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IDEALIZED COINDUCTIVE TYPE SYSTEMS FOR
IMPERATIVE OBJECT-ORIENTED PROGRAMS

Davide Ancona1 and Giovanni Lagorio1

Abstract. In recent work we have proposed a novel approach to define
idealized type systems for object-oriented languages, based on abstract
compilation of programs into Horn formulas which are interpreted w.r.t.
the coinductive (that is, the greatest) Herbrand model.

In this paper we investigate how this approach can be applied also
in the presence of imperative features. This is made possible by con-
sidering a natural translation of Static Single Assignment intermediate
form programs into Horn formulas, where ϕ functions correspond to
union types.
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1. Introduction

Precise type inference of object-oriented programs relies on the ability of allow-
ing assignments of values of unrelated types to a field (data polymorphism) and
invocations of a method where arguments of unrelated types can be passed to the
same parameter (parametric polymorphism) [1].

While most proposed solutions to type inference of object-oriented programs
[1,7,17,24,27,34,35] support parametric polymorphism well, only few of them are
able to deal properly with data polymorphism; moreover, such solutions turn out
to be quite complex and specific, cannot be easily specified in an abstract way,
and lack a common logical framework and inferential engine.

In recent work [4,8] we have proposed a novel approach to define idealized coin-
ductive type systems for object-oriented languages, where programs are encoded
into Horn formulas which are interpreted w.r.t. the coinductive (that is, the great-
est) Herbrand model. Coinduction is needed since types (which are terms of the
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Herbrand coinductive universe) can be infinite terms; in this way, by using union
types [10], it is possible to represent infinite sets of polymorphic values. The re-
sulting type system is idealized, since terms are not required to be regular, that
is, they are infinite (finitely branching) trees which may contain infinite different
subtrees, and, therefore, cannot be finitely represented as happens with regular
trees [12]. As a consequence, any implementation can only be sound, but not
complete w.r.t. the defined type system which, in a sense, pushes to the extreme
the theoretical limits of static analysis.

The encoding we have studied [4,8] defines an idealized type system for a small
functional object-oriented language similar to Featherweight Java [20], where type
annotations may be omitted, and parametric and data polymorphism are fully
supported. The main contribution of this paper is to define an idealized type
system for an imperative version of the language. This is made possible by con-
sidering a natural encoding of Static Single Assignment (SSA) intermediate form
programs [15] into Horn formulas, where ϕ functions correspond to union types.

The paper is structured as follows. Section 2 contains a gentle introduction to
abstract compilation and coinductive types, and introduces the basic definitions.
In Section 3 we show how abstract compilation can take advantage of the SSA
intermediate form to perform a more precise type inference in the presence of
imperative features such as local variable updates and loops. Abstract compilation
of field updates is more challenging, and therefore its treatment is postponed to
Section 4. The formalization of abstract compilation for the intermediate SSA
form of a simple imperative Java-like language can be found in Section 5, whereas
Section 6 is devoted to the definition of the small-step operational semantics of the
language and to the proof of soundness of abstract compilation. Finally, Section 7
concludes with an analysis of the related work, and a discussion on future research
directions.

2. A gentle introduction to coinductive type systems

This section contains an overview on abstract compilation and coinductive types
based on previous work [4, 8] on type inference of object-oriented languages in a
functional setting.

Abstract compilation allows static analysis, and, more specifically, type infer-
ence, by translating the program to be analyzed into a Horn formula Hf (that is, a
conjunction of Horn clauses) which corresponds to a more abstract representation
of the program, and by resolving a certain goal w.r.t. the conductive (that is, the
greatest) Herbrand model of Hf .

As an example, let us assume that we would like to perform type inference for
the following Java-like program, where type annotations have been deliberately
omitted.

c lass EList extends Object {

EList (){super();}

}
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c lass NEList extends Object {

el , next;

NEList(e,n){super();el=e;next=n;}

}

c lass Fact {

iter(i) {

i f (i<=0) return new EList ();

else return new NEList(i, this .iter(i-1));

}

}

Classes EList and NEList implement empty and non empty linked lists,1 respec-
tively. Method iter of the factory class Fact builds a linked list of length i con-
taining integer values as elements.

2.1. Abstract compilation of method declarations

Each method declared above can be abstractly compiled in a Horn clause corre-
sponding to a more abstract (hence, approximate) semantics of the method. This
is achieved by considering an Herbrand universe where terms are types (hence, a
term does not represent a single value, but rather a set of values), and by introduc-
ing and defining predicates for each language constructs, together with auxiliary
predicates needed for expressing the abstract semantics of the language.

More precisely, terms are either constants corresponding to field, method and
class names, or type constructors. Even though abstract compilation is not tied
to any particular kind of type constructor, previous work [4, 8] has proved that
the coexistence of union [10, 19] and object types allow precise type inference of
Java-like languages. Hence, throughout the paper we will use the following types:

• The two constant primitive types bool and int.2

• Object types obj(c,[f1:t1,. . .,fn:tn]), corresponding to all instances cre-
ated from class c, with fields f1, . . . , fn associated with values of types
t1, . . . , tn, respectively; data polymorphism is supported, since the field of
two instances of the same class can be associated with unrelated types. For
instance, obj(neList,[el:bool]) and obj(neList,[el:int]) correspond to
NEList instances whose first element is an integer and a boolean value,
respectively. Fields are finite and distinct, and their order is immaterial.

• Union types t1 ∨ t2, corresponding to all values of type either t1 or t2.
• Product types represented by list terms [t1, . . . , tn], and used for specifying

the types of method parameters.

1To keep the example simple, we are considering a quite naive implementation of linked lists.
In the examples we assume that numeric primitive data types are supported, even though the

language formalized in Section 5 supports only Boolean values.
2For simplicity only bool will be considered in the formalization in Section 5.
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Throughout the rest of the paper we will use the standard syntactic notations of
logic programming for Horn clauses; for instance, logical variables begin with an
upper case letter, while function and predicate symbols begin with a lower case
one.

Predicates correspond to the language constructs; for instance, invoke(t0,m,[t1,

. . . , tn],t) corresponds to invocation of method m on target (a.k.a. receiver) object
of type t0 with arguments of types t1, . . . , tn, and returned value of type t . As
another example, new(c,[t1, . . . , tn],t) corresponds to invocation of constructor of
class c, with arguments of types t1, . . . , tn, and returned value of type t .

Auxiliary predicates are introduced for defining the abstract semantics of the
language; for instance, predicate invoke is defined in terms of the predicate has_meth

corresponding to method look-up:
invoke(obj(C,R),M,A,RT) ← has_meth(C,M,[obj(C,R)|A],RT).

Invocation of method M on target of type obj(C,R) with arguments of type A returns
a value of type RT if method look-up of M starting from class C with argument type
[obj(C,R)|A] succeeds and returns a value of type RT. Note that the type of the
target object is added at the beginning of the list3 of argument types of the method.

The translation of a method declaration generates a new Horn clause for pred-
icate has_meth. For instance, method iter of class Fact can be compiled into the
following Horn clause:
has_meth(fact ,iter ,[This ,int],L1∨L2) ←

type_comp(This ,fact),new(eList ,[],L1),

invoke(This ,iter ,[int],L),new(neList ,[int ,L],L2).

