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Abstract. Dynamic rebinding is the ability of changing the definitions
of names at execution time. While dynamic rebinding is clearly useful in
practice, and increasingly needed in modern systems, most programming
languages provide only limited and ad-hoc mechanisms, and no adequate
semantic understanding currently exists.
Here, we provide a simple and powerful mechanism for dynamic rebinding
by means of a calculus CMS `,v of mixin modules (mutually recursive
modules allowing redefinition of components) where, differently from the
traditional approach, module operations can be performed after selecting
and executing a module component: in this way, execution can refer to
virtual components, which can be rebound when module operators are
executed. In particular, in our calculus module operations are performed
on demand, when execution would otherwise get stuck.
We provide a sound type system, which ensures that execution never tries
to access module components which cannot become available, and show
how the calculus can be used to encode a variety of real-world dynamic
rebinding mechanisms.

1 Introduction

In the last years considerable effort has been invested in developing kernel mod-
ule/fragment calculi [12, 7, 23, 21, 7, 19] providing foundations for flexible manip-
ulation and combination of software components. In particular, a simple unifying
notion emerged from this research stream is that of mixin module [11, 3], that is,
a module which allows late (re)definition of components. In a mixin module com-
ponents are either defined inside the module (exported) or deferred (imported),
that is, to be provided later by means of combination with other modules (no-
tably, in a mutually recursive way by a symmetric sum operator). Moreover,
some defined components can be virtual, that is, can be later modified as an
effect of combination with other modules (notably, by an overriding operator),
so that all their internal references are dynamically rebound to the new defi-
nition. The possibility of defining virtual components is a generalization to an
arbitrary context of software composition of a key idea of the object-oriented
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approach, that is, the ability of writing code fragments (classes in this case)
where components (methods) are simultaneously ready to be used and available
to be modified (open-closed property).
Calculi supporting mixin modules, such as the Calculus of Module Systems
(shortly CMS) developed by two of the authors[7], can be used to encode and
compare on a formal basis a large variety of existing mechanisms for soft-
ware composition, including parameterized modules like ML functors, overriding,
extra-linguistic mechanisms like those provided by a linker. However, these cal-
culi are based on a static view of software manipulation, hence fail in many ways
to be adequate to model modern software systems, which become increasingly
dynamic. For instance, programming environments such as those of Java and
C# support dynamic linking, and we can expect in the future more and more
forms of reconfiguration interleaved with standard execution steps; when values
of computations are marshaled from a running program and moved elsewhere,
some of their identifiers may need to be dynamically rebound; systems which
provide uninterrupted service must be dynamically updated.
All these situations could be hardly represented in, e.g., CMS, even though the
notion of virtual component, allowing the same name to be bound to different
definitions during successive steps of configuration of a software system, seems to
exactly correspond to rebinding. This is due to the fact that in CMS and similar
calculi all module operators must be performed before starting execution of a
program, that is, evaluation of a module component. Hence, virtual components
can be usefully employed to rebind the same name to different definitions, and
thus reuse in different ways the same module in different contexts, but this
rebinding is static in the sense that only closed modules (that is, with no deferred
or virtual components) can be actually used at execution time.
Here, we are able to obtain a simple and powerful calculus for dynamic rebinding
from CMS by developing the following simple key ideas.

– Components of open modules can be selected and executed, keeping their
module context. In this way, execution of module operators can be inter-
leaved with program execution, that is, execution of a module component in
the context of the components offered by the module. We already introduced
this idea in CMS ` [6], where in particular we adopted a lazy strategy which
performs reconfiguration steps (execution of module operators) only if nec-
essary, that is, when program execution would otherwise gets stuck (since a
not yet available component is needed.)

– Program execution refers to not only local, but also virtual components,
that is, components which are associated with a definition which is directly
available to the executing program and can also be redefined by perform-
ing module operators. This conceptually simple extension greatly enhances
the expressive power. Indeed, in CMS `, reconfiguration steps can either be
performed or not depending on which components program execution needs,
but when a component is bound to a definition this binding can no longer
be changed. On the contrary, in CMS `,v execution can refer to components
which can be redefined when module operators are executed.
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Another important novelty w.r.t. CMS ` is that CMS `,v keeps the full expressive
power of higher-order features of CMS . This allows to express interaction of
execution at different levels (e.g., modules with module components, triggering
of a local module simplification inside program execution, and so on).
In Section 2 and Section 3 we formally define the calculus. In Section 4 we show
how the calculus can be used to model real-world dynamic rebinding require-
ments. In Section 5 we provide a sound type system, which ensures that execution
will never try to access module components which cannot become available. Sec-
tion 6 collects the technical results (limited to the claims), and finally Section 7
contains concluding remarks and directions for further work.

2 Syntax

Notations We denote by A
fin→ B the set of partial functions f from A into B = codf

with finite domain dom(f) ⊆ A. For I set of indexes, ai ∈ A, bi ∈ B, for i ∈ I, we

denote by ai : bi
i∈I the partial function f s.t. dom(f) = {ai | i ∈ I}, f(ai) = bi for

i ∈ I. We will use the following operators on partial functions: f, g is the union of

two functions with disjoint domain; f |g means that f, g are compatible, that is, s.t.

f(a) = g(a) for all a ∈ dom(f)∩dom(g); f ∪g is the union of two compatible functions;

◦ is the composition of functions; f\A is the restriction of f to the domain dom(f) \A;

we write f\a instead of f\{a} .

