
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

A Calculus for Dynamic Reconfiguration
with Low Priority Linking 1

Davide Ancona 2 Sonia Fagorzi 3 Elena Zucca 4

DISI
University of Genova

Genova, Italy

Abstract

Building on our previous work, we present a simple module calculus where execution
steps of a module component can be interleaved with reconfiguration steps (that is,
reductions at the module level), and where execution can partly control precedence
between these reconfiguration steps. This is achieved by means of a low priority link
operator which is only performed when a certain component, which has not been
linked yet, is both available and really needed for execution to proceed, otherwise
precedence is given to the outer operators. We illustrate the expressive power of
this mechanism by a number of examples.

We ensure soundness by combining a static type system, which prevents errors in
applying module operators, and a dynamic check which raises a linkage error if the
running program needs a component which cannot be provided by reconfiguration
steps. In particular no linkage errors can be raised if all components are potentially
available.

Key words: Module calculi, dynamic linking.

1 Introduction

Traditional module calculi [6,16,13,2] are based on a static view of module
manipulation, in the sense that open code fragments can be flexibly combined
together, but all module operations can only be performed before starting
execution of a program, that is, evaluation of a module component. On the
contrary, modern programming environments such as those of Java and C#

1 Partially supported by Dynamic Assembly, Reconfiguration and Type-checking - EC
project IST-2001-33477, and APPSEM II - Thematic network IST-2001-38957i.
2 Email: davide@disi.unige.it
3 Email: fagorzi@disi.unige.it
4 Email: zucca@disi.unige.it

c©2005 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

Ancona, Fagorzi and Zucca

support dynamic linking of software fragments, and, more in general, we can
expect that in the future systems will support more and more forms of inter-
leaving of reconfiguration and standard execution steps. Hence, the definition
of clean and powerful module calculi providing foundations for these features
is an important open problem.

In previous work, we have provided an example in this direction propos-
ing CMS ` [4], an extension of CMS (Calculus of Module Systems) [6] where
module operators are executed on demand, that is, only when the executing
program would otherwise get stuck in the current configuration. Hence, con-
figuration steps do not need to be always completely performed, but those
which will be performed are uniquely determined since the beginning, inde-
pendently of the program execution. However, an important issue in practice
is to allow a user’s program to decide dynamically which configuration steps
should be performed and in which order.

In this paper, we extend CMS ` by defining a new calculus CMS `,`- enriched
by a very simple but rather powerful mechanism for driving configuration
steps from the running program. That is, we add a low priority link operator
which is only performed when a certain component (which has not been linked
yet) is both available and really needed for execution to proceed, otherwise
precedence is given to the outer operators. In this way, control over precedence
between configuration steps can be achieved by appropriately using variables
in user’s code. We illustrate the expressive power of this mechanism by a
number of examples. Notably, with this more lazy link operator it is possible
to model existing dynamic linking mechanisms in object-oriented contexts. For
instance, in [12], we defined an encoding of a simple model of Java dynamic
class loading (with multiple loaders) into the calculus. More in general, a
model with different link operators represents an interesting framework which
allows not only to better understand existing dynamic linking mechanisms,
but also to study and compare possible variations of them.

A key issue in systems supporting dynamic reconfiguration is the balance
between the opposite requirements of flexibility and capability of preventing
errors (stuck reductions). In the calculus we propose, we are able to study
this problem in a simple formal setting, where errors are either due to wrong
applications of module operators, or to the fact that execution needs a module
component which is neither currently available, nor can be provided by recon-
figuration steps. Whereas the first kind of errors should, and easily can, be
ruled out by a static type system, for the “missing component” error a purely
static type system has the drawback that many safe reductions, which do not
need some component, are ruled out. An improvement can be obtained by a
type system based on dependencies, as that we developed for CMS ` in [4], at
the cost of an increasing complexity. For this reason, in this paper we prefer
to explore a different solution by combining static type analyis with dynamic
checks, in order to better support systems where configurations evolve in many
ways which are hardly predictable at compile-time. More in detail, execution

2

Ancona, Fagorzi and Zucca

of configurations with some missing components is also allowed, possibly rais-
ing the linkage error err(X : τ, π), in case the component X with type τ is
needed by the running program and none of the available definitions, specified
by the type assignment π, can be associated with X by applying the given
module operators.

2 An informal introduction to the calculus

In this section we illustrate CMS `,`- and its expressive power by means of some
examples. For simplicity we omit type annotations in module components,
which are not relevant here.

Terms of CMS `,`- are called configurations and are of two kinds: non-
executable or module expressions , which are as in traditional module calculi
based on static manipulation, and executable, which are, roughly speaking,
module expressions paired with a running program (an expression in the un-
derlying core language), such that steps of the program execution and reduc-
tion steps at the module level can be interleaved.

Module expressions

As in CMS , module expressions are constructed on top of basic modules,
which have the form:[

xi 7→ X i∈1..n
i ; Yj 7→ ej∈1..m

j ; x′k 7→ e′
k∈1..p
k

]
where the three mappings correspond to input, output and local components of
the module, respectively, Xi, Yj are (input and output) names, used to refer to
a component from outside the module, hence relevant in module composition,
whereas xi, x

′
k are (deferred and local) variables, used to refer to components

from inside the module, hence appearing in expressions ej, e
′
k but not relevant

in module composition. Output and local components have an associated
definition, which is an expression in the underlying core language (CMS `,`-,
as CMS , is a parametric calculus which can be instantiated on top of different
core calculi for defining module components), whereas input components are
declared but not yet defined.

For instance, denoting by e[x1, . . . , xn] an arbitrary core expression with
free variables x1, . . . , xn,

M1 = [x 7→ X; Y 7→ e1[x, y]; y 7→ e2[x, y]]

is a basic module with one input, one output and one local component. Using
some syntactic sugar, this could be written as follows.

module M1 is
import X as x, export Y = e1[x,y], local y = e2[x,y]
end M1

3

Ancona, Fagorzi and Zucca

Operators for composing modules are sum, reduct, and link.

The sum of two modules can only be performed if they have no output
components with the same name (that is, no conflicting definitions). In this
case, the resulting module is obtained by putting together the components of
the arguments: input components with the same name are shared, whereas
conflicting deferred or local variables, if any, are solved by α-renaming.

For instance, let us define the module expression M3 as the sum of M1

above and another basic module

M2 = [y 7→ Y ; X 7→ e3[x, y]; x 7→ e4[x, y]] .

Then, the module expression M3 = M1 + M2 reduces to

[x 7→ X, y′ 7→ Y ; Y 7→ e1[x, y], X 7→ e3[x
′, y′]; y 7→ e2[x, y], x′ 7→ e4[x

′, y′]] .

The reduct operator performs a renaming of component names where input
and output names are renamed independently. The input renaming is a map-
ping whose domain and codomain are old input names and new input names,
respectively, whereas the output renaming goes in the opposite direction. For
instance 5

X 7→X,Y 7→X, 7→Z |M3|Y1 7→Y,Y2 7→Y ,

reduces to

[x 7→ X, y′ 7→ X, z 7→ Z; Y1 7→ e1[x, y], Y2 7→ e1[x, y]; y 7→ e2[x, y], x′ 7→ e4[x
′, y′]] .

Note that a non-injective input renaming allows to merge two input names
(in the example X and Y into X), whereas a non-surjective is used for adding
dummy input names (Z in the example). A non-injective output renaming
allows duplication of definitions (in the example the definition of Y is used as
definition of both Y1 and Y2), whereas a non-surjective one is used for deleting
output components (X in the example).

In the following we will use the abbreviation M \X to denote the module
obtained by removing the output component X from M , that is, id|M |em
where id is the identity over input names, and em is the embedding of all
output names but X into all output names, respectively.

The link operator connects input and output components having the same
name inside a module, so that an input component becomes local.

For instance,

linkX 7→X [x 7→ X; X 7→ e[x];] reduces to [; X 7→ e[x]; x 7→ e[x]] .

5 The notation 7→ Z means that Z is in the codomain of the mapping and no name is
mapped in Z.

4

Ancona, Fagorzi and Zucca

Configurations

Module expressions can be seen as a configuration language, in the sense
that they model different ways in which software fragments can be composed
together. However, eventually we want to get executable code and run it.
This is modeled by selection of a module component. In traditional mod-
ule calculi, like CMS, the selection operator, denoted M.X, can only be per-
formed when M is a basic module with no input components (all configuration
steps have been performed and the module is self-contained). For instance,
[; X 7→ x + y; x 7→ 2, y 7→ 3] .X reduces to 2 + 3, which then reduces to 5 by
core reduction, whereas
[y 7→ Y ; X 7→ x + y; x 7→ 2] .X is stuck (and is prevented by the type system).
We obtain a stuck module expression even when the defining expression of X
does not depend on any deferred variable, e.g., [y 7→ Y ; X 7→ x + 3; x 7→ 2] .X
is stuck.

Note that in this way after selection the enclosing module structure disap-
pears, hence no configuration steps are possible.

Here, we want to allow interleaving between evaluation of a module com-
ponent and reconfiguration steps. Hence we take a rather different view of
selection.

First, selection on a basic module does not return just the core expression
which defines the selected component, but rather a basic executable configura-
tion, that is, a pair consisting of the basic module itself and the core expres-
sion. This models an application running in the context of the components
offered by the module. For instance, [; X 7→ x + y; x 7→ 2, y 7→ 3] .X reduces
to

< [; X 7→ x + y; x 7→ 2, y 7→ 3] , x + y >,

and then to

< [; X 7→ x + y; x 7→ 2, y 7→ 3] , 2 + y >,

and so on. This simple change allows further configuration steps to be per-
formed after selection, as will be shown below.

Moreover, selection can be performed even when there are still input com-
ponents, since these missing components could be either never needed or be-
come later available by performing configuration steps. An example of the
first situation is shown by the following reduction steps:

[y 7→ Y ; X 7→ x + 3; x 7→ 2] .X -

< [y 7→ Y ; X 7→ x + 3; x 7→ 2] , x + 3 > -

< [y 7→ Y ; X 7→ x + 3; x 7→ 2] , 2 + 3 > -

< [y 7→ Y ; X 7→ x + 3; x 7→ 2] , 5 >.

An example of the second situation is illustrated below:

linkY 7→Y ([y 7→ Y ; X 7→ x + y; x 7→ 2] .X + [; Y 7→ 3;]) -

linkY 7→Y (< [y 7→ Y ; X 7→ x + y; x 7→ 2] , x + y > + [; Y 7→ 3;]) -

5

Ancona, Fagorzi and Zucca

linkY 7→Y (< [y 7→ Y ; X 7→ x + y; x 7→ 2] , 2 + y > + [; Y 7→ 3;]) -

linkY 7→Y < [y 7→ Y ; X 7→ x + y, Y 7→ 3; x 7→ 2] , 2 + y > -

< [; X 7→ x + y, Y 7→ 3; x 7→ 2, y 7→ 3] , 2 + y > -

< [; X 7→ x + y, Y 7→ 3; x 7→ 2, y 7→ 3] , 2 + 3 > -

< [; X 7→ x + y, Y 7→ 3; x 7→ 2, y 7→ 3] , 5 >.

