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Abstra
t. In this paper we present Jam, an extension of the Java language support-

ing mixins, that is, parametri
 heir 
lasses. A mixin de
laration in Jam is similar to

a Java heir 
lass de
laration, apart that it does not extend a �xed parent 
lass, but

simply spe
i�es the set of �elds and methods a generi
 parent should provide. In this

way, the same mixin 
an be instantiated on many parent 
lasses, produ
ing di�erent

heirs, thus avoiding 
ode dupli
ation and largely improving modularity and reuse.

Moreover, as happens for 
lasses and interfa
es, mixin names are referen
e types, and

all the 
lasses obtained instantiating the same mixin are 
onsidered subtypes of the


orresponding type, hen
e 
an be handled in a uniform way through the 
ommon

interfa
e. This possibility allows a programming style where di�erent ingredients are

\mixed" together in de�ning a 
lass; this paradigm is partly similar to that based on

multiple inheritan
e, but avoids its 
ompli
ation.

The language has been designed with the main obje
tive in mind to obtain, rather

than a new theoreti
al language, a working and smooth extension of Java. That

means, on the design side, that we have fa
ed the 
hallenging problem of integrating

the Java overall prin
iples and 
omplex type system with this new notion; on the

implementation side, that we have developed a Jam to Java translator whi
h makes

Jam sour
es exe
utable on every Java Virtual Ma
hine.

1 Introdu
tion

In the last years, the notion of parametri
 heir 
lass or mixin (following the terminology

originally introdu
ed in [17,16℄) has deserved great interest in the programming languages


ommunity. As the �rst name suggests, a mixin is a uniform extension of many di�erent

parent 
lasses with the same set of �elds and methods, that is, a 
lass-to-
lass fun
tion. To

be more 
on
rete, let us 
onsider a s
hemati
 
lass de
laration in Java.


lass H1 extends P1 f de
s g

where P1 is some parent 
lass and de
s denotes a set of �eld and method de
larations. In

Java, as in most other obje
t-oriented programming languages, if we want to extend another

parent 
lass, say P2, with the same set of �elds and methods, then we have to write a new

independent de
laration, dupli
ating the 
ode in de
s .


lass H2 extends P2 f de
s g

Assume now to have a language allowing to give a name, say M, to de
s , and to instantiate

M on di�erent parent 
lasses, e.g. P1 and P2, obtaining di�erent heir 
lasses equivalent to H1

and H2 above.

mixin M f de
s g


lass H1 = M extends P1 ;


lass H2 = M extends P2 ;

?

Partially supported by Murst - Te
ni
he formali per la spe
i�
a, l'analisi, la veri�
a, la sintesi e

la trasformazione di sistemi software



Then we say that M is a mixin.

A mixin de
laration resembles a usual heir 
lass de
laration, apart that a mixin does

not refer to a �xed parent 
lass, but simply spe
i�es the set of �elds and methods a generi


parent should provide. The fa
t that the same mixin 
an be instantiated on many parent


lasses avoids 
ode dupli
ation and largely improves modularity and reuse. The name refers

to the fa
t that in a language supporting mixins it is possible to \mix", in some sense,

di�erent ingredients during 
lass 
reation, as ni
ely illustrated through the jigsaw puzzle

metaphor in [6℄. This paradigm is partly similar to that based on multiple inheritan
e, but

avoids its 
ompli
ation.

Mixin-based programming has been now extensively studied both on the methodologi
al

and foundational point of view [7,6,8,4,2,3℄. The results 
an be summarized as follows.

First, the mixin notion is not stri
tly related to obje
t-oriented programming but 
an be

formulated in general in the 
ontext of module 
omposition (a mixin module is a module

where some 
omponents are not de�ned but expe
ted to be provided by some other module).

This notion allows to have a 
lean and unifying view of di�erent linguisti
 me
hanisms

for 
omposing modules. Finally, the intuitive understanding of a mixin as a 
lass-to-
lass

fun
tion (or, in the general 
ase, module-to-module fun
tion) 
an be a
tually supported by

a rigorous mathemati
al model [2,3℄.

Despite of this advan
ed state of the art, few attempts have been made at designing

real programming languages supporting mixins. As already mentioned, the �rst use of the

word mixin as a te
hni
al term originates with the LISP 
ommunity [16,19℄. After that, at

our knowledge, there exist only a proposal for extending ML [13℄, a working extension for

Smalltalk [9℄ and a proposal for a Java-like mixin language [14℄ (whose relation with our

work will be dis
ussed in detail in Se
t.5.2).

In this paper, we present Jam

1

, a working and smooth extension of Java with mixins. By

these two adje
tives we mean that our main aim is to produ
e an exe
utable and minimal

extension of Java, rather than de�ne a new theoreti
al language supporting mixins. More

pre
isely, Jam is an upward-
ompatible extension of Java 1.0 (apart from two new keywords),

a great e�ort has been spent in integrating mixin-related features with the Java overall design

prin
iples, the type system is a natural extension of the Java type system with a new kind

of types (mixin types), the dynami
 semanti
s is dire
tly de�ned by translation into Java

and, �nally, this translation has been implemented by a Jam to Java translator whi
h makes

Jam immediately exe
utable on every Java Virtual Ma
hine.

The stru
ture of the presentation is as follows. In Se
t.2 we provide a user introdu
tion

to Jam, through some examples, and illustrate and motivate in detail our design 
hoi
es.

In Se
t.3 we formally de�ne the language, giving (a part of) the abstra
t syntax and the

stati
 semanti
s (the full de�nition 
an be �nd in [1℄). The Jam type system is de�ned

as a 
onservative extension of the Java type system. For what 
on
erns the Java part, we

basi
ally follow the type system proved sound in [12℄, even though we 
over some more

features and take a somewhat di�erent style of presentation. In Se
t.4 we de�ne a formal

translation from Jam into Java and state the 
orre
tness of this translation w.r.t. stati


semanti
s (that is, 
orre
t Jam programs are expanded into 
orre
t Java programs; this

also ensures the soundness of the Jam type system). Finally in Se
t.5.1 we brie
y des
ribe

the implementation, provide a detailed 
omparison with the proposals in [9,14℄ and outline

further resear
h dire
tions.

An extended version of this paper, in
luding the full type system, the proof of 
orre
tness

of the translation and more examples and dis
ussions, is [1℄.

The Jam 
ompiler and the sour
es are available at: http://gio.libertyline.


om/jam.
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Java + mixin = jam



2 User Introdu
tion and Rationale

In this se
tion we provide a user introdu
tion to Jam and illustrate and motivate our design


hoi
es. In 2.1 we give an overall view of the 
apabilities added to Java by the introdu
tion

of mixins, in 2.2-2.5 we dis
uss some more spe
i�
 points, and �nally in 2.6 we point out

the main limitations of the language.

2.1 An example

Fig. 1 shows the de
laration of the mixin Undo. We use typewriter style for 
ode fragments.

This mixin, as the name suggests, provides an \undo" me
hanism that permits to restore the

mixin Undo f

inherited String getText() ;

inherited void setText(String s) ;

String lastText ;

void setText(String s) f

lastText = getText() ;

super.setText(s) ;

g

void undo() f

setText(lastText) ;

g

g

Fig. 1. Mixin de
laration

text before the last modi�
ation. As shown in the example, a mixin de
laration is logi
ally

split in two parts: the de
larations of the 
omponents whi
h are expe
ted to be provided by

the parent 
lass, pre�xed by the inheritedmodi�er, and the de
larations of the 
omponents

de�ned in the mixin. Note that de�ned 
omponents 
an override/hide inherited 
omponents,

as it happens for usual heir 
lasses.

The mixin Undo 
an be instantiated on 
lasses that de�ne two non-abstra
t methods

getText and setText, with types as spe
i�ed in the inherited de
laration. Fig. 2 shows


lass Textbox extends Component f

String text ;

...

