
Static single information form for abstract
compilation

Davide Ancona and Giovanni Lagorio

DISI, University of Genova, Italy
{davide,lagorio}@disi.unige.it

Abstract. In previous work we have shown that more precise type anal-
ysis can be achieved by exploiting union types and static single assign-
ment (SSA) intermediate representation (IR) of code.
In this paper we exploit static single information (SSI), an extension
of SSA proposed in literature and adopted by some compilers, to allow
assignments of more precise types to variables in conditional branches.
In particular, SSI can be exploited rather easily and effectively to assign
more precise static types in presence of explicit runtime typechecking,
a necessity that occurs rather often in statically typed object-oriented
languages, and even more than often in dynamically typed ones.
We show how the use of SSI form can be smoothly integrated with ab-
stract compilation, our approach to static type analysis. In particular,
we define abstract compilation based on union and nominal types for a
simple dynamically typed Java-like language in SSI form with a runtime
typechecking operator, to show how precise the proposed analysis can
be.

1 Introduction

In previous work [6] we have shown that more precise type analysis can be
achieved by exploiting union types and static single assignment (SSA) [7] in-
termediate representation (IR) of code. Most modern compilers (among others,
GNU’s GCC [13], the SUIF compiler system [12], and JIT compilers including
Java HotSpot [11], and Java Jikes RVM [9]) implement efficient algorithms for
translating code in SSA IR [8], therefore focusing on analysis of SSA IR not
only allows more precise results, but also favors reuse of compiler technology,
and better integration with existing compilers. In particular, we have studied
how abstract compilation [5, 4, 6] can naturally take advantage of SSA IR when
union types are considered. Abstract compilation aims to reconcile static type
analysis and symbolic execution: one can check whether the execution of a cer-
tain expression e is type safe, when variable contents range over possibly infinite
sets of values (represented by types), by solving a goal, obtained by abstract
compilation of e, w.r.t. the coinductive1 semantics of the constraint logic pro-
gram automatically generated from the source program in which the expression
is executed.
1 Coinduction allows proper treatment of recursive types and methods [5].

Abstract compilation fosters plug-and-play static type analysis since one can
provide several compilation schemes for the same language, each corresponding
to a different kind of analysis, without changing the inference engine that im-
plements the coinductive semantics of constraint logic programs [15, 14, 4]. For
instance, in previous work we have defined compilation schemes for Java-like lan-
guages based on union and structural object types, to support parametric and
data polymorphism, (that is, polymorphic methods and fields) that allow quite
precise type analysis, and a smooth integration with the nominal type annota-
tions contained in the programs [5]; other proposed compilation schemes aim to
detect uncaught exceptions for Java-like languages [4], or to integrate SSA IR in
presence of imperative features [6].

In this paper we exploit static single information (SSI), an extension of SSA
proposed in literature [2, 17], to allow assignments of more precise types to vari-
ables in conditional branches. SSI has been already adopted by compilers as
LLVM [18], PyPy [3], and SUIF [16], and proved to be more effective than SSA
for performing data flow analysis, program slicing, and interprocedural analysis.

In particular, we show how SSI can be exploited rather easily and effectively
by abstract compilation to assign more precise static types in presence of explicit
runtime typechecking, a necessity that occurs rather often in statically typed
object-oriented languages [19], and even more than often in dynamically typed
ones.

To this aim, we formally define the operational semantics of a simple dynami-
cally typed Java-like language in SSI form equipped with a runtime typechecking
operator, and then provide an abstract compilation scheme based on union and
nominal types supporting more precise type analysis of branches guarded by
explicit runtime typechecks.

The paper is structured as follows: Section 2 introduces SSA and SSI IRs
and motivates their usefulness for type analysis; Section 3 formally defines the
SSI IR of a dynamically typed Java-like language equipped with an operator
instanceof for runtime typechecking. Section 4 presents a compilation scheme for
the defined IR, based on nominal and union types, and Section 5 concludes with
some considerations on future work. Abstract compilation of the code examples
in Section 2 together with the results of the resolution of some goals can be
found in an extended version of this paper.2

2 Type analysis with SSA and SSI

In this section SSA and SSI IRs are introduced and their usefulness for type
analysis is motivated.

Type analysis with static single assignment form

Method read() declared below, in a hypothetical dynamically typed Java-like
language, creates and returns a shape which is read through method nextLine()

2 Available at ftp://ftp.disi.unige.it/person/AnconaD/foveoos11long.pdf

2

that reads the next available string from some input source. The partially omit-
ted methods readCircle() and readSquare() read the needed data from the in-
put, create, and return a new corresponding instance of Circle or Square.

c lass ShapeReader {

...

nextLine () {...}

readCircle () { ... return new Circle (...); }

readSquare () { ... return new Square (...); }

read() {

st = this .nextLine ();
i f (st.equals("circle")) {

sh = this .readCircle ();
this .print("A circle with radius ");

this .print(sh.getRadius ());
}

else i f (st.equals("square")) {

sh = this .readSquare ();
this .print("A square with side ");

this .print(sh.getSide ());
}

else throw new IOException ();

this .print("Area = ");

this .print(sh.area ());
}

}

Although method read() is type safe, no type can be inferred for st to cor-
rectly typecheck the method; indeed, when method area() is invoked, variable
st may hold an instance of Circle or Square, therefore the most precise type
that can be correctly assigned to st is Circle ∨ Square. However, if st has type
Circle ∨ Square, then both sh.getRadius() and sh.getSide() do not typecheck.

