Jam - A Smooth Extension of Java with Mixins*

Davide Ancona, Giovanni Lagorio, and Elena Zucca

Dipartimento di Informatica e Scienze dell’Informazione
Via Dodecaneso, 35,16146 Genova (Italy)
email: davide,zucca@disi.unige.it
fax: +39 010-3536699

Abstract. In this paper we present Jam, an extension of the Java language support-
ing mizins, that is, parametric heir classes. A mixin declaration in Jam is similar to
a Java heir class declaration, apart that it does not extend a fixed parent class, but
simply specifies the set of fields and methods a generic parent should provide. In this
way, the same mixin can be instantiated on many parent classes, producing different
heirs, thus avoiding code duplication and largely improving modularity and reuse.
Moreover, as happens for classes and interfaces, mixin names are reference types, and
all the classes obtained instantiating the same mixin are considered subtypes of the
corresponding type, hence can be handled in a uniform way through the common
interface. This possibility allows a programming style where different ingredients are
“mixed” together in defining a class; this paradigm is partly similar to that based on
multiple inheritance, but avoids its complication.

The language has been designed with the main objective in mind to obtain, rather
than a new theoretical language, a working and smooth extension of Java. That
means, on the design side, that we have faced the challenging problem of integrating
the Java overall principles and complex type system with this new notion; on the
implementation side, that we have developed a Jam to Java translator which makes
Jam sources executable on every Java Virtual Machine.

1 Introduction

In the last years, the notion of parametric heir class or mizin (following the terminology
originally introduced in [17,16]) has deserved great interest in the programming languages
community. As the first name suggests, a mixin is a uniform extension of many different
parent classes with the same set of fields and methods, that is, a class-to-class function. To
be more concrete, let us consider a schematic class declaration in Java.

class H1 extends P1 { decs }

where P1 is some parent class and decs denotes a set of field and method declarations. In
Java, as in most other object-oriented programming languages, if we want to extend another
parent class, say P2, with the same set of fields and methods, then we have to write a new
independent declaration, duplicating the code in decs.

class H2 extends P2 { decs }

Assume now to have a language allowing to give a name, say M, to decs, and to instantiate
M on different parent classes, e.g. P1 and P2, obtaining different heir classes equivalent to H1
and H2 above.

mixin M { decs }
class H1 = M extends P1 ;
class H2 = M extends P2 ;

* Partially supported by Murst - Tecniche formali per la specifica, ’analisi, la verifica, la sintesi e
la trasformazione di sistemi software

Then we say that M is a mizin.

A mixin declaration resembles a usual heir class declaration, apart that a mixin does
not refer to a fixed parent class, but simply specifies the set of fields and methods a generic
parent should provide. The fact that the same mixin can be instantiated on many parent
classes avoids code duplication and largely improves modularity and reuse. The name refers
to the fact that in a language supporting mixins it is possible to “mix”, in some sense,
different ingredients during class creation, as nicely illustrated through the jigsaw puzzle
metaphor in [6]. This paradigm is partly similar to that based on multiple inheritance, but
avoids its complication.

Mixin-based programming has been now extensively studied both on the methodological
and foundational point of view [7,6,8,4,2,3]. The results can be summarized as follows.
First, the mixin notion is not strictly related to object-oriented programming but can be
formulated in general in the context of module composition (a mizin module is a module
where some components are not defined but expected to be provided by some other module).
This notion allows to have a clean and unifying view of different linguistic mechanisms
for composing modules. Finally, the intuitive understanding of a mixin as a class-to-class
function (or, in the general case, module-to-module function) can be actually supported by
a rigorous mathematical model [2,3].

Despite of this advanced state of the art, few attempts have been made at designing
real programming languages supporting mixins. As already mentioned, the first use of the
word mixin as a technical term originates with the LISP community [16,19]. After that, at
our knowledge, there exist only a proposal for extending ML [13], a working extension for
Smalltalk [9] and a proposal for a Java-like mixin language [14] (whose relation with our
work will be discussed in detail in Sect.5.2).

In this paper, we present Jam', a working and smooth extension of Java with mixins. By
these two adjectives we mean that our main aim is to produce an executable and minimal
extension of Java, rather than define a new theoretical language supporting mixins. More
precisely, Jam is an upward-compatible extension of Java 1.0 (apart from two new keywords),
a great effort has been spent in integrating mixin-related features with the Java overall design
principles, the type system is a natural extension of the Java type system with a new kind
of types (mixin types), the dynamic semantics is directly defined by translation into Java
and, finally, this translation has been implemented by a Jam to Java translator which makes
Jam immediately executable on every Java Virtual Machine.

The structure of the presentation is as follows. In Sect.2 we provide a user introduction
to Jam, through some examples, and illustrate and motivate in detail our design choices.
In Sect.3 we formally define the language, giving (a part of) the abstract syntax and the
static semantics (the full definition can be find in [1]). The Jam type system is defined
as a conservative extension of the Java type system. For what concerns the Java part, we
basically follow the type system proved sound in [12], even though we cover some more
features and take a somewhat different style of presentation. In Sect.4 we define a formal
translation from Jam into Java and state the correctness of this translation w.r.t. static
semantics (that is, correct Jam programs are expanded into correct Java programs; this
also ensures the soundness of the Jam type system). Finally in Sect.5.1 we briefly describe
the implementation, provide a detailed comparison with the proposals in [9,14] and outline
further research directions.

An extended version of this paper, including the full type system, the proof of correctness
of the translation and more examples and discussions, is [1].

The Jam compiler and the sources are available at: http://gio.libertyline.
com/ jam.

! Java + mixin = jam

2 User Introduction and Rationale

In this section we provide a user introduction to Jam and illustrate and motivate our design
choices. In 2.1 we give an overall view of the capabilities added to Java by the introduction
of mixins, in 2.2-2.5 we discuss some more specific points, and finally in 2.6 we point out
the main limitations of the language.

2.1 An example

Fig. 1 shows the declaration of the mixin Undo. We use typewriter style for code fragments.
This mixin, as the name suggests, provides an “undo” mechanism that permits to restore the

mixin Undo {
inherited String getText() ;
inherited void setText(String s) ;
String lastText ;
void setText(String s) {
lastText = getText() ;
super.setText (s) ;

void undo() {
setText (lastText) ;

}
}

Fig. 1. Mixin declaration

text before the last modification. As shown in the example, a mixin declaration is logically
split in two parts: the declarations of the components which are expected to be provided by
the parent class, prefixed by the inherited modifier, and the declarations of the components
defined in the mixin. Note that defined components can override/hide inherited components,
as it happens for usual heir classes.

The mixin Undo can be instantiated on classes that define two non-abstract methods
getText and setText, with types as specified in the inherited declaration. Fig.2 shows

class Textbox extends Component {
String text ;

String getText() { ... }
void setText(String s) { ... }

}

class TextboxWithUndo = Undo extends Textbox {}

Fig. 2. Mixin instantiation

an example of instantiation; we have used as parent a class Textbox which extends a
generic class Component. In the instantiation no constructors are specified for the new class

TextboxWithUndo (they should be declared between the curly braces) and so, as in Java, it
is assumed that the class has only the default constructor. To obtain a correct instantiation
Textbox must define the mixin inherited part by implementing the methods getText and
setText. These methods must have the same return and arguments type and equivalent?
throws clause w.r.t. the corresponding inherited declaration. The classes obtained by in-
stantiating the mixin provide, in addition to the methods getText (inherited from parent
class) and setText (inherited and overridden), all other fields and methods of the class
Textbox, the method undo and the field lastText.

