
April 17, 2007 23:0 WSPC - Proceedings Trim Size: 9in x 6in main

1

Type inference for polymorphic methods
in Java-like languages∗

Davide Ancona and Giovanni Lagorio and Elena Zucca

DISI, Univ. of Genova, v. Dodecaneso 35, 16146 Genova, Italy
email: {davide,lagorio,zucca}@disi.unige.it

In languages like C++, Java and C#, typechecking algorithms require methods to be
annotated with their parameter and result types, which are either fixed or constrained
by a bound.

We show that, surprisingly enough, it is possible to infer the polymorphic type
of a method where parameter and result types are left unspecified, as happens in
most functional languages. These types intuitively capture the (less restrictive) re-
quirements on arguments needed to safely apply the method.

We formalize our ideas on a minimal Java subset, for which we define a type
system with polymorphic types and prove its soundness. We then describe an al-
gorithm for type inference and prove its soundness and completeness. A prototype
implementing inference of polymorphic types is available.

1. Introduction

Type inference is the process of automatically determining the types of expres-
sions in a program. That is, programmers can avoid writing some (or all) type
declarations in their programs when type inference is employed.

At the source code level, the situation appears very similar to using un-
typed (or dynamically typed) languages, as in both cases programmers are not
required to write type declarations. However, the similarities end there: when
type inference is used, types are statically found and checked by the compiler
so no “message not understood” errors can ever appear at runtime (as it may
happen when using dynamically typed languages).

To most people the idea of type inference is so tightly tied to functional
languages that hearing about one of them automatically springs to mind the
other. While it is conceivable to have one without the other, it is a fact that
all successful functional languages (like ML, CaML and Haskell) exploit type
inference. Type inference often goes hand in hand with another appealing con-
cept: polymorphism. Indeed, even though type inference and polymorphism are
independent concepts, in inferring a type for, say, a function f , it comes quite
naturally trying to express “the best” type for f . Indeed, all above mentioned

April 17, 2007 23:0 WSPC - Proceedings Trim Size: 9in x 6in main

2

functional languages support both type inference and polymorphism. Outside
the world of functional languages, most works on inferring type constraints for
object-oriented languages1–5 have dealt with structural types. However, in main-
stream class-based object-oriented languages with nominal types, typechecking
algorithms require methods to be annotated with their parameter types, which
are either fixed or constrained by a (nominal) bound.

We show that, surprisingly enough, the approach of inferring the most gen-
eral function types works smoothly for Java-like languages too. That is, we can
define polymorphic types for methods and automatically infer these types when
type annotations are omitted. These polymorphic types intuitively express the
(minimal) requirements on arguments needed to safely apply the method.

The rest of the paper is organized as follows. In Section 2 we formally define a
type system with polymorphic method types for Featherweight Java,6 illustrate
its meaning on some examples and show that it is is sound, in the usual sense
that well-typed programs never go stuck. In Section 3 we illustrate an algorithm
for inferring polymorphic method types, by first deriving constraints for any
method in isolation and then simplifying these constraints by checking that
mutual assumptions are satisfied. In Section 4 we briefly describe the prototype
we have developed and discuss other implementation issues. Finally, in Section 5
we discuss related work and in Section 6 we summarize our contribution and
draw some directions for further research.

A preliminary version of the ideas exploited in this paper is in a previous
work7 by two of the authors (see the Conclusion for a comparison).

2. A type system with polymorphic method types

P ::= cd1 . . . cdn

cd ::= class C extends C′ { mds } (C 6= Object)
mds ::= md1 . . .mdn

md ::= mh {return e;}
mh ::= [C] m(t1 x1, . . . , tn xn)
t ::= C | α
e ::= new C() | x | e0.m(e1, . . . , en)

where class names declared in P, method names declared in mds, and parameter
names declared in mh are required to be distinct

Fig. 1. Syntax

We formalize our approach on a minimal language, whose syntax is given
in Figure 1. This language is basically Featherweight Java,6 a tiny Java subset

April 17, 2007 23:0 WSPC - Proceedings Trim Size: 9in x 6in main

3

which has become a standard example to illustrate extensions and new tech-
nologies for Java-like languages. However, to focus on the key technical issues
and give a compact soundness proof, we do not even consider fields, construc-
tors, and casts, since these features do not pose substantial new problems to our
aim†. The only new feature we introduce is the fact that type annotations for
parameters can be, besides class names, type variables α (in the concrete syntax
the user just omits these types and fresh variables are automatically generated
by the compiler). Correspondingly, the result type can be omitted, as indicated
by the notation [C].