The syntax of CMS `,v is given in Fig.1.

e ∈ Exp ::= expression
. . . core operators

| x variable
| [ι; o; ρ] (dom(ι)∩dom(ρ)=∅) basic module
| [ι; o; ρ | e] (dom(ι)∩dom(ρ)=∅) basic configuration
| e1 + e2 sum
| freezeXe freeze
| e\X delete
| e↓X run
| e↑ result

ι : Var
fin→ Name input assignment

o : Name
fin→ Exp output assignment

ρ : Var
fin→ Exp local assignment

Fig. 1. Syntax

We assume an infinite set Name of names X, and an infinite set Var of variables
x. Names are used to refer to a module from the outside (hence they are used
by module operators), while variables are used to refer to a (basic) module
from a program executing in the context of the components offered by this
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module. This distinction between names and variables is standard in module
calculi and, besides the methodological motivation explained above, has technical
motivations as well, such as allowing α-conversion for variables while preserving
external interfaces (see, e.g., [7] for an extended discussion of this point).
As CMS and CMS `, CMS `,v is a parametric and stratified calculus, which can
be instantiated over different core calculi. However, while in CMS [7] this depen-
dence on the core level is represented in a more rigorous way by using explicit
substitutions, here we adopt for simplicity a less formal approach where we as-
sume module expressions to be merged with expressions of the core calculus
(that is, the dots in the syntax correspond to core productions). In the examples
we assume that core expressions include integers with the usual operations.
Basic modules are as in CMS and consist of three parts: the input assignment
ι, which is a mapping from variables into input names, the output assignment o,
which is a mapping from output names into expressions, and the local assignment
ρ, which is a mapping from local variables into expressions. Input names are
called virtual if they are output names as well, deferred otherwise; variables in
the domain of ι are called either virtual or deferred depending on the associated
name. A basic configuration is a pair [ι; o; ρ | e], consisting of a basic module and
an expression, called program.
Both basic modules and basic configurations are well-formed only if the sets of
deferred and virtual variables and that of local variables are disjoint.
Operators sum, freeze and delete are a simplified version of CMS module opera-
tors, and provide primitive ways to manipulate and combine software fragments.
Modules can be constructed by applying these operators on top of basic mod-
ules, and configurations can be constructed by applying these operators on top
of basic modules and at least one basic configuration (actually, exactly one in
well-behaving terms, see in the sequel, hence we can correctly talk of the program
running inside a configuration). Operator ↓ allows to obtain a basic configura-
tion from a (basic) module, by starting the execution of a module component.
Operator ↑ extracts from a configuration the (final result of) the program.
Operators will be explained more in detail when introducing reduction rules.

3 Semantics

In this section we give the semantics of the calculus. Reduction rules are given
in Fig. 2 and Fig. 3.
By definition, the one step reduction relation > is the relation over well-
formed terms inductively defined by the rules. For sake of clarity, we write also
some side conditions which are redundant since implied by the fact that terms
must be well-formed.

The semantics is given by using evaluation contexts (to control the evaluation or-
der) and redexes (reducible expressions), following the approach of Felleisen and
Friedman [18]. Rule (E) is the usual contextual closure, where evaluation contexts
E include a non specified set of core evaluation contexts, and the metavariable r
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Evaluation contexts
E ::= � | . . . | [ι; o; ρ | E ] | E + e | E \X | freezeXE | E ↓X | E ↑

| [ι; o; ρ] + E | [ι; o; ρ | E [x]] + E (x ∈ dom(ι) ∧ ι(x) 6∈ dom(o))

Contextual closure and core execution

(E)
r > e

E [r] > E [e]
. . . (rules for core operators)

Module simplification

(m-sum)
[ι1; o1; ρ1] + [ι2; o2; ρ2] >

[ι1, ι2; o1, o2; ρ1, ρ2]

dom(ι1, ρ1) ∩ FV ([ι2; o2; ρ2]) = ∅
dom(ι2, ρ2) ∩ FV ([ι1; o1; ρ1]) = ∅
dom(ι1, ρ1) ∩ dom(ι2, ρ2) = ∅
dom(o1) ∩ dom(o2) = ∅

(m-freeze)
freezeX [ι; o; ρ] >

h
ι\F ; o; ρ, x : o(X)x∈F

i F = {x | ι(x) = X}
F 6= ∅ ⇒ X ∈ dom(o)

(m-del)
[ι; o; ρ] \X > [ι; o\X ; ρ]

X ∈ dom(o)

Variable resolution and reconfiguration

(local)
[ι; o; ρ | E [x]] > [ι; o; ρ | E{ρ(x)}]

x 6∈ HB (E)
x ∈ dom(ρ)

(virtual)
[ι; o; ρ | E [x]] > [ι; o; ρ | E{o(ι(x))}]

x 6∈ HB (E)
x ∈ dom(ι) ∧ ι(x) ∈ dom(o)

(sum)
[ι1; o1; ρ1 | E [x]] + [ι2; o2; ρ2] >

[ι1, ι2; o1, o2; ρ1, ρ2 | E [x]]

x 6∈ HB (E)
x ∈ dom(ι1) ∧ ι1(x) 6∈ dom(o1)
dom(ι1, ρ1) ∩ FV ([ι2; o2; ρ2]) = ∅
dom(ι2,ρ2)∩FV ([ι1; o1; ρ1 | E [x]])=∅
dom(ι1, ρ1) ∩ dom(ι2, ρ2) = ∅
dom(o1) ∩ dom(o2) = ∅