The body of the clause has been obtained by compiling the body of the correspond-
ing method; for simplifying the example we have performed a simple optimization
by removing the atoms corresponding to the expressions i<=0 and i-1, which have
types bool and int, respectively, and require i having type int. The method has
two parameters [This,int], where the first corresponds to the target object, and
the second must necessarily be of type int. The target object must be an instance
of class Fact or of one of its subclasses (type_comp(This,fact)), since the method
might be inherited.
type_comp(obj(C1 ,R),C2) ← subclass(C1,C2).

The returned type is L1∨L2, where L1 and L2 are the types of the “then” and
“else” branches, respectively, of the conditional statement. The “then” branch has
been compiled into new(eList,[],L1), the “else” into invoke(This,iter,[int],L),

new(neList,[int,L],L2).

2.2. Infinite terms, and the coinductive Herbrand model

Given the above example code, the invocation x.iter(n) is expected to be type
safe whenever x and n contain an instance of class Fact and an integer value,
respectively. Consequently, the goal has_meth(fact,iter,[obj(fact,[]),int],T)

3The term [t1 | t2] denotes the list where t1 is the first element and t2 is the rest of the list.
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should succeed for a substitution mapping T to a term t corresponding to the type
of the returned value.

Unfortunately, this is not true for the standard inductive Herbrand model
[30,31]. There are two intimately related reasons for that. The first one is that the
clause corresponding to method iter as defined above does not correspond to a
well-founded inductive definition. Indeed, the recursive invocation this.iter(i-1)

in the body of the method is compiled in the atom invoke(This,iter,[int],L),
and predicate invoke is defined in terms of predicate has_meth, hence, resolving
invoke(This,iter,[int],L) amounts to resolve has_meth(fact,iter,[obj(fact,[]),

int],L). Therefore standard SLD resolution based on the inductive Herbrand
model would diverge in this case, since there is no finite proof tree for the goal.

The other reason why the inductive Herbrand model does not work is that the
logical variable T of the goal should be substituted with a type t specifying the
set of all lists of integers, and this set cannot be expressed with a finite term
with union and object types. However, such a type can be easily expressed in the
coinductive Herbrand model where terms can be infinite: t is the unique solution
of the following unification problem (see below, and Section 2.3):

t =obj(eList ,[])∨obj(neList ,[el:int ,next:t ])

The coinductive Herbrand model is defined in terms of the greatest fixed point
operator, or equivalently, of possibly infinite proof trees [4,8,30,31]. Consequently,
the atom A =has_meth(fact,iter,[obj(fact,[]),int],t) succeeds; indeed, given
the above clauses defining predicate invoke and encoding method iter, one can
verify that A succeeds if the following four atoms succeed:
type_comp(obj(fact ,[]), fact), new(eList ,[],obj(eList ,[])) ,

new(neList ,[int ,t],obj(neList ,[el:int ,next:t ])),

invoke(obj(fact ,[]),iter ,[int],t ).

The reader can easily verify that, by encoding the whole program on page 2 with
the rules defined in Section 5, the first three atoms above succeed, while the
last atom succeeds if A succeeds, hence we can conclude by coinduction that the
original goal succeeds.

We can now give the relevant formal definitions, based on the standard notion
of infinite tree [2, 12].

Definition 2.1. A path p is a finite and possibly empty sequence of natural
numbers, that is, an element of the set N∗. The empty path is denoted by ε, p1 ·p2

denotes the concatenation of p1 and p2, and |p| the length of p. For simplicity we
consider N a subset of N∗, hence depending on the context, n may denote either
a natural number, or the path of length 1 containing n.

Definition 2.2. A tree over a set S is a partial function t :N∗ ⇀ S from paths to
S s.t.

(1) its domain, denoted by dom(t), is not empty;
(2) dom(t) is prefix-closed;
(3) for all paths p ∈ dom(t), and n ∈ N, p · (n + 1) ∈ dom(t) implies p · n ∈

dom(t) and there exists k s.t. p · k 6∈ dom(t).
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Note that by 1 and 2 we have that ε ∈ dom(t) always holds, and by 3 t is always
finitely branching; that is, t is infinite iff the set {|p| | p ∈ dom(t)} has no upper
bound.

A ranked alphabet Σo associates an arity n with each operation op (a.k.a. func-
tor or function) symbol; more precisely, symbol op has arity n in Σo iff (op, n) ∈ Σo.

Definition 2.3. A ground term over Σo is a tree t over Σo s.t. for all p ∈ dom(t),
if t(p) = (op, n), then p · (n− 1) ∈ dom(t) and p · n 6∈ dom(t). The set of ground
terms over Σo is called the coinductive Herbrand universe over Σo.

Let X be an enumerable set of variables disjoint from Σo. Terms over Σo and
X are easily defined by considering variables as symbols of arity 0, and by taking
trees over Σo ∪ X .

A substitution θ is a total map from X to trees over Σo ∪ X .

Definition 2.4. If p ∈ dom(t), then the subtree of t rooted at p is the tree t ′

defined by dom(t ′) = {p′ | p · p′ ∈ dom(t)}, t ′(p′) = t(p · p′).
Definition 2.5. We denote with tθ the term obtained by substituting all occur-
rences of any variable X (more precisely, all subtrees t ′ of t s.t. t ′(ε) = X) with
θ(X). More formally,

• dom(tθ) = dom(t) ∪ {p · p′ | t(p) ∈ X , p′ ∈ dom(θ(t(p)))}

• (tθ)(p) =
{

t(p) if p ∈ dom(t), t(p) 6∈ X
θ(t(p′))(p′′) if p = p′ · p′′, p′ ∈ dom(t), t(p′) ∈ X

A guarded equation over Σo ∪ X is a syntactic equation X = t [4, 8, 30, 31],
where t(ε) 6∈ X , and dom(t) is finite (that is, t is not a variable and is finite).

A solution of X = t is a substitution θ s.t. θ(X) = tθ. Such a definition can
be naturally extended to a system of guarded equations, that is, an enumerable
set {Xi = ti | i ∈ I ⊆ N} of guarded equations s.t. Xi = Xj implies i = j for all
i, j ∈ I.

Proposition 2.6. Every tree can be represented by a system of guarded equations
{Xi = ti | i ∈ I ⊆ N} s.t. for some i ∈ I, θ(Xi) = t for any solution θ.

Note that the proposition stated above [12] is trivial for finite trees, but less
obvious for infinite ones. As we will see below, there are infinite trees which can
be represented by a finite number of guarded equations.

Definition 2.7. Given a ranked alphabet Σp for predicate symbols, a ground atom
A over Σo and Σp is a term over Σo ∪ Σp s.t. A(ε) ∈ Σp and for all n ∈ dom(A)
A(n) is a term over Σo. The set of ground atoms over Σo and Σp is called the
coinductive Herbrand base over Σo and Σp and denoted by HB(Σo,Σp).

Atoms over a set of variables X are defined analogously as for terms. In the
rest of the paper we assume that fixed Σo and Σp are given.

Definition 2.8. The immediate consequence operator THf associated with formula
Hf is the endofunction over P(HB(Σo,Σp)) defined as follows:

THf (S) = {A | A← B is a ground instance of a clause of Hf ,B ∈ S}.
6



A Herbrand model of Hf is a subset of HB(Σo,Σp) which is a fixed-point of THf .