String getText() f ... g

void setText(String s) f ... g

g


lass TextboxWithUndo = Undo extends Textbox fg

Fig. 2. Mixin instantiation

an example of instantiation; we have used as parent a 
lass Textbox whi
h extends a

generi
 
lass Component. In the instantiation no 
onstru
tors are spe
i�ed for the new 
lass



TextboxWithUndo (they should be de
lared between the 
urly bra
es) and so, as in Java, it

is assumed that the 
lass has only the default 
onstru
tor. To obtain a 
orre
t instantiation

Textbox must de�ne the mixin inherited part by implementing the methods getText and

setText. These methods must have the same return and arguments type and equivalent

2

throws 
lause w.r.t. the 
orresponding inherited de
laration. The 
lasses obtained by in-

stantiating the mixin provide, in addition to the methods getText (inherited from parent


lass) and setText (inherited and overridden), all other �elds and methods of the 
lass

Textbox, the method undo and the �eld lastText.

The expe
ted semanti
s of mixin instantiation 
an be informally expressed by the fol-

lowing 
opy prin
iple:

A 
lass obtained instantiating a mixin M on a parent 
lass P

should have the same behavior as a usual heir of P whose body


ontains a 
opy of all the 
omponents de�ned in M .

A 
lass implementing the mixin inherited part 
an nevertheless be an invalid parent

for instantiation, sin
e there is another requirement to be met: the heir 
lass obtained

instantiating the mixin must be a 
orre
t Java heir 
lass. This leads to a set of 
onstraints

whi
h are des
ribed in detail in Se
t. 2.3.

What we have seen so far shows the use of a mixin de
laration as a s
heme, that is, a

parametri
 heir 
lass that 
an be instantiated on di�erent 
lasses. In this way we avoid 
ode

dupli
ation, a good result in itself, but Jam allows something more: a mixin 
an be used as

a type and a mixin instan
e

3

is a subtype of both the mixin and the parent 
lass on whi
h

it has been instantiated.

This allows the programmer to manipulate obje
ts of any mixin instan
e by using the


ommon interfa
e spe
i�ed by the mixin de
laration (see Fig. 3). An important 
onsequen
e


lass TextboxWithUndo = Undo extends Textbox fg


lass BreakIteratorWithUndo =

Undo extends java.text.BreakIterator fg


lass TestUndo f

void f() f

g( new TextboxWithUndo() ) ;

g( new BreakIteratorWithUndo() ) ;

g

void g(Undo u) f

u.setText("foo") ;

u.setText("bar") ;

System.out.println("Previous text: "+u.lastText) ;

System.out.println("Current text : "+u.getText());

g

g

Fig. 3. Use of mixin types

is that Jam supports a programming style (sometimes 
alled mixin-based [7℄) where di�erent

2

That is, every ex
eption de
lared in one 
lause must be a subtype of an ex
eption de
lared in

the other, and 
onversely.

3

We will 
all mixin instan
e a 
lass obtained instantiating a mixin, to be not 
onfused with an

instan
e of a 
lass.



ingredients are \mixed" together in de�ning a 
lass. This paradigm has been advo
ated [6,5℄

on the methodologi
al side sin
e it allows to partly re
over the expressive power of multiple

inheritan
e without introdu
ing its 
ompli
ation; however the novelty of Jam is that mixin-

based programming is rigorously introdu
ed in the 
ontext of a strongly typed language.

2.2 Other 
omponents of a mixin de
laration

In the simple example presented in the previous se
tion we have not in
luded all the kinds

of 
omponents whi
h 
an appear in a mixin de
laration.

Indeed, following the design prin
iple that a mixin should be as similar as possible to a

usual heir 
lass, mixins should provide all their features. In the sequel we illustrate ea
h of

them in detail highlighting and justifying some restri
tions.

Interfa
es A mixin 
an implement an interfa
e in exa
tly the same way a 
lass does.

Constru
tors A 
onstru
tor invo
ation in Java takes pla
e in three 
ases: in an obje
t 
re-

ation expression new C( : : : ), inside another 
onstru
tor of the same 
lass via this and

inside an heir's 
onstru
tor via super. However, 
reating obje
ts whi
h are instan
es of

mixins makes no sense. Moreover, in Jam mixin instan
es are not 
onsidered heirs of the


orresponding mixin. Hen
e, for mixins the invo
ation inside an heir's 
onstru
tor never o
-


urs. In summary, it makes no sense to de
lare 
onstru
tors in mixins; however, it is possible

to de
lare 
onstru
tors for ea
h parti
ular mixin instan
e at the point of instantiation.

Inherited instan
e �elds In a mixin it is possible to a

ess inherited (instan
e) �elds in the

same way as a usual heir 
lass does: using the �eld name id or the forms this.id and

super.id (the latter is needed when a de�ned �eld hides an inherited one).

Stati
 members Although in Jam stati
 
omponents are de
lared in the same way as instan
e


omponents ex
ept, of 
ourse, the use of the stati
 modi�er, their visibility is di�erent:

they are not 
onsidered part of the mixin type. Consider, for example, the following 
ode

fragment:

mixin M f

stati
 void m() fg

stati
 int f ;

g

We do not allow in Jam invo
ations M.m() or e.m() with e of type M. However, for ea
h


lass H obtained instantiating M, invo
ations H.m() or e.m()
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with e of type H are legal. The

same rule holds for �elds. In other words, every 
lass that is an instan
e of M has \its own


opy" of stati
 
omponents de
lared in the mixin. Other 
hoi
es are te
hni
ally possible:

{ sharing only one 
opy of the stati
 
omponents de
lared in the mixin between all mixin

instan
es; in this 
ase it should be allowed a

essing stati
 members through the mixin

type too;

{ leave to the programmer (introdu
ing a new keyword, or analogous me
hanisms) the

de
ision whether a 
omponent should be shared between all the mixin instan
es or not.

In Jam, we have 
hosen the \unshared" version be
ause, in this way, a mixin instantiation

on a parent 
lass is equivalent to that obtained by 
opying the mixin body in the de
laration

of the new 
lass, as requested by the 
opy prin
iple. Stati
 
omponents 
an be inherited (of


ourse, they are not part of mixin type either) but, like in Java, stati
 methods 
annot be

abstra
t.

4

We maintain this alternative syntax for 
ompatibility reasons only, see 15.10.1 of [15℄



2.3 Constrains on instantiation

As mentioned in Se
t. 2.1, the fa
t that a 
lass P provides an implementation for the

inherited part of a mixin M is not enough for ensuring that P 
an be 
orre
tly used as

a parent for M. Indeed, in addition to methods de
lared inherited in M, the 
lass P 
an


ontain some other methods whi
h 
ould interfere, in various ways, with methods in M. Let

us brie
y illustrate the di�erent interferen
e 
ases.

Unexpe
ted overriding/hiding A method in P is in
identally overridden (hidden) by a method

de�ned in M if it has the same name, arguments type, return type, kind (instan
e or stati
)

and a 
ompatible

5

throws 
lause. For instan
e, instantiating the mixin Undo on a 
lass with

a void undo() method produ
es an unexpe
ted overriding. This situation looks somewhat

undesirable, sin
e there is some overriding whi
h was not planned when de
laring the mixin;

however, our 
hoi
e for Jam has been to 
onsider legal these instantiations, leaving to the

programmer the 
are of avoiding them when the additional overriding is undesired. Indeed,

di�erent 
hoi
es would sensibly 
ompli
ate either the stati
 (if the 
hoi
e is to forbid) or

dynami
 (if the 
hoi
e is to keep both versions) semanti
s, while ours is the natural extension

to mixins of what happens for usual heir 
lasses. See Se
t.5.2 for some further dis
ussion on

this point.

Illegal overriding/hiding A method in P is illegally overridden (hidden)
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by a de�ned method

in M if it has the same signature (name and arguments type) but either di�erent return type,

or di�erent kind or in
ompatible throws 
lause. This is not 
orre
t in Jam.

Ambiguous overloading There exist 
ontexts in whi
h the presen
e of the method in P makes

ambiguous, w.r.t. overloading resolution, an invo
ation of the method in M. Let us 
larify this


ase with an example. Assume that the method Undo.undo 
ontains the 
all setText(null);

this invo
ation is stati
ally 
orre
t. Suppose now to instantiate Undo on a 
lass Boom whi
h

de�nes, besides the methods String getText() and void setText(String), the method

void setText(Integer). In this 
ase the 
all setText(null) be
omes ambiguous. Indeed,

null 
an be impli
itly 
onverted to any referen
e type, hen
e both methods are appli
able

and neither is more spe
i�
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.