(freeze)
freezeX [ι; o; ρ | E [x]] >

h
ι\F ; o; ρ, x : o(X)x∈F | E [x]

i x 6∈ HB (E)
x ∈ dom(ι) ∧ ι(x) 6∈ dom(o)
F = {x | ι(x) = X}
F 6= ∅ ⇒ X ∈ dom(o)

(del)
[ι; o; ρ | E [x]] \X > [ι; o\X ; ρ | E [x]]

x 6∈ HB (E) ∧ x ∈ dom(ι) ∧ ι(x) 6∈ dom(o)
X ∈ dom(o)

Fig. 2. Reduction rules
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e ∈ Exp FV (e)

. . . free variables for core operators
x {x}

[ι; o; ρ] FV (o) ∪ FV (ρ) \ dom(ι, ρ)
[ι; o; ρ | e] (FV (o) ∪ FV (ρ) ∪ FV (e)) \ dom(ι, ρ)
e1 + e2 FV (e1) ∪ FV (e2)

e \X | freezeXe | e↓X | e↑ FV (e)

f : A
fin→ Exp ∪{FV (f(a)) | a ∈ dom(f)}
E HB (E)

� ∅
[ι; o; ρ | E ] dom(ι, ρ) ∪ HB (E)

E + e | E \X | freezeXE | E ↓X | E ↑ HB (E)

Table 1. Free variables and hole binders

ranges over redexes, that is, the left-hand sides of the consequence in (instantia-
tions of) the other rules, called computational. We denote by E [e] the expression
obtained by replacing by e the hole in context E . Reconfiguration contexts R are
special contexts used in rule (res-extract) and (res-var), as explained below.
The evaluation context [x : X, ι; o; ρ | E [x]]+E expresses the fact that in the sum
of a configuration with a module the evaluation of the right-hand-side argument
is only triggered when the configuration is fully reduced and the running program
still needs reconfiguration steps to proceed (indeed, in this case the module needs
to be reduced in order sum to be performed.)
We assume that computational rules for the core operators are provided.

Module simplification Simplification rules for sum, freeze and delete on modules
are exactly as in CMS . We give here a brief description, referring to [7] for more
detailed comments.

Sum The sum operation has the effect of gluing together two modules. The first
two side conditions avoid undesired captures of free variables. Free variables
of expressions are defined in Table 1, assuming that their definitions on core
terms are provided. Since the reduction is defined only over well-formed
terms, the deferred and local variables of one module must be disjoint from
those of the other (second side condition). These side conditions can always
be satisfied by an appropriate α-conversion. For the same reason of well-
formedness, the output names of the two modules must be disjoint (last side
condition)1; however, in this case the reduction gets stuck since this conflict
cannot be resolved by an α-conversion.

Freeze The freeze operator removes the name X appearing as index from the
input names. All the virtual variables mapped by ι into it are frozen, that

1 Note that, since ι goes “backwards”, that is, from variables into names, the fact that
ι1, ι2 must be well-formed does not prevent to share input names, but only to share
deferred variables, what can be avoided by α-conversion.
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is, become local, and take as defining expression the current definition of X
in the output assignment. Hence, this definition must exist in case there is
at least one variable mapped into X (side-condition); otherwise, the freeze
operator has simply no effect. The name of the operator refers to the fact
that, once a component has been frozen, other components will permanently
refer to its current definition, even in case the component is updated from
outside (by delete and then sum, see below).

Delete The delete operator removes an output name (which must be present
in the module) with the associated definition.

Note that these three operators provide complementary capabilities for changing
the status of a variable x in a basic module, as follows:

– A deferred variable can become virtual as an effect of the sum operator (if
x is mapped by ι into an input name X, and X is an output name in the
other argument of the sum).

– A virtual variable can become local as an effect of the freeze operator (if x
is mapped into the name X appearing as index).

– A virtual variable can become deferred as an effect of the delete operator (if
x is mapped into the name X appearing as index).

Local variables are not visible from outside a basic module (or basic configura-
tion), hence cannot change their status.

Variable resolution and reconfiguration Rules (local) and (virtual) model the sit-
uation where program execution needs a variable which is either local or virtual,
hence has a corresponding definition, in the enclosing basic configuration.
In both cases, program execution can proceed by replacing the variable by its
defining expression.
Here and in the following rules, the side condition x 6∈ HB (E) expresses the fact
that the occurrence of the variable x in the position denoted by the hole of the
context E is free (that is, not captured by any binder around the hole). Hole
binders are defined in Table 1 (we assume their definitions on core terms are
provided). Finally, we denote by E{e} the capture avoiding substitution, with
the expression e, of the hole � in context E .
These two rules, together with rules for core operators and contextual closure,
model standard program execution (that is, execution which does not trigger
reconfiguration steps), as illustrated by the following example.2

[x : X; X : 1; y : 2 | x + y]
(virtual)

> [x : X; X : 1; y : 2 | 1 + y]
(local)

>

[x : X; X : 1; y : 2 | 1 + 2]
(core)

> [x : X; X : 1; y : 2 | 3]

Note that, since a program can be in turn a configuration, variable resolution
can take place at an outer configuration level:
2 In examples we label reduction steps with the applied computational rule. We label

with (core) reduction steps where we apply core computational rules.
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[x : X; X : 1; y : 2 | [; ; | x + y]]
(virtual)

> [x : X; X : 1; y : 2 | [; ; | 1 + y]]
(local)

>

[x : X; X : 1; y : 2 | [; ; | 1 + 2]]
(core)