Since THf (S) is monotone by definition, by the Knaster-Tarski theorem there
always exists the greatest fixed-point of THf , which is called the coinductive Her-
brand model of Hf , and is denoted by MHf . A goal A1, . . . ,An (a finite sequence
of atoms) is coinductively derivable (we will simply write derivable in the rest of
the paper) from Hf iff there exists a substitution θ s.t. for all i = 1, . . . , n, Aiθ
belongs to the coinductive Herbrand model of Hf .

The coinductive Herbrand model can be equivalently defined in terms of infinite
proof trees.

Definition 2.9. A proof tree for Hf is a tree t over HB(Σo,Σp) s.t. for all p ∈
dom(t), if p ·(n−1) ∈ dom(t) and p ·n 6∈ dom(t), then t(p)← t(p ·0), . . . , t(p ·n−1)
is a ground instance of a clause of Hf .

We can now state the following proposition [21].

Proposition 2.10. The set {A | A = t(ε), t proof tree for Hf } is equal to the
coinductive Herbrand model of Hf .

2.3. Regular terms, subtyping and subsumption

The term t =obj(eList,[])∨obj(neList,[el:int,next:t]) introduced in the pre-
vious section can be finitely represented by a system with a finite number of
guarded equations (in fact, in this example just an equation suffices) and is called
regular (a.k.a. rational). Not all infinite terms in the coinductive Herbrand model
are regular, hence, not all terms can be finitely represented. The same consider-
ation applies for proof trees. Therefore, coinductive type systems are inherently
idealized and allow only sound but not complete implementations. The notions
of regular term and proof [12, 21, 31], subtyping and subsumption are introduced
mainly for allowing sound approximations, so that infinite types and proof trees
can be approximated with arbitrary precision by regular ones.

Definition 2.11. A regular tree is a possibly infinite tree containing a finite set
of subtrees.

Proposition 2.12. Every regular tree can be represented by a system with a finite
number of guarded equations {Xi = ti | i ∈ I ⊆ N, I finite} s.t. for some i ∈ I,
θ(Xi) = t for any solution θ.

The goal has_meth(fact,iter,[obj(fact,[]),int],T) presented in Section 2.2 is
derivable for T=t (with t regular term defined as above); indeed, there exists a regu-
lar proof tree for has_meth(fact,iter,[obj(fact,[]),int],t) having the following
shape (with the root at the bottom):
...

has_meth(fact ,iter ,[obj(fact ,[]),int],t)

...

has_meth(fact ,iter ,[obj(fact ,[]),int],t)
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However not always a goal is derivable with a regular proof tree, even when
all involved terms are regular. To see that, consider a slightly more elaborated
version of meth iter:

iter2(i,l) {

if(i<=0) return l;

else return this.iter(i-1,new NEList(i,l));

}

Although has_meth(fact,iter2,[obj(fact,[]),int,obj(eList,[])],t) is derivable
for the same type t as defined above, such a goal has the following non regular
proof tree:

...

has_meth(fact ,iter2 ,[obj(fact ,[]),int ,tn],t)

...

has_meth(fact ,iter2 ,[obj(fact ,[]),int ,t1],t)

...

has_meth(fact ,iter2 ,[obj(fact ,[]),int ,t0],t)

The proof contains infinite distinct regular terms t0, . . . , tn, . . . defined by

t0=obj(eList ,[])

tn+1=obj(neList ,[el:int ,next:tn])

corresponding to the type of the second argument of all the (recursive) invocations
of iter2. Type ti represents all lists of integer numbers of length i, whereas t rep-
resents all finite and circular lists of integer numbers, hence ti ≤ t for all i. By con-
travariance of method arguments, atom has_meth(fact,iter2,[obj(fact,[]),int,t],t)

subsumes has_meth(fact,iter2,[obj(fact,[]),int,t0],t), that is, if the former is
derivable, then latter is derivable as well. Hence, by applying subsumption it is
possible to build the following regular proof tree for the goal:

...

has_meth(fact ,iter2 ,[obj(fact ,[]),int ,t],t)

...

has_meth(fact ,iter2 ,[obj(fact ,[]),int ,t],t)

has_meth(fact ,iter2 ,[obj(fact ,[]),int ,t0],t)

Subtyping corresponds to inclusion between type interpretations, which are sets
of values defined coinductively [5, 6]. In this paper we provide a sound, but not
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complete, definition of subtyping coinductively defined by the rules below. Com-
pleteness issues are out of the scope of this paper [6].

(int)
int ≤ int

(bool)
bool ≤ bool

(tuple)
∀ i = 1 ..n ti ≤ t ′i

[t1 , . . . , tn ] ≤ [t ′1 , . . . , t
′
n ]

(obj)
t1 ≤ t2

obj (c, t1 ) ≤ obj (c, t2 )
(rec)

t1 ≤ t ′1 , . . . , tn ≤ t ′n
[f1 :t1 , . . . , fn :tn , g1 :u1 , . . . , gk :uk ] ≤ [f1 :t ′1 , . . . , fn :t ′n ]

(∨R1)
t ≤ t1

t ≤ t1 ∨ t2
(∨R2)

t ≤ t2
t ≤ t1 ∨ t2

(∨L)
t1 ≤ t t2 ≤ t

t1 ∨ t2 ≤ t

(distr)

obj (c, [f1:t1, . . . , fn:tn, f :u1, g1:t ′1, . . . , gk:t ′k]) ≤ t
obj (c, [f1:t1, . . . , fn:tn, f :u2, g1:t ′1, . . . , gk:t ′k]) ≤ t

obj (c, [f1 :t1 , . . . , fn :tn , f :u1 ∨ u2 , g1 :t ′1 , . . . , gk :t ′k ]) ≤ t

Subtyping between object types (obj) holds only between instances of the same
class (see below for further explanations), whereas (rec) defines the standard width
and depth subtyping between immutable records. As we will see in Section 4, depth
subtyping is unsound in the presence of mutable fields, therefore another rule is
required for updatable records.

Rules (∨R1), (∨R2) and (∨L) are standard. Rule (distr) ensures that object
types “distributes over” union.

To avoid unsound subtyping, all derivations for ≤ are required to be contractive
[4].

Definition 2.13. A derivation for t1 ≤ t2 is contractive iff it contains no sub-
derivations built only with subtyping rules (∨R), and (∨L).

The judgment t1 ≤ t2 is derivable iff there is a contractive derivation for it.

The problem with rules (∨R), and (∨L) is that they “consume” only a part of the
term on the righthand side, hence it is possible to build unsound non contractive
proof trees. For instance, by only applying rule (∨L), it would be possible to build
an infinite proof tree for bool ≤ tint , where tint = tint ∨ int , which is unsound
since tint is equivalent to int (intuitively, tint is an infinite union of int). However,
according to Definition 2.13, such a proof tree is not contractive.

Once ≤ is defined, one has to define subsumption, that is, how each predicate
behaves w.r.t. subtyping. For instance, the predicate invoke is invariant w.r.t. its
first and second argument, contravariant w.r.t. its third, and covariant w.r.t. its
fourth; this is specified by the variance annotation ==≥≤, meaning that the
ground atom invoke(t1,m, t2, t3) subsumes the ground atom invoke(t ′1,m

′, t ′2, t
′
3)

iff t1 = t ′1, m = m ′, t2 ≥ t ′2, and t3 ≤ t ′3.
We extend the notion of ranked alphabet for predicate symbols to include vari-

ance annotations: (p, (α1, . . . , αn)) ∈ Σp,≤ means that predicate p has variance
annotation α1, . . . , αn, and, hence, arity n. We also write more succinctly pα1,...,αn .