There are two different kinds of approaches to solve the problem shown above.
Either one defines a rather sophisticated flow-sensitive type system able to
associate different types with different occurrences of the same variable, or one
can typecheck the SSA IR in which the method is compiled.

In an SSA IR the value of each variable is determined by exactly one assign-
ment statement [7]. To obtain this property, a flow graph is built, and a suitable
renaming of variables is performed to keep track of the possibly different versions
of the same variable; following Singer’s terminology [17] we call these versions
virtual registers. Conventionally, this is achieved by using a different subscript
for each virtual register corresponding to the same variable. For instance, in the
SSA IR of method read() (Figure 1) there are three virtual registers (sh0, sh1

and sh2) for the variable sh.
To transform a program into SSA form, pseudo-functions, conventionally

called ϕ-functions, have to be inserted to correctly deal with merge points. For
instance, in block 5 the value of sh can be that of either sh0 or sh1, therefore a
new virtual register sh2 has to be introduced to preserve the SSA property. The

3

st
0
=this.nextLine()

st
0
.equals("circle")

sh
2

block 1

 sh
0
=this.readCircle()

 this.print ("...")
 this.print(sh

0
.getRadius())

 st
0
.equals("square")

 sh
1
=this.readSquare()

 this.print ("...")
 this.print(sh

1
.getSide())

 sh
2
=φ(sh

0
,sh

1
)

 this.print("Area = ")
 this.print(sh

2
.area())

true false

true false

block 2 block 3

block 4

block 5

throw new IOException()

block 6

Fig. 1. Control flow graph corresponding to the body of method read

expression ϕ(sh0,sh1) keeps track of the fact that the value of sh2 is determined
either by sh0 or sh1.

At the level of types ϕ-functions naturally correspond to the union type
constructor (Figure 2): arrows correspond to data flow and, as usual, to ensure
soundness the type at the origin of an arrow must be a subtype of the type the
arrow points to. In the figure, τ0, τ1 ≤ τ0 ∨ τ1 ≤ τ2.

The transformation of a source program into its SSA IR is standard [7], and
there exists a quite efficient algorithm to perform it [8], therefore it is more
convenient to define abstract compilation for programs in SSA IR. While flow
graphs are used for generating SSA IR, here we adopt a textual language more
suitable for defining an abstract compilation scheme. For instance, the SSA IR
of method read() is the following:

read() {

b1:{st0 = this .nextLine ();
i f (st0.equals("circle"))

jump b2;

else
jump b3;}

b2:{sh0= this .readCircle ();

4

τ
0

φ(τ
0
,τ

1
) = τ

0
\/τ

1

τ
2

τ
1

τ
0

τ
1

τ
2

if (sh
0
 instanceof τ)

σ(τ
0
) = (τ

0
/\τ, τ

0
\τ)

Fig. 2. Type theoretic interpretation of ϕ-functions and σ-functions

this .print("A circle with radius ");

this .print(sh0.getRadius ());

jump b5;}

b3:{ i f (st0.equals("square"))

jump b4;

else
jump b6;}

b4:{sh1= this .readSquare ();
this .print("A square with side ");

this .print(sh1.getSide ());

jump b5;}

b5:{sh2=ϕ(sh0,sh1);

this .print("Area = ");

this .print(sh2.area ());

jump out;}

b6:{throw new IOException ();}

out:{return sh2;}

}

The body of a method in IR is a sequence of uniquely labeled blocks; each block
ends with either a conditional or unconditional jump, a return or a throw3. For
simplicity, we require that only the last block4 contains the return statement.

Type analysis with static single information form

Let us consider method largerThan(sh) of class Square, where instanceof is ex-
ploited to make the method more efficient in case the parameter sh contains an
instance of (a subclass) of Square.

c lass Square {

...

largerThan(sh) {

i f (sh instanceof Square)

3 In the formal treatment that follows we omit exceptions for simplicity.
4 This can be always obtained by introducing new virtual registers and inserting a
ϕ-function in case of multiple returned values.

5

return this .side > sh.side;

else
return this .area() > sh.area ();

}

}

The method is transformed in the following SSA IR:

largerThan(sh0) {

b1:{ i f (sh0 instanceof Square)

jump b2;

else
jump b3;}

b2:{r0= this .side > sh0.side;

jump out;}

b3:{r1= this .area() > sh0.area ();

jump out;}

out:{r2=ϕ(r0,r1);

return r2;}

}

Since variable sh is not updated, both blocks b2 and b3 refer to the same virtual
register sh0. As a consequence, the only possible type that can be correctly
associated with sh0 is Square, thus making the method of little use. However,
this problem can be encompassed if one considers the SSI IR of the method [2,
17].

largerThan(sh0) {

b1:{ i f (sh0 instanceof Square) with (sh1,sh2) = σ(sh0)

(this1, this2) = σ(this0)

jump b2;

else
jump b3;}

b2:{r0= this1.side > sh1.side;

jump out;}

b3:{r1= this2.area() > sh2.area ();

jump out;}

out:{r2=ϕ(r0,r1);

return r2;}

}

SSI is an extension of SSA enforcing the additional constraint that all variables
must have different virtual registers in the branches of conditional expressions;
such a property is obtained by a suitable renaming and by the insertion of
σ-functions at split points. As a consequence, suitable virtual registers and σ-
functions have to be introduced also for the read-only pseudo-variable this.