> [x : X; X : 1; y : 2 | [; ; | 3]]

The side condition x 6∈ HB (E) ensures that a variable which is bound at an inner
configuration level cannot be resolved at an outer level:

[x : X; X : 1; y : 2 | [x : Z; Z : 5; | x + y]]
(virtual)

>
[x : X; X : 1; y : 2 | [x : X; X : 5; | 5 + y]]

[x : X; X : 1; y : 2 | [x : X; X : 5; | x + y]] 6 >
[x : X; X : 1; y : 2 | [x : X; X : 5; | 1 + y]]

where 6 > denotes a not allowed reduction step.
The fact that substitution is capture avoiding prevents variables from outer levels
to be captured at an inner level:

[x : X; X : y + 1; y : 2 | [; ; y : 3 | x]]
(virtual)

> [x : X; X : z + 1; z : 2 | [; ; y : 3 | z + 1]]
[x : X; X : y + 1; y : 2 | [; ; y : 3 | x]] 6 > [x : X; X : y + 1; y : 2 | [; ; y : 3 | y + 1]]

A different choice, allowing variables to “migrate” into inner levels, would cor-
respond to a form of dynamic binding for variables.
The following three rules model the situation where program execution needs
a variable which is deferred, that is, is bound in the current basic module but
has no corresponding definition. In this case, a reconfiguration step is triggered:
more precisely, the innermost enclosing module operator is performed.
As combined effect of the rules illustrated until now, execution proceeds by
standard execution steps until a deferred variable is encountered; in this case,
reconfiguration steps are performed (from the innermost to the outermost mod-
ule operator) until the variable becomes virtual and rule (virtual) can be applied,
as illustrated below.

[x : X; ; y : 2 | x + y] + [; X : 1; ]
(sum)

> [x : X; X : 1; y : 2 | x + y]
(virtual)

>

[x : X; X : 1; y : 2 | 1 + 2]
(core)

> [x : X; X : 1; y : 2 | 3]

As happens for variable resolution, also reconfiguration steps can take place at
an outer configuration level if the needed variable is not bound yet.
Note that, whereas sum of two modules and sum of a configuration with a
module (conventionally taken in this order) are handled by rule (m-sum) and
(sum), respectively, there is no rule for sum of two configurations which, hence,
gets stuck (and will be rejected by the type system). This corresponds to the
fact that we are considering a sequential calculus, in which there is only one
executing program at a given configuration level.
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Values and reconfiguration contexts

v ∈ Val ::= . . . | [ι; o; ρ] | R[ι; o; ρ | v]
R ::= � | R+ e | R \X | freezeXR

Run and result

(run)
[ι; o; ρ]↓X > [ι; o; ρ | o(X)]

X ∈ dom(o)

(res-extract)
(R[ι; o; ρ | v])↑ > v

FV (v) ∩ (dom(ι, ρ)) = ∅

(res-var)
R[ι; o; ρ | x] > R′[ι′; o′; ρ′ | e]

(R[ι; o; ρ | v[x]])↑ > (R′[ι′; o′; ρ′ | v{e}])↑
x ∈ dom(ι, ρ)

Fig. 3. Reduction rules (cont)

Run and result Rules in Fig.3 deal with introduction and elimination of a con-
figuration level, respectively. In rule (run), the operator ↓ constructs an initial
configuration by taking as program an output component of a basic module.

[x : X; X : 1, Z : x + y; y : 2]↓Z

(run)
> [x : X; X : 1, Z : x + y; y : 2 | x + y]

(virtual)
> . . .

The following two rules deal with the operator ↑ , which extracts the program
from a configuration level. Formally, a configuration level for a program e is
modeled by an expression of the form R[ι; o; ρ | e] where R is a context consisting
only of reconfiguration operators.
Rule (res-extract) allows to extract the program from a configuration level if it
is a value which contains no variables bound at this level. Note that remain-
ing reconfiguration operators are simply ignored, since they can no longer have
any effect on the result of the computation. This is illustrated by the following
example, where we assume to have lambda-abstractions in the core calculus.

[; ; y : 2 | ([; ; x : 1 | λz.1 + y] + [; Z : 0; ])↑]
(res-extract)

>
[; ; y : 2 | λz.1 + y]

If the program is a value still containing some variables bound at the current
configuration level, these variables must be resolved before extracting the value.
This is handled by rule (res-var), where we write v[x] to denote a value which con-
tains a free occurrence of x, and, analogously to the notation used for evaluation
contexts, v{e} to denote the expression obtained by replacing this occurrence
by e. The effect we want to obtain is that the action needed to solve variable
x is triggered (x is replaced by its definition if it is either local or virtual, and
the innermost module operator in R is performed if x is deferred). For sake of
brevity, we write just one compact rule instead of five rules analogous to those
which handle resolution of a variable x in a program which is not a value (hence
can be decomposed as E [x]), that is, (local), (virtual), (sum), (freeze) and (del).
In order to have a deterministic reduction strategy, we assume some arbitrary
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rule for selecting one among all the occurences of variables in dom(ι, ρ)3, that
is, for decomposing a value containing free variables in dom(ι, ρ) as v[x].
The effect of rule (res-var) is illustrated by the following example.