We informally illustrate the approach on a simple example.

class A { A m(A anA) { return anA ; }}

class B { B m(B aB) { return aB ; }}

class Example {

polyM(x,y) {return x.m(y) ;}

Object okA() {return this.polyM(new A(), new A()) ;}

Object okB() {return this.polyM(new B(), new B()) ;}

Object notOk() {return this.polyM(new A(), new B()) ;}}

In this example, method polyM is the only polymorphic method, all the others
are standard methods. Polymorphic methods can be safely applied to arguments
of different types; however, their possible argument types are determined by a set
of constraints, rather than by a single subtyping constraint as in Java generic
methods. Intuitively, the polymorphic type of polyM should express that the
method can be safely applied to arguments of any pair (α, β) s.t. α has a method
m applicable to β, and the result type is that of m. Formally, method polyM has
the polymorphic type µ(γ α.m(β))⇒α β→γ, which means that polyM has two
parameters of type α and β and returns a value of type γ (right-hand side of
⇒), providing that the constraint µ(γ α.m(β)) is satisfied (left-hand side of ⇒),
that is, class α has a method m which can be safely applied to an argument of
type β by returning a value of type γ.

In a type environment where we have‡ this type for Example.polyM, type-
checking of methods Example.okA and Example.okB should succeed, while type-
checking of Example.notOk should fail because it invokes polyM with arguments
of types A and B, so, in turn, polyM requires a method m in A which can receive
a B (and there is no such method in the example).

We will see later other examples illustrating how chains of method calls and
recursion are handled. Type environments ∆ are formally defined in Figure 2.
They are sequences of class signatures, which are triples consisting of a class
name, the name of the parent and a sequence of method signatures.

†They can be easily handled by just considering new kinds of constraints, see the following.
‡We will see in Section 3 how to infer this type.

April 17, 2007 23:0 WSPC - Proceedings Trim Size: 9in x 6in main

4

∆ ::= cs1 . . . csn

cs ::= (C, C′,mss)
mss ::= ms1 . . .msn

ms ::= Γ⇒ t m(t1 . . . tn)
Γ ::= γ1 . . . γn

γ ::= t ≤ t′ | µ(t t0.m(t1 . . . tn))

Fig. 2. Type environments

A method signature is a tuple consisting of a set of constraints Γ, a result
type, a method name, and sequence of parameter types.

In the simple language we consider, there are only two forms of constraints:
t ≤ t′, meaning that type t must be a subtype of t′, and µ(t t0.m(t1 . . . tn)),
meaning that type t0 must have a (either directly declared or inherited) method
named m applicable to arguments of types t1 . . . tn and giving, for these ar-
gument types, a result of type t. Fields, constructors and casts can be easily
handled, as done in another work,8 adding constraints of the form: φ(t′ t.f),
meaning that type t must have a (either directly declared or inherited) field
named f of type t′, κ(t(t1 . . . tn)), meaning that type t must have a constructor
applicable to arguments of types t1 . . . tn, and t ∼ t′, meaning that either type
t must be a subtype of t′ or conversely.

Note that, w.r.t. the standard Java case, type environments cannot be triv-
ially extracted from (either source or binary) code by just taking method headers,
since we also need constraints. Instead, constructing the type environment as-
sociated with a program requires a non-trivial inference process, which will be
described in the next section. In practice, we expect this process to be applied
to some source code, say S, generating bytecode B enriched by its constraints.
In this way, separate compilation can be implemented as it is in standard Java,
since source code using this bytecode could be compiled by just extracting in a
trivial way the type environment from B. Rules for typechecking a program in a
given type environment are given in Figure 3.

By rule (P), a program is well-typed in the type environment ∆ if ∆ is well-
formed (` ∆�), and every class declaration conforms to the type environment
∆. The judgment ` ∆� is defined in Figure A2 in the Appendix.

By rule (cd), in the type environment ∆ we can derive a class signature from
a class declaration with name C if in ∆ and current class C (needed as type of
this) we can derive for each method declaration the given method signature.

Rules (md-α) and (md-C) check that the body e of m conforms to the method
type Γ⇒ t1 . . . tn → t found in ∆, and extracted by the function mtype, see
Figure A1 in the Appendix. More precisely, e is typechecked in ∆, under the
method constraints Γ, and in a parameter environment Π which assigns to the

April 17, 2007 23:0 WSPC - Proceedings Trim Size: 9in x 6in main

5

(P)
∆ ` cdi : csi ∀i ∈ 1..n ` ∆�

∆ ` cd1 . . . cdn�
∆ = cs1 . . . csn

(cd)
∆; C ` mdi : msi ∀i ∈ 1..n

∆ ` class C extends C′ {md1 . . .mdn} : (C, C′,ms1 . . .msn)

(md-α)

∆; x1 : t1, . . . , xn : tn, this:C0; Γ ` e : t′

∆; Γ`t′ ≤ t

∆; C0 ` m(t1 x1, . . . , tn xn) {return e;} :
Γ⇒ t m(t1 . . . tn)

mtype(∆, C0,m) = Γ⇒t1 . . . tn→t

(md-C)