Definition 2.14. If pα1,...,αn
, then the ground atom p(t1, . . . , tn) subsumes the

ground atom p(t ′1, . . . , t
′
n) iff for all i = 1..n the relation ti αi t ′i holds, where t ≥ t ′

holds iff t ′ ≤ t holds, and t = t ′ holds iff t and t ′ are syntactically equal.
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With subtyping we switch from coinductive logic programming to coinductive
constraint logic programming; however, the subtyping constraint is not introduced
explicitly in the clause bodies, but rather implicitly with variance annotations,
which must be provided for all predicates. Variance annotations allow more com-
pact clauses, and a more convenient definition of the operational semantics of Horn
formulas [3].

We can now extend the definition of coinductive Herbrand model with subtyping
constraints.

Definition 2.15. The immediate consequence operator THf ,≤ associated with for-
mula Hf is the endofunction over P(HB(Σo,Σp,≤)) defined as follows:

THf ,≤(S) = {A′ | A← B is a ground instance of a clause of Hf
A subsumes A′ and B ∈ S}.

A Herbrand model of Hf with subtyping constraints is a subset of HB(Σo,Σp,≤)
which is a fixed-point of THf ,≤. The coinductive Herbrand model of Hf with
subtyping constraints is the greatest fixed-point of THf ,≤, and is denoted by M≤Hf .

Finally, we explain why obj (c1, [. . .]) is not a subtype of obj (c2, [. . .]) when c1 is
a proper subclass of c2. Indeed, to allow more precise type inference we decouple
inheritance from subtyping (see the seminal paper by Cook and Canning [11])
and do not impose any overriding rule. Let us consider the following classical
example, where class ColPoint inherits method move from Point and overrides
method equals.

class Point {

x,y;

move(dx ,dy) {x+=dx; y+=dy;}

equals(p) {return p.x==x && p.y==y;}

}

class ColPoint extends Point {

c;

equals(cp) {return super.equals(cp) && cp.c==c;}

}

The type obj (point , [x:int , y:int ])∨obj (colPoint , [x:int , y:int ]) can be inferred for z
in the expression z.move(1,2) (note that for method move no information on field c

is required for colPoint instances), hence, the inherited method can be effectively
used by class ColPoint as well. Such an inference is allowed by the following
two clauses,4 shared by all translated programs (see Figure 5), which specify the
behavior of invoke w.r.t. union types, and of has_meth for inherited methods.

invoke(T1∨T2 ,M,A,RT1∨RT2) ← invoke(T1,M,A,RT1),invoke(T2,M,A,RT2).

has_meth(C,M,A,R) ← extends(C,P),has_meth(P,M,A,R),¬dec_meth(C,M).

4We use negation for brevity, see further comments in Section 5.
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If we consider method equals, then the type which can be inferred for z in the ex-
pression z.equals(new Point()) is obj (point , [x:int , y:int ]), since instances of class
Point do not have a c field; therefore obj (colPoint , [x:int , y:int ]) is not a subtype
of obj (point , [x:int , y:int ]), as correctly captured by subtyping rule (obj).

3. SSA intermediate forms for typing imperative
features

We start this section with a simple example to show how a source program
can be transformed into an SSA intermediate form, and why this transformation
enhances static type analysis.

Consider the following class declarations written in our simple untyped lan-
guage5 and defining simple geometrical shapes.

class Circle {

radius;

Circle(r) {

super ();

this.radius=r;

}

getRadius () {

return this.radius;

}

area() {

return 3.141592* this.radius*this.radius;

}

}

class Square {

side;

Square(s) {

super ();

side=s;

}

getSide () {

return this.side;

}

area() {

return this.side*this.side;

}

}

5In the following we assume that string and floating-point data types are supported, as well
as methods for printing values.

11



For simplicity, both classes extend the predefined root class Object, instead of
introducing a superclass Shape to factor out all common features, as it would be
customary in practice.

The following code fragment, contained in another class called ShapeReader,
creates a shape which is read from an input stream reader and invokes on it
some methods. The reader object must be an instance of a class which provides
a method next() returning the next string read from the stream. The methods
readCircle() and readSquare() of class ShapeReader (whose definitions have been
omitted since they are not important for the example) read a double precision
floating-point number from the input, create a new instance of Circle and Square,
respectively, and return it.

read(reader) {

2 st=reader.next ();

if(st.equals("circle")) {

4 sh=this.readCircle ();

this.print("A circle with radius ");

6 this.print(sh.getRadius ());

}

8 else if(st.equals("square")) {

sh=this.readSquare ();

10 this.print("A square with side ");

this.print(sh.getSide ());

12 }

else return; // an exception should be thrown

14 this.print("Area = ");

this.print(sh.area ());

16 }

It is clear from the code that sh on line 6 and line 11 will always contain Circle

and Square instances, respectively, hence, both sh.getRadius() and sh.getSide()

are type safe. On the other hand, sh on line 15 can either contain a circle or a
square, depending on the input, therefore sh.getRadius() and sh.getSide() would
not be type safe in this context, whereas method area can be safely invoked, since
the method is defined in both classes.

This means that the most accurate type that can be inferred for sh is the fol-
lowing: obj (circle, [radius:double]) ∨ obj (square, [side:double]). As a consequence,
method read cannot be typed, since the type of sh is not compatible with the
invocation of methods sh.getRadius() and sh.getSide(). However, method read

can be typed if the types associated with the occurrences of sh are allowed to be
different. This can be achieved by performing type inference on the SSA interme-
diate form of read, rather than on its source code. The flow graph corresponding
to the SSA form of read is shown in Figure 1.

A program is in SSA form if the value of each variable is determined by exactly
one assignment statement in the program [15]. To obtain this property, the trans-
formation from source to SSA form performs a suitable renaming of variables to
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input 
reader

0

st
0
=reader

0
.next() 

st
0
.equals("circle")

output 

block 1

    sh
0
=this.readCircle()

    this.print ("...")
    this.print(sh

0
.getRadius())  

 st
0
.equals("square")

 sh
1
=this.readSquare()

 this.print ("...")
 this.print(sh

1
.getSide())

  sh
2
=φ(sh

0
,sh

1
)

  this.print("Area = ")
  this.print(sh

2
.area())

true false

true false

block 2 block 3

block 4

block 5

Figure 1. Control flow graph corresponding to the body of
method read

keep track of the possibly different versions of the same variable. Conventionally,
such renaming preserves the names of the original variable and introduces a differ-
ent subscript for each version. For instance, in Figure 1 there are three different
versions for variable sh: sh0, sh1, and sh2, defined respectively in block 2, 4, and
5.