[; ; y : 2 | ([; ; x : 1 | λz.x + y] + [; Z : 0; ])↑]↑
(res-var)

>

[; ; y : 2 | ([; ; x : 1 | λz.1 + y] + [; Z : 0; ])↑]↑
(res-extract)

>

[; ; y : 2 | λz.1 + y]↑
(res-var)

>

[; ; y : 2 | λz.1 + 2]↑
(res-extract)

>
λz.1 + 2

Relation with CMS and CMS ` Apart from the selection operator, CMS cor-
responds to the subset of the calculus obtained by only taking basic modules,
module operators (sum, reduct and freeze) and corresponding rules (m-sum),
(m-reduct) and (m-freeze). Selection can be simulated by using the run and
result operator (see Section 4.1). CMS `corresponds to the subset obtained by
taking basic modules and module operators, basic configurations and the run
operator in a non higher-order setting (that is, components of modules and con-
figurations can only be core terms), hence there is no result operator. Moreover,
no access to virtual variables is supported (formally, there is no rule (virtual)).
This leads to a confluent calculus under the hypothesis that the core calculus
is confluent as well; in the calculus presented in this paper, instead, since def-
inition of components may change by performing module operators, there are
potentially different results depending on the time when module operators is
performed. Hence, it is important to fix (and to assume at the core level as well)
a deterministic strategy.

4 Expressive Power of the Calculus

In this section we show that CMS `,v is much more expressive than CMS and
CMS `, and illustrate how it could serve as a formal basis for modeling some
interesting mechanisms like marshaling and dynamic software update.

4.1 Module Selection

Module selection [13, 23, 21, 7] allows the users to execute module components
from the outside. Conventionally, this operation is permitted only for closed
modules in order to avoid scope extrusion of variables which would lead to dy-
namic errors. For instance, in the ML-like module systems, selection is allowed
for structures but not for functors. In CMS selection takes the usual syntactic
form e.X, where e is a module expression and X is a component name. The cor-
responding reduction rule can be applied only when e is a basic mixin module
[ι; o; ρ] where ι is empty (hence, the module is closed), and X is in the domain
3 For instance, the leftmost innermost occurrence.
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of o. If so, the corresponding expression o(X) is extracted out of the module,
and all variables in the domain of ρ possibly occurring free in o(X) are replaced,
following the usual unfolding semantics for mutually recursive declarations.
CMS selection can be encoded as a derived operation in CMS `,v by means of the
↓X and ↑ operators.

Consider for instance, the CMS expression [; X : x;x : 1].X, where we select an
output component from a basic module. This expression can be encoded in
CMS `,v as [;X : x;x : 1]↓X ↑, which in one step reduces to the basic configu-
ration [;X : x;x : 1 | x] ↑. In this way, the defining expression of the selected
component can be executed within the context offered by other definitions in-
side the module and extracted only when it does no longer depends on them.
In contrast to CMS, this semantics definition, besides being more perspicuous
(no unfolding is needed), allows selection of open modules. For example, the ex-
pression [y : Y ;Z : y, X : x;x : 1].X is stuck in CMS, while here reduces to the
expected value 1.

4.2 Static and Dynamic Rebinding of Virtual Components

The CMS calculus supports redefinition of virtual components, a feature analo-
gous to method overriding in object-oriented languages. To see this, let us con-
sider a simple example written in a hypothetical module language with virtual
components, whose semantics can be easily expressed in terms of CMS `,v.

M1 = module {
virtual X=1;
virtual Y=X+1;
}

Here X and Y are the names of the two externally visible components of M1. The
semantics of M1 is given by translation into the following basic module:

M1 = [x : X, y : Y ;X : 1, Y : x + 1; ]

As already explained in the previous section, the two components X and Y
cannot be selected in CMS as they are, but in order to do that, they first need
to be frozen with the freeze operator which permanently binds their values to
the corresponding variables x and y (which become local).

freezeX freezeY [x : X, y : Y ;X : 1, Y : x + 1; ] > [;X : 1, Y : x + 1;x : 1, y : x + 1]

Then, X and Y can be selected obtaining respectively 1 and 2, as expected.
However, before being frozen, virtual components can be redefined by means of
the overriding operator, which can be expressed as a combination of the delete
and sum operators at the lower level. For instance, the expression

M2 = M1 <- module {virtual X=2;}
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translates into the lower level expression

M2 = M1 \X + [x : X;X : 2; ]

which reduces to [x : X, x′ : X, y : Y ;X : 2, Y : x + 1; ].
After freezing, if we select Y , then we get 3 rather than 2; hence, the modification
of the virtual component X has affected Y as well, whose definition depends on
X. In other words, the variable x associated with X has been rebound . However,
in CMS such a rebinding is always static rather than dynamic, in the sense that
it can never happen that a variable of a module is rebound during the execution
of a component of the same module.
In fact, in CMS the module operators model static configuration of software
fragments (as the conventional static linking), whereas selection corresponds to
execution, and there is no way to interleave configuration and execution phases
for a given module. In CMS ` linking can take place at execution time, but the
program cannot use virtual components. Hence a needed component must be
linked in order to be available, and then there is no way to change its definition.
In contrast, CMS `,v supports dynamic rebinding of virtual components. This is
possible because execution and configuration phases can be interleaved, and the
program can use virtual components.
For instance, consider the following expression (in the higher level language):

result(module { E=X+Y+X; virtual X=1; } with main E <-
module { virtual X=2; virtual Y=X+1; })

where the left hand side of the overriding operator <- is a configuration whose
program is the non virtual (that is, frozen) component E, the right hand side
lazily overrides the configuration, and result is the higher level syntax for the
operator ↑. By considering the corresponding translation at the lower level, the
reader may verify that the first occurrence of X in the definition of E reduces to
1, whereas the second to 2, and that the overall expression reduces to 6.