The notion of σ-function is the dual of ϕ-function (Figure 2); the type the-
oretic interpretation of σ depends on the specific kind of conditional context. If
such a context is of the form (sh0 instanceof Square) as in the example, then
σ splits the type τ0 of sh0 in the type τ0∧Square, assigned to sh1, and in the

6

type τ0\Square, assigned to sh2, where the intersection and the complement op-
erators have to be properly defined (see Section 4). For instance, if sh0 has type
Square∨Circle, then sh1 has type (Square∨Circle)∧Square=Square, and sh2 has
type (Square∨Circle)\Square=Circle, therefore Square∨Circle turns out to be
a valid type for the parameter sh0 of the method largerThan. For what concerns
this, in this particular example no real split is performed: if we assume that
this0 has type Square, then Square is split in (Square,Square), and both this1

and this2 have type Square.

3 Language definition

In this section we formally define an SSI IR for a simple dynamically typed
Java-like language equipped with an instanceof operator for performing runtime
typechecking.

prog ::= cd
n

e

cd ::= class c1 extends c2 { f
n

md
k } (c1 6= Object ,Bool , c2 6= Bool)

md ::= m(xn) {bn}
b ::= l :e
r ::= xi

e ::= r | false | true | new c(en) | e.f | e0.m(en) | e1; e2 | r = e
| e1.f = e2 | jump l | r = ϕ(rn) | return r

| if (r instanceof c) with (r ′, r ′′) = σ(r ′′′)
n
jump l1 else jump l2

Syntactic assumptions: inheritance is not cyclic, method bodies are in correct SSI
form and are terminated with a unique return statement, method and class names are
disjoint, no name conflicts in class, field, method and parameter declarations, new c(en)
allowed only if c 6= Bool , and declared parameters cannot be this.

Fig. 3. SSI intermediate language

A program is a collection of class declarations followed by a main expression
e with no free variables. The notation cd

n
is a shortcut for cd1, . . . , cdn. A class

declares its direct superclass (only single inheritance is supported), its fields, and
its methods. Two predefined classes are available: Object , the usual root class
of the inheritance tree, and Bool , the class of the two literals false and true;
such a class cannot be extended, and does not provide any constructor.

Every class, except Bool , comes equipped with the implicit constructor with
parameters corresponding to all fields, in the same order as they are inherited
and declared, but for simplicity no user declared constructors can be added.

Method bodies are sequences of uniquely labeled blocks that contain se-
quences of expressions. We assume that all blocks contain exactly one jump,
necessarily placed at the end of the block. Three different kinds of jumps are
considered: local unconditional and conditional jumps, and returns from meth-
ods. Method bodies are implicitly assumed to be in correct SSI IR: each virtual

7

register is determined by exactly one assignment statement, and all variables
must have different virtual registers in the branches of conditional expressions.
Finally, all method bodies contain exactly one return expression, which is always
placed at the end of the body.

The receiver object can be referred inside method bodies with the special
implicit parameter this; besides usual statements and expressions, we consider
ϕ and σ pseudo-function assignments.

In r = ϕ(rn), n ≥ 2 and all virtual registers rn occurring in ϕ are assumed
to refer to the same variable, denoted by var(r1) = . . . = var(rn).

All σ-functions are used in association with conditional jumps; each virtual
register r occurring in either branches has to be split into two new distinct
versions used in the blocks labeled by l1, and l2, respectively. The conditions
we consider are only of the form (r instanceof c) since our aim is studying
how type analysis can be enhanced by SSI in the presence of explicit runtime
typechecks; however, more elaborated forms of conditions can be expressed in
terms of the more primitive form (r instanceof c) by simple transformations
performed by the compiler front-end. For instance, the statement

i f (x.m1() instanceof A && y.m2() instanceof B) e1 else e2

can be transformed in the equivalent SSI IR

b0 : {z0=xk.m1();

i f (z0 instanceof A) with ... jump b1 else jump b3;}

b1 : {w0=yn.m2();

i f (w0 instanceof B) with ... jump b2 else jump b3;}

b2 : {e′
1}

b3 : {e′
2}

where z0 and w0 are fresh, e′1 and e′2 are the SSI IRs of e1 and e2, respectively,
and σ-functions assignments (that depend on e1 and e2) have been omitted. De-
pending on the types and abstract compilation scheme under consideration, there
could be other kinds of conditions for which SSI would improve type analysis;
for instance, if an abstract compilation scheme allows analysis of null references,
such an analysis could be enhanced by SSI in the case of conditional expressions
with conditions of the form (x == null). On the other hand, for conditions of
the form (x1 < x2) SSI does not help refine type analysis as long as the abstract
compilation scheme maps numeric values to the standard primitive types int,
float, and double; in this case the type theoretic interpretation of σ-functions
is the loosest one: σ(τ)=(τ,τ) (hence, no split is actually performed).

Semantics: To define the small step semantics of the language we first need to
specify values v (see Figure 4), which are either the literals false and true (recall
that they are predefined instances of the Bool class) or identities o of dynamically
created objects. Furthermore, we add frame expressions ec{e}, where ec is an
execution context; frame expressions are runtime expressions, that is, expressions
that represent intermediate evaluation steps and that are needed for defining
the small step semantics of method calls. An execution context ec is a pair

8

consisting of a stack frame fr and a code address a. A frame expression 〈fr , a〉{e}
corresponds to the execution of a call to a method m declared in class c, where e
is the residual expression (yet to be evaluated) of the currently executed block,
fr is the stack frame of the method call, a = µ.l is the address of the current
block, where µ = c.m is the fully qualified name of the method, and l is the
label of the current block.