∆; x1 : t1, . . . , xn : tn, this:C0; Γ ` e : t′

∆; Γ`t′ ≤ C

∆; C0 ` C m(t1 x1, . . . , tn xn) {return e;} :
Γ⇒ C m(t1 . . . tn)

mtype(∆, C0,m) = Γ⇒t1 . . . tn→C

(x)
∆; Π; Γ ` x : t

Π(x) = t

(call)
∆; Π; Γ ` ei : ti ∀i ∈ 0..n ∆; Γ`µ(t t0.m(t1 . . . tn))

∆; Π; Γ ` e0.m(e1, . . . , en) : t

(new)
∆; Γ`C ≤ C

∆; Π; Γ ` new C() : C
Fig. 3. Rules for typechecking

implicit parameter this the current class, and to each parameter the correspond-
ing type. Moreover, if an explicit return type was written by the user, then this
type must conform with the return type found in ∆ (md-C).

The entailment judgment ∆; Γ ` γ is formally defined in Figure A3 in the
following. Intuitively, it holds if the constraint γ either holds in ∆ or is one of
the constraints in Γ. We will also write ∆`γ for ∆; ∅`γ.

The last three rules define the typing judgment for expressions, which has
form ∆; Π; Γ ` e : t. The type environment ∆ is needed to perform type checks
involving existing classes (for instance, C1 ≤ C2), whereas the constraints Γ
express requirements on the parameter types which are just assumed to hold for
the current method.

Rule (x) is standard.
By rule (call), in the type environment ∆ and parameter environment Π,

April 17, 2007 23:0 WSPC - Proceedings Trim Size: 9in x 6in main

6

under the constraints Γ, we can typecheck a method call if the receiver and
arguments can be successfully typechecked, and the type of the receiver has a
method with the given name applicable to the argument types. The type of the
method call is the return type of the method for the given argument types.

Rule (new) is standard, except for the constraint C ≤ C, which encodes the
fact that C must be an existing class in order for the creation expression to be
correct (see rule (≤-refl-class) in Figure A3).

The rules for well-formed type environments can be found in Figure A2 in
the Appendix.

A type environment is well-formed only if it satisfies a number of conditions,
including standard FJ and Java conditions (names of declared classes and meth-
ods are unique in a program and class declaration, respectively, all used class
names are declared, there are no cycles in the inheritance hierarchy). Moreover,
type variables appearing as parameter types must be distinct, and methods must
use disjoint sets of variables (this condition prevents variable clashes in rule (µ)
in Figure A3). Constraints in method types must be in normal form, that is,
of the form γ ::= α ≤ t | µ(t α.m(t1 . . . tn)); intuitively, this means that they
correspond to requirements on argument types. Finally, overriding must be safe
in a sense which goes beyond that of standard Java since we have also to check
that constraints in the heirs are, roughly, no stronger than those in their parent,
see rule (overriding) in Figure 2.

Figure A3, in the Appendix, contains the formal definition of the entailment
judgment. The rules are pretty straightforward, except for (µ),

(µ)

{∆; Γ`ti ≤ Ci | t′i ≡ Ci}
∆; Γ, µ(t C0.m(t1 . . . tn))`σ(Γ′)

∆; Γ`µ(t C0.m(t1 . . . tn))

mtype(∆, C0,m) =Γ′⇒t′1 . . . t′n→t′

t′i ≡ αi =⇒ σ(αi) = ti

σ(t′) = t

where σ denotes a substitution mapping type variables into types. This rule
states that a constraint µ(t C0.m(t1 . . . tn)) holds in a given type environment
∆, under assumptions Γ, if in ∆ there exists a method applicable to the given
argument types leading to the given return type. Applicability of a method
goes beyond that of standard Java, since, for parameter types which are type
variables, the method is applicable only if by replacing these variables by the
corresponding argument types we obtain a set of provable constraints.

Referring to the previous example, for instance the invocation
this.polyM(new A(), new A()) in method Object okA() typechecks since
the judgment ∆ ` µ(A Example.polyM(A A)) holds, with ∆ the type
environment corresponding to the program. This judgment holds since
mtype(∆, Example, polyM) = µ(γ α.m(β)) ⇒ α β → γ and, by substituting α,
β and γ with A we get µ(A A.m(A)) which holds in ∆.

Note that in the premise of the rule we add µ(t C0.m(t1 . . . tn)) to Γ. This is

April 17, 2007 23:0 WSPC - Proceedings Trim Size: 9in x 6in main

7

needed to be able to typecheck recursive methods avoiding infinite proof trees,
as in the following example:

class C {

m (x) { return x.m(x);}

Object test () { return this.m(this); }

}

Here, polymorphic method m has type µ(β α.m(α)) ⇒ α → β. The invocation
this.m(this) in method test typechecks since the judgment ∆ ` µ(C C.m(C))
holds, with ∆ the type environment corresponding to the program. This judg-
ment holds since mtype(∆, C, m) = µ(β α.m(α))⇒ α→ β and, by substituting
α and β with C we get the constraint µ(C C.m(C)) which should not be proved
again.