[x : X, y : Y ;X : 1, E : x + y + x; ]↓E \X + [x : X, y : Y ;X : 2, Y : x + 1; ]↑

4.3 Dynamic Rebinding for Marshaling and Update

Since CMS `,v supports dynamic rebinding, it provides a natural formal basis for
modeling marshaling and update.
Consider again an example in our hypothetical higher level language:

M3 = module {
virtual X=1;

Y=2;
Z=3;

}
with main marshal X+Y+X+Z rebind Y;
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In the definition of the main expression of M3, the expression to be marshaled
depends on three different components, already defined in the scope of the main;
however, when marshaling an expression e, the user may specify a list of com-
ponents which have to be rebound when e will be eventually unmarshaled. In
this specific case, for correctly unmarshaling the value returned by the execution
of M3, a new definition for Y must be provided, whereas for X, Z this is left to
choice, as in the following example:

M2=unmarshal result(M3) bind Y:4,X:5,Z:6;

We can now show how the marshal and unmarshal expressions above could be
translated into the lower level calculus CMS `,v. For marshaling we have:

e3 = marshal([x : X, y : Y ;X : 1, Z : z; z : 3 | x + y + x + z])

The translation is based on the following basic idea: the expression e to be
marshaled is packaged with a basic module into a configuration [ι; o; ρ | e′], where
e′ is a suitable translation of e, and [ι; o; ρ] is obtained from the current context
by making deferred all components which have to be rebound. Then, the marshal
constructor can be applied to the resulting configuration.4

In the running example, the module corresponding to the current context of the
main expression is

[x : X;X : 1, Y : y, Z : z; y : 2, z : 3]

However, since Y must be rebound, its definition is removed and its variable
becomes deferred.
For unmarshaling, the corresponding lower level expression is:

e2 = (unmarshal(e3)\X \Z + [; Y : 4, X : 5, Z : 6; ])↑

where [;Y : 4, X : 5, Z : 6; ] is obtained from the binding specified by the unmar-
shal operator. Since e3 is closed, unmarshal(e3) reduces to
[x : X, y : Y ;X : 1, Z : z; z : 3 | x + y + x + z]. Therefore e2 reduces to

([x : X, y : Y ;X : 1, Z : z; z : 3 | x + y + x + z]\X \Z + [; Y : 4, X : 5, Z : 6; ])↑

Now, in the expression x + y + x + z, the first occurrence of x is bound to 1;
then, since y is needed, the delete and sum operators are performed, hence y is
bound to 4, and the value of X is overriden, hence the second occurrence of x is
bound to 5. Finally, z is bound to 3 (the overriding of Z has no effect).
The example illustrates that the representation of marshaled values as CMS `,v

configurations allows to code in a natural way different requirements for unmar-
shaling. If there is an explicit rebind directive in marshaling, as for Y, then Y
must be provided since it is undefined (deferred) in the marshaled expression. If
4 The constructor marshal and the corresponding destructor unmarshal must be intro-

duced in the lower level calculus for distinguishing between marshaled and ordinary
values.
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there is no rebind directive, as for X and Z, then the latest available versions of
X and Z can be provided in order to update the marshaled code in case it con-
tains obsolete versions. However, while the update of X (which is virtual) might
be reflected into a rebinding of some occurrence of X inside the unmarshaled
expression, the update of Z (which is frozen) has no effects on the evaluation
of the inner expression; this is an import feature which provides a protection
mechanism against unwanted software update. Finally, note that the update of
X is lazy (only the second occurrence of x is updated).
We have shown above just some simple examples; the definition of a worked
out higher-level language based on CMS `,v with marshaling and unmarshaling
operators, including more convenient and practical mechanisms for obtaining
the configuration to be packaged with the marshaled expression, as the mark
operator in [10], remains an important subject of further work. However, we
believe the examples above are enough to give the flavour of how marshaling
mechanisms (where the expression to be marshaled needs to be packaged together
with some of the currently available bindings, and needs to be abstracted w.r.t.
the components that have to be rebound) could be expressed in a natural way
by the notions of basic module (abstractions plus bindings) and configuration
(expression packaged with a basic module) provided by CMS `,v.

5 Type System

In this section we present a type system for CMS `,v which prevents reduction
from getting stuck.
Types have the following form:

τ ∈ Type ::= cτ | [πι; πo; τ•]
τ• ∈ Type• ::= τ | •

Core types are ranged over by cτ . Module types are as in CMS, that is, pairs
[πι; πo; •] where πι, πo : Name

fin→ Type are the input and output signature,
respectively. Configuration types have the form [πι; πo; τ ]: the first two compo-
nents have the same meaning as for module types, whereas τ is the type of the
program running in the configuration.
Fig.4 gives the typing rules for deriving judgments of the form Γ ` e : τ ,
meaning “e is a well-formed expression of type τ in the environment Γ”, where
Γ : Var

fin→ Type.
The definition of the type system is parametric in the typing rules for the core
level.
In rule (m-basic) and (basic), [ ] denotes environment updating. In the side-
condition of these rules, we check that virtual names have the same types in the
input and the output signatures (recall that the notation f|g means that f and
g agree on the common domain).
The (sum) typing rules allow sharing of input components having the same
name and type, while preventing output components from being shared (recall
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. . . (rules for core operators)

(m-basic)