This example also illustrates another feature of CMS `,`-: module operators
we described above can be applied on top of basic executable configurations as
well, giving executable configurations 6 ; however, in this case operators have
a lazy behavior, in the sense that they are performed on demand , only when
program execution is stuck since it needs a deferred variable. For instance, in
the case above, if the definition of X was x + 3 instead (as before), then the
sum and link operators would not be executed.

In other words, evolution of an executable configuration consists in pro-
gram execution (applying the reduction rules at the core level which can ma-
nipulate local variables offered by the basic module), unless this execution
requires to access a module component which is currently an input compo-
nent. In this case, reconfiguration steps must be performed until this input
component becomes available, that is, is imported from another module.

Note, however, that until now only a limited form of dynamic reconfigura-
tion is allowed, since all reconfiguration steps are planned statically: the fact
that they will be actually performed depends on the program execution, but
it is not possible to perform different reconfiguration steps depending on the
execution. To add a simple form of execution-driven reconfiguration, CMS `,`-

includes also a variant link- of the link operator, called low priority link, which
can only be applied to executable configurations. Low priority link is an even
more lazy form of link which is only performed when program execution would
otherwise be stuck, as other operators, and, moreover, performing this oper-
ator will actually make continuation of the execution possible. This means
that in the mapping specified in the low priority link there is an association
from an input name to an output name which is executable (that is, both the
names are present in the module) and whose application actually allows the
program execution to continue (that is, the program needs exactly that input
component). In this case, the link is performed incrementally, that is, only
the needed component is resolved.

For instance, in

link
Y 7→Y,

Z 7→Z

(link-
X 7→X ,
Y 7→W

(< [x 7→ X, y 7→ Y ; X 7→ 2;] , x + 1 > + [; Y 7→ 2;])),

since execution needs component X, the link-X 7→X operator is executed and the

6 However, sum is only allowed when at most one (conventionally the left) argument is
executable, since we do not want to deal here with multiple threads.

6

Ancona, Fagorzi and Zucca

configuration reduces in one step to

linkY 7→Y,Z 7→Z(link-Y 7→W < [y 7→ Y ; X 7→ 2; x 7→ 2] , x + 1 > + [; Y 7→ 2;]).

However, if the execution needs the component Y instead, e.g., in

link
Y 7→Y,

Z 7→Z

(link-
X 7→X ,
Y 7→W

(< [x 7→ X, y 7→ Y ; X 7→ 2;] , y + 1 > + [; Y 7→ 2;])),

then the link-X 7→X is not performed, and outer operators are moved inside and
performed instead, as shown below.

- linkY 7→Y,Z 7→Z(link-X 7→X,Y 7→W < [x 7→ X, y 7→ Y ; X 7→ 2, Y 7→ 2;] , y + 1 >)

- link-X 7→X,Y 7→W (linkY 7→Y,Z 7→Z< [x 7→ X, y 7→ Y ; X 7→ 2, Y 7→ 2;] , y + 1 >)

- link-X 7→X,Y 7→W < [x 7→ X; X 7→ 2, Y 7→ 2; y 7→ 2] , y + 1 >
- . . .

Note that we consider a slightly more liberal form of link w.r.t. CMS and
CMS `, allowing associations for input names which are not present in the
basic module (like Z 7→ Z): these associations are simply ignored. On the
other hand, associations from a present input name to an output name which
is either missing or has the wrong type get stuck (and will be prevented by
the type system). For the low priority link, instead, we also allow associations
with missing or having wrong type output names (like Y 7→ W): execution
of these links will be delayed until both the two names will be present with
the same type (thanks to the execution of some reconfiguration operator).
Furthermore, in a low priority link, only the currently needed association is
performed.

Expressive power

We show now some slightly more involved examples which illustrate how
the simple mechanism offered by low priority link is powerful enough to model
a variety of real-world situations.

Example 2.1 This configuration models a situation where a program can
decide whether to link no components, only the component X1 or only the
component X2:

link-X2 7→X2
(link-X1 7→X1

(< [x1 7→ X1, x2 7→ X2; ; z 7→ ez[xi], x0 7→ e0] , e[z, . . .] >

+ [. . . ; X1 7→ e1, X2 7→ e2; . . .]
)

).

The decision is coded in the definition of the control variable z, which in
turn refers to xi, with i ∈ {0, 1, 2}: if i = 0, then no new component is linked;
if i = 1 (respectively, i = 2), then only the component X1 (respectively, X2)
is linked.

7

Ancona, Fagorzi and Zucca

Example 2.2 This example models a a program using a library of software
components Xi, i ∈ 1..n, for which there exist two versions ei, e

′
i, for instance

different implementations of the same required functionality. In a first phase,
if the program needs some component Xi, the initial version ei is taken. For
instance, the program uses the initial version for the first m components, for
some 1 ≤ m < n. Then, the program can request for the following components
the linking of the new version by means of the control variable z, as shown
below. Here and in the following example we assume that e[x1, . . . , xn] is a
core expression whose execution needs variables x1, . . . , xn in this order.

link-Z 7→Z(

link-
Xi 7→Xi∈1..n

i
(<

[
z 7→ Z, xi 7→ X i∈1..n

i ; Xi 7→ ei∈1..n
i ;

]
,

e[x, . . . , xm, z, xm+1, . . . , xn] >

) \Xi
i∈1..n +

[
; Xi 7→ e′i∈1..n

i , Z 7→ eZ ;
]

)

Example 2.3 In this similar example

link-X2 7→X2
(

link-X1 7→X1
(

link-X 7→X(< [x 7→ X, x1 7→ X1, x2 7→ X2; X 7→ e0; z 7→ ez[xi], x0 7→ e0] , e[z, x] >

) \X + [; X 7→ e1, X1 7→ e′1;]

) \X + [; X 7→ e2, X2 7→ e′2;]
),

the program uses a component internally referred to by x, for which there
exist three versions: e0 in the current execution context and e1, e2 in external
modules. The decision about which version to use is coded in the definition
of the control variable z which refers in turn to another control variable xi. If
i = 0, then the current version e0 is used; if i = 1 (respectively, i = 2), then
the version of X supplied by the first (resp. second) external module is linked.

3 Syntax and semantics

Notations
We write f : A → B to denote that f is a map with domain A, written dom(f),

and codomain B, written cod(f).
We will use the following operators on maps:

• f, g is the union of two maps with disjoint domain.

• f ∪ g is the union of two compatible maps, that is, s.t. f(x) = g(x) for all
x ∈ dom(f) ∩ dom(g).

• f |C is the restriction of a map f : A → B to a set C (that is, f |C(x) = f(x) for
x ∈ A ∩ C).

8

Ancona, Fagorzi and Zucca

• f \C is the removal from a map f : A → B of a set C (that is, (f \C)(x) = f(x)
for x ∈ A \ C).

• f ◦ g denotes composition of two maps s.t. cod(g) ⊆ dom(f).

• f ⊆ g denotes map inclusion (that is, the usual subgraph relation).

The syntax of the calculus is given in Fig.1. We assume an infinite set Name
of names X, an infinite set Var of variables x, and a set Exp of (core) expres-
sions (the expressions of the underlying language used for defining module
components). Indeed, as CMS and CMS `, CMS `,`- is a parametric calculus,
which can be instantiated over different core calculi satisfying some (stan-
dard) assumptions specified in the sequel. In CMS `,`-, however, differently
from CMS , module components cannot be modules.

Terms of the calculus are either executable configurations (configurations
for short) or non-executable configurations (module expressions). An exe-
cutable configuration can be constructed starting either from an executable
basic configuration or from the selection of a component of a non executable
configuration (module expression) M and by applying reconfiguration opera-
tors (sum with a module expression, reduct , link and low priority link).

An executable basic configuration is a pair < [ι; o; ρ] , e >, consisting of
a basic module and a core expression.

Basic modules are as in (typed) CMS apart that we adopt here a slightly
different type decoration. They consist of three kinds of components: input
assignment, representing the input interface of the module; output assign-
ment, representing the output interface of the module; and local assignment,
representing the local (that is, not visible outside the module) components.

The notation xi
i∈I7→ Xi : τi (I possibly empty) is used for representing the

unique surjective map ι such that dom(ι) = {xi | i ∈ I}, cod(ι) = {Xi :
τi | i ∈ I} and ι(xi) = Xi : τi for all i ∈ I. The expression is well-formed only
if for any i1 and i2 in I, with i1 6= i2, we have that xi1 6= xi2 . We identify
all expressions representing the same map. Moreover, a well-formed input
assignment must satisfy a type coherence requirement, that is, for any i1 and
i2 in I, if Xi1 = Xi2 , then τi1 = τi2 .

Given ι = xi
i∈I7→ Xi : τi, we denote by ιName and ιType the maps which

associate to each xi the name Xi and the type τi, respectively.

Similar notations and assumptions are used for the other kinds of assign-

ments. The notation Xi
i∈I7→ Yi, Yj

j∈J (I or J possibly empty) is used for
representing the unique map σ such that dom(σ) = {Xi | i ∈ I}, cod(σ) =
{Yi | i ∈ I ∪ J} and σ(Xi) = Yi for all i ∈ I.

Basic (both executable and non-executable) configurations are well-formed
only if the sets of deferred and local variables are disjoint.

Note that for the low priority link operator we require the renaming σ
to be not empty. Indeed, this operator is performed on demand, that is, an
association X 7→ Y in σ is performed only when X is needed by the running

9

Ancona, Fagorzi and Zucca

C ∈ Conf ::= executable configuration

< [ι; o; ρ] , e >, with

dom(ι)∩dom(ρ)=∅ executable basic configuration

| C + M sum

| σι |C|σo reduct

| linkσC link

| link-σC, with σ 6= ∅ low priority link

| M.X selection

M ∈ Mod ::= non-executable configuration

| [ι; o; ρ] , with

dom(ι)∩dom(ρ)=∅ non-executable basic configuration

| M + M sum

| σι |M |σo reduct

| linkσM link

ι := xi
i∈I7→ Xi : τi input assignment

o := Xi
i∈I7→ ei : τi output assignment

ρ := xi
i∈I7→ ei local assignment

σ := Xi
i∈I7→ Yi, Yj

j∈J renaming

e ∈ Exp ::= x | . . . (core) expression

τ ∈ Type ::= . . . (core) type

Fig. 1. Syntax

program (and Y is available with the proper type), so specifying an empty
renaming would make no sense.

We will explain module operators in more detail when introducing reduc-
tion rules.

Expressions of the core language are not specified; we only assume that
they contain variables.