The expected semantics of mixin instantiation can be informally expressed by the fol-
lowing copy principle:

A class obtained instantiating a mixin M on a parent class P
should have the same behavior as a usual heir of P whose body
contains a copy of all the components defined in M.

A class implementing the mixin inherited part can nevertheless be an invalid parent
for instantiation, since there is another requirement to be met: the heir class obtained
instantiating the mixin must be a correct Java heir class. This leads to a set of constraints
which are described in detail in Sect. 2.3.

What we have seen so far shows the use of a mixin declaration as a scheme, that is, a
parametric heir class that can be instantiated on different classes. In this way we avoid code
duplication, a good result in itself, but Jam allows something more: a mixin can be used as
a type and a mixin instance® is a subtype of both the mixin and the parent class on which
it has been instantiated.

This allows the programmer to manipulate objects of any mixin instance by using the
common interface specified by the mixin declaration (see Fig. 3). An important consequence

class TextboxWithUndo = Undo extends Textbox {}
class BreakIteratorWithUndo =
Undo extends java.text.BreakIterator {}

class TestUndo {
void £() {
g(new TextboxWithUndo()) ;
g(new BreakIteratorWithUndo ()) ;
}
void g(Undo u) {
u.setText ("foo") ;
u.setText ("bar") ;
System.out.println("Previous text: "+u.lastText) ;
System.out.println("Current text : "+u.getText());

}
}

Fig. 3. Use of mixin types

is that Jam supports a programming style (sometimes called mixin-based [7]) where different

2 That is, every exception declared in one clause must be a subtype of an exception declared in
the other, and conversely.

3 We will call mizin instance a class obtained instantiating a mixin, to be not confused with an
instance of a class.

ingredients are “mixed” together in defining a class. This paradigm has been advocated [6,5]
on the methodological side since it allows to partly recover the expressive power of multiple
inheritance without introducing its complication; however the novelty of Jam is that mixin-
based programming is rigorously introduced in the context of a strongly typed language.

2.2 Other components of a mixin declaration

In the simple example presented in the previous section we have not included all the kinds
of components which can appear in a mixin declaration.

Indeed, following the design principle that a mixin should be as similar as possible to a
usual heir class, mixins should provide all their features. In the sequel we illustrate each of
them in detail highlighting and justifying some restrictions.

Interfaces A mixin can implement an interface in exactly the same way a class does.

Constructors A constructor invocation in Java takes place in three cases: in an object cre-
ation expression new C(...), inside another constructor of the same class via this and
inside an heir’s constructor via super. However, creating objects which are instances of
mixins makes no sense. Moreover, in Jam mixin instances are not considered heirs of the
corresponding mixin. Hence, for mixins the invocation inside an heir’s constructor never oc-
curs. In summary, it makes no sense to declare constructors in mixins; however, it is possible
to declare constructors for each particular mixin instance at the point of instantiation.

Inherited instance fields In a mixin it is possible to access inherited (instance) fields in the
same way as a usual heir class does: using the field name id or the forms this.id and
super.id (the latter is needed when a defined field hides an inherited one).

Static members Although in Jam static components are declared in the same way as instance
components except, of course, the use of the static modifier, their visibility is different:
they are not considered part of the mixin type. Consider, for example, the following code
fragment:

mixin M {
static void m() {}
static int f ;

}

We do not allow in Jam invocations M.m() or e.m() with e of type M. However, for each
class H obtained instantiating M, invocations H.m() or e.m()* with e of type H are legal. The
same rule holds for fields. In other words, every class that is an instance of M has “its own
copy” of static components declared in the mixin. Other choices are technically possible:

— sharing only one copy of the static components declared in the mixin between all mixin
instances; in this case it should be allowed accessing static members through the mixin
type too;

— leave to the programmer (introducing a new keyword, or analogous mechanisms) the
decision whether a component should be shared between all the mixin instances or not.

In Jam, we have chosen the “unshared” version because, in this way, a mixin instantiation
on a parent class is equivalent to that obtained by copying the mixin body in the declaration
of the new class, as requested by the copy principle. Static components can be inherited (of
course, they are not part of mixin type either) but, like in Java, static methods cannot be
abstract.

* We maintain this alternative syntax for compatibility reasons only, see 15.10.1 of [15]

2.3 Constrains on instantiation

As mentioned in Sect. 2.1, the fact that a class P provides an implementation for the
inherited part of a mixin M is not enough for ensuring that P can be correctly used as
a parent for M. Indeed, in addition to methods declared inherited in M, the class P can
contain some other methods which could interfere, in various ways, with methods in M. Let
us briefly illustrate the different interference cases.

Unexpected overriding/hiding A method in P is incidentally overridden (hidden) by a method
defined in M if it has the same name, arguments type, return type, kind (instance or static)
and a compatible® throws clause. For instance, instantiating the mixin Undo on a class with
a void undo () method produces an unexpected overriding. This situation looks somewhat
undesirable, since there is some overriding which was not planned when declaring the mixin;
however, our choice for Jam has been to consider legal these instantiations, leaving to the
programmer the care of avoiding them when the additional overriding is undesired. Indeed,
different choices would sensibly complicate either the static (if the choice is to forbid) or
dynamic (if the choice is to keep both versions) semantics, while ours is the natural extension
to mixins of what happens for usual heir classes. See Sect.5.2 for some further discussion on
this point.

Illegal overriding/hiding A method in P is illegally overridden (hidden)® by a defined method
in Mif it has the same signature (name and arguments type) but either different return type,
or different kind or incompatible throws clause. This is not correct in Jam.

Ambiguous overloading There exist contexts in which the presence of the method in P makes
ambiguous, w.r.t. overloading resolution, an invocation of the method in M. Let us clarify this
case with an example. Assume that the method Undo . undo contains the call setText (null);
this invocation is statically correct. Suppose now to instantiate Undo on a class Boom which
defines, besides the methods String getText() and void setText(String), the method
void setText(Integer). In this case the call setText (null) becomes ambiguous. Indeed,
null can be implicitly converted to any reference type, hence both methods are applicable
and neither is more specific”.

In general, if two methods have the same name, then the addition of one may make
ambiguous, w.r.t. overloading resolution, an invocation of the other if and only if they have
the same number and type of arguments except for some argument for which they have
two different reference types (see Fig.13 in Sect.3 for the formal definition). In alterna-
tive we could have defined less strict rules by forbidding the instantiation only when some
method body in the mixin contains a method invocation that would become ambiguous (as
in the example). However, we have preferred to follow the principle that the correctness of a
mixin instantiation should depend only on the mixin type and not on its implementation. In
this way, indeed, a modification of the method bodies does not affect the correctness of the
instantiation. Even though this approach has the drawback of forbidding also “good” instan-
tiations, on the methodological side it seems more consistent with the choice of describing
the requirements on the parent class via the inherited declarations.

2.4 Overloading

The Java rules for overloading resolution® smoothly extends to Jam, just including mixin
types among other reference types and taking into account in the definition of “more spe-
cific” the fact that every mixin instance is a subtype of (hence, can be converted to) the
corresponding mixin type. However, some particular care is needed for handling the situa-
tion when there is an overloading conflict between an inherited and a defined method in a
mixin. Let us illustrate the problem on the following simple example.