The following rule defines the overriding judgment.

(overriding)

∆; Γ`σ(Γ′)
{∆; Γ`ti ≤ Ci | t′i ≡ Ci}
∆; Γ`σ(t′) ≤ t

∆ ` mt← mt′

mt = Γ⇒t1 . . . tn→t,
mt′ = Γ′⇒t′1 . . . t′n→t′

t′i ≡ αi =⇒ σ(αi) = ti

This rule states that a method type safely overrides another if the constraints
in the heir can be derived from those of its parent, modulo a substitution that
maps type variables used as parameter types in the heir into the corresponding
parameter types in the parent. This condition intuitively guarantees that the
method body of the heir (which has been typechecked under the heir constraints)
can be safely executed under its parent constraints. Moreover, parameter types
in the heir which are classes must be more generic, and return type more specific.
Note that on monomorphic methods the definition reduces to contravariance for
parameter types and covariance for return type, hence to a more liberal condition
than in standard FJ and Java.

The type system with polymorphic method types we have defined is sound,
that is, expressions which can be typed by using (the type information corre-
sponding to) a well-formed program P can be safely executed w.r.t. this program,
where reduction rules for →P are standard and shown in Figure ?? in the Ap-
pendix. This means in particular that these expressions are ground and do not
require type constraints. The proof is given by the standard subject reduction
and progress properties, and requires a number of lemmas (see the Appendix).
The proof schema is similar to that given for Featherweight GJ;9 roughly, in
Featherweight GJ only a kind of constraints on type variables is considered,
that is, that they satisfy their (recursive) upper bound.

Theorem 2.1 (Progress). If ∆ ` P� and ∆; ∅; ∅ ` e : t, then either e =
new C() or e→P e′ for some e′.

April 17, 2007 23:0 WSPC - Proceedings Trim Size: 9in x 6in main

8

Theorem 2.2 (Subject reduction). If ∆ ` P� and ∆; Π; ∅ ` e : t, e →P e′,
then ∆; Π; ∅ ` e : t′, ∆`t′ ≤ t.

3. Inferring polymorphic method types

The algorithm which computes Γnf is described in pseudocode in Figure 4, to-
gether with its pre- and postcondition. The variable all contains the current set of
constraints, and the variable done keeps trace of those which have already been
checked. We write ∆`Γ ∼ Γ′ to denote that ∆; Γ`Γ′ and ∆;Γ′`Γ hold. Some
examples of this algorithm at work are shown in Section 6.1 in the Appendix.

{all==Γ && done==∅ &&!failure}
while (∃γ ∈ (all \ done not in normal form)&&!failure) {

done = done ∪ {γ};
switch γ
case C ≤ C′:
if (∆ 6`C ≤ C′) failure = true;

case µ(α C.m(t1 . . . tn)):
mt = mtype(∆, C, m);
if (mt undefined) failure = true;

else

let mt = Γ′⇒t′1 . . . t′m→t′ in

if (m!=n) failure = true;

else

subst = {αi 7→ ti | t′i ≡ αi};
subst = subst ∪ {α 7→ subst(t′)};
all = subst(all ∪ Γ′ ∪ {ti ≤ Ci | t′i ≡ Ci});
done = subst(done);

}
{!failure==(∃Γnf in normal form and σ s.t. ∆`Γnf ∼ σ(Γ))};

Fig. 4. Simplification of constraints

Note that the switch construct covers all possible cases. Indeed, since con-
straints in Γ are generated by the type inference algorithm (shown in Figure A4
in the Appendix), and substitution always apply only to parameter types, it is
easy to see that we never get constraints of form C ≤ α or µ(C′ C.m(t1 . . . tn));
this condition is omitted in the formal invariant for simplicity.

Theorem 3.1 (Correctness of the algorithm). The algorithm in Figure 4
is correct w.r.t. the given pre- and postcondition.

Theorem 3.2 (Soundness of type inference). If ` cd1 . . . cdn : ∆, then
∆ ` cd1 . . . cdn�.

April 17, 2007 23:0 WSPC - Proceedings Trim Size: 9in x 6in main

9

Theorem 3.3 (Completeness of type inference). If P = cd1 . . . cdn, ` cdi :
csi for all i ∈ 1..n and the simplification algorithm fails on cs1 . . . csn, then there
exists no ∆ s.t. ∆ ` cd1 . . . cdn�.