Reduction rules for sum, link and reduct on non-executable configurations,
given in Fig.2, are exactly as in CMS and CMS ` (apart from the treatment of
type decorations), hence for their explanation we refer to the examples of the
previous section and to [6,4] for more details. For sake of clarity, we write also
some side conditions (labeled “implicit”) which are redundant since implied

10

Ancona, Fagorzi and Zucca

M∈MCtx ::= 2 | M+ M | [ι; o; ρ] +M | linkσM | σι |M|σo

(M-ctx)
RM - M

M [RM] - M [M]

(M -sum)
[ι1; o1; ρ1] + [ι2; o2; ρ2] - [ι1, ι2; o1, o2; ρ1, ρ2]

if dom(ι1, ρ1) ∩ FV([ι2; o2; ρ2]) = dom(ι2, ρ2) ∩ FV([ι1; o1; ρ1]) = ∅

dom(ι1, ρ1) ∩ dom(ι2, ρ2) = ∅ (implicit)

dom(o1) ∩ dom(o2) = ∅ (implicit)

X : τ1 ∈ cod(ι1) ∧X : τ2 ∈ cod(ι2) ⇒ τ1 = τ2 (implicit)

(M -reduct)
σι |[ι, ι′; o; ρ]|σo - [σι ◦Name ι, ι′; o ◦ σo; ρ]

if cod(ι′Name) ∩ dom(σι) = ∅

cod(ιName) ⊆ dom(σι) (implicit)

cod(σo) ⊆ dom(o) (implicit)

X1 : τ1 ∈ cod(ι) ∧ σι(X1) = X2 ∧X2 : τ2 ∈ cod(ι′) ⇒ τ1 = τ2 (implicit)

(M -link)
linkσ

[
xi

i∈I7→ Xi : τi, ι; o; ρ
]

-
[
ι; o; ρ, xi

i∈I7→ oExp(σ(Xi))
]

if cod(ιName) ∩ dom(σ) = ∅

{Xi | i ∈ I} ⊆ dom(σ) (implicit)

{σ(Xi) | i ∈ I} ⊆ dom(o) (implicit)

Fig. 2. Reduction rules for module expressions

by the fact that terms must be well-formed.

In rule (M-ctx) the metavariable RM ranges over module redexes, that
is, left-hand sides of other rules for module expressions in Fig.2. We write
M [M] the expression obtained by syntactically replacing the hole in M with
the expression M (without any variable renaming).

In rule (M -sum), FV(M)denotes the set of the free variables in M , respec-
tively, defined in the obvious way.

In rule (M -reduct), if σ = Xh
h∈H7→ Yh, Yk

k∈K and ι = xi
i∈I7→ Xi : τi, with

I ⊆ H, then σ ◦Name ι = xi
i∈I7→ Yi : τi, xk

k∈K7→ Yk : τk, where for all k ∈ K, xk is
a fresh variable and τk is an arbitrary type.

In Fig.3 and in Fig.4 we give reduction rules for executable configurations.

11

Ancona, Fagorzi and Zucca

C ∈ CCtx ::= 2 | C + M | linkσC | σι |C|σo | link-σC

CM ∈ CMCtx ::= M.X | CM+ M | linkσCM | σι |CM|σo | link-σCM

E ∈ ECtx ::= 2 | . . .

Contextual closure

(C-ctx)
RC - C

C [RC] - C [C]
(CM-ctx)

RM - M

CM [RM] - CM [M]

Selection rule

(sel)
[ι; o; ρ].X - < [ι; o; ρ] , o(X) >

X ∈ dom(o) (implicit)

Program evaluation rules

(core)
e

core

- e′

< [ι; o; ρ] , e > - < [ι; o; ρ] , e′ >

(var)
< [ι; o; ρ] , E [x] > - < [ι; o; ρ] , E{ρ(x)} >

x ∈ dom(ρ) (implicit)

x 6∈ HB (E)

Error rules

(var/err)
< [ι; o; ρ] , E [x] > - err(X : τ, π)

x 6∈ HB (E)

X : τ = ι(x)

π = oType

(link-/err)
C - err(X : τ, π)

link-σC - err(X : τ, π)

X 6∈ dom(σ)∨

σ(X) 6∈ dom(π)∨

π(σ(X)) 6= τ

Fig. 3. Reduction rules for executable configurations I

The intuition is that the execution of a configuration starts with the eval-
uation of the program running inside it, possibly obtained by selecting a com-
ponent from a module expression (rule (sel) in Fig.3) and this evaluation
proceeds by standard execution steps possibly accessing local variables offered
by the basic module (program evaluation rules in Fig.3) until a deferred vari-
able is encountered; in this case, reconfiguration steps are needed (error rules
in Fig.3) and they are performed (reconfiguration rules in Fig.4) until the
variable becomes local and rule (var) can be applied.

12

Ancona, Fagorzi and Zucca

Contextual closure rule

There are two kinds of evaluation contexts and, correspondingly, two con-
textual closure rules for executable configurations: C is a context with hole
requiring C ∈ Conf, s.t. C [C] ∈ Conf, while CM is a context with hole requir-
ing M ∈ Mod, s.t. CM [M] ∈ Conf.

In rule (C-ctx) the metavariable RC ranges over configuration redexes, that
is, left-hand side of other rules for configurations in Fig.3 and Fig.4.

Selection rule

Rule (sel) takes the non executable basic configuration [ι; o; ρ] and makes
it executable by selecting the core expression o(X) as program.

Program evaluation rules

Rule (core) models an execution step which is an evaluation step of the
core expression in the basic executable configuration (we denote by

core

- the

reduction relation of the core calculus).

Rule (var) models the situation where the evaluation of the core expres-
sion needs a variable which has a corresponding definition in the current basic
module (that is, is local). In this case, the evaluation can proceed by simply
replacing the variable by its defining expression. We denote by E the core
evaluation contexts, and by HB the function associating with each core eval-
uation context the set of binders around its hole, defined in the obvious way.
Here and in the following rules, the side condition x 6∈ HB (E) expresses the
fact that the occurrence of the variable x in the position denoted by the hole
of the core context E is free (that is, not captured by any binder around the
hole). Finally, we denote by E{e} the capture avoiding substitution, with the
expression e, of the hole of the context E .

Error rules

Rule (var/err) models the situation where the evaluation of the core ex-
pression needs a variable which has no corresponding definition in the current
basic module (that is, is deferred). In this case, a reconfiguration step is
triggered by raising the error err(X : τ, π), which can be captured by outer
operators as described in the paragraph on reconfiguration rules.

Rule (link-/err) deals with the case when the link- operator cannot be per-
formed, either because no link is specified for the name X needed for the com-
putation to continue (side condition X 6∈ dom(σ)), or the required definition
is missing (σ(X) 6∈ dom(π)) or does not have the proper type (π(σ(X)) 6= τ).
In this case, the error err(X : τ, π) is propagated to the outer operator (if
any), so that either X will be eventually linked with the proper type τ , or the
whole computation will terminate with the linkage error err(X : τ, π).

It is worth to note that errors are not propagated by contextual closure
rules; hence, they are captured by surrounding contexts consisting in usual

13

Ancona, Fagorzi and Zucca

Reconfiguration rules

(sum/basic)
< [ι1; o1; ρ1] , e > - err(X : τ, π)

< [ι1; o1; ρ1] , e > + [ι2; o2; ρ2] - < [ι1, ι2; o1, o2; ρ1, ρ2] , e >

if dom(ι1, ρ1) ∩ FV([ι2; o2; ρ2]) = dom(ι2, ρ2) ∩ FV([ι1; o1; ρ1]) = ∅

(sum-closure)
< [ι; o; ρ] , e > - err(X : τ, π) M - M ′

< [ι; o; ρ] , e > +M - < [ι; o; ρ] , e > +M ′

(sum/link-)
link-σC - err(X : τ, π)

link-σC + M - link-σ(C + M)

(reduct/basic)
< [ι, ι′; o; ρ] , e > - err(X : τ, π)

σι |< [ι, ι′; o; ρ] , e >|σo - < [σι ◦Name ι, ι′; o ◦ σo; ρ] , e >

if cod(ι′Name) ∩ dom(σι) = ∅

(reduct/link-)
link-σC - err(X : τ, π)

σι |link-σC|σo - link-σ(σι |C|σo)

(link/basic)
<

[
xi

i∈I7→ Xi : τi, ι; o; ρ
]
, e > - err(X : τ, π)

linkσ<
[
xi

i∈I7→ Xi : τi, ι; o; ρ
]
, e > - <

[
ι; o; ρ, xi

i∈I7→ oExp(σ(Xi))
]
, e >

if cod(ιName) ∩ dom(σ) = ∅

(link/link-)
link-σ′C - err(X : τ, π)

linkσ

(
link-σ′C

)
- link-σ′(linkσC)

(link-)
C - err(X : τ, π)

link-σ, X 7→Y C - link-σ(linkX 7→Y C)
π(Y) = τ

Fig. 4. Reduction rules for executable configurations II

module operators (see rules (sum/basic), (sum-closure), (reduct/basic) and
(link/basic) below); whereas a low-priority link propagates an error if it cannot
resolve it.

Hence, intuitively, C - err(X : τ, π) holds if and only if the program

evaluation in C needs an input component with name X and type τ , and
the output components currently available are those specified by the type
assignment π. The latter information is used, in case a low priority link for X
is applied to C, to decide whether rule (link-) or (link-/err) is applicable.

14

Ancona, Fagorzi and Zucca

Reconfiguration rules

Sum, reduct and link operators are performed on demand, whenever the
evaluation of their enclosed configuration expression needs a deferred variable
(and, hence, an error of the form err(X : τ, π) was raised). Two different
kinds of rules are needed for each operator. The former is applied when the
enclosed configuration is basic, and in this case the operator is performed on
the module expression inside the basic configuration. Note that the effect of
module operators on the module inside a basic configuration is exactly as seen
in Fig.2; all implicit side conditions (that for brevity are not reported here)
still hold. The latter is applied when the enclosed configuration has a (surely
either not needed or not applicable) link- as outer operator; in this case, the
operator is swapped with the link-. By repeatedly applying this rule, the
operator goes inside until it can be performed by the corresponding (/basic)
rule.

In rule (link-), the link- operator can be performed only if the required
input name X can be safely linked to an output component with the proper
type (side condition π(Y) = τ). Note that the link- is applied incrementally,
in the sense that only the required input name will be linked. To this end,
the application of link- is split into a link- and link application. Then, by
repeatedly applying the (link/link-) rule, the operator link will go inside any
inner link- operator until it can be performed by the (link/basic) rule. In this
rule, we assume to identify link-∅C with C (the link- disappears when fully
executed, that is, when σ = ∅).

Finally, for the sum operator we also need a further rule to force, when
needed, the evaluation of the module expression in the second argument of
the sum.

4 Type system

By the reduction rules given in the previous section, stuck reductions are either
due to wrong applications of module operators, as already in CMS 7 , or to
the fact that program execution needs a module component which is neither
currently available, nor can be provided by reconfiguration steps.

The first kind of errors can easily be ruled out by a static type system
analogous to that originally designed for CMS in [6], where module types are
pairs of signatures specifying input and output components with their types
(for configurations it is enough to add the type of the running program). The
only novelty is the low priority link operator. It is easy to see that this operator
does not introduce any new typing error, since link-σ can be safely applied
regardless of the type of the argument C (indeed, if it is not applicable it has
simply no effect). On the other hand, it is not so clear what should be the type

7 That is, incompatible input or conflicting output components in a sum, renaming of a
missing output name, and linking to a missing output component.