{Γ [Γ ι, Γ ρ] ` o(X) : πo(X) | X ∈ dom(o)}
{Γ [Γ ι, Γ ρ] ` ρ(x) : Γ ρ(x) | x ∈ dom(ρ)}

Γ ` [ι; o; ρ] : [πι; πo; •]

dom(πι) = img(ι)
dom(πo) = dom(o)
Γ ι = πι ◦ ι
dom(Γ ρ) = dom(ρ)
πι|πo

(basic)

{Γ [Γ ι, Γ ρ] ` o(X) : πo(X) | X ∈ dom(o)}
{Γ [Γ ι, Γ ρ] ` ρ(x) : Γ ρ(x) | x ∈ dom(ρ)} Γ [Γ ι, Γ ρ] ` e : τ

Γ ` [ι; o; ρ | e] : [πι; πo; τ ]

dom(πι) = img(ι)
dom(πo) = dom(o)
Γ ι = πι ◦ ι
dom(Γ ρ) = dom(ρ)
πι|πo and ` τ �

(sum)

Γ ` e1 : [πι
1; πo

1; τ•]
Γ ` e2 : [πι

2; πo
2; •]

Γ ` e1 + e2 : [πι
1 ∪ πι

2; πo
1, π

o
2; τ•]

πι
1 ∪ πι

2|πo
1, π

o
2

(del)
Γ ` e : [πι; πo; τ•]

Γ ` e\X : [πι; πo\X ; τ•]
X ∈ dom(πo)

(freeze)
Γ ` e : [πι; πo; τ•]

Γ ` freezeXe : [πι
2\X ; πo; τ•]

X ∈ dom(πι) ⇒ X ∈ dom(πo)

(run)
Γ ` e : [πι; πo; •]

Γ ` e↓X : [πι; πo; πo(X)]
` πo(X) �

(res)
Γ ` e : [πι; πo; τ ]

Γ ` e↑: τ
` [πι; πo; τ ] �

Fig. 4. Typing rules
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that f1 ∪ f2 denotes the union of two compatible partial functions, while f1, f2

denotes the union of two maps with disjoint domain). Moreover, we check that
names that will become virtual performing the sum will have the same types in
both the (resulting) input and the output signatures.
In rule (basic) and (res) the judgment ` τ � means “τ is a closed type”. A closed
type is either a core or module type, or a configuration type with no deferred
components, as formally defined in Fig.5.

` cτ � ` [πι; πo; •] � ` [πι; πo; τ ] �
πι ⊆ πo

Fig. 5. Closed types

Intuitively, (ground) terms of closed types are those which can be safely used
in isolation, since they do not depend on any missing variable or component.
Formally, we state the progress property only on these terms. The reason for
requiring that the program in a basic configuration and the argument of a result
operator are of closed type is that in both cases the term is inserted in a con-
text where no more reconfiguration operators are applied, hence, in case it is a
configuration term whose program needs a deferred variable, this will never be
provided. For instance, the term [y : Y ; ; | y] is a well-typed term of (non-closed)
type, which can be for instance inserted in the context �+[;Y : 0; ] giving a safe
term which reduces to the value [y : Y ;Y : 0; | 0]. However, the terms of the form
[ι; o; ρ | [y : Y ; ; | y]] and the term [y : Y ; ; | y] ↑ are ill-formed since they give a
stuck computation in whichever context they are inserted, since there is no way
to provide component Y to the program.

6 Results

In this section we illustrate the properties of the type system of CMS `,v. For
space limitations, all proof have been omitted, together with the results on the
determinacy of the reduction relation; however, they are available in an extended
version of this paper.5

In general, all the results we state hold under the assumption that (roughly
speaking) they are verified at the core level as well. This assumption is formally
detailed for each case.
The type system guarantees that the reduction relation does not get stuck on
ground terms of closed type (progress property) and preserves types (subject
reduction property).
In order to prove these results, we need the following lemmas, which can be
proved by induction on the typing rules under the assumption that, for each

5 ftp://ftp.disi.unige.it/pub/person/AnconaD/MMDRlong.pdf
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core typing rule, if the property holds for the premises, then it holds for the
consequence as well.

Lemma 1 (Weakening). If Γ ` e : τ and Γ ⊆ Γ ′, then Γ ′ ` e : τ .

Lemma 2 (Strengthening). If Γ ` e : τ , Γ ′ ⊆ Γ , and FV (e) ⊆ dom(Γ ′),
then Γ ′ ` e : τ .

Lemma 3 (Substitution). If Γ ` E [x] : τ , Γ (x) = τx and Γ ` e : τx, then
Γ ` E{e} : τ .

Lemma 4 (Canonical Forms). Given v ∈ Val,

– if Γ ` v : cτ , then v is a core value;
– if Γ ` v : [πι; πo; •], then v has the form [ι; o; ρ];
– if Γ ` v : [πι; πo; τ ], then v has the form R[ι; o; ρ | v′], and Γ [Γ ι][Γ ρ] ` v′ :

τ , with dom(Γ ι) = dom(ι) and dom(Γ ρ) = dom(ρ).

In the standard formulation, soundness of a type system is shown by separately
proving subject reduction and progress property. Subject reduction (preservation
of type under reduction) holds for all well-typed terms, whereas progress only
holds for terms which can be seen as “executable”, that is, can be safely reduced
in isolation. Usually, executable terms correspond to ground terms, that is, terms
without free variables. Terms with free variables represent open code fragments,
which cannot be safely reduced, but are still well-typed since they can be safely
used as subterms of an executable program.
In CMS `,v, the progress property holds on terms that are not only ground, but
also of a closed type, that is, a type with no deferred components. However,
terms of non-closed types are still well typed, since they can be inserted inside
contexts providing all needed components.