In general, if two methods have the same name, then the addition of one may make

ambiguous, w.r.t. overloading resolution, an invo
ation of the other if and only if they have

the same number and type of arguments ex
ept for some argument for whi
h they have

two di�erent referen
e types (see Fig. 13 in Se
t.3 for the formal de�nition). In alterna-

tive we 
ould have de�ned less stri
t rules by forbidding the instantiation only when some

method body in the mixin 
ontains a method invo
ation that would be
ome ambiguous (as

in the example). However, we have preferred to follow the prin
iple that the 
orre
tness of a

mixin instantiation should depend only on the mixin type and not on its implementation. In

this way, indeed, a modi�
ation of the method bodies does not a�e
t the 
orre
tness of the

instantiation. Even though this approa
h has the drawba
k of forbidding also \good" instan-

tiations, on the methodologi
al side it seems more 
onsistent with the 
hoi
e of des
ribing

the requirements on the parent 
lass via the inherited de
larations.

2.4 Overloading

The Java rules for overloading resolution

8

smoothly extends to Jam, just in
luding mixin

types among other referen
e types and taking into a

ount in the de�nition of \more spe-


i�
" the fa
t that every mixin instan
e is a subtype of (hen
e, 
an be 
onverted to) the


orresponding mixin type. However, some parti
ular 
are is needed for handling the situa-

tion when there is an overloading 
on
i
t between an inherited and a de�ned method in a

mixin. Let us illustrate the problem on the following simple example.

5

See 8.4.4 in [15℄

6

See 8.4.6.3 in [15℄
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See 15.11.2 in [15℄
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See 15.11.2 in [15℄




lass A fg


lass B extends A fg


lass Parent f

void f(B b) fg

g


lass Heir extends Parent f

void f(A a) fg

g

mixin M f

inherited void f(B b) ;

void f(A a) fg

g


lass Test f

void test(Heir h, B b, M m) f

h.f(b) ; // ambiguous

m.f(b) ; // ambiguous?

g

g

Fig. 4. Overloading 
on
i
t between inherited and de�ned methods

In the �rst part of the 
ode shown in Fig.4, B is a subtype of A and Heir is a subtype of

Parent. The 
lass Parent de�nes a method named f with one argument of type B, while

its sub
lass Heir de�nes a method with the same name and argument's type A. Due to

the symmetry of the situation, the invo
ation h.f(b), where h and b are of type Heir and

B, respe
tively, is ambiguous, sin
e there are two appli
able methods and neither is more

spe
i�
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.

If we 
onsider now the de
laration of the mixin M, the situation is exa
tly analogous to the

pre
eding: a (parametri
) heir 
lass de�nes a method whose argument type is a supertype

of the argument type of a method with the same name in the parent 
lass. Hen
e, we expe
t

the invo
ation of m.f(b), where m has type M, to be ambiguous as well.

For a
hieving this goal, we assume that inherited methods in a mixin M are annotated

with a type (that is, 
onsidered to be have been de
lared within the 
orresponding module;

see [1℄ for the pre
ise formal de�nition of annotations) whi
h is not M but a spe
ial type

Parent(M) whi
h represents the generi
 parent on whi
h the mixin 
an be instantiated, and

is assumed to be a supertype of M.

2.5 Use of this in mixins

A last deli
ate point in the Jam type system 
on
erns the use of the keyword this, whi
h

denotes, in an instan
e method (resp. 
onstru
tor), the 
urrent obje
t on whi
h the method

has been invoked (the 
urrent obje
t to be 
onstru
ted). In a method or 
onstru
tor de
lared

in a 
lass C, the expression this has stati
 type C in Java

10

. Now, we have to de
ide whi
h

should be the stati
 type of this in a method de�ned in a mixin M. Sin
e we want to be

able to type-
he
k the mixin de
laration independently from future instantiations, the only

possibility is to assume that this has stati
 type M, sin
e this is the only type available

at mixin de
laration's time. However, this is in 
on
i
t with the fa
t that we expe
t that

in a 
lass H instan
e of a mixin M the expression this has stati
 type H, as it happens

for usual heir 
lasses. More pre
isely, the fa
t of having 
orre
tly type-
he
ked the mixin

de
laration under the assumption that this has type M does not guarantee that (the Java


lass H 
orresponding to) a mixin instan
e (following the 
opy prin
iple) is always a 
orre
t

Java 
lass, sin
e in Java this has type H in this 
lass. This 
an lead to unsound situations

in some subtle 
ases involving overloading. Let us 
onsider the example in Fig.5.

The 
lass A de
lares two methods named f with argument's type a mixin M and an

instan
e H of M, respe
tively. In the invo
ation of f inside the method g de
lared in M, sin
e

this has type M, the expression A.f(this) has type int, hen
e 
an be 
orre
tly assigned

to the variable i.

9

See 15.1.2.2 in [15℄
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See 15.7.2. in [15℄




lass A f

stati
 int f(M m) f : : : g

stati
 boolean f(H h) f : : : g

g

mixin M f

void g() f

int i = A.f(this) ;

g

g


lass H = M extends Obje
t fg ;

// ``Equivalent'' de
laration for H


lass H : : : f

void g() f

int i = A.f(this) ; // Boom !!!

g

g

Fig. 5. Problem in using this in mixins

Now, if the expe
ted semanti
s of H, following the 
opy prin
iple, is to be equivalent to

the 
lass shown in the �gure where the de
laration of g has been 
opied into the body, then

the invo
ation A.f(this) has now type boolean, hen
e 
annot be used for initializing the

variable i.

This is a parti
ular 
ase of a more general problem, that is, the fa
t that in a mixin

de
laration in Jam there is no way to refer to the parametri
 types of either the parent or

the heir 
lass resulting from the instantiation. See the following se
tion for more 
omments

about that.

In order to avoid these situations, we have taken for Jam a quite drasti
 design de
ision,

that is, to forbid the use of this as argument in method and 
onstru
tor invo
ation inside

a mixin.

2.6 Limitations

The main limitation of the language is that in a mixin it is not possible to refer either to

the \generi
" parent 
lass to whi
h the mixin will be applied or to the \generi
" heir 
lass

obtained by instantiation. As an example, let us 
onsider the following de
larations of a

parent 
lass P and an heir H.


lass P f

stati
 int 
ounter ;

g


lass H extends P f

stati
 int 
ounter ;

stati
 void in
rThat() f ++P.
ounter ; g

: : :

int value ;

publi
 boolean equals(Obje
t that) f

if (that instan
eof H) return ((H)that).value == value ;

return false ;

g

g

The de�nition of H 
annot be \abstra
ted" in a mixin de�nition, for two reasons.

{ The method in
rThat expli
itly refers to the parent 
lass P sin
e the stati
 �eld 
ounter

of the super
lass has been hidden by a de
laration in H.

{ The method equals uses the name of the heir 
lass H whi
h is unknown for a mixin.

More generally, a 
lass H heir of P 
annot be \abstra
ted" into a mixin when it 
ontains:



{ (expli
it) referen
es to types H and P;

{ invo
ations of H/P 
onstru
tors.

If H/P are only used for a

essing stati
 members, then H 
an be \abstra
ted" ex
ept for some


ases involving hiding (as shown by the example). In Se
t.5.3 we dis
uss possible solutions

to this problem.

3 The Formal De�nition

In this se
tion we formally de�ne the abstra
t syntax and the stati
 semanti
s of Jam.

The implemented version of Jam is an upward-
ompatible extension of Java 1.0 (apart the

fa
t that mixin and inherited are keywords in Jam); however the formal de�nition only


onsiders a subset of the language 
hosen in su
h a way to be minimal but suÆ
ient for our

aim, whi
h is to analyze how the Java type system must be enri
hed in order to support mixin

types (the soundness of this extension will be proved in the next se
tion). Ex
luded features

fall in two main 
ategories: those whi
h are orthogonal w.r.t. this aim, like multithreading,

and those whose semanti
s 
an be trivially derived, like the for loop. In parti
ular, we

have ex
luded the following features: arrays, final and a

ess modi�ers, features related

with linking native 
ode and multithreading. We have in
luded the following features not


onsidered in [11℄: 
onstru
tors, stati
 members, 
he
ked ex
eptions

11

, abstra
t 
lasses

and methods, method invo
ations and �eld a

esses via super.

In this paper, for la
k of spa
e, we in
lude only a part of the abstra
t syntax and the

type system, whose full version 
an be found in [1℄.