15

Ancona, Fagorzi and Zucca

of the resulting configuration: indeed, since an applicable low priority link for
an input component, say X, is either performed or just ignored depending
on whether the running program needs X, then link-σC can have either the
type obtained by linking X (that is, the type obtained from C by removing
X from the input names), or the same type as C. However, only the latter
solution (reflected by the formal rule (C-link-) in Fig.7) is safe, since removing
input names from a type does not introduce type unsafe application of module
operators, whereas the converse does not hold (for instance, we might end up
with a type unsafe sum involving incompatible input components).

For avoiding the “missing component” error, a simple solution which can
be enforced by this static type system is to consider as statically correct only
those configurations which are “closed”, that is, those which have no input
components. Indeed, this intuitively means that, whichever component the
running program will ever need, this component can eventually become avail-
able by reconfiguration. However, this solution has the drawback that many
safe reductions, which never need a non-available component, are ruled out.
An improvement can be obtained by a more complex type system based on
dependencies, as that we developed for CMS ` in [4]. In this paper, however,
we prefer to explore a different solution, since the expressive power gained by
introducing the low priority link operator would be partly lost by the adoption
of a too strict type discipline. Indeed, as said above, in practice this operator
is not taken into account when computing the type of a term, whereas at
run-time its application could supply a needed component. Hence, we prefer
to combine the static type analysis for preventing unsafe module application
with dynamic checks preventing stuck execution due to a missing component.

More in detail, configurations with input components are considered type
safe as well, and execution can raise the linkage error err(X : τ, π), in case
the component X with type τ is needed by the running program and none of
the available definitions, specified by the type assignment π, can be associated
with X by applying the given module operators.

We give now the formal definition of the type system. Module types have
the form [πι; πo], where πι, πo are signatures, that is, sequences Xi : τi

i∈I

of pairs consisting of a component name and a type. In the following we
will identify all signatures which represent the same set of pairs (that is, or-
der and repetitions are immaterial). Intuitively, if a module M has type[
Xi : τi

i∈I ; Xj : τj
j∈J

]
, then {Xi | i ∈ I} and {Xj | j ∈ J} represent the sets

of input and output components of M , respectively. The type annotation
Xi : τi says that the input (resp. output) component Xi can be correctly
bound to (resp. associated with) an expression of type τi.

A module type is well-formed if the two signatures πι and πo turn out to be
two maps from component names into well-formed types. This is formalized by
the judgment ` [πι; πo] defined by rules in Fig.5, where `core τ is the judgment
for well-formed types at the core level.

In the following we will use on (well-formed) signatures the operators for

16

Ancona, Fagorzi and Zucca

` πι ` πo

` [πι; πo]
{`core τi | i ∈ I}
` Xi : τi

i∈I ∀h, k ∈ I.Xh = Xk ⇒ τh = τk

Fig. 5. Well-formed module types

(M -basic)
`

[
Xi : τi

i∈I ; Xj : τj
j∈O

] {
xh : τh

h∈I∪L `core ek : τk | k ∈ O ∪ L
}

`M

[
xi

i∈I7→ Xi : τi; Xj
j∈O7→ ej : τj ; xl

l∈L7→ el

]
:
[
Xi : τi

i∈I ; Xj : τj
j∈O

]
(M -sum)

`M M1 : [πι
1; πo

1] `M M2 : [πι
2; πo

2]
`M M1 + M2 : [πι

1 ∪ πι
2; πo

1 ∪ πo
2]

πo
1 ∩ πo

2 = ∅

(M -reduct)
`M M : [πι; πo]

`M σι |M |σo : [π̃ι ∪ πι\dom(σι); π̃o]
σι|dom(πι) : πι|dom(σ) → π̃ι

σo : π̃o → πo

(M -link)
`M M : [πι; πo]

`M linkσM : [πι\dom(σ); πo] σ|dom(πι) : πι|dom(σ) → πo

Fig. 6. Typing rules for module expressions

maps (which are closed w.r.t. well-formed signatures).

The type system of the calculus is given in Fig.6 and Fig.7.

The type judgment for module expressions has form `M M : [πι; πo],
meaning that M is a well-formed module expression with type [πι; πo].

Typing rules for module expressions are given in a slightly different form
than in standard module calculi [6]. Indeed, in addition to the treatment of
type decorations, they allow a more general form of application of the reduct
and the link operators.

In rule (M -basic), we denote by Γ `core e : τ the typing judgment for core
expressions, meaning that e is a well-formed expression of type τ in Γ, where
Γ is a (core) context, that is, a map from variables to well-formed (core) types.
Note that the module type must be well-formed.

The (M -sum) typing rule allows sharing of input components having the
same name and type, whereas the side condition prevents output components
from being shared. Recall that the expression f ∪ g denotes the union of
two compatible maps f and g. So, it implicitly holds that the two resulting
signatures are well-formed.

In rules (M -reduct) and (M -link) the side-conditions having the form σ :
π1 → π2 ensure that the renaming σ preserves types; formally, this means that
σ : dom(π1) → dom(π2) and σ(X) = Y ⇒ π1(X) = π2(Y).

In rule (M -reduct), differently from the original formulation [6], the do-
main of an input renaming can be any set of names: indeed, renaming of input
names not present in the module is simply ignored (by considering the restric-
tion of σι to the domain of πι). Moreover, module input names which are not
renamed by σι are unaffected. For the output renaming, the codomain must
be set of the output names in the module. The two side conditions, besides

17

Ancona, Fagorzi and Zucca

(C-basic)

{
xh : τh

h∈I∪L `core ek : τk | k ∈ O ∪ L
}

`
[
Xi : τi

i∈I ; Xj : τj
j∈O

]
xh : τh

h∈I∪L `e e : τ

`C<
[
xi

i∈I7→ Xi : τi; Xj
j∈O7→ ej : τj; xl

l∈L7→ el

]
, e >:

([
Xi : τi

i∈I ; Xj : τj
j∈O

]
, τ

)
(C-sum)

`C C : ([πι
C ; πo

C] , τ) `M M : [πι
M ; πo

M]

`C C + M : ([πι
C ∪ πι

M ; πo
C ∪ πo

M] , τ)
πo

C ∩ πo
M = ∅

(C-reduct)
`C C : ([πι; πo] , τ)

`C σι |C|σo : ([π̃ι∪πι\dom(σι); π̃o] , τ)

σι|dom(πι) : πι|dom(σι) → π̃ι

σo : π̃o → πo

(C-link)
`C C : ([πι; πo] , τ)

`C linkσC : ([πι\dom(σ); πo] , τ)
σ|dom(πι) : πι|dom(σ) → πo

(C-link-)
`C C : ([πι; πo] , τ)

`C link-σC : ([πι; πo] , τ)

(sel)
`M M : [πι; πo]

`C M.X : ([πι; πo] , πo(X))

Fig. 7. Typing rules for executable configurations

guarantee type preservation, determine the resulting signature of the module.
Note that the resulting input signature is the union of the not affected and the
new input signatures. These two signatures must be compatible (as implicitly
required for well-formedness of the resulting type), since the domains of π̃ι

and πι\dom(σι) might be not disjoint.

As in (M -reduct), also in (M -link) we allow the renaming to be defined on
any set of names (differently from the original formulation [6]). Input names
which are not linked by σ remain in the resulting module, whereas, again,
linking of input names not present in the module is ignored (by taking the
restriction of σ to the domain of πι).

The typing judgment for executable configurations has form
`C C : ([πι; πo] , τ), meaning that C is a well-formed executable configuration
of type ([πι; πo] , τ).

The first component [πι; πo] has the same meaning as for module expres-
sions, while τ is the type of the running program.

In rule (C-basic), the first component of the type is computed as for basic
module expressions. The second component in the configuration type corre-
sponds to the type of the running program e in the context of all the (deferred
and local) variables of the basic module (that is, xh : τh

h∈I∪L).

Rules for sum, reduct and link are the obvious extension of those for non
executable configurations, where the type τ of the running program is just
propagated.

18

Ancona, Fagorzi and Zucca

In rule (C-link-), the application of a low priority link operator link-σ to a
configuration C does not change its type. Indeed, as explained at the begin-
ning of this section, during static analysis low priority links are not considered,
that is, the type system returns the type one would get if no low priority link
had been ever executed; this is safe since any application of a low priority link
never lead to undefined applications of the other operators.

In rule (C-sel) the type τ of the expression to be executed coincides with
the type of X.

5 Results

In this section we collect the technical results about the calculus. In partic-
ular, we state the determinacy, subject reduction and progress properties for
the reduction relation. These results hold providing that the corresponding
properties are verified at the core level as well.

We first introduce (Fig.8) the sets VMod and VConf of values for the terms
of the calculus.

M v ∈ VMod ::= [ι; o; ρ]

Cv ∈ VConf ::= < [ι; o; ρ] , ev > | Cv + M | linkσC
v | link-σC

v | σι |Cv|σo

ev ∈ VExp (core) values

Fig. 8. Values

Core assumption 5.1 We assume the core language to be such that:

(i) (Unique decomposition) Given e ∈ Exp, at most one of the following cases
holds:
(a) e ∈ CVal,
(b) there exist unique a core evaluation context E, a core rule (r) and a

core redex Re (instance of the left-hand side of (r)) such that E [Re] =
e,

(c) there exist unique a core evaluation context E, and a variable x such
that E [x] = e and x 6∈ HB (E).

(ii) (Progress) if Γ `e e : τ , with e 6∈ CVal, then either e ≡ E [Re] for some
Re or e ≡ E [x] with x 6∈ HB (E) and x ∈ dom(Γ).

(iii) (Subject reduction) if Γ `e e : τ and e
e
- e′, then Γ `e e′ : τ .

(iv) (Substitution) if Γ `e E [x] : τ , with x 6∈ HB (E), and Γ `e e′ : τ ′, then
Γ `e E{e′} : τ .

(v) (Weakening) if Γ `e e : τ , then, for all Γ′ ⊇ Γ we have that Γ′ `e e : τ .

Note that the progress property in point (ii) with Γ = ∅ takes the usual
form, that is, a well-typed e is either a value or performs a reduction step

19

Ancona, Fagorzi and Zucca

e
e
- e′ (by reducing the redex Re).The property also implicitly implies

that a variable cannot be a redex. Moreover, in point (iv), the condition
x 6∈ HB (E), which is needed to avoid substitution of bound variables, implies
x ∈ dom(Γ). Hence, we allow the substituted term e′ to in turn refer to the
variable x.

Theorem 5.1 (Unique decomposition)

• Given M ∈ Mod, at most one of the following cases holds:
· M ∈ VMod,
· there exist unique an evaluation context M, a rule (r) and a redex RM

(instance of the left-hand side of rule (r)) such that M
[
RM

]
= M .

• Given C ∈ Conf, at most one of the following cases holds:
· C ∈ VConf,
· there exist unique an evaluation context C, a rule (r) and a redex RC

(instance of the left-hand side of rule (r)) such that C
[
RC

]
= C,

· there exist unique an evaluation context C, and a variable x such that
C [x] = C and x 6∈ HB (C).