Extension to full FJ When considering full FJ, the other forms of constraints
which come out can be easily accommodated in the schema. For instance, con-
straints of the form φ(t′ t.f) (type t must have a field named f of type t′) and
t ∼ t′ (t must be a subtype of t′ or conversely) can be handled as the t ≤ t′

constraints, in the sense that they must be just checked, whereas constraints of
the form κ(t(t1 . . . tn)), meaning that type t must have a constructor applicable
to arguments of types t1 . . . tn, are a simpler version of the µ(t′ t.m(t1 . . . tn))
constraints, in the sense that they can generate new constraints when checked.

4. Implementation

We have developed a small prototype that implements the type inference and
simplification of constraints described, respectively, in Figure A4 and 4. This pro-
totype, written in Java, can be tried out using any Java-enabled web browser§.

Currently, it supports only the language described in the paper, and imple-
ments an overriding rule which is simpler (and less liberal) than that presented
on page 7:

(simple-overriding)
σ(Γ′) ⊆ Γ σ(t′i) = ti ∀ i ∈ 0..n

∆ ` (Γ⇒t1 . . . tn→t0)← (Γ′⇒t′1 . . . t′n→t′0)

However, we are working on an extension implementing the full overriding rule
and supporting other language features as constructors, fields and some state-
ments in order to experiment with more significant examples.

Adding new constructs should not pose particular challenges, since it boils
down to adding new kinds of constraints to model features like field accesses,
constructor invocations and type equality. All these kinds of constraints are
conceptually simpler than the two we already handle.

Future work includes real compilation of sources into standard Java
source/bytecode, where the challenging part is the translation of invocations
of polymorphic methods, since every JVM (Java Virtual Machine) invocation
instruction must be fully annotated with the static standard types of target and
arguments, and not with type variables. Java generics, being oblivious to the
JVM, are of no help.

By using reflection, as suggested by Lagorio and Zucca,7 invocations involving
polymorphic types can be easily translated into standard Java source/bytecode.
Producing efficient Java bytecode, on the other hand, is more challenging.

§Available at http://www.disi.unige.it/person/LagorioG/justII/.

April 17, 2007 23:0 WSPC - Proceedings Trim Size: 9in x 6in main

10

Reflection could be probably avoided instantiating polymorphic methods into
sets of monomorphic ones, a là C++ templates, but this may result in code bloat.

5. Related Work

As mentioned in the Introduction, the idea of omitting type annotations in
method parameters has been preliminarly investigated in a previous work.7 How-
ever, there the key problem of solving recursive constraint sets is avoided by
imposing a rather severe restriction on polymorphic methods.

The type inference algorithm presented here can be seen as a generalization
of that for compositional compilation of Java-like languages.8 Indeed, the idea
leading to the work in this paper came out very nicely by realizing that the
constraint inference algorithm adopted there for compiling classes in isolation
extends smoothly to the case where parameter types are type variables as well.

However, there are two main differences.

• The compositional compilation algorithm8 only eliminates constraints,
whereas here new constraints can be added since other methods can be
invoked in a method’s body, thus making termination more an issue.
• Here, since we may also have type variables as method parameter types,

substitutions are not necessarily ground.

Type inference in object oriented languages has been studied before; in par-
ticular, an algorithm for a basic language with inheritance, assignments and
late-binding has been described.1,10 An improved version of the algorithm is
called CPA (Cartesian Product Algorithm).11 In these approaches types are set
of classes, like in Strongtalk,12 a typechecker for Smalltalk. More recently, a
modified CPA5 has been designed which introduces conditional constraints and
resolves the constraints by least fixed-point derivation rather than unification.
Whereas the technical treatment based on constraints is similar to ours, their
aim is analyzing standard Java programs (in order to statically verify some prop-
erties as downcasts correctness) rather than proposing a polymorphic extension
of Java.

As already pointed out, while in Java 5 the only available constraint on type
variables is subtyping, in our approach we can take advantage of a richer set
of constraints, thus making method types more espressive; furthermore, while
our system is based on type inference, in Java 5 the type variables and the
constraints associated with a generic method are not inferred, but have to be
explicitly provided by the user.

Our type constraints are more reminiscent of where-clauses?,? used in the
PolyJ language. In PolyJ programmers can write parameterized classes and in-
terfaces where the parameter has to satisfy constraints (the where-clauses) which
state the signatures of methods and constructors that objects of the actual pa-

April 17, 2007 23:0 WSPC - Proceedings Trim Size: 9in x 6in main

11

rameter type must support. The fact that our type constraints are related to
methods rather than classes poses the additional problem of handling recursion.
Moreover, our constraints for a method may involve type variables which cor-
respond not only to the parameters, but also to intermediate result types of
method calls.

As already mentioned, type inference has been deeply investigated in the
context of functional languages since the early 80s, and many of the systems pro-
posed in literature are based on the Hindley/Milner system with constraints.13

In particular, HM(X)14 is a general framework for Hindley/Milner style systems
with constraints, analogous to the CLP(X) framework in constraint logic pro-
gramming, which also include a notion of subsumption relation and can therefore
adapted to a wide variety of type systems, by instantiating the parameter X with
a suitable constraint system.