Stack frames fr map variables and virtual registers to their corresponding
values. These frames are represented by a pair of lists of associations, x 7→ v
and r 7→ v, where variables and virtual registers are all distinct. Keeping track
of the values of both virtual registers and their associated variable allows for a
simple semantics, as discussed below.

Heaps H map object identifiers o to objects, that is, pairs consisting of a
class name c and the set of field names f with their corresponding value v.

Figure 5 shows the execution rules. The main evaluation judgment has shape
H ` e → H′, e ′, meaning that e rewrites to e ′ in H, yielding the new heap
H′. Furthermore, rule (ctx-closure) uses the auxiliary judgment H, ec ` e →
H′, ec′, e ′, meaning that redex e rewrites to e ′ in H and ec, yielding the new
execution context ec′ and heap H′. Both judgments, and all auxiliary functions
should be parametrized by the whole executing program, cd

n
, which is kept

implicit. The execution of the main expression of a program starts from an
empty heap εH and an empty stack frame ε, annotated by the pair 〈⊥,⊥〉, since
the main expression is not actually contained in any block/method.

The main evaluation judgment is defined by the three rules (meth-call) (a
new frame is pushed on the stack), (ctx-closure) (evaluation continues in the
currently active frame), and (return) (the current active frame is popped from
the stack).

In rule (meth-call), the object referenced by o is retrieved in order to find
its class, c. Then, the auxiliary functions firstBlock and params return the first
block of the method and its parameter names, respectively. The result of the
evaluation is a frame expression, where the new stack frame maps parameters
to their corresponding passed arguments, and this to the reference o, and the
code address is the fully qualified name of the invoked method, c.m, plus the
label of its first block, l . Finally, the resulting expression is the context applied
to the body of the first block.

Rule (ctx-closure) performs a single computation step in the currently active
frame (corresponding to the most nested frame expression). The execution con-
text is extracted by currentEC ;5 then, if the redex e rewrites to e ′ yielding H′
and ec′ (see the other rules defining the auxiliary evaluation judgment), then
the expression C[e] rewrites to C′[e ′], yielding the new heap H′; context C′[]
is obtained from C[] by updating the frame expression corresponding to the
currently active frame with the new execution context ec′.

In rule (return) the currently active frame is removed, and the resulting ex-
pression is the context applied to the value associated with the returned virtual
register r in the frame.

5 The straightforward definitions of currentEC and updateEC have been omitted.

9

Rule (var) models the access to a virtual register (this is considered a special
read-only local variable), by simply extracting the corresponding value from the
stack frame fr ; this works because of the way the assignment is handled in
Rule (var-asn).

Variable and field assignments evaluate to their right values; rule (var-asn)
models virtual register assignments, and has the side effect of updating, in the
current stack frame fr , the values of both the virtual register r and its associ-
ated variable x . This implements a cache write-through strategy, where virtual
registers cache values that are to be stored in the memory location correspond-
ing to the variable to which virtual registers refer to; in this way evaluation of
ϕ-function is simpler (see comments below).

Rule (fld-asn) models field assignments; in that case, the object referenced
by o is retrieved from the heap, and its value updated.

Rule (seq) models the fact that a value is discarded when followed by another.
Rule (phi) models the assignment of a phi-function, which accesses to a (set

rn of different versions of the same) local variable x , by assigning the value
contained in x (this is correct because of the write-through semantics of the
Rule (var-asn)) to the virtual register r ′.

Rule (new) models object creation; a new object, identified by a fresh refer-
ence o, is added to the heap H. The fields f

n
of the newly created object are

initialized by the value passed to the constructor.
Rule (fld-acc) models field accesses; its evaluation is quite trivial: the object is

retrieved from the heap, and the resulting expression is the value of the selected
field.

Rules (jump) and (if) model unconditional and conditional jumps, respec-
tively. These are the only rules that modify the label-part of the execution con-
text. The evaluation of a jump, which, by construction, is known to be the last
expression of a sequence, corresponds to replacing the jump expression itself
with the expression e contained in the block labeled l ′ and updating the stack
frame annotation accordingly.

The conditional jump (rule (if)) has to both choose which branch to execute
and which virtual registers have to be updated, depending on whether the value
of the register r (contained in fr(r)) is a reference to an object of a subclass of
c. If the referenced object is indeed an instance of c, then the target label is l1
and the virtual registers r ′

n
are updated; otherwise, the target label is l2 and

the virtual registers r ′′
n

are updated.

4 Abstract compilation

In this section we define an abstract compilation scheme for programs in the SSI
IR presented in Section 3. Programs are translated into a Horn formula Hf (that
is, a logic program) and a goal B ; type analysis amounts to resolve B w.r.t. the
coinductive semantics (that is the greatest Herbrand model) of Hf [5].