Proof. By induction on the structure of M and C, respectively. We use the
unique decomposition property (i) we assume for the core language. 2

Determinacy follows from this theorem as a corollary.

Corollary 5.2 (Determinacy)

• Given M , there exists at most one M ′ ∈ Mod s.t. M - M ′;

• given C, there exists at most one C ′ ∈ Conf s.t. C - C ′.

Theorem 5.3 (Progress)

(A) If `M M : [πι; πo] and M 6∈ VMod, then there exists M ′ s.t. M - M ′;

(B) if `C C : ([πι; πo] , τ) and C 6∈ VConf, then one of the following cases
holds:
• there exists C ′ s.t. C - C ′;

• C - err(X : τ, πo) with X : τ ∈ πι.

Proof. See the appendix. 2

Corollary 5.4 If `C C : ([∅; πo] , τ) and C 6∈ VConf, then there exists C ′ s.t.
C - C ′.

Theorem 5.5 (Subject reduction)

(A) If `M M : [πι; πo] and M - M ′, then `M M ′ : [πι; πo];

(B) if `C C : ([πι; πo] , τ) and C - C ′, then there exists πι′ ⊆ πι such

that `C C ′ : ([πι′; πo] , τ).

Proof. See the appendix. 2

20

Ancona, Fagorzi and Zucca

6 Conclusion

We have extended the calculus with lazy module operators CMS ` [4] by adding
a lazier low priority link operator which allows the user to have some control on
dynamic configuration steps directly in the code to be executed; for instance,
by using control variables it is possible to decide which version of the code
should be dynamically linked for a given component.

Soundness is ensured by a combination of a static type system, which
prevents errors in applying module operators, and a dynamic check which
raises a linkage error if the running program needs a component which cannot
be provided by reconfiguration steps. In particular no linkage errors can be
raised if all components are potentially available.

This work is part of a stream of research [3,4,5,11] whose aim is the devel-
opment of foundational calculi providing an abstract framework for dynamic
software reconfiguration. In particular, the possibility of extending module
calculi with selection on open modules, interleaving of component evaluation
with reconfiguration steps and a lazy strategy has been firstly explored in [4].
In [5] we have investigated how to increase flexibility in a different direction,
that is, by introducing virtual module components and higher-order config-
urations. Fagorzi’s thesis [11] provides a comprehensive presentation of our
results.

One of the main motivation for CMS `,`- is the need for foundational cal-
culi providing an abstract framework for dynamic reconfiguration (that is,
interleaving of reconfiguration steps and execution steps). Indeed, though the
area of unanticipated software evolution continues attracting large interest,
with its foundations studied in, e.g., [15], there is a little amount of work at
our knowledge going toward the development of abstract models for dynamic
reconfiguration, analogous to those which exist for the static case, where the
configuration phase always precedes execution [8,16,6]. Apart from the wide
literature concerning concrete dynamic linking mechanisms in existing pro-
gramming environments [9,10], we mention [7], which presents a simple cal-
culus modeling dynamic software updating, where modules are just records,
many versions of the same module may coexist and update is modeled by an
external transition which can be enforced by an update primitive in code, [1],
where dynamic linking is studied as the programming language counterpart
to the axiom of choice, and the module system defined in [14], where static
linking, dynamic linking and cross-computation communication are all defined
in a uniform framework.

Further work includes the investigation on the expressive power of lazy
module calculi, by showing which kind of real-world reconfiguration mecha-
nisms can be modeled and which kind require a richer model, and the intro-
duction of more powerful mechanisms allowing the running program to control
reconfiguration in a more direct way .

21

Ancona, Fagorzi and Zucca

References

[1] Abadi, M., G. Gonthier and B. Werner, Choice in dynamic linking, in:
FOSSACS’04 - Foundations of Software Science and Computation Structures
2004, Lecture Notes in Computer Science (2004), pp. 12–26.

[2] Ancona, D., S. Fagorzi, E. Moggi and E. Zucca, Mixin modules and
computational effects, in: J. C. M. Baeten et al., editors, International
Colloquium on Automata, Languages and Programming 2003, number 2719 in
Lecture Notes in Computer Science (2003), pp. 224–238.

[3] Ancona, D., S. Fagorzi and E. Zucca, A calculus for dynamic linking, in:
C. Blundo and C. Laneve, editors, Italian Conf. on Theoretical Computer
Science 2003, number 2841 in Lecture Notes in Computer Science, 2003, pp.
284–301.

[4] Ancona, D., S. Fagorzi and E. Zucca, A calculus with lazy module operators, in:
J.-J. Levy, E. W. Mayr and J. C. Mitchell, editors, TCS 2004 (IFIP Int. Conf.
on Theoretical Computer Science) (2004), pp. 423–436.

[5] Ancona, D., S. Fagorzi and E. Zucca, Mixin modules for dynamic rebinding,
in: TGC 2005 -Symposium on Trustworthy Global Computing, Lecture Notes in
Computer Science (2005), to appear.

[6] Ancona, D. and E. Zucca, A calculus of module systems, Journ. of Functional
Programming 12 (2002), pp. 91–132.

[7] Bierman, G., M. Hicks, P. Sewell and G. Stoyle, Formalizing dynamic software
updating (Extended Abstract), in: USE’03 - the Second International Workshop
on Unanticipated Software Evolution, 2003.

[8] Cardelli, L., Program fragments, linking, and modularization, in: ACM Symp.
on Principles of Programming Languages 1997 (1997), pp. 266–277.

[9] Drossopoulou, S., Towards an abstract model of Java dynamic linking and
verfication, in: R. Harper, editor, TIC’00 - Third Workshop on Types in
Compilation (Selected Papers), Lecture Notes in Computer Science 2071
(2001), pp. 53–84.

[10] Drossopoulou, S., G. Lagorio and S. Eisenbach, Flexible models for dynamic
linking, in: P. Degano, editor, ESOP 2003 - European Symposium on
Programming 2003, 2003, pp. 38–53.

[11] Fagorzi, S., “Module Calculi for Dynamic Reconfiguration,” Ph.D. thesis,
Dipartimento di Informatica e Scienze dell’Informazione, Università di Genova
(2005), to appear.

[12] Fagorzi, S. and E. Zucca, A case-study in encoding configuration languages:
Multiple class loaders, Journ. of Object Technology 3 (2004), pp. 31–53.

[13] Hirschowitz, T. and X. Leroy, Mixin modules in a call-by-value setting, in: D. L.
Métayer, editor, ESOP 2002 - European Symposium on Programming 2002,
number 2305 in Lecture Notes in Computer Science (2002), pp. 6–20.

22

Ancona, Fagorzi and Zucca

[14] Liu, Y. D. and S. F. Smith, Modules with interfaces for dynamic linking
and communication, in: M. Odersky, editor, ECOOP 2004 - Object-Oriented
Programming, number 3086 in Lecture Notes in Computer Science (2004), pp.
414–439.

[15] Mens, T. and G. Kniesel, Workshop on foundations of unanticipated software
evolution (2004), eTAPS 2004, http://joint.org/fuse2004/.

[16] Wells, J. and R. Vestergaard, Confluent equational reasoning for linking
with first-class primitive modules, in: ESOP 2000 - European Symposium on
Programming 2000, number 1782 in Lecture Notes in Computer Science (2000),
pp. 412–428.

A Results and proofs

In this section we collect the proofs of results stated in Sec.5.

Lemma A.1 If C - err(X : τ, π), then we have that:

(i) C has one of the following forms:
• C ≡< [ι; o; ρ] , E [x] > with x 6∈ HB (E), X : τ = ι(x) and π = oType;
• C ≡ link-σC

′ with C ′ - err(X : τ, π) and either X 6∈ dom(σ), σ(X) 6∈
dom(π) or π(σ(X)) 6= τ .

(ii) if `C C : ([πι; πo] , τ), then
• X : τ ∈ πι,
• π = πo.

Proof.

(i) Immediate from the definition of the reduction relation.

(ii) Easy induction on typing rules, with case analysis on the structure of C
(exploiting the first point of this lemma).

2

Theorem 5.3 (Progress)

(A) If `M M : [πι; πo] and M 6∈ VMod, then there exists M ′ s.t. M - M ′;

(B) if `C C : ([πι; πo] , τ) and C 6∈ VConf, then one of the following cases
holds:
• there exists C ′ s.t. C - C ′;

• C - err(X : τ, πo) with X : τ ∈ πι.

Proof.
We rewrite the progress property in the following form.

(A) If `M M : [πι; πo] and M 6∈ VMod, then M ≡ M
[
RM

]
for some RM

and there exists M ′ s.t. RM - M ′;

23

Ancona, Fagorzi and Zucca

(B) if `C C : ([πι; πo] , τ) and C 6∈ VConf, then one of the following cases
holds:
• C ≡ C

[
RC

]
for some RC and there exists C ′ s.t. RC - C ′;

• C ≡ CM
[
RM

]
for some RM and there exists M ′ s.t. RM - M ′;

• C - err(X : τ, π).

We now separately prove the two facts.

(A) Induction on typing rules:

(M-basic) : we do not consider this rule since in the conclusion we have

[ι; o; ρ] ∈ VMod.

(M-sum) : we derive `M M1 + M2 : [πι
1 ∪ πι

2; πo
1 ∪ πo

2]. There are two

cases to be considered:
• M1 6∈ VMod. In this case, by applying the inductive hypothesis to the first

premise of the typing rule (M -sum), that is `M M1 : [πι
1; πo

1], we have
that M1 ≡ M

[
RM

]
for some RM and there exists M ′ s.t. RM - M ′.

Hence, we can conclude by observing that M+ M2 ∈MCtx;
• M1 ∈ VMod, that is M1 ≡ [ι1; o1; ρ1]. There are two subcases:
· M2 6∈ VMod. In this case, by applying the inductive hypothesis to the

second premise of the typing rule (M -sum), that is `M M2 : [πι
2; πo

2],
we have that M2 ≡ M

[
RM

]
for some RM and there exists M ′ s.t.

RM - M ′. Hence, we can conclude by observing that [ι1; o1; ρ1]+M∈
MCtx;

· M2 ∈ VMod, that is M2 ≡ [ι2; o2; ρ2]. In this case, we have: [ι1; o1; ρ1]+

[ι2; o2; ρ2]
(M -sum)- [ι1, ι2; o1, o2; ρ1, ρ2]. Note that we can perform this

reduction step since all (implicit and explicit) side-conditions are satis-
fied: surely FV([ιi; oi; ρi]) = ∅, i ∈ {1, 2} (since for the two premises of
typing rule (M -sum) the two basic modules are well-typed in the empty
context); all assignments have disjoint domains (for the input and local
assignments this can be obtained by α-conversion, while for the output
assignment this is ensured by the side-condition of the typing rule (M -
sum)); also the type coherence requirement on the input assignment is
satisfied (from well-formedness of the input signature πι

1 ∪ πι
2 in the

resulting type of (M -sum)).