% See 8.4.4 in [15]

6 See 8.4.6.3 in [15]
" See 15.11.2 in [15]
8 See 15.11.2 in [15]

mixin M {
inherited void f(B b) ;
void f(A a) {}

class A {}
class B extends A {}

class Parent {

void £(B b) {} class Test {

} void test(Heir h, B b, M m) {
h.f(b) ; // ambiguous
m.f(b) ; // ambiguous?

}

class Heir extends Parent {
void f(A a) {}

} }

Fig. 4. Overloading conflict between inherited and defined methods

In the first part of the code shown in Fig.4, B is a subtype of A and Heir is a subtype of
Parent. The class Parent defines a method named £ with one argument of type B, while
its subclass Heir defines a method with the same name and argument’s type A. Due to
the symmetry of the situation, the invocation h.f (b), where h and b are of type Heir and
B, respectively, is ambiguous, since there are two applicable methods and neither is more
specific®.

If we consider now the declaration of the mixin M, the situation is exactly analogous to the
preceding: a (parametric) heir class defines a method whose argument type is a supertype
of the argument type of a method with the same name in the parent class. Hence, we expect
the invocation of m.f (b), where m has type M, to be ambiguous as well.

For achieving this goal, we assume that inherited methods in a mixin M are annotated
with a type (that is, considered to be have been declared within the corresponding module;
see [1] for the precise formal definition of annotations) which is not M but a special type
Parent(M) which represents the generic parent on which the mixin can be instantiated, and
is assumed to be a supertype of M.

2.5 Use of this in mixins

A last delicate point in the Jam type system concerns the use of the keyword this, which
denotes, in an instance method (resp. constructor), the current object on which the method
has been invoked (the current object to be constructed). In a method or constructor declared
in a class C, the expression this has static type C in Java'®. Now, we have to decide which
should be the static type of this in a method defined in a mixin M. Since we want to be
able to type-check the mixin declaration independently from future instantiations, the only
possibility is to assume that this has static type M, since this is the only type available
at mixin declaration’s time. However, this is in conflict with the fact that we expect that
in a class H instance of a mixin M the expression this has static type H, as it happens
for usual heir classes. More precisely, the fact of having correctly type-checked the mixin
declaration under the assumption that this has type M does not guarantee that (the Java
class H corresponding to) a mixin instance (following the copy principle) is always a correct
Java class, since in Java this has type H in this class. This can lead to unsound situations
in some subtle cases involving overloading. Let us consider the example in Fig.5.

The class A declares two methods named f with argument’s type a mixin M and an
instance H of M, respectively. In the invocation of f inside the method g declared in M, since
this has type M, the expression A.f (this) has type int, hence can be correctly assigned
to the variable i.

9 See 15.1.2.2 in [15]
9 See 15.7.2. in [15]

class A {

static int f(Mm) { ... } .

1 H=M tend b t ;
static boolean f(H h) { ... } crass extends Object {}
} // ¢‘Equivalent’’ declaration for H
.. class H ... {
i e 50
i | = i . 1

int i = A.f(this) : }1nt i A.f(this) ; // Boom !!!
I }
}

Fig. 5. Problem in using this in mixins

Now, if the expected semantics of H, following the copy principle, is to be equivalent to
the class shown in the figure where the declaration of g has been copied into the body, then
the invocation A.f (this) has now type boolean, hence cannot be used for initializing the
variable 1.

This is a particular case of a more general problem, that is, the fact that in a mixin
declaration in Jam there is no way to refer to the parametric types of either the parent or
the heir class resulting from the instantiation. See the following section for more comments
about that.

In order to avoid these situations, we have taken for Jam a quite drastic design decision,
that is, to forbid the use of this as argument in method and constructor invocation inside
a mixin.

2.6 Limitations

The main limitation of the language is that in a mixin it is not possible to refer either to
the “generic” parent class to which the mixin will be applied or to the “generic” heir class
obtained by instantiation. As an example, let us consider the following declarations of a
parent class P and an heir H.

class P {

static int counter ;

class H extends P {

static int counter ;

static void incrThat() { ++P.counter ; }

int value ;
public boolean equals(Object that) {

if (that instanceof H) return ((H)that).value == value ;
return false ;

}
}

The definition of H cannot be “abstracted” in a mixin definition, for two reasons.

— The method incrThat explicitly refers to the parent class P since the static field counter
of the superclass has been hidden by a declaration in H.
— The method equals uses the name of the heir class H which is unknown for a mixin.

More generally, a class H heir of P cannot be “abstracted” into a mixin when it contains:

— (explicit) references to types H and P;
— invocations of H/P constructors.

If H/P are only used for accessing static members, then H can be “abstracted” except for some
cases involving hiding (as shown by the example). In Sect.5.3 we discuss possible solutions
to this problem.

3 The Formal Definition

In this section we formally define the abstract syntax and the static semantics of Jam.
The implemented version of Jam is an upward-compatible extension of Java 1.0 (apart the
fact that mixin and inherited are keywords in Jam); however the formal definition only
considers a subset of the language chosen in such a way to be minimal but sufficient for our
aim, which is to analyze how the Java type system must be enriched in order to support mixin
types (the soundness of this extension will be proved in the next section). Excluded features
fall in two main categories: those which are orthogonal w.r.t. this aim, like multithreading,
and those whose semantics can be trivially derived, like the for loop. In particular, we
have excluded the following features: arrays, final and access modifiers, features related
with linking native code and multithreading. We have included the following features not
considered in [11]: constructors, static members, checked exceptions!'!, abstract classes
and methods, method invocations and field accesses via super.

In this paper, for lack of space, we include only a part of the abstract syntax and the
type system, whose full version can be found in [1].

3.1 Notations

We use the typewriter style for terminal and étalic for non terminal symbols. The terminals
iname, cname and mname indicate, interface, class and mixin names respectively. A generic
name is indicated by name. We use the following notations:

— A* to indicate a sequence of zero or more occurrences of A,

— AT to indicate a sequence of one or more occurrences of A,

— [4] to indicate that A is optional,

— A® to indicate a set of occurrences of A, that is, a sequence in which there are no
repetitions and the order is immaterial,

— A® to indicate a non empty set of occurrences of A.

3.2 Abstract syntax

Fig. 6 shows a part of the Jam abstract syntax; the LALR grammar used in the implemen-
tation can be found in the [1].

The only Jam specific productions are the first three in the figure.

In Jam an alternative way to define a (possibly abstract) class is to instantiate a mixin
on an existing class, specifying the constructors of the new class.

A mixin declaration logically consists of two parts: the former contains the declarations
of the defined components, while the latter contains the inherited components declarations,
that is, the declarations of the components that should be provided by the parent class on
which the mixin will be instantiated. These components are labelled with the inherited
modifier. Moreover, the set of the implemented interfaces is specified.