In previous work we have defined compilation schemes based on union and
structural object types, to support parametric and data polymorphism, (that

10

v ::= false | true | o (values)
e ::= ec{e} | . . . (runtime expressions; that is, frame expressions plus

source expressions as defined in Figure 3)
ec ::= 〈fr , a〉 (execution context)

fr ::= x 7→ vjr 7→ vk (stack frames)
a ::= µ.l (block addresses, where µ are full method names c.m)

H ::= o 7→ 〈c, f 7→ v
j〉

k

(heaps)

C[·] ::= [·] | ec{C[·]} | new c(vn, C[·], ej) | C[·].f | C[·].m(ek) | v0.m(vj , C[·], ek)
| C[·]; e | v; C[·] | x = C[·] | C[·].f = e | v.f = C[·]
| if (C[·]) with (x ′, x ′′) = σ(x ′′′)

n
jump l1 else jump l2

Fig. 4. Syntactic definitions instrumental to the operational semantics

(meth-call)

H(o) = 〈c, 〉
firstBlock(c.m) = l : e
params(c.m) = rn

fr = r 7→ vn, this0 7→ o

H ` C[o.m(vn)]
→ H, C[〈fr , c.m.l〉{e}]

(ctx-closure)

currentEC (C[·]) = ec
H, ec ` e → H′, ec′, e ′

C′[·] = updateEC (C[·], ec′)

H ` C[e]→ H′, C′[e ′]

(return)
H ` C[〈fr , a〉{return r}]

→ H, C[fr(r)]

(fld-acc)
H(o) = 〈c, f 7→ v

n〉 f = fj
H, ec ` o.f → H, ec, vj

(var)H, 〈fr , a〉 ` r → H, 〈fr , a〉, fr(r)
(new)

o fresh in H
fieldNames(c) = f

n

H, ec ` new c(vn)

→ H[〈c, f 7→ v
n〉/o], ec, o

(seq)H, ec ` v1; v2 → H, ec, v2
(var-asn)

x = var(r) x 6= this

H, 〈fr , a〉 ` r = v
→ H, 〈fr [v/r , v/x], a〉, v

(fld-asn)

H(o) = 〈c, f 7→ v
n〉

f = fj if i = j then v′
i = v

else v′
i = vi

H, ec ` o.f = v

→ H[〈c, f 7→ v′n〉/o], ec, v

(jump)
block(µ.l ′) = l ′ : e

H, 〈fr , µ.l〉 ` jump l ′

→ H, 〈fr , µ.l ′〉, e

(phi)
v = fr(var(r1))

H, 〈fr , a〉 ` r ′ = ϕ(rn)→ H, 〈fr [v/r ′], a〉, v

(if)

H(fr(r)) = 〈c′, 〉
if c′ ≤ c then l ′ = l1, fr ′ = fr [fr(r ′′′)/r ′n]

else l ′ = l2, fr ′ = fr [fr(r ′′′)/r ′′n]
block(µ.l ′) = l ′ : e

H, 〈fr , µ.l〉 ` if (r instanceof c) with (r ′, r ′′) = σ(r ′′′)
n

jump l1 else jump l2
→ H, 〈fr ′, µ.l ′〉, e

Fig. 5. Small-step semantics

11

is, polymorphic methods and fields) that allow quite precise type analysis, but
pose problems in terms of termination of the resolved goals. In this paper we
present a simpler compilation scheme based on union and nominal object types,
that allows a less precise type analysis on the one hand (but still more precise
than that obtained with the standard type systems of mainstream languages as
Java and C#) but, on the other hand, avoids non termination problems with
goal resolution, since the space of all possible valid types for a given program is
always bounded. Therefore, while coinductive constraint logic programming [4]
(where constraints are expressed in terms of the subtyping relation) is needed
for structured types to ensure termination of the resolution of some goals, here
would only allow more precise and efficient analysis; however, here subtyping is
treated as an ordinary predicate to make the presentation simpler.

Summarizing, here we use nominal rather than structured types for the fol-
lowing reasons: SSI allows more precise type analysis even in the presence of
less expressive types, the presentation is simpler, and, last but not least, we take
advantage of the plug-and-play facility offered by the abstract compilation ap-
proach by providing yet another compilation scheme; in practice, more advanced
compilations schemes could be adopted, including structural [5, 6] and exception
types [4] (see further comments in the conclusion).

The compilation of programs, class, and method declarations is defined in
Figure 6. We follow the usual syntactic conventions for logic programs: logical
variable names begin with upper case, whereas predicate and functor names
begin with lower case letters. Underscore denotes anonymous logical variables
that occur only once in a clause; [] and [e|l] respectively represent the empty
list, and the list where e is the first element, and l is the rest of the list.

(prog)
∀ i = 1..n cd i Hf i e (t |B)

cd
n

e (Hf d ∪Hf
n|B)

(class)
∀ i = 1..k md i in c1 Hf i inhFields(c1) = f ′h

class c1 extends c2 { f
n

md
k } Hf

k∪8>><>>:
class(c1)← true.
extends(c1 , c2)← true.

dec field(c1 , f)
n
← true.

new(CE , c1 , [T ′h ,T
n
])← new(CE , c2 , [T ′h]),field upd(CE , c1 , f ,T)

n
.

9>>=>>;
(meth)

b
n
 (t |B)

m(rn){bn} in c
dec meth(c,m)← true.
has meth(CE , c,m, [This0 , r

n], t)← subclass(This0 , c),B .

ff

(body)
∀ i = 1..n bi Bi

b
n

l :return r (r |Bn
)

Fig. 6. Compilation of programs, class, and method declarations and bodies.