(M-reduct) : we derive `M σι |M |σo : [π̃ι ∪ πι\dom(σι); π̃o]. There are two

cases to be considered:
• M 6∈ VMod. In this case, by applying the inductive hypothesis to the

premise of the typing rule (M -reduct), that is, `M M : [πι; πo], we have
that M ≡ M

[
RM

]
for some RM and there exists M ′ s.t. RM - M ′.

Hence, we can conclude by observing that σι |M|σo ∈MCtx;
• M ∈ VMod, that is M ≡ [ι; o; ρ] and from the premise and the first side-

24

Ancona, Fagorzi and Zucca

condition of the typing rule (M -reduct) we have that `M [ι; o; ρ] : [πι; πo]
and σι|dom(πι) : πι|dom(σ) → π̃ι. Choosing a partition of ι into ι′, ι′′ such
that cod(ι′′Name) ∩ dom(σι) = ∅ and cod(ι′Name) ⊆ dom(σι), we have that:

σι |[ι′, ι′′; o; ρ]|σo
(M -reduct)- [σι ◦Name ι′, ι′′; o ◦ σo; ρ]. Note that we can

perform this step since all side-conditions are satisfied: first two conditions
are obviously satisfied by the chosen partition ι′, ι′′; the third condition
cod(σo) ⊆ dom(o) is satisfied (from the second side-condition of the typing
rule (M -reduct) we have that σo : π̃o → πo); also the type coherence
requirement on the input assignment is satisfied (from well-formedness of
the input signature π̃ι ∪ πι\dom(σι) in the resulting type of (M -reduct)).

(M-link) : we derive `M linkσM : [πι\dom(σ); πo]. There are two cases to

be considered:
• M 6∈ VMod. In this case, by applying the inductive hypothesis to the

premise of the typing rule (M -link), that is, `M M : [πι; πo], we have that
M ≡M

[
RM

]
for some RM and there exists M ′ s.t. RM - M ′. Hence,

we can conclude by observing that linkσM∈MCtx;
• M ∈ VMod, that is M ≡ [ι; o; ρ]. From the premise and the side-

condition of the typing rule (M -link) we have that `M [ι; o; ρ] : [πι; πo]
and σ|dom(πι) : πι|dom(σ) → πo. Choosing a partition of ι into ι′, ι′′, with

ι′ = xi
i∈I7→ Xi : τi, such that cod(ι′′Name) ∩ dom(σ) = ∅ and {Xi | i ∈ I} ⊆

dom(σ), we have that:

linkσ

[
xi

i∈I7→ Xi : τi, ι
′′; o; ρ

] (M -link)-
[
ι′′; o; ρ, xi

i∈I7→ oExp(σ(Xi))
]
. Note

that we can perform this step since all side-conditions are satisfied: first
and second side-conditions are obviously satisfied by the chosen parti-
tion ι′, ι′′; and also the condition {σ(Xi) | i ∈ I} ⊆ dom(o) is satis-
fied (from the side-condition of the typing rule (M -link) we have that
σ|dom(πι) : πι|dom(σ) → πo and {Xi | i ∈ I} ⊆ dom(σ)).

(B) Induction on typing rules; we use Lemma A.1 and the first part of this
theorem:

(C-basic) : we derive `C< [ι; o; ρ] , e >: ([πι; πo] , τ). There are two cases

to be considered:
• e ∈ CVal: this case is impossible since for hypothesis < [ι; o; ρ] , e >6∈

VConf;
• e 6∈ CVal: from the premise xh : τh

h∈I∪L `e e : τ of the typing rule (C-
basic), with {xh | h ∈ I} = dom(ι) and {xh | h ∈ L} = dom(ρ) and
from the assumption 5.1 (ii) on the core language, that is, the progress
property, we get that one of the following two cases holds:
· e ≡ E [Re] for some Re and there exists e′ s.t. Re

e
- e′. In this case,

we have that < [ι; o; ρ] , E [Re] >
(core)- < [ι; o; ρ] , E [e′] >;

25

Ancona, Fagorzi and Zucca

· e ≡ E [x] with x 6∈ HB (E) and x ∈ dom(ι) ∪ dom(ρ):

◦ if x ∈ dom(ρ), then < [ι; o; ρ] , E [x] >
(var)- < [ι; o; ρ] , E{ρ(x)} >;

◦ if x ∈ dom(ι), then < [ι; o; ρ] , E [x] >
(var/err)- err(ι(x), oType).

(C-sum) : we derive `C C +M : ([πι
C ∪ πι

M ; πo
C ∪ πo

M] , τ). We suppose

C 6∈ VConf (otherwise we would have C + M ∈ VConf). Applying the
inductive hypothesis to the first premise of the typing rule, that is `C C :
([πι

C ; πo
C] , τ), we have that one of the following three cases holds:

• C ≡ C
[
RC

]
for some RC and there exists C ′ such that RC - C ′. In

this case, we can conclude by observing that C + M ∈ CCtx;
• C ≡ CM

[
RM

]
for some RM and there exists M ′ such that RM - M ′.

In this case, we can conclude by observing that CM+ M ∈ CMCtx;
• C - err(X : τ, π). By applying Lemma A.1 we get that C has one of

the following two forms:
· if C ≡< [ι1; o1; ρ1] , E [x] >, then we have to consider the following two

subcases:
◦ M 6∈ VMod, then applying the first part of this theorem we have that

M ≡ M
[
RM

]
for some RM and there exists M ′ s.t. RM - M ′.

Hence, we have that C + M
(sum-closure)- C +M [M ′];

◦ M ∈ VMod, that is, M ≡ [ι2; o2; ρ2], then < [ι1; o1; ρ1] , E [x] >

+ [ι2; o2; ρ2]
(sum/basic)- < [ι1, ι2; o1, o2; ρ1, ρ2] , E [x] >. Note that

we can perform this reduction step since all side-conditions are satisfied
(similarly to the case (M -sum) seen before);

· C ≡ link-σC
′, then we have that link-σC

′ + M
(sum/link-)- link-σ(C ′ + M).

(C-reduct) : we derive `C σι |C|σo : ([π̃ι ∪ πι\dom(σι); π̃o] , τ). We sup-

pose C 6∈ VConf (otherwise we would have σι |C|σo ∈ VConf). Applying the
inductive hypothesis to the premise of the typing rule (C-reduct), that is
`C C : ([πι

1; πo] , τ), we have that one of the following three cases holds:
• C ≡ C

[
RC

]
for some RC and there exists C ′ s.t. RC - C ′. In this case,

we can conclude by observing that σι |C|σo ∈ CCtx;
• C ≡ CM

[
RM

]
for some RM and there exists M ′ s.t. RM - M ′. In

this case, we can conclude by observing that σι |CM|σo ∈ CMCtx;
• C - err(X : τ, π), then, using the Lemma A.1, we obtain that C has

one of the following two forms:
· C ≡< [ι; o; ρ] , E [x] >, then

σι |< [ι; o; ρ] , E [x] >|σo
(reduct/basic)- < [σι ◦Name ι, ι′; o ◦ σo; ρ] , E [x] >.

Note that we can perform this reduction step since all side-conditions are

26

Ancona, Fagorzi and Zucca

satisfied (similarly to the case (M -reduct) seen before).

· C ≡ link-σC
′, then we have that σι |link-σC

′|σo
(reduct/link-)- link-σ(σι |C ′|σo).

(C-link) : we derive `C linkσC : ([πι\dom(σ); πo] , τ). We suppose C 6∈
VConf (otherwise we would have linkσC ∈ VConf). Applying the induc-
tive hypothesis to the premise of the typing rule (C-link), that is `C C :
([πι; πo] , τ), we have that one of the following three cases holds:
• C ≡ C

[
RC

]
for some RC and there exists C ′ s.t. RC - C ′. In this case,

we can conclude by observing that linkσC ∈ CCtx;
• C ≡ CM

[
RM

]
for some RM and there exists M ′ s.t. RM - M ′. In

this case, we can conclude by observing that linkσCM ∈ CMCtx;
• C - err(X : τ, π), then, using the Lemma A.1, we have that C has one

of the following two forms:
· C ≡< [ι; o; ρ] , E [x] >, then

linkσ< [ι; o; ρ] , E [x] >
(link/basic)- <

[
ι; o; ρ, xi

i∈I7→ oExp(σ(Xi))
]
, E [x] >.

Note that we can perform this reduction step since all side-conditions are
satisfied (similarly to the case (M -link) above).

· C ≡ link-σ′C
′, then we have that linkσ

(
link-σ′C

′) (link/link-)- link-σ′(linkσC
′).

(C-link-) : we derive `C link-σC : ([πι; πo] , τ). Note that since link-σC is

well-formed we surely have that σ 6= ∅. We suppose C 6∈ VConf, (otherwise
we would have link-σC ∈ VConf). Applying the inductive hypothesis to the
premise of the typing rule (C-link-), that is `C C : ([πι; πo] , τ), we have
that one of the following three cases holds:
• C ≡ C

[
RC

]
for some RC and there exists C ′ s.t. RC - C ′. In this case,

we can conclude by observing that link-σC ∈ CCtx;
• C ≡ CM

[
RM

]
for some RM and there exists M ′ s.t. RM - M ′. In

this case, we can conclude by observing that link-σCM ∈ CMCtx;
• C - err(X : τ, π), then, there are two cases to be considered:

· if X ∈ dom(σ) and π(σ(X)) = τ , writing link-σC as link-σ\{X}, X 7→σ(X)C, we

have that link-σ\{X}, X 7→σ(X)C
(link-)- link-σ\{X}

(
linkX 7→σ(X)C

)
, where

link-σ\{X}
(
linkX 7→σ(X)C

)
is identified with linkX 7→σ(X)C if σ\{X} = ∅;

· if X 6∈ dom(σ) or σ(X) 6∈ dom(π) or π(σ(X)) 6= τ , then we have that

link-σC
(link-/err)- err(X : τ, π).

(sel) : we derive `C M.X : ([πι; πo] , πo(X)). There are two cases to be

considered:
• M ≡M

[
RM

]
for some RM and there exists M ′ s.t. RM - M ′. Hence,

27

Ancona, Fagorzi and Zucca

we can conclude by observing that M.X ∈ CMCtx;
• M ∈ VMod, that is M ≡ [ι; o; ρ]. In this case we have that

[ι; o; ρ].X
(sel)- < [ι; o; ρ] , o(X) >. Note that we surely have X ∈

dom(o) (from well-formedness of πo(X) in the conclusion of the typing
rule (sel)).

2

Theorem 5.3 (Subject reduction)

(A) If `M M : [πι; πo] and M - M ′, then `M M ′ : [πι; πo];

(B) if `C C : ([πι; πo] , τ) and C - C ′, then there exist πι′ ⊆ πι such that

`C C ′ : ([πι′; πo] , τ).

Proof. Both the two facts are proved by induction on reduction rules.

(A)

(M-ctx) : we derive M
[
RM

]
- M [M]. In this case we proceed by

case analysis on the structure of M and in all cases we can conclude by
applying the inductive hypothesis.