3.3 Types
In Fig.7 are defined the Jam types. A generic type can be a reference type, a primitive

" Checked exceptions have been considered in a recent improved version [12].

ref-type ::
cdecl := [abstract | class cname

mname

mname extends

cname {constructor®}

mdecl ::= mixin name implements iname®
{ ([inherited] field }® ([inherited] cmeth)® }
prog == decl®
decl ;= idecl | cdecl | mdecl
simple-type ::= prim-type | ref-type
ref-type ::= iname | cname
prim-type ::= int | boolean
ret-type ::= simple-type | void
erc-type ::= cname
cdecl 1= [abstract] class cname extends cname
implements iname®
{ constructor® field® cmeth® }
idecl ::= interface iname extends iname® { imeth® }
tmeth ::= abstract ret-type name params throws ezc-type ;
params ::= ({ simple-type name)*)
constructor ::= cname params throws ezrc-type
{ super(ezpr™) ; stmts }
cmeth == [static | ret-type name params
throws exc-type mbody |
imeth
Fig. 6. Jam abstract syntax
type = ref-type | prim-type | nil
field-type ::= field-kind simple-type
field-kind ::= instance | static
args-type ::= simple-type”™
constr-type ::= args-type throws ezrc-type
meth-type ::= meth-kind ret-type throws ezxc-type
meth-sig ::= name, args-type
meth-kind ::= instance | abstract | static
fields-type ::= (name : field-type)®
meths-type ::= (meth-sig : meth-type)®

constrs-type ::

module-type ::

constr-type®

fields-type meths-type

class-type
class-kind ::
interface-type ::
mizin-type ::

class-kind constrs-type module-type
abstract | concrete

meths-type

module-type inherited module-type

Fig. 7. Jam types

type (both defined in Fig.6) or nil (the type of null). A field-type consists of a simple
type and a (field) kind indicating whether the field is instance or static. The arguments
type (of a method or constructor), args-type, is a sequence, possibly empty, of simple types.
A constructor type consists of the arguments type and the set of declared exceptions (the
type exc-type is defined in Fig.6). A method type consists of the kind, the return type and
the set of declared exceptions. A fields type is a set of fields, that is, pairs consisting of a
field name and a field type. A fields type is legal if field names are distinct. Analogously, a
methods type is a set of methods, that is, pairs consisting of a signature (a method name
qualified by the types of the arguments) and a method type; it is legal when all signatures
are distinct. In the following we will consider only legal fields and methods type. The type
constrs-type is a non-empty set of constructor types. Note that a class has always at least a
constructor (if it is not explicitly given the default one is assumed).

A module type consists of a set of fields and a set of methods. A class type consists of a
module type, a kind and a set of constructors. An interface type consists of a set of methods
(in our subset we do not consider the final modifier, hence an interface cannot have fields).
Finally, a mixin type consists of two module types: the defined type and the inherited type,
that is the expected parent type.

3.4 Environments

A Jam program contains both type information and information needed at runtime (that
is, the method bodies). To simplify the formal definition, following the approach used in
[12], we consider two components that can be extracted in a trivial way from a program:
the environment I', that contains the type information, and the remaining part of program
consisting in a set of body declarations, that is, constructor and method bodies of classes
and mixins (fields information are contained in I"). The syntax of these two components is
given in Fig. 8. We assume that in the environment extraction process a check is performed

®

env ::= basic-type-assertion
basic-type-assertion ::= cname is. class-type |

cname <! cname |
name <} iname |
iname is; interface-type |
iname <; iname |
mname is,, mizin-type |
cname <l,;, mname

body-decl ::= class cname { constructor® cmeth® } |
mixin name { cmeth® }

Fig. 8. Environments and body declarations

for avoiding duplicate declarations. Hence, the static correctness of a Jam program can be
expressed by the validity of the two following judgments:

FIo

I'-{BDxq,...,BDy,}oprog
The former means that I" is a well-formed environment so that, for instance, the subclass
relationship is acyclic; the latter indicates that all the body declarations are well-formed
w.r.t. the type information in I". The validity of these two judgments is defined inductively
introducing other judgments relative to subcomponents. In this paper for lack of space, we
only give an outline of the judgments related to the environment.

An environment is a set of basic type assertions having the following informal meaning:

— Cis, KST FST MST : the class C declares the specified constructors (K.ST), fields
(FST) and methods (M ST)

— C <L C": the class C directly extends the class C”

— T <l I: the module (either class or mixin) 7' directly implements the interface I

I is; M ST : the interface I declares the methods specified in M ST

I <} I' : the interface I directly extends the interface I’

M is,, MODT inherited MODT' : the mixin M declares the defined components
MODT and the inherited components MODT'

— C' <m M : the class C' has been defined instantiating the mixin M

We define now some auxiliary notations used in the sequel, well-defined on environments
which do not contain duplicate declarations, as we have assumed.
CT ifidis, CT eI’
IT ifidis; ITe T’
MXTif id is,, MXT € I
L otherwise

Set I'(id) =

— Classes(I") the set of all class names defined in I', that is, C € Classes(I")
iff Cis, CT eI,

— Interfaces(I") the set of all interface names defined in I", that is,
I € Interfaces(I") iff I 'is; IT € T,

— Mizins(I") the set of all mixin names defined in I', that is, M € Mizins(I")
ifft M is,, MXT eI

3.5 Type system (outline)

In this subsection, we give the first part of the metarules of the Jam type system, that is,
those related to environments. Metarules fall in two categories: those which belong to the
Java type system, and those related to features introduced by Jam, which are distinguished
by alabel. The judgments of these metarules have generic form I" F v, with I" an environment
and ~ a type assertion.

Basis The following metarule provides the basis for the inductive definition of the validity
of judgments.

(1) T~ yer

Fig. 9. Basic type assertion

Relations between types The metarules in Fig.10 all define relevant relations between ref-
erence types (that is, either classes, or interfaces, or mixins) which can be derived from
the basic relations contained in the environment. In particular, the reflexive (on existing
class types) and transitive closure of the relation <! is the subclass relation <.; analogously
the reflexive (on existing interface types) and transitive closure of <} is the subinterface
relation <;. The implementation relation from classes to interfaces is derived from <} and
the subclass and subinterface relations. The new relation introduced in Jam w.r.t. Java is
that of instantiation, denoted <, from a mixin instance to the corresponding mixin type.
Finally, from all these relations we can derive a more general relation of widening between
reference types, denoted by <.

The metarules in Fig. 11 define subtyping relations for exceptions, fields, methods and
module types. These relations basically express that a module type is a subtype of another
if it has more fields and/or methods; the common fields and methods must have ezactly
the same type, modulo equivalence of exceptions types (I - ET =, ET' in (22) stands for
I' - ET <, ET' and I' + ET'" <. ET). Note that, in (19), it is possible that E; = E;

R rc<lc
@ rreo<. o

rec<.Cc' rrc<.c"

. I[rCis.cr
® TFreo<.c

rer<tr

) TFC<.0" G Frr<T
; I+ Iis; IT . I I TFI'<I"
© re-1<;1 @ r-1<; 17
. FET <t I . r-c<.Cc rvc'«I
®) re=T<; I ® r-c«; 1
" FTFT < I THIZT L Ik o<.c
(10) TrT<T W TFro<co
Y r+1<1r1 . 'k C<dm M
(12) TFI<I (13-Jam) TFO<M
y r'-T<T . I'-T<T
" FET < Object (15) TFoil<T
y Tl . '+ Mis, MXT
(26) TFT<I1 (17-Jam) I'rM<M
" IFT<T TFT <T"
(18) ' T<T"

Fig. 10. Subclass, subinterface, implementation and widening relations

I'E\<.E{...T'+E,<.E),
(19) FI—{E1,~~. 7En}°Echype FF{EL :E;}oEchype n>0
TF{E:,... By} <. {E,,...,E}

Ik~ TOSimpleType
I'FKT<;a KT

(20)

T={fi: FTi,..., fo: FTy}opieldsType

21 <
CU TE{fFTh ... fo FT} <jiewws U1 FTh, .. m=n

Jfm FTn} -

I'F RT ogeyrype '+ ET = ET'

I' - K RT throws ET <,,.¢4n K RT throws ET’
I'+ instance RT throws ET <,,etn abstract RT throws ET

(22)

't {msig1 : MT1,... ,msig, : MT, }oMethsType
' {msig\ : MT{,... ,msigy : MT} }OMethsType
I'F MTi <peth MT} ... T'F MTy <peen MT],

I'+ {msig1 : MT1,...
{msig1 : MTy,...