12

Each rule defines a different compilation judgment. The judgment cd
n

e
(Hf d ∪Hf

n|B) means that the program cd
n

e is compiled into the pair (Hf d ∪
Hf

n|B), where Hf d ∪Hf
n

is a Horn formula (that is, a set of Horn clauses), and
B is a goal6. Static analysis of the program corresponds to resolving the goal B
w.r.t. the coinductive semantics of Hf d∪Hf

n
. The Horn formula Hf d contains all

generated clauses that are invariant w.r.t. the program (see Figure 8), whereas
each Hf i is obtained by compiling the class declaration cd i (see below); the goal
B is obtained from the compilation of the main expression e (see below); the
term t corresponding to the returned type of e is simply ignored here, but it is
necessary for compiling expressions (see comments on Figure 7).

The compilation of a class declaration class c1 extends c2 { f
n

md
k } is

a set of clauses, including each clause Hf i obtained by compiling the method
md i (see below), clauses asserting that class c1 declares field fi, for all i = 1..n,
and three specific clauses for predicates class, extends, and new . The clause for
new deserves some explanations: the atom new(ce, c, [tn]) succeeds iff the invo-
cation of the implicit constructor of c with n arguments of type tn is type safe
in the global class type environment ce. The class environment ce is required
for compiling field access and update expressions (see Figure 7): it is a finite
map (simply represented by a list) associating class names with field records,
which are finite maps (again simply represented by lists) associating all fields
of a class with their corresponding types. Class environments are required be-
cause of nominal types: abstract compilation with structural types allows data
polymorphism on a per-object basis, whereas here we obtain only a very limited
form of data polymorphism on a per-class basis. Type safety of object creation
is checked by ensuring that object creation for the direct superclass c2 is correct,
where only the first h arguments corresponding to the inherited fields (returned
by the auxiliary function inhFields whose straightforward definition has been
omitted) are passed; then, predicate field upd defined in Figure 8 checks that
all remaining n arguments, corresponding to the new fields declared in c1, have
types that are compatible with those specified in the class environment. The
clause dealing with the base case for the root class Object is defined in Figure 8.

The judgment m(rn){bn} in c Hf means that the method declaration
m(rn){bn} contained in class c compiles to Horn clauses Hf . Just two clauses
are generated per method declaration: the first simply states that method m is
declared in class c (and is needed to deal with inherited methods, see Figure 8),
whereas the second is obtained by compiling the body of the method. The atom
has meth(ce, c,m, [t0, t

n], t) succeeds iff in class environment ce method m of
class c can be safely invoked on target object of type t0, with n arguments of
type tn and returned value of type t . The predicate subclass (defined in Figure 8)
ensures that the method can be invoked only on objects that are instances of c
or of one of its subclasses. For simplicity we assume that all names (including

6 For simplicity we use the same meta-variable B to denote conjunctions of atoms (that
is, clause bodies), and goals, even though more formally goals are special clauses of
the form false ← B .

13

this) are translated to themselves, even though, in practice appropriate injective
renaming should be applied [5].

The compilation of a method body b
n

l :return r consists of the type of the
returned virtual register r , and the conjunction of all the atoms generated by
the compilation of blocks b

n
.

Figure 7 defines abstract compilation for blocks, and expressions.

(block)
e (t |B)

l :e B
(seq)

e1 (t1 |B1) e2 (t2 |B2)

e1; e2 (t2 |B1,B2)

(c-jmp)

if var(r ′′′
i) = var(r)

then t ′
i = T, t ′′

i = F
else t ′

i = r ′′′
i , t ′′

i = r ′′′
i T, F fresh

if (r instanceof c) with (r ′, r ′′) = σ(r ′′′)
n
jump l1 else jump l2 in

(void | inter(r , c, T), diff (r , c, F), var upd(r ′, t ′), var upd(r ′′, t ′′)
n
)

(var-upd)
e (t |B)

r = e (t |B , var upd(r , t))
(jmp)

jump l (void | true)

(field-upd)
e1 (t1 |B1) e2 (t2 |B2)

e1.f = e2 (t2 |B1,B2,field upd(CE , t1, f , t2))

(phi)
r = ϕ(rn) (∨rn | var upd(r ,∨rn))

(new)
∀ i = 1..n ei (ti |Bi)

new c(en) (c |Bn
,new(CE , c, [t

n
]))

(field-acc)
e (t |B) R fresh

e.f (R |B ,field(CE , t , f , R))

(invk)
∀ i = 0..n ei (ti |Bi) R fresh

e0.m(en) (R |B0,B
n
, invoke(CE , t0,m, [t

n
], R))

(var)
r (r | true)

(bool)
v ∈ {true, false}
v (bool | true)

Fig. 7. Compilation of blocks and expressions

Compiling a block l :e returns the conjunction of atoms obtained by compiling
e; the type t of e is discarded.

The compilation of e1; e2 returns the type of e2 and the conjunction of atoms
generated from the compilation of e1 and e2.

The compilation of an unconditional jump generates the type void and the
empty conjunction of atoms true. A conditional jump has type void as well, but
a non empty sequence of predicates is generated to deal with the splitting per-
formed by σ-functions; predicates inter and diff (defined in Figure 9) correspond
to intersection T and difference F between the type of r and c, respectively, and

14

predicate var upd (defined in Figure 8) ensures that the type of virtual registers
r ′i and r ′′i are compatible with the pairs of types returned by the σ-functions. In
case r ′′′i refers to the same variable of r the types of such a pair are the com-
puted intersection T and difference F , respectively, otherwise the pair (r ′′′i , r

′′′
i)

is returned (hence, no split is actually performed).
Compilation of assignments to virtual registers and fields yields the conjunc-

tion of the atoms generated from the corresponding sub-expressions, together
with the atoms that ensure that the assignment is type compatible (with predi-
cates var upd and field upd defined in Figure 8). The returned type is the type
of the right-hand side expression.

