on C2, we have to deide in some way

whih of the two methods delared in C2 must be used as implementation of the inherited

method in M. The hoie ould either be driven, in analogy with the overloading resolution in

Java, by the notion of most spei� appliable method, or left to the user via a mehanism

whih permits to expliitly speify in the instantiation the assoiation of inheritedmethods

with those de�ned in the parent lass.

Shared stati omponents In Set.2.2, we have seen that eah lass has its own opy of

the stati omponents delared in the mixin. As already mentioned there, other two design

hoies would be possible: either make mixin instanes to share a unique opy for eah

stati omponent (in this way they would be part of the mixin type), or leave to the user, by

means of a keyword shared or analogous mehanism, the hoie between the two options.

This last hoie, whih has some appeal, would require the introdution of some onstraint,

for instane the fat that a shared stati method ould not invoke a stati method.

Referenes

1. D. Anona, G. Lagorio, and E. Zua. Jam - a smooth extension of java

with mixins. Tehnial report, DISI, University of Genova, 1999. Available at

http://www.disi.unige.it/ftp/person/AnonaD/Jam.ps.gz.

2. D. Anona and E. Zua. A theory of mixin modules: basi and derived operators. Mathematial

Strutures in Computer Siene, 8(4):401{446, 1998.

3. D. Anona and E. Zua. A primitive alulus for module systems. In G. Nadathur, editor,

Priniples and Pratie of Delarative Programming, 1999, Leture Notes in Computer Siene,

pages 62{79. Springer Verlag, 1999.

4. G. Banavar and G. Lindstrom. An appliation framework for module omposition tools. In

ECOOP '96, number 1098 in Leture Notes in Computer Siene, pages 91{113. Springer Verlag,

July 1996.

5. Grady Booh. Objet-Oriented Analysis and Design. Addison-Wesley, 1994.

6. G. Braha. The Programming Language JIGSAW: Mixins, Modularity and Multiple Inheritane.

PhD thesis, Department of Comp. Si., Univ. of Utah, 1992.

7. G. Braha and W. Cook. Mixin-based inheritane. In ACM Symp. on Objet-Oriented Pro-

gramming: Systems, Languages and Appliations 1990, pages 303{311. ACM Press, Otober

1990. SIGPLAN Noties, volume 25, number 10.

8. G. Braha and G. Lindstrom. Modularity meets inheritane. In Pro. International Conferene

on Computer Languages, pages 282{290, San Franiso, April 1992. IEEE Computer Soiety.

9. G. Braha and G. Lindstrom. Extending Smalltalk with mixins. In OOPSLA96 Work-

shop on Extending the Smalltalk Language, April 1996. Eletroni note available at

http://www.javasoft.om/people/gbraha/mwp.html.

10. G. Braha, M. Odersky, D. Stoutmire, and P. Wadler. Making the future safe for the

past: Adding generiity to the Java programming language. In ACM Symp. on Objet-

Oriented Programming: Systems, Languages and Appliations 1998, Otober 1998. Home page:

http://www.s.bell-labs.om/who/wadler/pizza/gj/.

11. S. Drossopoulou and S. Eisenbah. Desribing the semantis of Java and proving type sound-

ness. In J. Alves-Foss, editor, Formal Syntax and Semantis of Java, number 1523 in Leture

Notes in Computer Siene, pages 41{82. Springer Verlag, Berlin, 1999.

12. S. Drossopoulou, T. Valkevyh, and S. Eisenbah. Java type soundness revisited. Tehnial

report, Dept. of Computing - Imperial College of Siene, Tehnology and Mediine, Otober

1999.

13. D. Duggan and C. Sourelis. Mixin modules. In Intl. Conf. on Funtional Programming, pages

262{273, Philadelphia, June 1996. ACM Press. SIGPLAN Noties, volume 31, number 6.

14. M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In ACM Symp. on Priniples

of Programming Languages 1998, pages 171{183, January 1998.

15. James Gosling, Bill Joy, and Guy Steele. The Java Language Spei�ation. Addison-Wesley,

1996.

16. S.C. Keene. Objet Oriented Programming in Common Lisp: A Programming Guide in CLOS.

Addison-Wesley, 1989.

17. D.A. Moon. Objet oriented programming with Flavors. In ACM Symp. on Objet-Oriented

Programming: Systems, Languages and Appliations 1986, pages 1{8, 1986.

18. M. Odersky and P. Wadler. Pizza into Java: Translating theory into pratie. In ACM Symp.

on Priniples of Programming Languages 1997. January 1997.

19. A. Snyder. CommonObjets: An overview. SIGPLAN Noties, 21(10):19{28, 1986.