To transform a program into SSA form, pseudo-functions, which are conven-
tionally called ϕ functions, have to be inserted when multiple definitions converge
in merge points. Consider block 5 in Figure 1, which can be reached either from
block 2 or 4: The value of sh in print(sh.area()) is that of either sh0 or sh1,
therefore a new version sh2 must be introduced. The definition ϕ(sh0,sh1) of sh2

keeps track of the fact that the value of sh2 is determined either by sh0 or sh1.
The transformation of a source program into its SSA form is standard [15], and

there exists a quite efficient algorithm to perform it [16], therefore for simplicity
our type system is directly defined on programs in SSA form. Expressing SSA
forms with flow graphs enhances readability of programs, but for formalizing the
type system it is better to adopt a textual language. For instance, in our language
the SSA form of method read is the following:
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read(reader0) {

b1:{st0 = reader0.next ();

if(st0.equals("circle"))

jump b2;

else

jump b3;

}

b2:{sh0=this.readCircle ();

this.print("A circle with radius ");

this.print(sh0.getRadius ());

jump b5;

}

b3:{if(st0.equals("square"))

jump b4;

else

jump out;

}

b4:{sh1=this.readSquare ();

this.print("A square with side ");

this.print(sh1.getSide ());

jump b5;

}

b5:{sh2=ϕ(sh0,sh1);

this.print("Area = ");

this.print(sh2.area ());

jump out;

}

out:{ return ;}

}

The body of a method in SSA form is a sequence of uniquely labeled blocks;
each block ends with either a conditional or unconditional jump, or a return. For
simplifying the encoding, we require that only the last block6 contains the return

statement.
Let us show how the intermediate form of method read can be encoded7 in a

Horn clause:

meth(shapeReader ,read ,[This ,Reader0],void) ←
type_comp(This ,shapeReader),

invoke(Reader0,next ,[],St0),

invoke(St0,equals ,[ string],bool),

6This can be always obtained with simple transformations; in case of multiple returned values,
several versions of a fresh variable containg the returned values and a ϕ function is introduced.

7To save space, we have optimized the encoding by removing atoms which are always clearly
satisfied, as invoke(This,print,[string],_), and used the anonymous variable _ for unused
returned values.
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invoke(This ,readCircle ,[],Sh0),

invoke(Sh0,getRadius ,[],X0),

invoke(This ,print ,[X0],_),

invoke(This ,readSquare ,[],Sh1),

invoke(Sh1,getSide ,[],X1),

invoke(This ,print ,[X1],_),

var_upd(Sh2,Sh0∨Sh1),

invoke(Sh2,area ,[],X2),

invoke(This ,print ,[X2],_).

The predicate var_upd/≤≥ defines type safe assignments to local variables and is
trivially specified by the following fact: var_upd(X,X). The first argument is the
type of the destination, the second argument is the type of the source of the
assignment. An assignment is type safe when the type of the source is a subtype
of the type of the destination; the predicate is covariant in the first argument, and
contravariant in the second one, therefore var_upd(t1,t2) succeeds iff there exists
t s.t. t ≤ t1 and t2 ≤ t (since var_upd(t,t) holds by definition), that is, iff t2 ≤ t1.

The atom meth(shapeReader,read,[this,reader],void) succeeds, by instantiating
the clause above with the following substitution
St0=string

Sh0=obj(circle ,[ radius:double ])

Sh1=obj(square ,[side:double ])

X0=X1=X2=double

Sh2=obj(circle ,[ radius:double ])∨obj(square ,[side:double ])

if we assume that the object this is an instance of ShapeReader or of any of its
subclasses (type_comp(this,shapeReader)), that object reader has a method next

which has no arguments and returns a string, that the class ShapeReader has the
two methods readCircle and readSquare taking no arguments and returning an
instance of class Circle and Square, respectively, that objects of type string has
method equals taking a string as argument, and returning a boolean value, and
that any object has the predefined method print, which can be invoked on any
argument and returns the void value.

As a final remark, note that the encoding of method read is control flow insen-
sitive; however, the control flow information contained in the SSA intermediate
form could be exploited to elaborate more sophisticated forms of encoding, and,
thus, to define more precise type systems.

4. Field assignments

In the previous section we have shown how it is possible to perform type anal-
ysis of imperative constructs such as assignment to local variables, conditional
execution and iteration.

In this section we deal with the problem of typing field assignments. Ensur-
ing the type integrity of objects whose address (identity) is stored on the heap,
rather than on the stack, is more difficult. Indeed, while the use of the SSA form
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allows a more precise analysis on the content of local variables (and, therefore, of
parameters), the same approach cannot be applied to object fields (that is, vari-
ables allocated on the heap). In this case a more conservative, even though precise
enough in most cases, type analysis is performed, by exploiting coinduction, union
types, and subtyping.

4.1. Subtyping

It is well known that depth record subtyping is unsound when fields are mutable.
To allow more expressiveness, record types are extended by annotating fields with
an access modifier ranging over the following three values: r (read-only field), w
(write-only field), rw (read-write field). For instance, [f r

1 :t1, fw
2 :t2, frw

3 :t3] is the
type of records with field f1 of type t1 which can be selected but not updated, f2
of type t2 which can be updated but not selected, f3 of type t3 which can be both
updated and selected. Consequently, rule (rec) is generalized as follows.

(rec)
(a1, t1) ≤ (a ′1, t

′
1) . . . (an, tn) ≤ (a ′n, t

′
n)

[f a1
1 :t1, . . . , f an

n :tn, gb1
1 :u1, . . . , gbk

k :uk] ≤ [f a′
1

1 :t ′1, . . . , f
a′

n
n :t ′n]

Subtyping between pairs of the form (a, t) is defined by the following rules:

(r)
a ≤ r t1 ≤ t2
(a, t1) ≤ (r, t2)

(w)
a ≤ w t2 ≤ t1
(a, t1) ≤ (w, t2)

(rw)
t1 ∼= t2

(rw, t1) ≤ (rw, t2)

The subtyping relation ≤ on access modifiers is defined as follows:

a1 ≤ a2 iff a1 = a2 or a1 = rw.

The definition corresponds to the intuition that the relation is reflexive and that
a field which is both readable and writeable, is also readable or writeable.

Rules (r), (w) and (rw) simply state that depth record subtyping is covariant
w.r.t. read-only fields, contravariant w.r.t write-only fields, and weakly invariant
w.r.t. read-write fields (t ∼= t ′ iff t ≤ t ′ and t ′ ≤ t). Note that (rec) allows width
subtyping as well, with no restrictions on field access modifiers.

4.2. Encoding of field assignment

Consider the following simple code fragment example:

x=new NEList(1,new EList ());

x.next=x;

After the assignment to field next, the variable x contains a recursive object cor-
responding to an infinite list. The above code can be encoded into the following
sequence of atoms:

new(eList ,[],T),new(neList ,[int ,T],X),field_upd(X,next ,X).
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The predicate field_upd/∼==≥ defines type safe assignments to fields: the first
argument is the type of the object whose field is modified, the second is the name
of the field, and the third is the type of the value which is assigned to the field.
As happens for invoke, field_upd is invariant w.r.t. its first and second argument,
whereas is contravariant w.r.t. the third argument (as assign).

The predicate field_upd can be easily defined on top of the predicate rec_upd/≥=≥
specifying type safe record updates:

field_upd(obj(C,R),F,T) ← has_field(C,F),rec_upd(R,F,T).

field_upd(T1∨T2 ,F,T) ← field_upd(T1 ,F,T),field_upd(T2 ,F,T).

Assigning values of type T to a field F of an object of type obj(C,R) is type safe if
class C has field F, and in the record type R the field F can be safely updated with
a value of type T (first clause for field_upd). Similarly to method invocations and
field accesses, a field assignment on an object of type T1∨T2 is correct if the same
assignment is correct for both types T1 and T2 (second clause for field_upd).