6. Conclusion

We have shown that it is possible to infer the polymorphic type of a method
where parameter and result types are left unspecified, as happens in most func-
tional languages. Polymorphic method types are expressed by a set of constraints
which intuitively correspond to the minimal requirements on argument types
needed to safely apply the method. Even though we do not attempt at giving a
precise formulation of this statement, we think that the type system proposed
here is in a sense “the most flexible” one can superimpose on, say, Featherweight
Java, taken as the representative of Java-like languages.

We believe this is a nice result, which bridges the world of type inference for
polymorphic functions and the one of object-oriented languages with nominal
types, showing a relation which in our opinion deserves further investigation.

On the more practical side, our work can serve as basis for developing exten-
sions of Java-like languages which allow developers to forget about (some) type
annotations as happens in scripting languages, gaining some flexibility with-
out losing static typing. A different design alternative is to let programmers to
specify (some) requirements on arguments.

As mentioned above, we plan to investigate in more detail some founda-
tional aspects of the work presented in this paper, such as showing that our
polymorphic types actually correspond to principal typings15 for methods, and
comparing our approach with type inference in Standard ML. Another impor-
tant subject of future work is the study of the impact of our proposed extension
on the various aspects of the full Java language. In particular, exception han-
dling and overloading of polymorphic methods are two important features which
are to be taken into account in order to obtain a practical extension of Java.

April 17, 2007 23:0 WSPC - Proceedings Trim Size: 9in x 6in main

12

References

1. J. Palsberg and M. I. Schwartzbach, Object-oriented type inference, in ACM
Symp. on Object-Oriented Programming: Systems, Languages and Applications
1991 , 1991.

2. J. Eifrig, S. F. Smith and V. Trifonov, Type inference for recursively constrained
types and its application to OOP, in Mathematical Foundations of Programming
Semantics, , Electronic Notes in Theoretical Computer Science Vol. 1 (Elsevier
Science, 1995).

3. J. Eifrig, S. F. Smith and V. Trifonov, Sound polymorphic type inference for
objects, in ACM Symp. on Object-Oriented Programming: Systems, Languages and
Applications 1995 , , SIGPLAN Notices Vol. 30(10)1995.

4. J. Palsberg, ACM Comput. Surv. 28, 358 (1996).
5. T. Wang and S. F. Smith, Precise constraint-based type inference for Java,

in ECOOP’01 - European Conference on Object-Oriented Programming , Lecture
Notes in Computer Science 2072 (Springer, 2001).

6. A. Igarashi, B. C. Pierce and P. Wadler, Featherweight Java: A minimal core cal-
culus for Java and GJ, in ACM Symp. on Object-Oriented Programming: Systems,
Languages and Applications 1999 , November 1999.

7. G. Lagorio and E. Zucca, Introducing safe unknown types in Java-like languages, in
ACM Symp. on Applied Computing (SAC 2006), Special Track on Object-Oriented
Programming Languages and Systems, ed. L. Liebrock (ACM Press, 2006).

8. D. Ancona, F. Damiani, S. Drossopoulou and E. Zucca, Polymorphic bytecode:
Compositional compilation for Java-like languages, in ACM Symp. on Principles
of Programming Languages 2005 , (ACM Press, January 2005).

9. A. Igarashi, B. C. Pierce and P. Wadler, ACM Transactions on Programming
Languages and Systems 23, 396 (2001).

10. J. Palsberg and M. I. Schwartzbach, Object-Oriented Type Systems (John Wiley
& Sons, 1994).

11. O. Agesen, The cartesian product algorithm, in ECOOP’05 - Object-Oriented Pro-
gramming , ed. W. Olthoff, Lecture Notes in Computer Science, Vol. 952 (Springer,
1995).

12. G. Bracha and D. Griswold, Strongtalk: Typechecking Smalltalk in a produc-
tion environment, in ACM Symp. on Object-Oriented Programming: Systems, Lan-
guages and Applications 1993 , 1993.

13. R. Milner, Journ. of Computer and System Sciences 17, 348 (1978).
14. M. Odersky, M. Sulzmann and M. Wehr, Theory and Practice of Object Systems

5, 35 (1999).
15. J. B. Wells, The essence of principal typings, in International Colloquium on

Automata, Languages and Programming 2002 , Lecture Notes in Computer Sci-
ence(2380) (Springer, 2002).

Appendix A.

For lack of space we include some figures as an Appendix.
Figure A2 shows the rules for well-formed type environments; the functions

cname, dom, mname, and tvars, whose obvious formal definitions are omitted,
return the name of the declared class in a class signature, the set of declared

April 17, 2007 23:0 WSPC - Proceedings Trim Size: 9in x 6in main

13

mt ::= Γ⇒t1 . . . tn→t

(mtype-1)
mtype(∆, C,m) = Γ⇒t1 . . . tn→t

(C, ,mss) ∈ ∆
Γ⇒ m t(t1 . . . tn) ∈ mss

(mtype-2)
mtype(∆, C′,m) = mt

mtype(∆, C,m) = mt

(C, C′,mss) ∈ ∆
m 6∈ mss

Fig. A1. Method types

classes in a type environment (conventionally including Object), the name of
the declared method in a method signature, and the set of type variables in a
method/class signature.