(M-sum) : we derive [ι1; o1; ρ1]+[ι2; o2; ρ2] - [ι1, ι2; o1, o2; ρ1, ρ2]. We

suppose `M [ι1; o1; ρ1] + [ι1; o1; ρ1] : [πι; πo]. This judgment can only be
derived by using rule (M -sum), hence it must be:
• [πι; πo] = [πι

1 ∪ πι
2; πo

1 ∪ πo
2];

• `M [ι1; o1; ρ1] : [πι
1; πo

1]; (1)
• `M [ι2; o2; ρ2] : [πι

2; πo
2]; (2)

Both judgment (1) and (2) can only be derived by using rule (M -basic).
Hence, from (1) we have that it must be:
• [πι

1; πo
1] =

[
Xi : τi

i∈I1 ; Xj : τj
j∈O1

]
;

• [ι1; o1; ρ1] =
[
xi

i∈I17→ Xi : τi; Xj
j∈O17→ ej : τj; xl

l∈L17→ el

]
;

•
{
xh : τh

h∈I1∪L1 `e ek : τk | k ∈ O1 ∪ L1

}
; (1a)

• `
[
Xi : τi

i∈I1 ; Xj : τj
j∈O1

]
. (1b)

And similarly for (2):
• [πι

2; πo
2] =

[
Xi : τi

i∈I2 ; Xj : τj
j∈O2

]
;

• [ι2; o2; ρ2] =
[
xi

i∈I27→ Xi : τi; Xj
j∈O27→ ej : τj; xl

l∈L27→ el

]
;

•
{
xh : τh

h∈I2∪L2 `e ek : τk | k ∈ O2 ∪ L2

}
; (2a)

• `
[
Xi : τi

i∈I2 ; Xj : τj
j∈O2

]
. (2b)

Hence, we get that:

28

Ancona, Fagorzi and Zucca

• [πι
1 ∪ πι

2; πo
1 ∪ πo

2] =
[
Xi : τi

i∈I1∪I2 ; Xj : τj
j∈O1∪O2

]
and from (1b), (2b)

and well-formedness of the two (compatible) unions in πι and πo we have
`

[
Xi : τi

i∈I1∪I2 ; Xj : τj
j∈O1∪O2

]
. (5)

• [ι1, ι2; o1, o2; ρ1, ρ2] =
[
xi

i∈I1∪I27→ Xi : τi; Xj
j∈O1∪O27→ ej : τj; xl

l∈L1∪L27→ el

]
.

By applying to all judgments in (1a) and (2a) the core assumption 5.1 (v),
that is, the weakening property, we obtain:{
xh : τh

h∈I1∪L1∪I2∪L2 `e ek : τk | k ∈ O1 ∪ L1 ∪O2 ∪ L2

}
. (6)

Note that xh : τh
h∈I1∪L1∪I2∪L2 is well-formed since if we perform the step

(M -sum) it implicitly holds that dom(ι1, ρ1) ∩ dom(ι2, ρ2) = ∅.
We can obtain the following derivation:

(5) (6)
(M -basic)`M [ι1, ι2; o1, o2; ρ1, ρ2] : [πι

1 ∪ πι
2; πo

1 ∪ πo
2]

(M-reduct) : we derive σι |[ι, ι′; o; ρ]|σo - [σι ◦Name ι, ι′; o ◦ σo; ρ]. We

suppose `M σι |[ι, ι′; o; ρ]|σo : [πι
M ; πo

M]. This judgment can only be derived
by using rule (M -reduct), hence it must be:
• [πι

M ; πo
M] = [π̃ι ∪ πι\dom(σι); π̃o];

• `M [ι, ι′; o; ρ] : [πι; πo]; (1)
• σι|dom(πι) : πι|dom(σ) → π̃ι; (2)
• σo : π̃o → πo; (3)
Judgment (1) can only be derived by using rule (M -basic), so, it must be:

• [ι, ι′; o; ρ] =
[
xi

i∈I7→ Xi : τi; Xj
j∈O7→ ej : τj; xl

l∈L7→ el

]
;

• [πι; πo] =
[
Xi : τi

i∈I ; Xj : τj
j∈O

]
;

•
{
xh : τh

h∈I∪L `e ek : τk | k ∈ O ∪ L
}
; (1a)

• `
[
Xi : τi

i∈I ; Xj : τj
j∈O

]
. (1b)

We split I in into I1 and I2 such that ι = xi
i∈I17→ Xi : τi and ι′ = xi

i∈I27→ Xi : τi.
Hence, we have that:
• Xi : τi

i∈I1 = πι|dom(σι), from the (implicit) side-condition cod(ιName) ⊆
dom(σι) of reduction rule (M -reduct);

• Xi : τi
i∈I2 = πι\dom(σι), from the side condition cod(ι′Name)∩dom(σι) = ∅

of reduction rule (M -reduct).
Moreover, we observe that in π̃ι and π̃o have the following forms:
• π̃ι = σι(Xi) : τi

i∈I1 , Xi : τi
i∈F , where {Xi | i ∈ F} = cod(σι)\{σι(Xi) | i ∈

I1}, which intuitively corresponds to the new names added to the input
signature.

• π̃o = Xj : τj
j∈Õ, where {σo(Xj) | j ∈ Õ} = cod(σo), with Õ ⊆ O since for

the (implicit) side-condition of reduction rule (M -reduct) we have that
cod(σo) ⊆ dom(o).

Hence, we have that:
• [π̃ι ∪ πι\dom(σι); π̃o] =[(

σι(Xi) : τi
i∈I1 , Xi : τi

i∈F
)
∪Xi : τi

i∈I2 ; Xj : τj
j∈Õ

]
and from (1b), the

29

Ancona, Fagorzi and Zucca

properties (2) and (3) that σι|dom(πι) and σo preserve types and well-
formedness of the (compatible) union in πι

M , we have that

`
[(

σι(Xi) : τi
i∈I1 , Xi : τi

i∈F
)
∪Xi : τi

i∈I2 ; Xj : τj
j∈Õ

]
. (1c’)

• [σι ◦Name ι, ι′; o ◦ σo; ρ] =[
xi

i∈I17→ σι(Xi) : τi, x
f
i

i∈F7→ Xi : τi, xi
i∈I27→ Xi : τi; Xj

j∈Õ7→ ej : τj; xl
l∈L7→ el

]
,

where for all i ∈ F , xf
i is a fresh variable.

We select from (1a) the following subset of judgments:{
xh : τh

h∈I∪L `e ek : τk | k ∈ Õ ∨ k ∈ L
}

. (1a’)

We can now obtain the following derivation:

(1c’)

(1a’)
(Weakening){

xh : τh
h∈I∪L∪F `e ek : τk | k ∈ Õ ∨ k ∈ L

}
(M -basic)`M [σι ◦Name ι, ι′; o ◦ σo; ρ] : [π̃ι ∪ πι\dom(σι); π̃o]

(M-link) : we derive

linkσ

[
xi

i∈I17→ Xi : τi, ι; o; ρ
]

-
[
ι; o; ρ, xi

i∈I17→ oExp(σ(Xi))
]
. We suppose

`M linkσ

[
xi

i∈I17→ Xi : τi, ι; o; ρ
]

: [πι
M ; πo

M]. This judgment can only be

derived by using rule (M -link), hence it must be:
• [πι

M ; πo
M] = [πι\dom(σ); πo]

• `M

[
xi

i∈I17→ Xi : τi, ι; o; ρ
]

: [πι; πo]; (1)

• σ|dom(πι) : πι|dom(σ) → πo. (2)
Judgment (1) can only be derived by using rule (M -basic), so, it must be:

•
[
xi

i∈I17→ Xi : τi, ι; o; ρ
]

=
[
xi

i∈I7→ Xi : τi; Xj
j∈O7→ ej : τj; xl

l∈L7→ el

]
;

• [πι; πo] =
[
Xi : τi

i∈I ; Xj : τj
j∈O

]
•

{
xh : τh

h∈I∪L `e ek : τk | k ∈ O ∪ L
}
; (1a)

• `
[
Xi : τi

i∈I ; Xj : τj
j∈O

]
. (1b)

where ι has the form xi
i∈I27→ Xi : τi, with I = I1 ∪ I2.

We observe that:
• Xi : τi

i∈I1 = πι|dom(σ), from the (implicit) side-condition {Xi | i ∈ I1} ⊆
dom(σ) of reduction rule (M -link);

• Xi : τi
i∈I2 = πι\dom(σ), from the side-condition cod(ιName) ∩ dom(σ) = ∅

of reduction rule (M -link).
Hence, we get:
• [πι\dom(σ); πo] =

[
Xi : τi

i∈I2 ; Xj : τj
j∈O

]
and from (1b) we have that

`
[
Xi : τi

i∈I2 ; Xj : τj
j∈O

]
; (1c’)

•
[
ι; o; ρ, xi

i∈I17→ oExp(σ(Xi))
]

=[
xi

i∈I27→ Xi : τi; Xj
j∈O7→ ej : τj; xl

l∈L7→ el, xi
i∈I17→ oExp(σ(Xi))

]
.

We can now obtain the following derivation:

30

Ancona, Fagorzi and Zucca

(1c’) (1a)
(M -basic)

`M

[
ι; o; ρ, xi

i∈I17→ oExp(σ(Xi))
]

: [πι\dom(σ); πo]

(B)

(C-ctx) : we derive C
[
RC

]
- C [C]. In this case we proceed by case

analysis on the structure of C and in all cases we can conclude by applying
the inductive hypothesis, using the premise of the reduction rule (C-ctx).
In particular, we illustrate the case C = linkσC ′. For hypothesis we have
`C linkσC ′

[
RC

]
: [πι

C ; πo
C]. This judgment can only be derived by using

rule (C-link), hence it must be:
• [πι

C ; πo
C] = [πι\dom(σ); πo]

• `C C ′
[
RC

]
: [πι; πo]; (1)

• σ|dom(πι) : πι|dom(σ) → πo. (2)
By applying the inductive hypothesis to C ′

[
RC

]
- C ′ [C] (derived from

the premise of reduction rule (C-ctx), that is, RC - C, by using (C-ctx)

with evaluation context C ′) with (1) we obtain that there exist πι′ ⊆ πι such
that `C C ′ [C] : [πι′; πo]. (3)
We can now obtain the following derivation:

(3)
(C-link)

`C linkσC ′ [C] :
[
πι′\dom(σ); πo

]
Note that we can apply this rule since from πι′ ⊆ πι we get that σ|dom(πι′) :
πι′|dom(σ) → πo.

(CM-ctx) : we derive CM
[
RM

]
- CM [M]. In this case we proceed

by case analysis on the structure of CM and in all cases we can conclude
by applying the first point of this theorem.