Predicate rec_upd is defined by the following fact: rec_upd([F^w:T],F,T). If a
record has a writable field F of type T, then F can be safely updated with any
value of type T. Note that, since rec_upd is contravariant w.r.t. its first and third
arguments, the update is type safe for any record whose type is a subtype of
[F^w:T], and for any assigned value whose type is a subtype of T; for instance, by
rules (rec) and (rw), we can deduce that updates are correct also for records with
more fields where F has type T2, with T ≤ T2, and is both readable and writeable
(F^rw).

Given the clauses defining field_upd and rec_upd, we can now verify that
the goal new(eList,[],T),new(neList,[int,T],X),field_upd(X,next,X), which en-
codes the example at the begining of Section 4.2, succeeds for the substitution
T=tT X=tX , where tT and tX are defined as follows:

tT =obj(eList ,[])∨tX
tX =obj(neList ,[el^rw:int ,next^rw:tT ])

Indeed, new(eList,[],tT ) holds by subsumption, since new(eList,[],obj(eList,[]))

succeeds and obj(eList,[])≤tT .
The atom new(neList,[int,tT ],obj(neList,[el^rw:int,next^rw:tT ])) clearly holds.
Finally, field_upd(tX,next,tX) succeeds because rec_upd([next^rw:tT ],next,tX)

holds by subsumption, since rec_upd([next^w:tT ],next,tT ) succeeds, and tX≤tT
and [next^rw:tT ]≤[next^w:tT ] hold.

Note that, by slightly generalizing the definition of tT and tX as follows:

tT =obj(eList ,[])∨tX∨t

tX =obj(neList ,[el^rw:int ,next^rw:tT ])

we obtain an infinite set of substitutions (each obtained from a different type t)
which all satisfy our goal.

The types tX obtained from different definitions of t (and, hence, of tT ) are not
comparable in general, since subtyping is invariant w.r.t. the field next with rw
access.

For instance, let us consider t1
X and t2

X obtained from t1
T and t2

T defined respec-
tively as follows:
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prog ::= cd
n

e (e ground)

cd ::= class c1 extends c2 { f
n

cn md
m } (c1 6= Object)

cn ::= c(x0
n) {l :this.csuper(em); this.f = e ′;

k
return this}

md ::= m(x0
n) {bn}

b ::= l :e
name ::= this | xv

ν ::= false | true | null
e ::= ϕ(xv1 , . . . , xvn) | new c(en) | xv | e.f | e0.m(en) | this | ν | e1; e2

xv = e | e1.f = e2 | jump l | if (e) jump l1 else jump l2 | return name

Syntactic assumptions: inheritance is not cyclic, constructor initialization expressions
do not contain this, csuper indicates the name of the superclass, method bodies are in
correct SSA form (where the last block consists of a return, and no other block uses
return), method and class names are disjoint, no name conflicts in class, field, method

and parameter declarations.

Figure 2. SSA intermediate language

t1
T =obj(eList ,[])∨tX

t2
T =obj(eList ,[])∨tX∨obj(neList ,[el^rw:int ,next^rw:obj(eList ,[])])

The type t1
X assigns a more precise type to x.next, whereas t2

X accepts as type
safe more updates of x.next.

5. Formalization

In this section we formalize abstract compilation of the language used in the
examples of the previous sections. The syntax of the language is defined in Figure
2.

A program is a collection of class declarations followed by a main expression e
with no free variables. The notation cd

n
is a shortcut for cd1, . . . , cdn. A class

declares its direct superclass (only single inheritance is supported), its fields, a
single8 constructor, and its methods.9

For simplicity, we treat constructors like methods named as their corresponding
classes; for this reason, no (real) method can be named like any class used in the
program. Constructor bodies are simple: they contain a single block, whose label
is immaterial. This block first invokes the constructor of the direct superclass
csuper, to initialize the inherited fields. Then, it initializes all fields declared in the
class (for simplicity in the same order as they have been declared). Finally, the
initialized object is returned. Constructor bodies are so simple that in fact there
is no difference between their source and SSA form. However, for uniformity, all
parameters are annotated with version 0.

Method bodies are in SSA form, that is, a sequence of uniquely labeled blocks
where each variable is determined by exactly one assignment. Parameters can

8For simplicity.
9Recall that the language does not allow type annotations.
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be modified like the other local variables. Each block contains a sequence of
expressions (for simplicity we do not distinguish expressions and statements) which
is always terminated by a jump, which can be either a return from the method, or
a conditional or unconditional jump to another block of the method.

Expressions include assignments to variables and to object fields, object cre-
ations, method invocations, variables, field selections, the keyword this denoting
the target object, conditional and unconditional jumps, sequences, and the boolean
literals false, true and null.

Note that the syntax definition is more liberal than that corresponding to pro-
grams in SSA form generated by a front-end compiler; for instance, in a correct
program in SSA form jumps can only be the last expression in a block. Hence
in Figure 2 we assume that method bodies are in correct SSA form. The syntax
is more liberal because we decided not to distinguish expressions and statements;
however, such a choice allows a lighter technical treatment, at the negligible cost
of adding some reasonable syntactic assumptions.

Besides those standard expressions, there is also applications of ϕ functions to
different versions of the same variable. We have omitted numerical literals and
the usual logic-arithmetic operators, since their translation is straightforward.

The translation of programs, class, field, constructor, and method declarations
is defined in Figure 3.

To avoid a too cumbersome definition, we assume that in the translation, the
keyword this, variables, class, field and method names are mapped to themselves,
even though, to be more precise, appropriate injections should be used [4].

The translation of a program is a pair consisting of a Horn formula Hf d,Hf
n

and a conjunction of atoms B , where Hf d is the set of shared clauses generated by
any compilation (see Figure 5 below), Hf

n
are the clauses generated from all class

declarations, and B is the translation of the main expression of the program. The
generated program is type safe if there exists a substitution satisfying all atoms
in B w.r.t. the coinductive Herbrand model of Hf d,Hf

n
(see the claim 6.7 at the

end of this section).
The translation of a class c1 generates all clauses obtained from all field, con-

structor, and method declarations in c1; furthermore, two facts are generated, to
keep track of the name of the class (predicate class) and of its direct superclass
(predicate extends). The keyword in introduces all parameters needed by the
translations of the syntactic categories. To correctly translate field and method
declarations, the class where the declarations are contained is needed; for trans-
lating constructor declarations we need to know the sequence of all fields declared
in the class of the constructor.

The translation of a constructor declaration generates just one clause for the
predicate new . The body of the clause contains all the atoms generated from
the compilation of the expressions in the body of the constructor, plus two atoms
which check that the invocation of the constructor of the direct superclass is type
safe. The returned type is an object instance of the class c of the constructor,
where the record type of fields is obtained by appending the type f :t ′

k
of the fields
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(prog)
∀ i = 1..n cd i  Hf i e  (t |B)

cd
n

e  (Hf d,Hf
n|B)

(class)
∀ i = 1..n fi in c1  Cl i cn in f

n
 Cl ∀ j = 1..m md j in c1  Hf j

class c1 extends c2 { f
n

cn md
m } 

Cl
n ∪ Cl ∪Hf

m ∪


class(c1 )← true.
extends(c1 , c2 )← true.

ff
(field)

f in c  dec field(c, f )← true.

(constr)
∀ i = 1..m ei  (ti |Bi) ∀ j = 1..k e ′j  (t ′j |B ′j)

c(x0
n) {l :this.csuper(em); f = e ′;

k
return this} in f

k
 

new(c, [x0
n ], obj (c, [f :t ′

k |R]))← B
m
,new(csuper, [t

m
], obj (P,R)),B ′

k
.