(wf-ms)
`nf Γ

∆; C` Γ⇒ t m(t1 . . . tn)
i 6= j, ti ≡ αi, tj ≡ αj =⇒ αi 6= αj

ti ≡ Ci =⇒ Ci ∈ dom(∆), t ≡ C =⇒ C ∈ dom(∆)

(wf-cs)
∆; C` msi ∀i ∈ 1..n

∆` (C, C′,ms1 . . .msn)

C 6= Object, C′ ∈ dom(∆)
i 6= j =⇒ mname(msi) 6= mname(msj), tvars(msi) ∩ tvars(msj) = ∅
∆ 6`C′ ≤ C
mtype(∆, C,m) = mt,mtype(∆, C′,m) = mt′ =⇒ ∆ ` mt′ ← mt

(wf-∆)
∆` csi ∀i ∈ 1..n

` cs1 . . . csn�
i 6= j =⇒ cname(csi) 6= cname(csj), tvars(csi) ∩ tvars(csj) = ∅

Fig. A2. Well-formed type environments

6.1. Example of type inference

In this section we will show how to infer polymorphic method types, illustrating
how the type inference algorithm works on an example. Consider the following
FJ program:

class C1 extends Object {

C1 m1(C1 x,C2 y) { return x; }

}

class C2 extends C1 {

m2(x) { return x; }

m3(x) { return new C1().m1(x,this.m2(x)); }

}

April 17, 2007 23:0 WSPC - Proceedings Trim Size: 9in x 6in main

14

(γ)
∆; Γ`γ

γ ∈ Γ (∅)
∆; Γ`∅

(γ Γ′)
∆; Γ`γ ∆; Γ`Γ′

∆; Γ`γ Γ′

(≤-refl-C)
∆; Γ`C ≤ C

(C, ,) ∈ ∆ (≤-refl-α)
∆; Γ`α ≤ α

(≤-inh)
∆; Γ`C ≤ C′

(C, C′,) ∈ ∆ (≤-trans)
∆; Γ`t1 ≤ t2 ∆; Γ`t2 ≤ t3

∆; Γ`t1 ≤ t3

(µ)

{∆; Γ`ti ≤ Ci | t′i ≡ Ci}
∆; Γ, µ(t C0.m(t1 . . . tn))`σ(Γ′)

∆; Γ`µ(t C0.m(t1 . . . tn))

mtype(∆, C0,m) =Γ′⇒t′1 . . . t′n→t′

t′i ≡ αi =⇒ σ(αi) = ti

σ(t′) = t

Fig. A3. Rules for entailment

(P)
` cdi : csi ∀i ∈ 1..n ∆ ∆nf ` ∆nf�

` cd1 . . . cdn : ∆nf
∆ = cs1 . . . csn

(cd)
C ` mdi : msi ∀i ∈ 1..n

` class C extends C′ {md1 . . .mdn} : (C, C′,ms1 . . .msn)

(md-α)
x1 : t1, . . . , xn : tn, this:C0 ` e : Γ⇒ t

C0 ` m(t1 x1, . . . , tn xn) {return e;} : Γ⇒ t m(t1 . . . tn)

(md-C)
x1 : t1, . . . , xn : tn, this:C0 ` e : Γ⇒ t

C0 ` C m(t1 x1, . . . , tn xn) {return e;} : Γ, t ≤ C⇒ C m(t1 . . . tn)

(x)
Π ` x : ∅ ⇒ t

Π(x) = t

(call)
Π ` ei : Γi ⇒ ti ∀i ∈ 0..n

Π ` e0.m(e1, . . . , en) : Γ0, . . . ,Γn, µ(α t0.m(t1 . . . tn))⇒ α
α fresh

(new)
Π ` new C() : C ≤ C⇒ C

Fig. A4. Constraint inference

We first inspect each method in isolation, assuming fresh type variables for
parameter with no explicit type annotations, and generate all the constraints
(involving parameter types and other classes) needed for assigning a type to the
method body.

April 17, 2007 23:0 WSPC - Proceedings Trim Size: 9in x 6in main

15

This constraint inference process is formally described by the rules shown in
Figure A4 in the Appendix.

These rules are fairly straightforward: the basic idea is that, instead of veri-
fying that a certain constraint hold in the given environment, the constraint is
simply added to the set of generated constraints.