Theorem 1 (Subject Reduction). If Γ ` e : τ and e > e′, then Γ ` e′ : τ
under the assumption that, for each core reduction rule, if the property holds for
the premises, then it holds for the consequence as well.

The progress property follows as a corollary of a generalized progress property,
which states that a well-typed term can get stuck for two reasons: either it
contains some free variable (in which case, intuitively, execution could proceed
by replacing this variable) or it is a basic configuration whose program needs a
deferred component which is not available (in which case, intuitively, execution
could proceed by providing this component.)

Theorem 2. If Γ ` e : τ , then one of the following cases holds

– e ∈ Val
– e > e′, for some e′ ∈ Exp,
– e = E [x], x 6∈ HB (E), x ∈ dom(Γ ),
– e = [ι; o; ρ | E [x]], with x 6∈ HB (E) , x ∈ dom(ι) and ι(x) 6∈ dom(o)

under the assumption that, for each core typing rule, if the property holds
for the premises, then it holds for the consequence as well.

Corollary 1 (Progress). If ∅ ` e : τ and ` τ �, then either e ∈ Val or
e > e′, for some e′ ∈ Exp.
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7 Conclusion

We have presented a module calculus CMS `,v which allows to express in a nat-
ural way rebinding through the notion of virtual component, and to make this
rebinding dynamic by allowing standard program execution to be interleaved
with reconfiguration steps. We have illustrated the expressive power of the cal-
culus and provided a sound type system.
This work is part a stream of research [4, 6, 5, 16] whose aim is the development
of foundational calculi providing an abstract framework for dynamic software
reconfiguration. In particular, the possibility of extending module calculi with
selection on open modules, interleaving of component evaluation with reconfig-
uration steps and a lazy strategy has been firstly explored in [6]. As already
explained, the calculus presented in this paper contains two key novelties.
First, CMS `,v allows the executing program to use virtual variables; this pro-
vides a natural mechanism for rebinding, which greatly enhances the expressive
power. Indeed, execution can refer to components whose definition may change
by performing module operators, leading potentially to different results depend-
ing on the time when module operators is performed, that is, before or after
accessing a virtual variable. This is avoided here by taking a deterministic strat-
egy which performs substitution of local/virtual variables and resolution (by
reconfiguration steps) of deferred variables only on demand.
Then, higher-order configurations, together with the run and result operators,
allow to express interaction of execution at different levels (e.g., modules with
module or configuration components, starting a local configuration level inside
program execution, a scoping mechanism for nested variable resolution and trig-
gering of reconfiguration steps).
In [5] we have investigated how to increase flexibility in a different direction, that
is, by allowing a limited form of swapping between module operators. Finally,
Fagorzi’s thesis [16] provides a comprehensive presentation of most part of this
work, and, moreover, the definition of a pure6 reconfiguration calculus called R,
in two versions which either allow or not to use virtual variables. This calculus
is confluent in the non-virtual version, and a comparative discussion on different
possible type systems is also given.
On the theoretical side, the ideas presented in this paper look similar to those at
the basis of literature on laziness in functional calculi (see, e.g., [8]) and dynamic
binding. In particular, some recent work on dynamic rebinding [10] presents a
call-by-value λ-calculus which delays instantiation of identifiers, in such a way
that computations can use the most recent versions of rebound definitions. It is
well-known that record-based calculi can provide an alternative computational
paradigm where λ-calculus can be encoded [1, 7]. In our work, we are firstly
exploring laziness (obtained by delaying record composition after selection) in
this alternative paradigm. The advantages offered by the record-based paradigm
are a natural syntactic representation of a scope (a record, or basic module in the
terminology of this paper) and a built-in mechanism for rebinding (by deleting

6 That is, with no fixed strategy.
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and then adding record component) without any need of introducing imperative
features at the core level.
Hence, a very interesting subject of further work is a formal comparison with
laziness obtained by delaying application in functional calculi. A preliminary
attempt in this direction is in [17], where we outline a call-by-need strategy for
R(in the non-virtual version) which smoothly generalizes the approach in [8]
where an expression is evaluated the first time it is needed and only once.
On a more applicative side, though the area of unanticipated software evolution
continues attracting large interest, with its foundations studied in, e.g., [22],
there is a little amount of work going toward the development of abstract models
for dynamic linking and updating. Apart from the wide literature concerning
concrete dynamic linking mechanisms in existing programming environments
[14, 15], we mention [9], which presents a simple calculus modeling dynamic
software updating, where modules are just records, many versions of the same
module may coexist and update is modeled by an external transition which
can be enforced by an update primitive in code, [2], where dynamic linking is
studied as the programming language counterpart of the axiom of choice, and
the module system defined in [20], where static linking, dynamic linking and
cross-computation communication are all defined in a uniform framework.
Further work includes, as already mentioned, a deeper investigation of the rela-
tion with lazy lambda-calculi, and the further development of the techniques for
encoding dynamic rebinding, marshaling and update outlined in Sect.4. The ex-
pressive power of lazy module calculi should also be analyzed by showing which
kind of real-world reconfiguration mechanisms can be modeled and which kind
require a richer model. Finally, an important issue is the integration with mo-
bility aspects, that is, the design of calculi for reconfiguration where, roughly
speaking, code to be used for reconfiguring the running program can migrate
from a different process.
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