23
(23) ymsign : MTy} <meths

,msigy : MT;}

['F FST <jiage FST' T' MST <potns MST'
24
(24) T FST MST <,0q FST' MST'

Fig. 11. Relations on exceptions, fields, methods and module type

or Ej = E; holds for some i, j. Finally, the same figure show subtyping relations for field,
method and module types.
We omit for lack of space the metarules defining well-formedness of Jam types.

Type assignments The metarules in Fig.12 define type assignments, that is, the fact that
some Jam module (either class or interface or mixin) has a given type.
We use some auxiliary functions:

— ParentInterfaces(I, 1) ={I'lI <} I' e I'}
— ImplementedInterfaces(I,T) = {I|T <t I € I'}

Moreover, we use the auxiliary update operations on (legal) Jam fields and methods
types defined below.
{fl : FTl,... ,fn : FTn}[f : FT] —def {ft : FTl|fz ;é f}U{f : FT}
{msig, : MTy,... ,msig, : MT, }[msig: MT|p =4u
{msig; : MT;|msig; # msig} U {msig: MT}
itVvie{l,... ,n} msig=msig; =
Kind(MT) = static & Kind(MT;) = static,
I'+ Eze(MT) <. Ezc(MT;),
Ret(MT) = Ret(MT;)
1 otherwise
The functions Kind, Exc and Ret denote the obvious projections for methods types.
The three conditions above on updating methods types correspond to the three following
Java rules on overriding;:

— an instance method cannot override a static method, and conversely!?;

— a method overriding another cannot throw an exception which is not a subtype of some
exception thrown by the overridden method'?;

— a method overriding another cannot have different return type'*.

It is easy to see that the update operations can be safely generalized in the obvious way
to the case where the second argument is a valid fields (resp. methods) type.

On methods types we define moreover a “sum” operation é; which is basically set union,
a part that, in the case of methods with the same signature, kind, and return type, it pro-
duces just one such method whose exceptions type is the “intersection” of the exceptions
types, defined below. This operation is needed in the case a class inherits (from the imple-
mented interfaces) many methods which differ only for the throws clause.

r
{msig : K RT throws ET} & {msig’ : K' RT' throws ET'} =,
({msig : K RT throws ET, if msig £ msig’
msig' : K' RT' throws ET'} tmstg 7 msig
r
{msig: K RT throws (ET ® ET")} it K = K' A msig = msig' A
ART = RT'

L L otherwise
{msigy : MTy,... ,msig, : MT,} é; {msig} : MTY{,... ,msig), : MT}} =auc
{msig; : MT1} é; é {msig, : MT,} é {msig] : MT}} é é {msig), : MT]}
(Br,.. B} ® (B, . B0} = {E:3j: T'F E; <, E}JU
{Ej|3j: '+ E; <. E;}

2 See 8.4.6.1 and 8.4.6.2 in [15]
13 See 8.4.6.3 in [15]
* See 8.4.6.3 in [15]

I'+Tis; MST

e MSTQInterfaceType

IFIL:0 MST,...T'F1I,:0 MST, n>0

{L,...,I,} = ParentInterfaces (I, I)

(25)
THI:0 (MST: & ... & MST,)[MST]r

Set:
MXT = FST MST inherited FST' MST'

I'Mis,, MXT
I' = M XToMixinType

FHI:0 MST,...T' -1, :0 MST, n20
(26-Jam) - 7 {Il,... ,In} =
I'-M: FST [FSFT] r ImplementedInterfaces(I’, M)
(MSTy & ... MST,)[MST'|r)[MST]r
(27)

I' - 0bject : 0 0

Set:
FST. = FST'[FST]

MST, = (MST: & ... ® MST,)[MST'])[MST]r
OT = K KST FST MST

r'-Cis. CT

F'_CTOClassType

r-c<kc

r'C':FST MST' n2>0
[HI:MST,...'FI,: MST, Cdm M ¢TI

(28) TEC.FST. MST. %1,_ .., I} = ImplementedInterfaces (I, C)
= concrete =
Kind(MST,) = concrete
Set:

FST, = FST'[FST)]
MST, = (MST: & ... ® MST,)[MST']r)[MST]r

MST,, = (MSTy & ... & MST,)[MST:|1)[MSTy]r
CT =K KST 00

I'Cis. CT

I CTQClassType

r-c<.M

I'+ M is,, FSTy M STy inherited F'ST; MST;

rec<;c

I'-C' :FST' MST' n>0

I'F FST' MST' <04 FST; MST; (I,... I,} =

eI, : MST,...I'- 1, : MST, ImplementedInterfaces (I, M)

I'=C:FST. MST. K = concrete =
Kind(MST,) = concrete

- MayBeAmbig(MST', M ST,,)

(29-Jam)

Fig. 12. Type assignments

The metarule (44) defines the type of an interface, which is a pair consisting of an empty
fields type and a methods type. This type consists of the sum of the methods types of the
superinterfaces, updated by the methods declared in the interface.

The metarule (45-Jam) defines the type of a mixin, which is a pair consisting of a
fields and a methods type. The fields type consists of the inherited fields type, updated by
the defined fields type; the methods type consists of the sum of the methods types of the
implemented interfaces, updated by the inherited methods, updated in turn by the defined
methods.

Fig.13 shows the definition of the predicate MayBeAmbig, which is true whenever the
two arguments type may cause ambiguity (hence make incompatible two methods in mixin
instantiation as explained in Sect.2.3). The function Args denotes the obvious projection for
method signatures.

IsPrim(T) =qe¢ T € {boolean, int}
IsRef (T') =aet ~IsPrim(T)

AT, =T ... T
AT, =T/ ... T"
MayBeAmbig(AT:, ATs) =aer { i : T} £ T}’
Vi € {1,...n} IsRef (T}) = IsRef (T{') A
IsPrim(T}) = T; =T}’

MST = {msig, : MT\,... ,msign : MTy}

MST' = {msig} : MT{,... ,msig;, : MT.}
MayBeAmbig(MST, MST') =aes { Ji € {L,... ,n},j €{1,... ,k} t.c

msig; = msig; A

MayBeAmbig(Args(msig;), Args(msig;))

Fig. 13. Definitions of MayBeAmbig

The three metarules (46-48) define the type of a class, which is a pair consisting of a
fields and a methods type.

46. For simplicity, we have ignored all the predefined methods of Object, defined in [15]
20.1.

47. For a standard Java heir class, the fields type consists of the fields type of the superclass
updated by the fields declared in the class. The methods type consists of the sum of the
methods types of the implemented interfaces, updated by the methods of the superclass,
updated in turn by the methods declared in the class.