3.1 Notations

We use the typewriter style for terminal and itali
 for non terminal symbols. The terminals

iname, 
name and mname indi
ate, interfa
e, 
lass and mixin names respe
tively. A generi


name is indi
ated by name. We use the following notations:

{ A

�

to indi
ate a sequen
e of zero or more o

urren
es of A,

{ A

+

to indi
ate a sequen
e of one or more o

urren
es of A,

{ [A℄ to indi
ate that A is optional,

{ A

~

to indi
ate a set of o

urren
es of A, that is, a sequen
e in whi
h there are no

repetitions and the order is immaterial,

{ A

�

to indi
ate a non empty set of o

urren
es of A.

3.2 Abstra
t syntax

Fig. 6 shows a part of the Jam abstra
t syntax; the LALR grammar used in the implemen-

tation 
an be found in the [1℄.

The only Jam spe
i�
 produ
tions are the �rst three in the �gure.

In Jam an alternative way to de�ne a (possibly abstra
t) 
lass is to instantiate a mixin

on an existing 
lass, spe
ifying the 
onstru
tors of the new 
lass.

A mixin de
laration logi
ally 
onsists of two parts: the former 
ontains the de
larations

of the de�ned 
omponents, while the latter 
ontains the inherited 
omponents de
larations,

that is, the de
larations of the 
omponents that should be provided by the parent 
lass on

whi
h the mixin will be instantiated. These 
omponents are labelled with the inherited

modi�er. Moreover, the set of the implemented interfa
es is spe
i�ed.

3.3 Types

In Fig. 7 are de�ned the Jam types. A generi
 type 
an be a referen
e type, a primitive

11

Che
ked ex
eptions have been 
onsidered in a re
ent improved version [12℄.



ref-type ::= mname


de
l ::= [ abstra
t ℄ 
lass 
name = mname extends


name f
onstru
tor

~

g

mde
l ::= mixin name implements iname

~

f h [inherited℄ �eld i

~

h [inherited℄ 
meth i

~

g

prog ::= de
l

~

de
l ::= ide
l j 
de
l j mde
l

simple-type ::= prim-type j ref-type

ref-type ::= iname j 
name

prim-type ::= int j boolean

ret-type ::= simple-type j void

ex
-type ::= 
name

~


de
l ::= [ abstra
t ℄ 
lass 
name extends 
name

implements iname

~

f 
onstru
tor

~

�eld

~


meth

~

g

ide
l ::= interfa
e iname extends iname

~

f imeth

~

g

imeth ::= abstra
t ret-type name params throws ex
-type ;

params ::= (h simple-type name i

�

)


onstru
tor ::= 
name params throws ex
-type

f super(expr

�

) ; stmts g


meth ::= [ stati
 ℄ ret-type name params

throws ex
-type mbody j

imeth

Fig. 6. Jam abstra
t syntax

type ::= ref-type j prim-type j nil

�eld-type ::= �eld-kind simple-type

�eld-kind ::= instan
e j stati


args-type ::= simple-type

�


onstr-type ::= args-type throws ex
-type

meth-type ::= meth-kind ret-type throws ex
-type

meth-sig ::= name; args-type

meth-kind ::= instan
e j abstra
t j stati


�elds-type ::= hname : �eld-typei

~

meths-type ::= hmeth-sig : meth-typei

~


onstrs-type ::= 
onstr-type

�

module-type ::= �elds-type meths-type


lass-type ::= 
lass-kind 
onstrs-type module-type


lass-kind ::= abstra
t j 
on
rete

interfa
e-type ::= meths-type

mixin-type ::= module-type inherited module-type

Fig. 7. Jam types



type (both de�ned in Fig. 6) or nil (the type of null). A �eld-type 
onsists of a simple

type and a (�eld) kind indi
ating whether the �eld is instan
e or stati
. The arguments

type (of a method or 
onstru
tor), args-type , is a sequen
e, possibly empty, of simple types.

A 
onstru
tor type 
onsists of the arguments type and the set of de
lared ex
eptions (the

type ex
-type is de�ned in Fig. 6). A method type 
onsists of the kind, the return type and

the set of de
lared ex
eptions. A �elds type is a set of �elds, that is, pairs 
onsisting of a

�eld name and a �eld type. A �elds type is legal if �eld names are distin
t. Analogously, a

methods type is a set of methods, that is, pairs 
onsisting of a signature (a method name

quali�ed by the types of the arguments) and a method type; it is legal when all signatures

are distin
t. In the following we will 
onsider only legal �elds and methods type. The type


onstrs-type is a non-empty set of 
onstru
tor types. Note that a 
lass has always at least a


onstru
tor (if it is not expli
itly given the default one is assumed).

A module type 
onsists of a set of �elds and a set of methods. A 
lass type 
onsists of a

module type, a kind and a set of 
onstru
tors. An interfa
e type 
onsists of a set of methods

(in our subset we do not 
onsider the final modi�er, hen
e an interfa
e 
annot have �elds).

Finally, a mixin type 
onsists of two module types: the de�ned type and the inherited type,

that is the expe
ted parent type.

3.4 Environments

A Jam program 
ontains both type information and information needed at runtime (that

is, the method bodies). To simplify the formal de�nition, following the approa
h used in

[12℄, we 
onsider two 
omponents that 
an be extra
ted in a trivial way from a program:

the environment � , that 
ontains the type information, and the remaining part of program


onsisting in a set of body de
larations, that is, 
onstru
tor and method bodies of 
lasses

and mixins (�elds information are 
ontained in � ). The syntax of these two 
omponents is

given in Fig. 8. We assume that in the environment extra
tion pro
ess a 
he
k is performed

env ::= basi
-type-assertion

~

basi
-type-assertion ::= 
name is





lass-type j


name <

1





name j

name �

1

i

iname j

iname is

i

interfa
e-type j

iname <

1

i

iname j

mname is

m

mixin-type j


name �

m

mname

body-de
l ::= 
lass 
name f 
onstru
tor

~


meth

~

g j

mixin name f 
meth

~

g

Fig. 8. Environments and body de
larations

for avoiding dupli
ate de
larations. Hen
e, the stati
 
orre
tness of a Jam program 
an be

expressed by the validity of the two following judgments:

` ��

� ` fBD

1

; : : : ; BD

n

g�

Prog

The former means that � is a well-formed environment so that, for instan
e, the sub
lass

relationship is a
y
li
; the latter indi
ates that all the body de
larations are well-formed

w.r.t. the type information in � . The validity of these two judgments is de�ned indu
tively

introdu
ing other judgments relative to sub
omponents. In this paper for la
k of spa
e, we

only give an outline of the judgments related to the environment.

An environment is a set of basi
 type assertions having the following informal meaning:

{ C is




KST FST MST : the 
lass C de
lares the spe
i�ed 
onstru
tors (KST ), �elds

(FST ) and methods (MST )



{ C <

1




C

0

: the 
lass C dire
tly extends the 
lass C

0

{ T �

1

i

I : the module (either 
lass or mixin) T dire
tly implements the interfa
e I

{ I is

i

MST : the interfa
e I de
lares the methods spe
i�ed in MST

{ I <

1

i

I

0

: the interfa
e I dire
tly extends the interfa
e I

0

{ M is

m

MODT inherited MODT

0

: the mixin M de
lares the de�ned 
omponents

MODT and the inherited 
omponents MODT

0

{ C �

m

M : the 
lass C has been de�ned instantiating the mixin M

We de�ne now some auxiliary notations used in the sequel, well-de�ned on environments

whi
h do not 
ontain dupli
ate de
larations, as we have assumed.

Set � (id) =

8

>

>

<

>

>

:

CT if id is




CT 2 �

IT if id is

i

IT 2 �

MXT if id is

m

MXT 2 �

? otherwise

{ Classes(� ) the set of all 
lass names de�ned in � , that is, C 2 Classes(� )

i� C is




CT 2 � ,

{ Interfa
es(� ) the set of all interfa
e names de�ned in � , that is,

I 2 Interfa
es(� ) i� I is

i

IT 2 � ,

{ Mixins(� ) the set of all mixin names de�ned in � , that is, M 2 Mixins(� )

i� M is

m

MXT 2 � .