Compilation of ϕ-function assignments to virtual registers is just an instan-
tiation of rule (var-upd) where the type of the expression is the union of the
types of the virtual registers passed as arguments to ϕ.

Compilation rules for object creation, field selection, and method invocation
follow the same pattern: the type of the expression is a fresh logical variable
(except for object creation) corresponding to the type returned by the specific
predicate (new , field , and invoke defined in Figure 8). The generated atoms are
those obtained from the compilation of the sub-expressions, together with the
atom specific of the expression.

Rules (var) and (bool) are straightforward.
Figure 8 and Figure 9 define the set Hf d used in compilation rule (prog)

corresponding to all generated clauses that are invariant w.r.t. the compiled
program.

Clauses in Figure 8 deserve some comments for what concerns the subtyping
relation (predicate subtype); as expected, classes c1 and c2 are both subtypes of
c1 ∨ c2, but no subclass of c1 or c2 is a subtype of c1 ∨ c2, because subclassing
is not subtyping, since no rules are imposed on method overriding. Consider for
instance the following source code snippet:

c lass Square {

...

equals(s){return this .side==s.side;}
...

}

c lass ColoredSquare extends Square {

...

equals(cs){return this .side==cs.side&& this .color==cs.color;}
...

}

According to our compilation scheme, the expression s1.equals(s2) has type
Bool if s1 and s2 have type Square and Square∨ColoredSquare, respectively,
but the same expression is not well-typed if s1 has type ColoredSquare (hence,
ColoredSquare6≤Square), since s2 may contain an instance of Square for which
field color is not defined. Subtyping is required for defining the predicates
var upd and field upd for virtual register and field updates: the type of the
source must be a subtype of the type of the destination.

15

class(object)← true.
class(bool)← true.
extends(bool , object)← true.
subclass(X ,X)← class(X).
subclass(X ,Y)← extends(X ,Z), subclass(Z ,Y).
subtype(T ,T)← true.
subtype(T1 ∨ T2 ,T)← subtype(T1 ,T), subtype(T2 ,T).
subtype(T ,T1 ∨ T2)← subclass(T ,T1).
subtype(T ,T1 ∨ T2)← subclass(T ,T2).
field(CE ,C ,F ,T)← has field(C ,F), class fields(CE ,C ,R),field type(R,F ,T).
field(CE ,T1 ∨ T2 ,F ,FT1 ∨ FT2)← field(CE , T1, F, FT1),

field(CE , T2, F, FT2).
class fields([C : R|CE],C ,R)← no def (C ,CE).
class fields([C1 : |CE],C2 ,R)← class fields(CE ,C2 ,R),C1 6= C2 .
field type([F :T |R],F ,T)← no def (F ,R).
field type([F1 : |R],F2 ,T)← field type(R,F2 ,T),F1 6= F2 .
no def (, [])← true.
no def (K1 , [K2 : |Tl])← no def (K1 ,Tl),K1 6= K2 .
invoke(CE ,C ,M ,A,RT)← has meth(CE ,C ,M , [C |A],RT).
invoke(CE ,T1 ∨ T2 ,M ,A,RT1 ∨ RT2)← invoke(CE ,T1 ,M ,A,RT1),

invoke(CE ,T2 ,M ,A,RT2).
new(, object , [])← true.
has field(C ,F)← dec field(C ,F).
has field(C ,F)← extends(C ,P), has field(P ,F),¬dec field(C ,F).
has meth(CE ,C ,M ,A,R)← extends(C,P), has meth(CE , P,M,A,R),

¬dec meth(C,M).
var upd(T1 ,T2)← subtype(T2 ,T1).
field upd(CE ,C ,F ,T2)← field(CE ,C ,F ,T1), subtype(T2 ,T1).

Fig. 8. Clauses defining the predicates used by the abstract compilation

Predicate field looks up the type of a field in the global class environment, and
is defined in terms of the auxiliary predicates has field , class fields, field type,
and no def . In particular, predicate has field checks that a class has actu-
ally a certain field, either declared or inherited. The definitions of class fields,
field type, and no def are straightforward (no def ensures that a map does not
contain multiple entries for a key), whereas the clause for has field dealing with
inherited fields is similar to the corresponding one for invoke (see below).

If the target object has a class type c, then the correctness of method invo-
cation is checked with predicate has meth applied to class c and to the same list
of arguments where, however, the type c of this is added at the beginning. If the
target object has a union type, predicate invoke checks that method invocation
is correct for both types of the union, and then merges the types of the results
into a single union type.

Finally, the clause for has meth deals with the inherited methods: if class c
does not declare method m, then has meth must hold on the direct superclass
of c.