48. For a mixin instance, the fields type consists of the fields type of the superclass updated
by the fields defined in the mixin. The methods type consists of the sum of the methods
types of the implemented interfaces, updated by the methods of the superclass, updated
in turn by the methods defined in the mixin.

We assume that the metarules in Fig. 12 can be instantiated only in the cases where
update operations are defined.

Well-formedness of environments The metarules in Fig. 14 express the fact that a Jam
environment is well-formed. More precisely, the judgment I" - o denotes that the decla-
rations in I are well-formed in the larger environment I". We follow the approach in [11]
of considering larger environment in order to correctly deal with mutual recursion between
declarations. An environment I" is well-formed if I" F I'o; in this case we will also use the
abbreviation I - ¢.

Fig.14 shows the metarules defining the well-formedness of class, interface and mixin
declarations.

B9 Trpe
I'+I"o I'-C:FST MST r'e)=_1
I'FI'U{Cis. CT,C <L (', ryc <.c
C<tl,...,0<tI}o

(31)

I'+I"o I'FC : FST MST re) =1
32
2 TF U KEKSTO0.C<.C,CanM, IHC <C
C«ih,...,C<}I}o
r+I"o TFI:FST MST ['(I)=1
33 .
3 't ' U{Iis; IT, Vie{l,...,n} "I <; I
I<iI,...,I<!I}o
I'+I"o I'+M:FST MST ,
(34-Jam) F(M):_L

TEIT"U{Mis, MXT,M ' 1I,,..., M <! I, }o

Fig. 14. Well-formed class, interface and mixin declarations

4 Jam to Java translation

In this section, we give a formal definition of the dynamic semantics of Jam directly by
translation in Java. The same approach of defining a Java extension by translation into Java
as been taken for Pizza [18], a superset of Java which incorporates parametric polymorphism,
higher-order functions and algebraic data types, and its recent evolution GJ (for “Generic
Java”) [10].

We first illustrate informally the basic ideas through some examples (Sect.4.1), then
provide the formal definition (Sect.4.2); finally in Sect.4.3 we state that the translation
preserves static correctness.

4.1 An informal overview

The translation from Jam to Java must be defined in such a way to correspond to the
informal Jam semantics we have illustrated in Sect.2. Hence, the two basic properties of
mixins must be preserved, that is:

— the behavior of a class H obtained by instantiating a mixin M on a parent P must be
“equivalent” to that of a class obtained extending P by all the defined components of
the mixins (copy principle);

— mixin names can be used as reference types (independently from the existence of some
mixin instance), and every class which is instance of a mixin must be subtype of both
the mixin and the parent type.

The first point immediately gives an easy translation directive, that is, every instantiation
of a mixin M on a parent P must be expanded to a usual Java declaration of a class extending
P and declaring all the defined components of M (plus the constructors possibly declared in
the instantiation).

The second point is less trivial to be achieved. Indeed, mixin types in Jam are a new
kind of types, not existing in Java, hence they must be translated in either class or interface
types.

A simple way to get “for free” the property that a mixin instance turns out to be a
subtype of both the mixin and the parent type is to translate a mixin declaration by an
interface declaration, and every instantiation by a Java class which (besides extending the
parent) implements this interface; however, this choice introduces the problem that mixins in

Jam can declare fields, while interfaces cannot (static components do not cause an analogous
problem since they are not part of the mixin type, see Sect.2.2, but only need to be copied
at every instantiation).

On the other side, translating a mixin declaration by a class declaration would have the
advantage to make possible the declarations of fields, but would require to simulate in Java
the implicit Jam type conversion from the mixin instance type to the mixin type.

Hence, we have adopted the first choice, solving the problem of field declarations by a
quite standard technique, which is the simulation of fields by a pair of accessor methods, for
selecting (getter) and updating (setter) a field. For each field £ in a mixin declaration, the
methods _get £ and _set_f are declared in the interface corresponding to the mixin
declaration; then, in every class translating a mixin instance, f is declared as a field and the
two methods are implemented in the obvious way.

Let us now illustrate how the translation works in practice on the mixin Undo introduced
in Sect.2.1.

interface Parent$Undo {

String getText() ;

void setText(String s) ;
}
interface Undo extends Parent$Undo {
// Field "lastText"

String _get_lastText() ;

String _set_lastText (String newValue) ;
// Methods:

void setText (String s) ;

void undo() ;

Fig. 15. Translation of a mixin declaration

Note that, in the translation (shown in Fig.15), together with the interface Undo corre-
sponding to the mixin type, there is a second interface Parent$Undo which is extended by
Undo and contains only the declarations of inherited methods.

This interface represents the translation of the type Parent(Undo) introduced in Sect.2.4,
that is, the generic parent type on which the mixin can be instantiated, and is necessary for
the Java translation to correctly simulate the Jam extended rule for overloading resolution
(an inherited method in a mixin M must be considered as it had been declared in a “generic”
superclass of M, hence considered less specific of a defined method with the same signature).

We consider now an instantiation of the mixin Undo in Fig.16, and the corresponding
translation in Fig.17.

As shown by the example, the class translating an instantiation of the mixin M on a
parent P extends P and implements the interface M; moreover, the class contains a copy of
all the fields and methods defined in M, including static members and abstract methods, and
the implementation of the accessor methods for each field.

Note that, inside the mixin, no accessor invocation is used in the translation for accessing
the fields. On the contrary, this invocation is necessary in case of access from external code.
Moreover, using accessors is only needed when the field access is on an expression of the
mixin type, while the code remains unchanged if the expression type is a mixin instance
type. For instance, the following code would be kept as it stands by the translation process:

ExampleWithUndo e = new ExampleWithUndo() ;
System.out.println(e. lastText) ;

class Example {

String donald = "duck"

String getText() {
return donald ;

}

void setText (String donald) {
this.donald = domnald ;

}
}

class ExampleWithUndo = Undo extends Example {}

Fig. 16. Undo instantiation example

class Example {
// ... (unmodified)

}

class ExampleWithUndo extends Example implements Undo {
// Field "lastText"

String lastText ;

String _get_lastText() {
return lastText ;

}

String _set_lastText (String newValue) {
return lastText = newValue ;

}

//

void setText(String s) {
lastText=getText () ;
super.setText (s) ;

void undo() {
setText (lastText) ;
}

}

Fig. 17. Translation of a mixin instantiation

Inherited fields Although inherited fields logically differ from defined fields, they are trans-
lated in exactly the same way: a pair of method accessors is generated.

Static fields As shown in Sect.2.2, static fields do not belong to the mixin type. Therefore
declarations of static fields within a mixin matter only for mixin instances. As a consequence,
the pair of interfaces corresponding to a mixin does not contain any accessor for static fields.
Instead, static fields will be inserted in every class corresponding to a mixin instance.

4.2 Formal translation

In this section we formally define the translation of Jam into Java outlined above. The aim
is twofold. First, we define in this way the dynamic semantics of Jam. Second, we get the
soundness of the Jam type system from the soundness of the Java type system [11] and
Theorem 1 which states that the translation preserves the static semantics.

As usual, for proving preservation of static correctness we need to provide a formal
translation not only for Jam programs (environments and body declarations), but also for
all judgments, hence for type assertions. In this paper, for lack of space, we omit translation
clauses related to body declarations.

Translation of environments We denote by [I'] the translation of a Jam environment I.

Since assertions in I' may be mutually recursive, analogously to what happens for the
static semantics, the translation of I' (Fig. 18) uses an auxiliary function taking an additional
argument which is a larger environment.