3.5 Type system (outline)

In this subse
tion, we give the �rst part of the metarules of the Jam type system, that is,

those related to environments. Metarules fall in two 
ategories: those whi
h belong to the

Java type system, and those related to features introdu
ed by Jam, whi
h are distinguished

by a label. The judgments of these metarules have generi
 form � ` 
, with � an environment

and 
 a type assertion.

Basis The following metarule provides the basis for the indu
tive de�nition of the validity

of judgments.

(1)

� ` 



 2 �

Fig. 9. Basi
 type assertion

Relations between types The metarules in Fig.10 all de�ne relevant relations between ref-

eren
e types (that is, either 
lasses, or interfa
es, or mixins) whi
h 
an be derived from

the basi
 relations 
ontained in the environment. In parti
ular, the re
exive (on existing


lass types) and transitive 
losure of the relation <

1




is the sub
lass relation �




; analogously

the re
exive (on existing interfa
e types) and transitive 
losure of <

1

i

is the subinterfa
e

relation �

i

. The implementation relation from 
lasses to interfa
es is derived from �

1

i

and

the sub
lass and subinterfa
e relations. The new relation introdu
ed in Jam w.r.t. Java is

that of instantiation, denoted �

m

, from a mixin instan
e to the 
orresponding mixin type.

Finally, from all these relations we 
an derive a more general relation of widening between

referen
e types, denoted by �.

The metarules in Fig. 11 de�ne subtyping relations for ex
eptions, �elds, methods and

module types. These relations basi
ally express that a module type is a subtype of another

if it has more �elds and/or methods; the 
ommon �elds and methods must have exa
tly

the same type, modulo equivalen
e of ex
eptions types (� ` ET =

e

ET

0

in (22) stands for

� ` ET �

e

ET

0

and � ` ET

0

�

e

ET ). Note that, in (19), it is possible that E

i

= E

j



(2)

� ` C <

1




C

0

� ` C �




C

0

(3)

� ` C is




CT

� ` C �




C

(4)

� ` C �




C

0

� ` C

0

�




C

00

� ` C �




C

00

(5)

� ` I <

1

i

I

0

� ` I �

i

I

0

(6)

� ` I is

i

IT

� ` I �

i

I

(7)

� ` I �

i

I

0

� ` I

0

�

i

I

00

� ` I �

i

I

00

(8)

� ` T �

1

i

I

� ` T �

i

I

(9)

� ` C �




C

0

� ` C

0

�

i

I

� ` C �

i

I

(10)

� ` T �

i

I � ` I �

i

I

0

� ` T �

i

I

0

(11)

� ` C �




C

0

� ` C � C

0

(12)

� ` I �

i

I

0

� ` I � I

0

(13-Jam)

� ` C �

m

M

� ` C �M

(14)

� ` T � T

� ` T � Obje
t

(15)

� ` T � T

� ` nil � T

(16)

� ` T �

i

I

� ` T � I

(17-Jam)

� ` M is

m

MXT

� `M �M

(18)

� ` T � T

0

� ` T

0

� T

00

� ` T � T

00

Fig. 10. Sub
lass, subinterfa
e, implementation and widening relations

(19)

� ` E

1

�




E

0

1

: : : � ` E

n

�




E

0

n

� ` fE

1

; : : : ; E

n

g �

Ex
Type

� ` fE

0

1

; : : : ; E

0

n

g�

Ex
Type

� ` fE

1

; : : : ; E

n

g �

e

fE

0

1

; : : : ; E

0

n

g

n � 0

(20)

� ` T�

SimpleType

� ` K T �

field

K T

(21)

� ` ff

1

: FT

1

; : : : ; f

n

: FT

n

g�

FieldsType

� ` ff

1

: FT

1

; : : : ; f

n

: FT

n

g �

fields

ff

1

: FT

1

; : : : ; f

m

: FT

m

g

m � n

(22)

� ` RT �

RetType

� ` ET =

e

ET

0

� ` K RT throws ET �

meth

K RT throws ET

0

� ` instan
e RT throws ET �

meth

abstra
t RT throws ET

(23)

� ` fmsig

1

:MT

1

; : : : ;msig

n

:MT

n

g�

MethsType

� ` fmsig

1

:MT

0

1

; : : : ;msig

k

: MT

0

k

g�

MethsType

� `MT

1

�

meth

MT

0

1

: : : � `MT

k

�

meth

MT

0

k

� ` fmsig

1

: MT

1

; : : : ;msig

n

: MT

n

g �

meths

fmsig

1

: MT

0

1

; : : : ;msig

k

:MT

0

k

g

k � n

(24)

� ` FST �

fields

FST

0

� `MST �

meths

MST

0

� ` FST MST �

mod

FST

0

MST

0

Fig. 11. Relations on ex
eptions, �elds, methods and module type



or E

0

i

= E

0

j

holds for some i; j. Finally, the same �gure show subtyping relations for �eld,

method and module types.

We omit for la
k of spa
e the metarules de�ning well-formedness of Jam types.

Type assignments The metarules in Fig.12 de�ne type assignments, that is, the fa
t that

some Jam module (either 
lass or interfa
e or mixin) has a given type.

We use some auxiliary fun
tions:

{ ParentInterfa
es(�; I) = fI

0

jI <

1

i

I

0

2 �g

{ ImplementedInterfa
es(�; T ) = fI jT �

1

i

I 2 �g

Moreover, we use the auxiliary update operations on (legal) Jam �elds and methods

types de�ned below.

ff

1

: FT

1

; : : : ; f

n

: FT

n

g[f : FT ℄ =

def

ff

i

: FT

i

jf

i

6= fg [ ff : FTg

fmsig

1

:MT

1

; : : : ;msig

n

:MT

n

g[msig :MT ℄

�

=

def

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

fmsig

i

:MT

i

jmsig

i

6= msigg [ fmsig :MTg

if 8i 2 f1; : : : ; ng msig = msig

i

)

8

<

:

Kind(MT ) = stati
, Kind(MT

i

) = stati
;

� ` Ex
(MT ) �

e

Ex
(MT

i

);

Ret(MT ) = Ret(MT

i

)

? otherwise

The fun
tions Kind , Ex
 and Ret denote the obvious proje
tions for methods types.

The three 
onditions above on updating methods types 
orrespond to the three following

Java rules on overriding:

{ an instan
e method 
annot override a stati
 method, and 
onversely

12

;

{ a method overriding another 
annot throw an ex
eption whi
h is not a subtype of some

ex
eption thrown by the overridden method

13

;

{ a method overriding another 
annot have di�erent return type

14

.

It is easy to see that the update operations 
an be safely generalized in the obvious way

to the 
ase where the se
ond argument is a valid �elds (resp. methods) type.

On methods types we de�ne moreover a \sum" operation

�

� whi
h is basi
ally set union,

a part that, in the 
ase of methods with the same signature, kind, and return type, it pro-

du
es just one su
h method whose ex
eptions type is the \interse
tion" of the ex
eptions

types, de�ned below. This operation is needed in the 
ase a 
lass inherits (from the imple-

mented interfa
es) many methods whi
h di�er only for the throws 
lause.

fmsig : K RT throws ETg

�

� fmsig

0

: K

0

RT

0

throws ET

0

g =

def

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

fmsig : K RT throws ET;

msig

0

: K

0

RT

0

throws ET

0

g

if msig 6= msig

0

fmsig : K RT throws (ET

�


 ET

0

)g ifK = K

0

^ msig = msig

0

^

^RT = RT

0

? otherwise

fmsig

1

:MT

1

; : : : ;msig

n

:MT

n

g

�

� fmsig

0

1

:MT

0

1

; : : : ;msig

0

k

:MT

0

k

g =

def

fmsig

1

:MT

1

g

�

� : : :

�

� fmsig

n

:MT

n

g

�

� fmsig

0

1

:MT

0

1

g

�

� : : :

�

� fmsig

0

k

:MT

0

k

g

fE

1

; : : : ; E

n

g

�


 fE

0

1

; : : : ; E

0

m

g =

def

fE

i

j9j : � ` E

i

�




E

0

j

g[

fE

0

i

j9j : � ` E

0

i

�




E

j

g

12

See 8.4.6.1 and 8.4.6.2 in [15℄

13

See 8.4.6.3 in [15℄

14

See 8.4.6.3 in [15℄



(25)

� ` I is

i

MST

� `MST�

Interfa
eType

� ` I

1

: ; MST

1

: : : � ` I

n

: ; MST

n

� ` I : ; (MST

1

�

� : : :