In the example we get the following:

• m1 has type ∅⇒C1 C2→C1

• taking type variable α2 as parameter type, m2 has type ∅⇒α2→α2

• taking type variable α3 as parameter type, m3 has type
C1 ≤ C1,µ(β3 C2.m2(α3)), µ(γ3 C1.m1(α3 β3))⇒α3→γ3

In this way, we have constructed an environment ∆. Now, we try to simplify
the method types we have obtained. If simplification succeeds, leading to a sim-
plified environment ∆nf which is well-formed, then the program is well-typed and
has type ∆nf, as shown in (P). Note the difference with the corresponding rule
in Figure 3, where we had an a priori environment assigning types to methods,
which was used to typecheck every class. Here, instead, each class is inspected
in isolation, and simplification of the resulting environment serves to check con-
sistency, in particular that mutual assumptions of methods are satisfied.

More in detail, we try to construct, for each method type Γ⇒t1 . . . tn→t, a
set of constraints in normal form Γnf such that ∆nf; Γnf` is equivalent (modulo
substitution) to ∆; Γ .̀ Roughly, this means that all constraints in Γ which
express requirements on existing classes can be checked in ∆, and, if the check
is successful, can be eliminated; in the end the only remaining constraints are
those which express requirements on the parameter types.

In the example, the first two method types are already in normal form. The
type of m3, instead, contains constraints which can be simplified in the current
environment. Set Γ3 the set of these constraints, that is,

C1 ≤ C1,µ(β3 C2.m2(α3)), µ(γ3 C1.m1(α3 β3)).

The first constraint, C1 ≤ C1 holds trivially, so we mark it (in the algorithm in
Figure 4 marks are expressed by adding the constraint to done) and proceed to
the next one: µ(β3 C2.m2(α3)). In ∆, class C2 has a method named m2, with type
∅⇒α2→α2. We take the substitution σ(α2) = α3, σ(β3) = α3. The method m2
has no constraints, hence we get

C1 ≤ C1
?,µ(α3 C2.m2(α3))

?, µ(γ3 C1.m1(α3 α3))

where the first two constraints are star-marked to denote that they have been
already checked.

Take now the constraint µ(γ3 C1.m1(α3 α3)). In ∆, class C1 has a method
named m1, with type ∅⇒ C1 C2→ C1. We take the empty substitution and add
to the current set the constraints α3 ≤ C1, α3 ≤ C2, hence we get

C1 ≤ C1
?,µ(α3 C2.m2(α3))

?, µ(C1 C1.m1(α3 α3))
?, α3 ≤ C1, α3 ≤ C2

There are no longer constraints not in normal form to be examined, hence we
get the following method type in normal form for m3:

April 17, 2007 23:0 WSPC - Proceedings Trim Size: 9in x 6in main

16

α3 ≤ C1, α3 ≤ C2⇒α3→C1

which correctly expresses¶ the requirements on argument types needed to safely
apply the method. Note that the result type has become C1 as an effect of
applying the substitution σ.

In order to see how recursive constraints are handled, consider the following
example:

class C {

m1(x) { return this.m2(x); }

m2(x) { return this.m1(x); }

}

In this case, type inference rules lead to the following method types:

• taking type variable α as parameter type, m1 has type µ(β C.m2(α))⇒
α→β

• taking type variable γ as parameter type, m2 has type µ(δ C.m1(γ))⇒
γ→δ

Simplification steps of either method type, e.g., the first, are as follows. We start
from

µ(β C.m2(α))

Class C has a method named m2 with type µ(δ C.m1(γ))⇒ γ→ δ, and we take
the substitution σ(γ) = α, σ(δ) = β. Hence we get

µ(β C.m2(α))?, µ(β C.m1(α))

Now we consider the second constraint: class C has a method named m1 with
type µ(β C.m2(α))⇒ α→ β and we take the identity substitution. We should
add the constraint µ(β C.m1(α)) which, however, is already in the set. Hence we
terminate with

µ(β C.m2(α))?, µ(β C.m1(α))?

and the simplified method type is, as expected, ∅⇒α→β. Interestingly enough,
we are able to type some recursive definitions which cannot be typed in, say,
Standard ML, as in the following example‖

class D {}

class C {

id(x) { return x; }

m () { return id(new C()); }

f () { return id(new D()); }

}

where, as the reader can easily verify, we obtain the following method types:

¶A smarter algorithm could further simplify this type by removing the redundant constraint
α3 ≤ C1.
‖An ML analogous would be: let rec id x = x and m x = id 1 and f x = id true.

April 17, 2007 23:0 WSPC - Proceedings Trim Size: 9in x 6in main

17

• taking type variable α as parameter type, id has type ∅⇒α→α

• m has type ∅⇒→C
• f has type ∅⇒→D

Of course this is possible since, roughly, we do not have higher-order features;
nevertheless, we believe the result is nice in itself, also because the treatment of
recursion among methods can be smoothly integrated with that of other con-
straints, as discussed below.