[r]=1[rlr
[V, wler=" U [wlr

ie{l,...,n}

Fig. 18. Translation of environments

The translation of a Jam type assertion is a set of Java type assertions, and is defined in
Fig.19. For all the type assertions 7 for which there is no translation clause, we implicitly
assume that:

[vIr=1{v}

[T<iI]r={T <} T}if T € Mizins(I'")
|IT<I¢ I]]F = {T <i I} if T e M’LZWLS(F)
[C<m M]r={C<i M}
[M isp, FST MST inherited FST' MST'|r =
{M is; AccessorDecs(FST'[FST])U MST, Parent(M) is; MST', M <} Parent(M)}
[Cis. K KST 0 0] r = {C is. K KST FSTMST}
if '~C <y M,k M is,, FST MST inherited FST' MST'

[C : FST, MST.]|r ={C : FST. MST. U AccessorDecs(FST'[FST))}
ifI'-C < M, '+ M is,, FST MST inherited FST' MST'
[M : FST,, MST,|r ={M : ® MST,, U AccessorDecs(FST'[FST])}

if '+ M is,, FST MST inherited FST' MST’

Fig. 19. Translation of type assertions

The translation of the type assertions having form 7'<1} I and 7'<;I depends on the type of
the module 7. If T" is a mixin then the assertions are translated into subinterface assertions,

otherwise, if T' is a class, they remain the same. The instantiation assertion becomes an
implementation assertion. A mixin declaration is transformed into the declaration of two
interfaces (the first being a subinterface of the second). A class declaration C is modified
only in the case C is an instance of a mixin M; the translation in this case corresponds
to the copy principle. A well-formed mixin type is translated into the two corresponding
well-formed interface types. Finally, type assignments for mixin instances and mixins are
translated by introducing accessors. Of course, we assume that there are no name conflicts
between accessors and user defined methods. The function AccessorDecs is defined in Fig.20.

AccessorDecs(f1 : FTu, ..., fn: FTy) = U AccessorDec(f; : FT;)
i€{l,...,n}
AccessorDec(f : static ST) =0
AccessorDec(f : instance ST) = {_get_f, e:instance ST throws 0,
_set_f, ST:instance ST throws) }

Fig. 20. Definition of AccessorDecs

4.3 Soundness of the Translation

In this section our aim is to show that the translation from Jam into Java is actually a
“good” translation.

First of all, it is immediate to see that the translation is conservative, in the sense that
every Java program is translated into itself.

More importantly, we state that the translation preserves the static semantics, in the
sense that a statically correct Jam program is translated into a statically correct Java pro-
gram. In order to prove that, we need the stronger property that every valid Jam judgment
is translated into a set of valid Java judgments.

Theorem 1. Let I' be a well-formed Jam environment (that is, & I'o is valid), then:

1. for every valid judgment I' = o, [v] r is well-defined and [I'] F [v] r is valid.
2. [I'] is a well-formed Java environment (that is, = [I'] o is valid).

The proof can be found in [1].

5 Conclusion

In the preceding sections, we have described Jam, a smooth extension of Java supporting
mixins, and we have formally defined its static semantics and a translation into Java. The
latter has been implemented by a Jam to Java translator which makes Jam executable on
every platform implementing a Java Virtual Machine.

In this last section, we briefly describe the implementation (Sect.5.1), provide some
detailed comparison with related work (Sect.5.2) and discuss some alternative design choices
and directions for further investigation (Sect.5.3).

5.1 Implementation

The translator (called jamc) has been implemented in Java.

It performs a complete syntactic analysis and only a partial type-checking of Jam input
source files. This means that every lexical or syntactic error in the source code will be
detected by jamc, whereas the most of static errors will be found later on by the Java
compiler when trying to compile the Java source files produced by jamc.

For more details see [1].

5.2 Related work

At our knowledge, the only existing proposals for extensions of object-oriented languages
with mixins are [9] and [14].

In [9], the authors present an extension of Smalltalk with mixins. The design principles
of this extension are very similar to those we have followed in Jam. Indeed, mixins are seen
as functions from superclasses into heir classes, instantiation is possible only if the candidate
parent class contains all the methods invoked via super in the mixin, mixins do not influence
the behavior of existing Smalltalk programs, hence the extension is fully upward-compatible.
The great difference is that, being Smalltalk an untyped language, most of the problems we
had to face in the design of Jam simply do not exist for Smalltalk; the most remarkable of
these problems is that mixins introduce a new kind of reference type. As in our approach
(see Sect. 2.3) overriding takes place uniformly both for methods which are invoked via
super and for others. Following our same principle that mixin instantiation should produce
a correct heir class, the candidate parent class must not contain instance variables with
the same name of some defined in the mixin (indeed in Smalltalk hiding parent variables
is forbidden). Moreover, mixins can be easily eliminated from a program by automatically
creating a class for each mixin invocation and duplicating the mixins code for it (in other
words, mixins have a pure copy semantics, corresponding to S-rule for function application),
while for Jam this is not enough since mixins are types so they cannot be just eliminated.

In [9], a mixin can be composed with another mixin (the expected semantics is exactly
function composition) and a mixin can also be “extracted” from an existing class: in this case,
its components are those declared in the class. Both the possibilities seem very useful and
adding them to Jam will be matter of further work, even though a generalization allowing
full mixin composition seems in the Java case not trivial, on both design and implementation
side.

The authors have developed a working extension which has been used for real applica-
tions.

In [14], the authors describe MIXEDJAVA, a theoretical language which has a Java-like
syntax where it is only possible to declare either mixins or interfaces, while usual classes are
seen as particular mixins which define all the components.

In MIxEDJAVA, there are two kinds of mixins.

— Atomic mixins, whose declaration, similar to that of a usual Java class, contains fields,

methods and an interface which specifies the expected superclass. This interface plays
the same role of the inherited part of mixins in Jam, with the difference that it must
be explicitly declared by the programmer, while in Jam the interface is created during
the translation process.
A basic difference (see Sect.2.3) is that in mixin instantiation (which in MIXEDJAVA is
just a special case of mixin composition, see below) methods in the heir override methods
in the parent only if they are explicitly mentioned in the inheritance interface, while in
case of unexpected overriding both the versions are kept.

— Compound mixins, roughly based on function composition, as happens for the Smalltalk
extension described above, but actually more involved, for the constraints on method
overriding explained above.

The work presented in [14] sensibly differs from ours for many reasons.

— The proposed language is theoretical, while Jam is designed to be a working upward-
compatible extension of Java (1.0).

— In MIXEDJAVA inherited components can be only methods, since they are specified via
an interface. The authors motivate this choice by the consideration that programming
via interfaces is cleaner; in Jam, we have chosen as privileged principle that mixins
should be similar as much as possible to usual heir classes.

— In Jam mixins can be only instantiated on classes, and there is no notion of mixin
composition. As already stated, this is an important possibility of extension of Jam to
be investigated in the future.