�

�MST

n

)[MST ℄

�

n � 0

fI

1

; : : : ; I

n

g = ParentInterfa
es (�; I)

Set:

MXT = FST MST inherited FST

0

MST

0

(26-Jam)

� `M is

m

MXT

� `MXT�

MixinType

� ` I

1

: ; MST

1

: : : � ` I

n

: ; MST

n

� `M : FST

0

[FST ℄

((MST

1

�

� : : :

�

�MST

n

)[MST

0

℄

�

)[MST ℄

�

n � 0

fI

1

; : : : ; I

n

g =

ImplementedInterfa
es(�;M)

(27)

� ` Obje
t : ; ;

Set:

FST




= FST

0

[FST ℄

MST




= ((MST

1

�

� : : :

�

�MST

n

)[MST

0

℄

�

)[MST ℄

�

CT = K KST FST MST

(28)

� ` C is




CT

� ` CT�

ClassType

� ` C <

1




C

0

� ` C

0

: FST

0

MST

0

� ` I

1

:MST

1

: : : � ` I

n

:MST

n

� ` C : FST




MST




n � 0

C �

m

M 62 �

fI

1

; : : : ; I

n

g = ImplementedInterfa
es(�;C)

K = 
on
rete )

Kind(MST




) = 
on
rete

Set:

FST




= FST

0

[FST

d

℄

MST




= ((MST

1

�

� : : :

�

�MST

n

)[MST

0

℄

�

)[MST

d

℄

�

MST

m

= ((MST

1

�

� : : :

�

�MST

n

)[MST

i

℄

�

)[MST

d

℄

�

CT = K KST ; ;

(29-Jam)

� ` C is




CT

� ` CT�

ClassType

� ` C �

m

M

� `M is

m

FST

d

MST

d

inherited FST

i

MST

i

� ` C <

1




C

0

� ` C

0

: FST

0

MST

0

� ` FST

0

MST

0

�

mod

FST

i

MST

i

� ` I

1

: MST

1

: : : � ` I

n

:MST

n

� ` C : FST




MST




n � 0

fI

1

; : : : ; I

n

g =

ImplementedInterfa
es(�;M)

K = 
on
rete )

Kind(MST




) = 
on
rete

:MayBeAmbig(MST
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Fig. 12. Type assignments



The metarule (44) de�nes the type of an interfa
e, whi
h is a pair 
onsisting of an empty

�elds type and a methods type. This type 
onsists of the sum of the methods types of the

superinterfa
es, updated by the methods de
lared in the interfa
e.

The metarule (45-Jam) de�nes the type of a mixin, whi
h is a pair 
onsisting of a

�elds and a methods type. The �elds type 
onsists of the inherited �elds type, updated by

the de�ned �elds type; the methods type 
onsists of the sum of the methods types of the

implemented interfa
es, updated by the inherited methods, updated in turn by the de�ned

methods.

Fig.13 shows the de�nition of the predi
ate MayBeAmbig , whi
h is true whenever the

two arguments type may 
ause ambiguity (hen
e make in
ompatible two methods in mixin

instantiation as explained in Se
t.2.3). The fun
tion Args denotes the obvious proje
tion for

method signatures.
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Fig. 13. De�nitions of MayBeAmbig

The three metarules (46-48) de�ne the type of a 
lass, whi
h is a pair 
onsisting of a

�elds and a methods type.

46. For simpli
ity, we have ignored all the prede�ned methods of Obje
t, de�ned in [15℄

20.1.

47. For a standard Java heir 
lass, the �elds type 
onsists of the �elds type of the super
lass

updated by the �elds de
lared in the 
lass. The methods type 
onsists of the sum of the

methods types of the implemented interfa
es, updated by the methods of the super
lass,

updated in turn by the methods de
lared in the 
lass.

48. For a mixin instan
e, the �elds type 
onsists of the �elds type of the super
lass updated

by the �elds de�ned in the mixin. The methods type 
onsists of the sum of the methods

types of the implemented interfa
es, updated by the methods of the super
lass, updated

in turn by the methods de�ned in the mixin.

We assume that the metarules in Fig. 12 
an be instantiated only in the 
ases where

update operations are de�ned.

Well-formedness of environments The metarules in Fig. 14 express the fa
t that a Jam

environment is well-formed. More pre
isely, the judgment � ` �

0

� denotes that the de
la-

rations in �

0

are well-formed in the larger environment � . We follow the approa
h in [11℄

of 
onsidering larger environment in order to 
orre
tly deal with mutual re
ursion between

de
larations. An environment � is well-formed if � ` ��; in this 
ase we will also use the

abbreviation � ` �.

Fig.14 shows the metarules de�ning the well-formedness of 
lass, interfa
e and mixin

de
larations.
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Fig. 14. Well-formed 
lass, interfa
e and mixin de
larations

4 Jam to Java translation

In this se
tion, we give a formal de�nition of the dynami
 semanti
s of Jam dire
tly by

translation in Java. The same approa
h of de�ning a Java extension by translation into Java

as been taken for Pizza [18℄, a superset of Java whi
h in
orporates parametri
 polymorphism,

higher-order fun
tions and algebrai
 data types, and its re
ent evolution GJ (for \Generi


Java") [10℄.

We �rst illustrate informally the basi
 ideas through some examples (Se
t.4.1), then

provide the formal de�nition (Se
t.4.2); �nally in Se
t.4.3 we state that the translation

preserves stati
 
orre
tness.

4.1 An informal overview

The translation from Jam to Java must be de�ned in su
h a way to 
orrespond to the

informal Jam semanti
s we have illustrated in Se
t.2. Hen
e, the two basi
 properties of

mixins must be preserved, that is:

{ the behavior of a 
lass H obtained by instantiating a mixin M on a parent P must be

\equivalent" to that of a 
lass obtained extending P by all the de�ned 
omponents of

the mixins (
opy prin
iple);

{ mixin names 
an be used as referen
e types (independently from the existen
e of some

mixin instan
e), and every 
lass whi
h is instan
e of a mixin must be subtype of both

the mixin and the parent type.

The �rst point immediately gives an easy translation dire
tive, that is, every instantiation

of a mixin M on a parent P must be expanded to a usual Java de
laration of a 
lass extending

P and de
laring all the de�ned 
omponents of M (plus the 
onstru
tors possibly de
lared in

the instantiation).

The se
ond point is less trivial to be a
hieved. Indeed, mixin types in Jam are a new

kind of types, not existing in Java, hen
e they must be translated in either 
lass or interfa
e

types.

A simple way to get \for free" the property that a mixin instan
e turns out to be a

subtype of both the mixin and the parent type is to translate a mixin de
laration by an

interfa
e de
laration, and every instantiation by a Java 
lass whi
h (besides extending the

parent) implements this interfa
e; however, this 
hoi
e introdu
es the problem that mixins in



Jam 
an de
lare �elds, while interfa
es 
annot (stati
 
omponents do not 
ause an analogous

problem sin
e they are not part of the mixin type, see Se
t.2.2, but only need to be 
opied

at every instantiation).

On the other side, translating a mixin de
laration by a 
lass de
laration would have the

advantage to make possible the de
larations of �elds, but would require to simulate in Java

the impli
it Jam type 
onversion from the mixin instan
e type to the mixin type.

Hen
e, we have adopted the �rst 
hoi
e, solving the problem of �eld de
larations by a

quite standard te
hnique, whi
h is the simulation of �elds by a pair of a

essor methods, for

sele
ting (getter) and updating (setter) a �eld. For ea
h �eld f in a mixin de
laration, the

methods $get$ f and $set$ f are de
lared in the interfa
e 
orresponding to the mixin

de
laration; then, in every 
lass translating a mixin instan
e, f is de
lared as a �eld and the

two methods are implemented in the obvious way.

Let us now illustrate how the translation works in pra
ti
e on the mixin Undo introdu
ed

in Se
t.2.1.

interfa
e Parent$Undo f

String getText() ;

void setText(String s) ;

g

interfa
e Undo extends Parent$Undo f

// Field "lastText"

String $get$ lastText() ;

String $set$ lastText(String newValue) ;

// Methods:

void setText(String s) ;

void undo() ;

g

Fig. 15. Translation of a mixin de
laration

Note that, in the translation (shown in Fig.15), together with the interfa
e Undo 
orre-

sponding to the mixin type, there is a se
ond interfa
e Parent$Undo whi
h is extended by

Undo and 
ontains only the de
larations of inherited methods.