(meth)
b

n
 (t |B)

m(x0
n){bn} in c  
dec meth(c,m)← true.
has meth(c,m, [This, x0

n ], t)← type comp(This, c),B .

(body)
∀ i = 1..n bi  Bi

b
n

l :return name  (name |Bn
)

Figure 3. Translation of programs, class, field, constructor, and
method declarations.

declared in c to the record type R of the inherited fields returned by the call to
the superclass constructor.

Method declarations generate two clauses, one for predicate dec meth and the
other for has meth. The first clause is a fact which specifies that method m is
declared in class c, whereas the second clause defines the type of the method: its
body contains the atoms generated from the body of the method, plus the atom
which requires this to have type c′, where c′ is a subtype of the class c where the
method is declared.

A method body is a sequence of blocks in SSA form which always ends with
a return block (which is the only block in the body of a method containing a
return statement). The compilation of a method body consists of the returned
type, that is, the type of the returned variable xv, and the conjunction of all the
atoms generated by the blocks of the method body.

Figure 4 defines the translation of blocks, statements and expressions.
A block corresponds to the translation of its expression (which actually can be

more than one, since the syntax admits sequence expressions) where the returned
type is discarded. As already noted, the presented compilation scheme is control
flow insensitive; however, more precise forms of abstract compilation could be
devised to exploit the control flow information of the SSA form.
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(block)
e  (t |B)

l :e  B
(seq)

e1  (t1 |B1) e2  (t2 |B2)

e1; e2  (t2 |B1,B2)

(jmp)
jump l  (⊥ | true)

(c-jmp)
e  (t |B)

if (e) jump l1 else jump l2  (⊥ |B , type comp(t , bool))

(var-upd)
e  (t |B)

xv = e  (t |B , var upd(xv, t))

(field-upd)
e1  (t1 |B1) e2  (t2 |B2)

e1.f = e2  (t2 |B1,B2,field upd(t1, f , t2))

(phi)
ϕ(xv1 , . . . , xvn) (xv1 ∨ . . . ∨ xvn | true)

(new)
∀ i = 1..n ei  (ti |Bi)

new c(en) (R |Bn
,new(c, [t

n
], R))

R fresh

(field-acc)
e  (t |B)

e.f  (R |B ,field acc(t , f , R))
R fresh

(invk)
∀ i = 0..n ei  (ti |Bi)

e0.m(en) (R |B0,B
n
, invoke(t0,m, [t

n
], R))

R fresh

(name)
name  (name | true)

(bool)
ν ∈ {true, false}
ν  (bool | true)

(null)
null (⊥ | true)

Figure 4. Translation of blocks, statements and expressions.

The translation of a sequence expression e1; e2 collects the atoms generated
from the translation of both e1 and e2, keeps the type of e2 and discard that of e1.

The translation of an unconditional jump generates no atoms, whereas a condi-
tional jump is translated in the conjunction of atoms generated from the condition
e, plus the atom requiring the type t of e to be compatible10 with the type bool.
The type of a jump is void, that is, the bottom type ⊥ (which is the type t s.t.
t = t ∨ t [5]).

The translation of assignments to local variables and fields yields the conjunc-
tion of the atoms generated from the corresponding sub-expressions, plus the atom
specific of the statement (built on predicates var upd and field upd , respectively).
The returned type is the type of the righthand side expression.

For object creation, field selection, and method invocation, the generated type is
a fresh logical variable which is instantiated with the type returned by the specific
predicates (new , field acc, and invoke, respectively). The returned constraints are
the conjunction of the atoms generated from the corresponding sub-expressions,
plus the atom specific of the statement.

Application of ϕ functions are translated in the corresponding union type, and
in the empty conjunction.

10For instance, t could be bool ∨ bool.
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class(object)← true.
subclass(X ,X )← class(X ).
subclass(X , object)← class(X ).
subclass(X ,Y )← extends(X ,Z ), subclass(Z ,Y ).
type comp(bool , bool)← true.
type comp(obj (C1 ,X ),C2 )← subclass(C1 ,C2 ).
type comp(T1 ∨ T2 ,C )← type comp(T1 ,C ), type comp(T2 ,C ).
field acc(obj (C ,R),F ,T )← has field(C ,F ), rec acc(R,F ,T ).
field acc(T1 ∨ T2 ,F ,FT1 ∨ FT2 )← field acc(T1 ,F ,FT1 ),field acc(T2 ,F ,FT2 ).
rec acc([Fˆr :T ],F ,T )← true.
invoke(obj (C ,R),M ,A,RT )← has meth(C ,M , [obj (C ,R)|A],RT ).
invoke(T1 ∨ T2 ,M ,A,RT1 ∨ RT2 )← invoke(T1 ,M ,A,RT1 ), invoke(T2 ,M ,A,RT2 ).
new(object , [ ], obj (object , [ ]))← true.
has field(C ,F )← dec field(C ,F ).
has field(C ,F )← extends(C ,P), has field(P ,F ).
has meth(C ,M ,A,R)← extends(C ,P), has meth(P ,M ,A,R),¬dec meth(C ,M ).
var upd(T ,T )← true.
field upd(obj (C ,R),F ,T )← has field(C ,F ), rec upd(R,F ,T ).
field upd(T1 ∨ T2 ,F ,T )← field upd(T1 ,F ,T ),field upd(T2 ,F ,T ).
rec upd([Fˆw : T ],F ,T )← true.

Figure 5. Shared clauses Hf d.

class= extends== subclass== type comp≥= field acc==≤ rec acc≥=≤
invoke==≥≤ new=≥≤ dec field== has field== dec meth== has meth==≥≤
var upd≤≥ field upd==≥ rec upd≥=≥

Figure 6. Subsumption annotations for all predicates.

The translation of the remaining expressions is straightforward.
Figure 5 contains shared clauses generated by any compilation.
The use of negation (¬dec meth) allows compilation to be fully compositional,

that is, to be independent from any particular context. The predicate dec meth is
simply defined by a set of ground facts, hence its coinductive and inductive seman-
tics always trivially coincide; as a consequence, our prototype interpreter follows
the standard “negation as failure” approach of inductive logic programming, in-
stead of implementing the more complex semantics of negation for coinductive
logic programming [23]. However, to simplify the formal treatment, in the sound-
ness proof we consider only definite Horn clauses, hence the generated program
is first tacitly transformed into an equivalent definite Horn formula, by replac-
ing ¬dec meth with the predicate not dec meth, easily defined by a collection of
ground facts.

Subsumption annotations of all predicates can be found in Figure 6.
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6. Soundness

In this section we first model the small-step semantics, then we sketch the
soundness proof.

In order to describe execution, we introduce the notion of runtime expression
by enriching the definition of values ν and expressions e; see Figure 7. We add
object identifiers o to values ν, and frame expressions σ〈m,l〉{e} to expressions e.

Frame expressions are used to model the execution of methods (and construc-
tors, which we treat as special methods); σ〈m,l〉{e} represents the execution of
an expression e w.r.t. a stack frame σ; the annotation 〈m, l〉 indicates that the
stack frame σ is for method m and that the currently executing block (of m) is
labelled l . Keeping track of which block is currently executing is needed in the
subject-reduction proof.