— As mentioned above, MIXEDJAVA adopts an ad-hoc solution in the case of unexpected
overriding, while in Jam methods in the parent class are uniformly overridden by meth-
ods in the heir class. This different policy is probably the most important difference
between the two approaches. A disadvantage of our approach is that in the case the
parent class incidentally has some method which is in conflict with one defined in the
mixin, it is left to the user the choice between either to avoid this instantiation (hence
the mixin becomes useless for this particular case) or to get an heir class with some
overriding which was not planned when designing the mixin. However, the conflicts res-
olution in [14], essentially based on the idea of keeping both the method versions, leads
as a matter of fact to ambiguity problems which are typical of multiple inheritance (a
class inherits two different definitions for the same method), heavily complicating both
language semantics and a possible implementation (only outlined in [14]). On the con-
trary, our choice implies minimal changes w.r.t. Java semantics. A future development
could be the analysis of intermediate solutions.

5.3 Alternative design choices and further developments

References to the parent and the heir names In Sect. 2.6 we have seen that there are
cases where heir classes cannot be “abstracted” in a mixin definition. Introducing canonical
notation for the parametric names of the parent and heir class, say P* and H*, respectively,
we could transform the class H shown in Sect. 2.6 in a mixin M as follows.

mixin M {

inherited static int counter ;

static int counter ;

static void incrThat() { ++P*.counter ; }

int value ;
public boolean equals(Object that) {

if (that instanceof H*) return ((H*)that).value == value ;
return false ;

}
}

Obviously, the copy principle should in this case be modified, saying that a class H = M
extends P should be equivalent to a class extending P and containing the definitions in M
where all the occurrences of the parametric names P* and H* have been replaced by P and
H, respectively. Introducing this possibility would allow a (limited to heir classes) form of
parametric polymorphism, in the same direction of the extensions of Java with parametric
types proposed in [18,10]. However, with this choice we would lose one of the two design
principles of Jam, that is, the fact that a mixin name can be used as a type (indeed in
this case it would be not a type but a type schema), hence all the mixin instances can be
uniformly used through the common interface specified by this type. Indeed, it is not clear
if it could be possible (and how) to make compatible these two different ways of achieving
abstraction: on one side to have parametric modules (class-to-class functions) where this
parametricity is fully exploited, on the other side to be able to use each module as a type.
The problem is not trivial and deserves further investigation.

Flexible matching Assume that P is a supertype of H and consider the following declara-
tions.

mixin M { class C1 {
inherited void f(H, H) ; void £(P p, H h) {}

} }

In Jam it is not possible to instantiate M on C1 since this class does not provide an
implementation for the method void f (H,H). Indeed, the matching between the inherited
methods and the corresponding methods in the parent class is required to be ezact (same
arguments and return type, and equivalent throws clause). An interesting possibility, which
could be matter of a future extension, could be to introduce a flexible matching, where the
subtyping rule for method types (Fig. 11, metarule (22)) allows contravariance on arguments
type and covariance on return type. On the contrary, it is interesting to note that the
exception types must be invariant (modulo the equivalence =.) in order to preserve the
soundness of the type-system.

Allowing this flexibility, C1 turns out to be a correct parent class for M. However, this
kind of matching leads to some new problems w.r.t. the exact matching case. Let us consider
this other class declaration.

class C2 {
void £(P p, Hh) {}
void £f(H h, P p) {}

}

In this case, assuming that we want to instantiate M on C2, we have to decide in some way
which of the two methods declared in C2 must be used as implementation of the inherited
method in M. The choice could either be driven, in analogy with the overloading resolution in
Java, by the notion of most specific applicable method, or left to the user via a mechanism
which permits to explicitly specify in the instantiation the association of inherited methods
with those defined in the parent class.

Shared static components In Sect.2.2, we have seen that each class has its own copy of
the static components declared in the mixin. As already mentioned there, other two design
choices would be possible: either make mixin instances to share a unique copy for each
static component (in this way they would be part of the mixin type), or leave to the user, by
means of a keyword shared or analogous mechanism, the choice between the two options.
This last choice, which has some appeal, would require the introduction of some constraint,
for instance the fact that a shared static method could not invoke a static method.

References

1. D. Ancona, G. Lagorio, and E. Zucca. Jam - a smooth extension of java
with mixins. Technical report, DISI, University of Genova, 1999. Available at
http://www.disi.unige.it/ftp/person/AnconaD/Jam.ps.gz.

2. D. Ancona and E. Zucca. A theory of mixin modules: basic and derived operators. Mathematical
Structures in Computer Science, 8(4):401-446, 1998.

3. D. Ancona and E. Zucca. A primitive calculus for module systems. In G. Nadathur, editor,
Principles and Practice of Declarative Programming, 1999, Lecture Notes in Computer Science,
pages 62-79. Springer Verlag, 1999.

4. G. Banavar and G. Lindstrom. An application framework for module composition tools. In

ECOOP ’96, number 1098 in Lecture Notes in Computer Science, pages 91-113. Springer Verlag,

July 1996.

Grady Booch. Object-Oriented Analysis and Design. Addison-Wesley, 1994.

6. G. Bracha. The Programming Language JIGSAW: Mizins, Modularity and Multiple Inheritance.
PhD thesis, Department of Comp. Sci., Univ. of Utah, 1992.

7. G. Bracha and W. Cook. Mixin-based inheritance. In ACM Symp. on Object-Oriented Pro-
gramming: Systems, Languages and Applications 1990, pages 303-311. ACM Press, October
1990. SIGPLAN Notices, volume 25, number 10.

8. G. Bracha and G. Lindstrom. Modularity meets inheritance. In Proc. International Conference
on Computer Languages, pages 282-290, San Francisco, April 1992. IEEE Computer Society.

9. G. Bracha and G. Lindstrom. Extending Smalltalk with mixins. In OOPSLA96 Work-
shop on Eztending the Smalltalk Language, April 1996. Electronic note available at
http://www. javasoft.com/people/gbracha/mwp.html.

o

10

11.

12.

13.

14.

15.

16.

17.

18.

19

. G. Bracha, M. Odersky, D. Stoutmire, and P. Wadler. Making the future safe for the
past: Adding genericity to the Java programming language. In ACM Symp. on Object-
Oriented Programming: Systems, Languages and Applications 1998, October 1998. Home page:
http://www.cs.bell-labs.com/who/wadler/pizza/gj/.

S. Drossopoulou and S. Eisenbach. Describing the semantics of Java and proving type sound-
ness. In J. Alves-Foss, editor, Formal Syntaz and Semantics of Java, number 1523 in Lecture
Notes in Computer Science, pages 41-82. Springer Verlag, Berlin, 1999.

S. Drossopoulou, T. Valkevych, and S. Eisenbach. Java type soundness revisited. Technical
report, Dept. of Computing - Imperial College of Science, Technology and Medicine, October
1999.

D. Duggan and C. Sourelis. Mixin modules. In Intl. Conf. on Functional Programming, pages
262—273, Philadelphia, June 1996. ACM Press. SIGPLAN Notices, volume 31, number 6.

M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In ACM Symp. on Principles
of Programming Languages 1998, pages 171-183, January 1998.

James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison-Wesley,
1996.

S.C. Keene. Object Oriented Programming in Common Lisp: A Programming Guide in CLOS.
Addison-Wesley, 1989.

D.A. Moon. Object oriented programming with Flavors. In ACM Symp. on Object-Oriented
Programming: Systems, Languages and Applications 1986, pages 1-8, 1986.

M. Odersky and P. Wadler. Pizza into Java: Translating theory into practice. In ACM Symp.
on Principles of Programming Languages 1997. January 1997.

. A. Snyder. CommonObjects: An overview. SIGPLAN Notices, 21(10):19-28, 1986.