16

inter(C1 ,C2 ,C1)← subclass(C1 ,C2).
inter(T1 ∨ T2 ,C , IT1 ∨ IT2)← inter(T1 ,C , IT1), inter(T2 ,C , IT2).
inter(T1 ∨ T2 ,C , IT1)← inter(T1 ,C , IT1),¬inter(T2 ,C ,).
inter(T1 ∨ T2 ,C , IT2)← inter(T2 ,C , IT2),¬inter(T1 ,C ,).
diff (C1 ,C2 ,C1)← class(C1),¬subclass(C1 ,C2).
diff (T1 ∨ T2 ,C , IT1 ∨ IT2)← diff (T1 ,C , IT1), diff (T2 ,C , IT2).
diff (T1 ∨ T2 ,C , IT1)← diff (T1 ,C , IT1),¬diff (T2 ,C ,).
diff (T1 ∨ T2 ,C , IT2)← diff (T2 ,C , IT2),¬diff (T1 ,C ,).

Fig. 9. Clauses defining type intersection and difference

Predicates inter and diff define type splitting for σ-functions; the asymmetric
definition for inter is due to the fact that subclass is not subtyping: if r has type
c1, then it means that it contains an object that is an instance of c1, therefore
the condition (r instanceof c2) is false when c2 is a proper subclass of c1. Both
predicates fail if the returned type is empty, therefore a conditional jump is
not considered correct if either branches are dead (that is, not reachable). In
practice, it would be better to avoid this kind of failures by introducing an
explicit empty type constant to be able to detect dead code without any failure.
Such an alternative option does not pose any technical issue, but since it is more
verbose (a new clause dealing with the empty type must be added for most
predicates) has not been considered here, just for space limitations.

5 Conclusion

We have defined the small step operational semantics of a simple Java-like lan-
guage in SSI IR, equipped with an instanceof operator for runtime typechecks,
and shown how precise type analysis of branches guarded by runtime typechecks
can be achieved by abstract compilation in the presence of union and nominal
types, and by suitably defining two predicates inter and diff that provide the
type theoretic interpretation of σ-functions.

Despite the use of nominal types, the analysis is more precise than that
we would get from the type system of a statically typed language as Java and
C#; however, using structural types to trace the type of each field object leads
to a more precise analysis, as already shown in previous work [5, 6]. Here we
have preferred to keep the presentation simpler, but we envisage no problems in
extending the compilation scheme and the definition of the predicates inter and
diff to accommodate structural types.

For what concerns future developments, we are planning to extend the ab-
stract compilation scheme proposed here to support subtyping constraints, to
make the analysis more precise and efficient; we do not expect major problems
in implementating in CHR [10] a constraint solver for subtyping between set of
nominal types [1].

The approach proposed here seems promising also for other kinds of condi-
tions occurring often in object-oriented programs; for instance, SSI can enhance

17

static analysis of null pointer references when branches are guarded by conditions
of the form (r == null).

References

1. A. Aiken. Introduction to set constraint-based program analysis. SCP, 35:79–111,
1999.

2. C. S. Ananian. The static single information form. Technical Report MITLCS-
TR-801, MIT, 1999.

3. D. Ancona, M. Ancona, A Cuni, and N. Matsakis. RPython: a Step Towards
Reconciling Dynamically and Statically Typed OO Languages. In DLS’07, pages
53–64. ACM, 2007.

4. D. Ancona, A. Corradi, G. Lagorio, and F. Damiani. Abstract compilation of
object-oriented languages into coinductive CLP(X): can type inference meet ver-
ification? In FoVeOOS 2010, Revised Selected Papers, volume 6528 of LNCS.
Springer Verlag, 2011.

5. D. Ancona and G. Lagorio. Coinductive type systems for object-oriented languages.
In ECOOP 2009, volume 5653 of LNCS, pages 2–26. Springer Verlag, 2009. Best
paper prize.

6. D. Ancona and G. Lagorio. Idealized coinductive type systems for imperative
object-oriented programs. RAIRO - Theoretical Informatics and Applications,
45(1):3–33, 2011.

7. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Effi-
ciently computing static single assignment form and the control dependence graph.
TOPLAS, 13:451–490, 1991.

8. D. Das and U. Ramakrishna. A practical and fast iterative algorithm for phi-
function computation using DJ graphs. TOPLAS, 27(3):426–440, 2005.

9. B. Alpern et. al. The jalapeño virtual machine. IBM Systems Journal, 39, 2000.
10. T. Frühwirth. Constraint Handling Rules. Cambridge University Press, 2009.
11. R. Griesemer and S. Mitrovic. A compiler for the java hotspottm virtual machine.

In The School of Niklaus Wirth, ”The Art of Simplicity”, pages 133–152, 2000.
12. G. Holloway. The machine-SUIF static single assignment library. Technical report,

Harvard School of Engineering and Applied Sciences, 2001.
13. D. Novillo. Tree SSA - a new optimization infrastructure for GCC. In GCC

Developers’ Summit, pages 181–193, 2003.
14. L. Simon, A. Bansal, A. Mallya, and G. Gupta. Co-logic programming: Extending

logic programming with coinduction. In ICALP 2007, pages 472–483, 2007.
15. L. Simon, A. Mallya, A. Bansal, and G. Gupta. Coinductive logic programming.

In ICLP 2006, pages 330–345, 2006.
16. J. Singer. Static single information form in machine SUIF. Technical report,

University of Cambridge Computer Laboratory, UK, 2004.
17. J. Singer. Static Program Analysis based on Virtual Register Renaming. PhD

thesis, Christs College, 2005.
18. A. Tavares, F.M. Pereira, M. Bigonha, and R. Bigonha. Efficient SSI conversion.

In SBLP 2010, 2010.
19. J. Winther. Guarded type promotion (eliminating redundant casts in Java). In

FTfJP 2011. ACM, 2011.

18