This interfa
e represents the translation of the type Parent(Undo) introdu
ed in Se
t.2.4,

that is, the generi
 parent type on whi
h the mixin 
an be instantiated, and is ne
essary for

the Java translation to 
orre
tly simulate the Jam extended rule for overloading resolution

(an inherited method in a mixin M must be 
onsidered as it had been de
lared in a \generi
"

super
lass of M, hen
e 
onsidered less spe
i�
 of a de�ned method with the same signature).

We 
onsider now an instantiation of the mixin Undo in Fig.16, and the 
orresponding

translation in Fig.17.

As shown by the example, the 
lass translating an instantiation of the mixin M on a

parent P extends P and implements the interfa
e M; moreover, the 
lass 
ontains a 
opy of

all the �elds and methods de�ned in M, in
luding stati
 members and abstra
t methods, and

the implementation of the a

essor methods for ea
h �eld.

Note that, inside the mixin, no a

essor invo
ation is used in the translation for a

essing

the �elds. On the 
ontrary, this invo
ation is ne
essary in 
ase of a

ess from external 
ode.

Moreover, using a

essors is only needed when the �eld a

ess is on an expression of the

mixin type, while the 
ode remains un
hanged if the expression type is a mixin instan
e

type. For instan
e, the following 
ode would be kept as it stands by the translation pro
ess:

ExampleWithUndo e = new ExampleWithUndo() ;

System.out.println(e. lastText) ;




lass Example f

String donald = "du
k" ;

String getText() f

return donald ;

g

void setText(String donald) f

this.donald = donald ;

g

g


lass ExampleWithUndo = Undo extends Example fg

Fig. 16. Undo instantiation example


lass Example f

// ... (unmodified)

g


lass ExampleWithUndo extends Example implements Undo f

// Field "lastText"

String lastText ;

String $get$ lastText() f

return lastText ;

g

String $set$ lastText(String newValue) f

return lastText = newValue ;

g

//

void setText(String s) f

lastText=getText() ;

super.setText(s) ;

g

void undo() f

setText(lastText) ;

g

g

Fig. 17. Translation of a mixin instantiation



Inherited �elds Although inherited �elds logi
ally di�er from de�ned �elds, they are trans-

lated in exa
tly the same way: a pair of method a

essors is generated.

Stati
 �elds As shown in Se
t.2.2, stati
 �elds do not belong to the mixin type. Therefore

de
larations of stati
 �elds within a mixin matter only for mixin instan
es. As a 
onsequen
e,

the pair of interfa
es 
orresponding to a mixin does not 
ontain any a

essor for stati
 �elds.

Instead, stati
 �elds will be inserted in every 
lass 
orresponding to a mixin instan
e.

4.2 Formal translation

In this se
tion we formally de�ne the translation of Jam into Java outlined above. The aim

is twofold. First, we de�ne in this way the dynami
 semanti
s of Jam. Se
ond, we get the

soundness of the Jam type system from the soundness of the Java type system [11℄ and

Theorem 1 whi
h states that the translation preserves the stati
 semanti
s.

As usual, for proving preservation of stati
 
orre
tness we need to provide a formal

translation not only for Jam programs (environments and body de
larations), but also for

all judgments, hen
e for type assertions. In this paper, for la
k of spa
e, we omit translation


lauses related to body de
larations.

Translation of environments We denote by [[� ℄℄ the translation of a Jam environment � .

Sin
e assertions in � may be mutually re
ursive, analogously to what happens for the

stati
 semanti
s, the translation of � (Fig. 18) uses an auxiliary fun
tion taking an additional

argument whi
h is a larger environment.

[[� ℄℄ = [[� ℄℄

�

[[ 


1

; : : : ; 


n
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�
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S
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Fig. 18. Translation of environments

The translation of a Jam type assertion is a set of Java type assertions, and is de�ned in

Fig.19. For all the type assertions 
 for whi
h there is no translation 
lause, we impli
itly

assume that:
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Fig. 19. Translation of type assertions

The translation of the type assertions having form T�

1

i

I and T�

i

I depends on the type of

the module T . If T is a mixin then the assertions are translated into subinterfa
e assertions,



otherwise, if T is a 
lass, they remain the same. The instantiation assertion be
omes an

implementation assertion. A mixin de
laration is transformed into the de
laration of two

interfa
es (the �rst being a subinterfa
e of the se
ond). A 
lass de
laration C is modi�ed

only in the 
ase C is an instan
e of a mixin M ; the translation in this 
ase 
orresponds

to the 
opy prin
iple. A well-formed mixin type is translated into the two 
orresponding

well-formed interfa
e types. Finally, type assignments for mixin instan
es and mixins are

translated by introdu
ing a

essors. Of 
ourse, we assume that there are no name 
on
i
ts

between a

essors and user de�ned methods. The fun
tion A

essorDe
s is de�ned in Fig.20.

A

essorDe
s (f

1

: FT

1

; : : : ; f

n

: FT

n

) =

S

i2f1;::: ;ng

A

essorDe
(f

i

: FT

i

)

A

essorDe
(f : stati
 ST ) = ;

A

essorDe
(f : instan
e ST ) = f $get$ f; �:instan
e ST throws ;;

$set$ f; ST :instan
e ST throws ; g

Fig. 20. De�nition of A

essorDe
s

4.3 Soundness of the Translation

In this se
tion our aim is to show that the translation from Jam into Java is a
tually a

\good" translation.

First of all, it is immediate to see that the translation is 
onservative, in the sense that

every Java program is translated into itself.

More importantly, we state that the translation preserves the stati
 semanti
s, in the

sense that a stati
ally 
orre
t Jam program is translated into a stati
ally 
orre
t Java pro-

gram. In order to prove that, we need the stronger property that every valid Jam judgment

is translated into a set of valid Java judgments.

Theorem 1. Let � be a well-formed Jam environment (that is, ` �� is valid), then:

1. for every valid judgment � ` 
�, [[ 
 ℄℄

�

is well-de�ned and [[� ℄℄ ` [[ 
 ℄℄

�

is valid.

2. [[� ℄℄ is a well-formed Java environment (that is, ` [[� ℄℄ � is valid).

The proof 
an be found in [1℄.

5 Con
lusion

In the pre
eding se
tions, we have des
ribed Jam, a smooth extension of Java supporting

mixins, and we have formally de�ned its stati
 semanti
s and a translation into Java. The

latter has been implemented by a Jam to Java translator whi
h makes Jam exe
utable on

every platform implementing a Java Virtual Ma
hine.

In this last se
tion, we brie
y des
ribe the implementation (Se
t.5.1), provide some

detailed 
omparison with related work (Se
t.5.2) and dis
uss some alternative design 
hoi
es

and dire
tions for further investigation (Se
t.5.3).

5.1 Implementation

The translator (
alled jam
) has been implemented in Java.

It performs a 
omplete synta
ti
 analysis and only a partial type-
he
king of Jam input

sour
e �les. This means that every lexi
al or synta
ti
 error in the sour
e 
ode will be

dete
ted by jam
, whereas the most of stati
 errors will be found later on by the Java


ompiler when trying to 
ompile the Java sour
e �les produ
ed by jam
.

For more details see [1℄.



5.2 Related work

At our knowledge, the only existing proposals for extensions of obje
t-oriented languages

with mixins are [9℄ and [14℄.

In [9℄, the authors present an extension of Smalltalk with mixins. The design prin
iples

of this extension are very similar to those we have followed in Jam. Indeed, mixins are seen

as fun
tions from super
lasses into heir 
lasses, instantiation is possible only if the 
andidate

parent 
lass 
ontains all the methods invoked via super in the mixin, mixins do not in
uen
e

the behavior of existing Smalltalk programs, hen
e the extension is fully upward-
ompatible.