(sel) : we derive [ι; o; ρ].X - < [ι; o; ρ] , o(X) >. We suppose `C

[ι; o; ρ].X : ([πι; πo] , τ). This judgment can only be derived by using rule
(sel), so it must be:
• `M [ι; o; ρ] : [πι; πo]; (1)
• τ = πo(X). (2)
Judgment (1) can only be derived by using rule (M -basic), so it must be:

• [ι; o; ρ] =
[
xi

i∈I7→ Xi : τi; Xj
j∈O7→ ej : τj; xl

l∈L7→ el

]
;

• [πι; πo] =
[
Xi : τi

i∈I ; Xj : τj
j∈O

]
;

• `
[
Xi : τi

i∈I ; Xj : τj
j∈O

]
; (1a)

•
{
xh : τh

h∈I∪L `e ek : τk | k ∈ O ∪ L
}
. (1b)

Since X ∈ dom(o) (from the (implicit) side-condition of reduction rule (sel)),
we have that there exists p ∈ O such that X = Xp, o(X) = ep and for (2)

31

Ancona, Fagorzi and Zucca

πo(X) = τp; hence, from (1b) we get
xh : τh

h∈I∪L `e o(X) : τ . (1c)
We can now obtain the following derivation:

(1a) (1b) (1c)
(C-basic)

`C< [ι; o; ρ] , o(X) >: ([πι; πo] , πo(X))

(core) : we derive that < [ι; o; ρ] , e > - < [ι; o; ρ] , e′ >.

We suppose `C< [ι; o; ρ] , e >: ([πι; πo] , τ). This judgment can only be
derived by using rule (C-basic), so it must be:

• [ι; o; ρ] =
[
xi

i∈I7→ Xi : τi; Xj
j∈O7→ ej : τj; xl

l∈L7→ el

]
;

• [πι; πo] =
[
Xi : τi

i∈I ; Xj : τj
j∈O

]
;

• `
[
Xi : τi

i∈I ; Xj : τj
j∈O

]
; (1)

•
{
xh : τh

h∈I∪L `e ek : τk | k ∈ O ∪ L
}
; (2)

• xh : τh
h∈I∪L `e e : τ . (3)

From (3) and from the premise of the rule (core), that is, e
e
- e′, by ap-

plying the core assumption 5.1 (iii), that is, the subject reduction property,
we get xh : τh

h∈I∪L `e e′ : τ . (4)
We can now obtain the following derivation:

(1) (2) (4)
(C-basic)

`C< [ι; o; ρ] , e′ >: ([πι; πo] , τ)

(var) : we derive < [ι; o; ρ] , E [x] > - < [ι; o; ρ] , E{ρ(x)} >. We

suppose `C< [ι; o; ρ] , E [x] >: ([πι; πo] , τ). This judgment can only be
derived by using rule (C-basic), so it must be:

• [ι; o; ρ] =
[
xi

i∈I7→ Xi : τi; Xj
j∈O7→ ej : τj; xl

l∈L7→ el

]
;

• [πι; πo] =
[
Xi : τi

i∈I ; Xj : τj
j∈O

]
;

• `
[
Xi : τi

i∈I ; Xj : τj
j∈O

]
; (1)

•
{
xh : τh

h∈I∪L `e ek : τk | k ∈ O ∪ L
}
; (2)

• xh : τh
h∈I∪L `e E [x] : τ . (3)

Since for the side-condition of the reduction rule (var) we have that x ∈
dom(ρ), then there exists p ∈ L such that x = xp and so ρ(x) = ep and
(from (2)) xh : τh

h∈I∪L `e ρ(x) : τp. (4)
From (3) and (4), since for the (implicit) side-condition or reduction rule
(var) we have that x 6∈ HB (E), by applying the core assumption 5.1 (iv),
that is, the Substitution Lemma, we get:
xh : τh

h∈I∪L `e E{ρ(x)} : τ . (5)
We can now obtain the following derivation:

(1) (2) (5)
(C-basic)

`C< [ι; o; ρ] , E{ρ(x)} >: ([πι; πo] , τ)

32

Ancona, Fagorzi and Zucca

(var/err) and (link-/err) : we do not consider this rules since they re-

duce a configuration into an error.

(sum/basic) : we derive

< [ι1; o1; ρ1] , e > + [ι2; o2; ρ2] - < [ι1, ι2; o1, o2; ρ1, ρ2] , e >.

We suppose `C< [ι1; o1; ρ1] , e > + [ι2; o2; ρ2] : ([πι; πo] , τ). This judg-
ment can only be derived by using rule (C-sum), so it must be:
• [πι; πo] = [πι

1 ∪ πι
2; πo

1 ∪ πo
2];

• `C< [ι1; o1; ρ1] , e >: ([πι
1; πo

1] , τ); (1)
• `M [ι2; o2; ρ2] : [πι

2; πo
2]; (2)

Judgment (1) can only be derived by using rule (C-basic), so, it must be:
• [πι

1; πo
1] =

[
Xi : τi

i∈I1 ; Xj : τj
j∈O1

]
;

• [ι1; o1; ρ1] =
[
xi

i∈I17→ Xi : τi; Xj
j∈O17→ ej : τj; xl

l∈L17→ el

]
;

•
{
xh : τh

h∈I1∪L1 `e ek : τk | k ∈ O1 ∪ L1

}
; (1a)

• `
[
Xi : τi

i∈I1 ; Xj : τj
j∈O1

]
; (1b)

• xh : τh
h∈I1∪L1 `e e : τ . (1c)

Similarly, judgment (2) can only be derived by using rule (M -basic), so, it
must be:
• [πι

2; πo
2] =

[
Xi : τi

i∈I2 ; Xj : τj
j∈O2

]
;

• [ι2; o2; ρ2] =
[
xi

i∈I27→ Xi : τi; Xj
j∈O27→ ej : τj; xl

l∈L27→ el

]
;

•
{
xh : τh

h∈I2∪L2 `e ek : τk | k ∈ O2 ∪ L2

}
; (2a)

• `
[
Xi : τi

i∈I2 ; Xj : τj
j∈O2

]
. (2b)

By applying the core assumption 5.1 (v), that is, the weakening property,
to (1c) we get xh : τh

h∈I1∪L1∪I2∪L2 `e e : τ ; hence, in a similar way to what
seen for the case (M -sum), we can derive from (1a), (2a), (1b) and (2b) the
judgment `C< [ι1, ι2; o1, o2; ρ1, ρ2] , e >: ([πι

1 ∪ πι
2; πo

1 ∪ πo
2] , τ).

(sum-closure) : we derive

< [ι; o; ρ] , e > +M - < [ι; o; ρ] , e > +M ′. We suppose `C<

[ι; o; ρ] , e > +M : ([πι; πo] , τ). This judgment can only be derived by
using rule (C-sum), so it must be:
• [πι; πo] = [πι

1 ∪ πι
2; πo

1 ∪ πo
2];

• `C< [ι; o; ρ] , e >: ([πι
1; πo

1] , τ); (1)
• `M M : [πι

2; πo
2]; (2)

• πo
1 ∩ πo

2 = ∅; (3)
By applying the first point of this theorem to the premise of the reduction
rule (sum-closure), that is, M - M ′, and to (3), we get:

`M M ′ : [πι
2; πo

2] (4)
We can now obtain the following derivation:

(1) (4)
(C-sum) using (3)

`C< [ι; o; ρ] , e > +M ′ : ([πι
1 ∪ πι

2; πo
1 ∪ πo

2] , τ)

33

Ancona, Fagorzi and Zucca

(sum/link-) : we derive link-σC + M - link-σ(C + M).

We suppose `C link-σC + M : ([πι; πo] , τ). This judgment can only be
derived by using (C-sum), so it must be:
• [πι; πo] = [πι

1 ∪ πι
2; πo

1 ∪ πo
2];

• `C link-σC : ([πι
1; πo

1] , τ); (1)
• `M M : [πι

2; πo
2]. (2)

Judgment (1) can only be derived by using rule (C-link-), so, it must be:
`C C : ([πι

1; πo
1] , τ). (1a)

We can now obtain the following derivation:

(1a) (2)
(C-sum)

`C C + M : ([πι
1 ∪ πι

2; πo
1 ∪ πo

2] , τ)
(C-link-)

`C link-σ(C + M) : ([πι
1 ∪ πι

2; πo
1 ∪ πo

2] , τ)

(reduct/basic) : in this case the thesis follows similarly to what seen for

the case (M -reduct), by applying rule (C-basic).

(reduct/link-) : we derive that σι |link-σC|σo - link-σ(σι |C|σo). We sup-

pose `C σι |link-σC|σo : ([πι
M ; πo

M] , τ). This judgment can only be derived
by using rule (C-reduct), so it must be:
• [πι

M ; πo
M] = [π̃ι ∪ πι\dom(σι); π̃o];

• `C link-σ′C : ([πι; πo] , τ); (1)
• σι|dom(πι) : πι|dom(σ) → π̃ι; (2)
• σo : π̃o → πo. (3)
Judgment (1) can only be derived by using rule (C-link-), so it must be:
`C C : ([πι; πo] , τ). (1a)
We can now obtain the following derivation:

(1a)
(C-reduct) with (2) and (3)

`C σι |C|σo : ([π̃ι ∪ πι\dom(σι); π̃o] , τ)
(C-link-)

`C link-σ(σι |C|σo) : ([π̃ι ∪ πι\dom(σι); π̃o] , τ)

(link/basic) : in this case the thesis follows similarly to what seen for the

case (M -link), by applying rule (C-basic).

(link/link-) : we derive that linkσ

(
link-σ′C

)
- link-σ′(linkσC). We sup-

pose `C linkσ

(
link-σ′C

)
: ([πι

M ; πo
M] , τ). This judgment can only be derived

by using rule (C-link), so it must be:
• [πι

M ; πo
M] = [πι\dom(σ); πo];

• `C link-σ′C : ([πι; πo] , τ); (1)
• σ|dom(πι) : πι|dom(σ) → πo. (2)
Judgment (1) can only be derived by using rule (C-link-), so it must be:
`C C : ([πι; πo] , τ). (1a)

34

Ancona, Fagorzi and Zucca

We can now obtain the following derivation:

(1a)
(C-link) with (2)

`C linkσC : ([πι\dom(σ); πo] , τ)
(C-link-)

`C link-σ′(linkσC) : ([πι\dom(σ); πo] , τ)

(link-) : we derive link-σ,X 7→Y C - link-σ(linkX 7→Y C). We suppose `C

link-σ, X 7→Y C : ([πι
M ; πo

M] , τ). This judgment can only be derived by using
rule (C-link-), so it must be `C C : ([πι

M ; πo
M] , τ). (1)

Since for the premise of the reduction rule (link-) we have that C - err(X :

τ, π), with π(Y) = τ , from (1), by applying the second point of Lemma A.1,
we obtain that X : τ ∈ πι

M and π = πo
M . Hence, πι

M(X) = πo
M(Y). (2)

We can now obtain the following derivation:

(1)
(C-link) with (2)

`C linkX 7→Y C : ([πι
M \{X}; πo

M] , τ)
(C-link-)

`C link-σ′(linkσC) : ([πι
M \{X}; πo

M] , τ)

Note that πι
M \{X} ⊆ πι

M .

2

35

	Introduction
	An informal introduction to the calculus
	Syntax and semantics
	Type system
	Results
	Conclusion
	References
	Results and proofs