The great di�eren
e is that, being Smalltalk an untyped language, most of the problems we

had to fa
e in the design of Jam simply do not exist for Smalltalk; the most remarkable of

these problems is that mixins introdu
e a new kind of referen
e type. As in our approa
h

(see Se
t. 2.3) overriding takes pla
e uniformly both for methods whi
h are invoked via

super and for others. Following our same prin
iple that mixin instantiation should produ
e

a 
orre
t heir 
lass, the 
andidate parent 
lass must not 
ontain instan
e variables with

the same name of some de�ned in the mixin (indeed in Smalltalk hiding parent variables

is forbidden). Moreover, mixins 
an be easily eliminated from a program by automati
ally


reating a 
lass for ea
h mixin invo
ation and dupli
ating the mixins 
ode for it (in other

words, mixins have a pure 
opy semanti
s, 
orresponding to �-rule for fun
tion appli
ation),

while for Jam this is not enough sin
e mixins are types so they 
annot be just eliminated.

In [9℄, a mixin 
an be 
omposed with another mixin (the expe
ted semanti
s is exa
tly

fun
tion 
omposition) and a mixin 
an also be \extra
ted" from an existing 
lass: in this 
ase,

its 
omponents are those de
lared in the 
lass. Both the possibilities seem very useful and

adding them to Jam will be matter of further work, even though a generalization allowing

full mixin 
omposition seems in the Java 
ase not trivial, on both design and implementation

side.

The authors have developed a working extension whi
h has been used for real appli
a-

tions.

In [14℄, the authors des
ribe MixedJava, a theoreti
al language whi
h has a Java-like

syntax where it is only possible to de
lare either mixins or interfa
es, while usual 
lasses are

seen as parti
ular mixins whi
h de�ne all the 
omponents.

In MixedJava, there are two kinds of mixins.

{ Atomi
 mixins, whose de
laration, similar to that of a usual Java 
lass, 
ontains �elds,

methods and an interfa
e whi
h spe
i�es the expe
ted super
lass. This interfa
e plays

the same role of the inherited part of mixins in Jam, with the di�eren
e that it must

be expli
itly de
lared by the programmer, while in Jam the interfa
e is 
reated during

the translation pro
ess.

A basi
 di�eren
e (see Se
t.2.3) is that in mixin instantiation (whi
h in MixedJava is

just a spe
ial 
ase of mixin 
omposition, see below) methods in the heir override methods

in the parent only if they are expli
itly mentioned in the inheritan
e interfa
e, while in


ase of unexpe
ted overriding both the versions are kept.

{ Compound mixins, roughly based on fun
tion 
omposition, as happens for the Smalltalk

extension des
ribed above, but a
tually more involved, for the 
onstraints on method

overriding explained above.

The work presented in [14℄ sensibly di�ers from ours for many reasons.

{ The proposed language is theoreti
al, while Jam is designed to be a working upward-


ompatible extension of Java (1.0).

{ In MixedJava inherited 
omponents 
an be only methods, sin
e they are spe
i�ed via

an interfa
e. The authors motivate this 
hoi
e by the 
onsideration that programming

via interfa
es is 
leaner; in Jam, we have 
hosen as privileged prin
iple that mixins

should be similar as mu
h as possible to usual heir 
lasses.

{ In Jam mixins 
an be only instantiated on 
lasses, and there is no notion of mixin


omposition. As already stated, this is an important possibility of extension of Jam to

be investigated in the future.



{ As mentioned above, MixedJava adopts an ad-ho
 solution in the 
ase of unexpe
ted

overriding, while in Jam methods in the parent 
lass are uniformly overridden by meth-

ods in the heir 
lass. This di�erent poli
y is probably the most important di�eren
e

between the two approa
hes. A disadvantage of our approa
h is that in the 
ase the

parent 
lass in
identally has some method whi
h is in 
on
i
t with one de�ned in the

mixin, it is left to the user the 
hoi
e between either to avoid this instantiation (hen
e

the mixin be
omes useless for this parti
ular 
ase) or to get an heir 
lass with some

overriding whi
h was not planned when designing the mixin. However, the 
on
i
ts res-

olution in [14℄, essentially based on the idea of keeping both the method versions, leads

as a matter of fa
t to ambiguity problems whi
h are typi
al of multiple inheritan
e (a


lass inherits two di�erent de�nitions for the same method), heavily 
ompli
ating both

language semanti
s and a possible implementation (only outlined in [14℄). On the 
on-

trary, our 
hoi
e implies minimal 
hanges w.r.t. Java semanti
s. A future development


ould be the analysis of intermediate solutions.

5.3 Alternative design 
hoi
es and further developments

Referen
es to the parent and the heir names In Se
t. 2.6 we have seen that there are


ases where heir 
lasses 
annot be \abstra
ted" in a mixin de�nition. Introdu
ing 
anoni
al

notation for the parametri
 names of the parent and heir 
lass, say P* and H*, respe
tively,

we 
ould transform the 
lass H shown in Se
t. 2.6 in a mixin M as follows.

mixin M f

inherited stati
 int 
ounter ;

stati
 int 
ounter ;

stati
 void in
rThat() f ++P

�

.
ounter ; g

: : :

int value ;

publi
 boolean equals(Obje
t that) f

if (that instan
eof H

�

) return ((H

�

)that).value == value ;

return false ;

g

g

Obviously, the 
opy prin
iple should in this 
ase be modi�ed, saying that a 
lass H = M

extends P should be equivalent to a 
lass extending P and 
ontaining the de�nitions in M

where all the o

urren
es of the parametri
 names P* and H* have been repla
ed by P and

H, respe
tively. Introdu
ing this possibility would allow a (limited to heir 
lasses) form of

parametri
 polymorphism, in the same dire
tion of the extensions of Java with parametri


types proposed in [18,10℄. However, with this 
hoi
e we would lose one of the two design

prin
iples of Jam, that is, the fa
t that a mixin name 
an be used as a type (indeed in

this 
ase it would be not a type but a type s
hema), hen
e all the mixin instan
es 
an be

uniformly used through the 
ommon interfa
e spe
i�ed by this type. Indeed, it is not 
lear

if it 
ould be possible (and how) to make 
ompatible these two di�erent ways of a
hieving

abstra
tion: on one side to have parametri
 modules (
lass-to-
lass fun
tions) where this

parametri
ity is fully exploited, on the other side to be able to use ea
h module as a type.

The problem is not trivial and deserves further investigation.

Flexible mat
hing Assume that P is a supertype of H and 
onsider the following de
lara-

tions.

mixin M f

inherited void f(H, H) ;

g


lass C1 f

void f(P p, H h) fg

g



In Jam it is not possible to instantiate M on C1 sin
e this 
lass does not provide an

implementation for the method void f(H,H). Indeed, the mat
hing between the inherited

methods and the 
orresponding methods in the parent 
lass is required to be exa
t (same

arguments and return type, and equivalent throws 
lause). An interesting possibility, whi
h


ould be matter of a future extension, 
ould be to introdu
e a 
exible mat
hing, where the

subtyping rule for method types (Fig. 11, metarule (22)) allows 
ontravarian
e on arguments

type and 
ovarian
e on return type. On the 
ontrary, it is interesting to note that the

ex
eption types must be invariant (modulo the equivalen
e =

e

) in order to preserve the

soundness of the type-system.

Allowing this 
exibility, C1 turns out to be a 
orre
t parent 
lass for M. However, this

kind of mat
hing leads to some new problems w.r.t. the exa
t mat
hing 
ase. Let us 
onsider

this other 
lass de
laration.


lass C2 f

void f(P p, H h) fg

void f(H h, P p) fg

g

In this 
ase, assuming that we want to instantiate M on C2, we have to de
ide in some way

whi
h of the two methods de
lared in C2 must be used as implementation of the inherited

method in M. The 
hoi
e 
ould either be driven, in analogy with the overloading resolution in

Java, by the notion of most spe
i�
 appli
able method, or left to the user via a me
hanism

whi
h permits to expli
itly spe
ify in the instantiation the asso
iation of inheritedmethods

with those de�ned in the parent 
lass.

Shared stati
 
omponents In Se
t.2.2, we have seen that ea
h 
lass has its own 
opy of

the stati
 
omponents de
lared in the mixin. As already mentioned there, other two design


hoi
es would be possible: either make mixin instan
es to share a unique 
opy for ea
h

stati
 
omponent (in this way they would be part of the mixin type), or leave to the user, by

means of a keyword shared or analogous me
hanism, the 
hoi
e between the two options.

This last 
hoi
e, whi
h has some appeal, would require the introdu
tion of some 
onstraint,

for instan
e the fa
t that a shared stati
 method 
ould not invoke a stati
 method.
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