Stack frames σ map names to their corresponding values; they are represented
by a list of associations name 7→ ν where associations on the righthand side over-
rides associations on the left with the same name; therefore an assignment to a
local variable (see rule (var-asn) of Figure 8) transforms the current stack frame by
appending a new association to it. In this way it is possible to model the semantics
of a ϕ function application ϕ(xv1 , . . . , xvn

) (see rule (phi)), by selecting in the stack
frame the value of the variable between xv1 , . . . , xvn

which has been updated most
recently. This is achieved by searching the rightmost association of one of them.
The append operator is · (a single dot).

Heaps H map object identifiers o to objects, that is, pairs consisting of a class
name c and the set of field names f with their corresponding value ν.

Execution is modelled by the judgment H, e  H′, e ′, to be read: “runtime
expression e, in a heap H, is reduced in one step into runtime expression e ′,
producing the heap H′”. The reduction arrow, and all auxiliary functions, should
be parameterized by the whole executing program, cd

n
, which is kept implicit.

The execution inside a stack frame, that is, the execution of the body of a
method/constructor, is modelled by the judgement H, σ〈m,l〉, e  H′, σ′〈m,l′〉, e

′

to be read: “runtime expression e, in a stack frame σ (executing inside the block
labeled l , of method m) and heap H, is reduced in one step into runtime expression
e ′, producing stack frame σ′ (executing inside the block labeled l ′, of the same
method m) and heap H′”.

Context C[·] and D[·] are similar; the only difference is that the former does not
enter inside frame expressions. Together they allow us to elegantly express the fact
that execution steps must occur inside the most nested frame, see rule (cxt-closure)
in Figure 8, which contains all execution rules.

Variable and field assignments evaluate to their right values; rule (var-asn) mod-
els variable assignments, and has the side effect of appending a new association
to the current stack frame σ, while rule (fld-asn) models field assignments; in that
case, the object referenced by o is retrieved from the heap, and its value updated.

Rule (meth-call), describing method invocations, is a bit more involved; first
of all, the object referenced by o is retrieved in order to find its class, c. Then,
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using the two auxiliary functions11 firstBlock and params, we obtain the first block
of the method and its parameter names. The result of the evaluation is a frame
expression, where the stack frame is built by assigning the actual parameters to the
formal ones, and the reference o to this. Finally, the resulting runtime expression
is the body of the first block. Note that the newly created stack frame is annotated
by the name of the called method, m ′, and the label of its first block, l ′.

Rule (sequence) models the fact that a value is discarded when followed by
another runtime expression.

Rule (phi), (x-acc) and (this) model the access to a (set of different versions of
the same) local variable, a local variable, and the current object, respectively; all
of them simply extract the resulting value from the stack frame σ.

Rule (new) models object creations; a new object, identified by a fresh refer-
ence o, is added to the heap H. The fields f

n
of the newly created object are

initialized by null and the resulting expression corresponds to the invocation of
the constructor of class c.

Rule (fld-acc) models field accesses; their evaluation is quite trivial: the object
is retrieved from the heap, and the resulting expression is the value of the selected
field.

Rules (jump) and (if) model unconditional and conditional jumps, respectively.
These are the only rules that modify the label-part of the stack frame annota-
tion. The evaluation of a jump, which, by construction, is known to be the last
expression of a sequence, corresponds to replacing the jump expression itself with
the expression e contained in the block labelled l ′ and updating the stack frame
annotation accordingly.

Rule (return) models the return to the caller, by destroying (popping), the
current stack frame σ〈m,l〉 and substituting the whole frame expression with the
value of the returned variable xv.

Rule (main) is the one that allows to start the execution of a program, that
is, a sequence of class declarations cd

n
and a main expression e. The premise of

the rule exploits the small-step reduction, starting from an empty heap εH and an
empty stack frame ε, annotated by the pair 〈⊥,⊥〉, which corresponds to the fact
that the main expression is not actually contained in any block/method.

The relations  ∗ and  ∗max denote the transitive and the maximal transitive
closure, respectively, of : H, e  ∗ H′, e ′ iff H, e  H′′, e ′′ and H′′, e ′′  ∗ H′, e ′,
and H, e  ∗max H′, e ′ iff H, e  ∗ H′, e ′ and there exist no H′′, e ′′ s.t. H′, e ′  
H′′, e ′′.

The proof of soundness of abstract compilation is rather complex and relies on
the properties of progress and subject reduction. We provide only a sketch of the
proof. The first part of the proof consists in defining12 abstract compilation for
runtime expressions w.r.t. a given heap and stack frame; there are two distinct
forms of compilation: H, e  (t |B) for the evaluation judgment H, e  H′, e ′,
and H, σ, e  (t |B) for the evaluation judgment H, σ, e  H′, σ′, e ′. The less

11The trivial definition of the auxiliary functions have been omitted.
12We have omitted the formal definitions.
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e ::= σ〈m,l〉{e}
ν ::= o
σ ::= name 7→ νn

H ::= o 7→ 〈c, f 7→ ν
m〉

n

C[·] ::= [·] | xv = C[·] | C[·].f = e | ν.f = C[·] | C[·].m(en) | ν0.m(νnC[·]em)
new c(νnC[·]em) | C[·].f | C[·]; e | if (C[·]) jump l1 else jump l2

D[·] ::= [·] | xv = D[·] | D[·].f = e | ν.f = D[·] | D[·].m(en) | ν0.m(νnD[·]em)
new c(νnD[·]em) | D[·].f | D[·]; e | if (D[·]) jump l1 else jump l2 | σ〈m,l〉{D[·]}

σ(namen) = νk ⇔

8<: σ = name ′j 7→ νj
m

∃i ∈ {1, . . . , n} : name ′k = namei

∀z : z > k =⇒ ∀i : name ′z 6= namei

Figure 7. Syntax of runtime expressions and σ〈m,l〉-lookup.

(ctx-closure)
H, σ〈m,l〉, e  H′, σ′〈m,l′〉, e

′

H,D[σ〈m,l〉{C[e]}] H′,D[σ′〈m,l′〉{C[e ′]}]
(var-asn)H, σ〈m,l〉, xv = ν  H, σ〈m,l〉 · xv 7→ ν, ν

(fld-asn)

H(o) = 〈c, f 7→ ν
n〉

f = fj

ν′i =


νi i 6= j
ν i = j

H, σ〈m,l〉, o.f = ν  H[〈c, f 7→ ν′
n〉/o], σ〈m,l〉, ν

(meth-call)

H(o) = 〈c, 〉
firstBlock(c,m ′) = l ′ : e
params(c,m ′) = x0

n

H, σ〈m,l〉, o.m
′(ν0

n) 
H, σ〈m,l〉, (x0 7→ ν0

n · this 7→ o)〈m′,l′〉{e}

(sequence)H, σ〈m,l〉, ν; e  H, σ〈m,l〉, e
(phi)

H, σ〈m,l〉, ϕ(xv1 , . . . , xvn) 
H, σ〈m,l〉, σ(xv1 , . . . , xvn)

(new)

o fresh in H
fieldNames(c) = f

n

H, σ〈m,l〉, new c(νn) 
H[〈c, f 7→ null

n〉/o], σ〈m,l〉, o.c(νn)

(fld-acc)

H(o) = 〈c, f 7→ ν
n〉

f = fj

H, σ〈m,l〉, o.f  H, σ〈m,l〉, νj

(x-acc)H, σ〈m,l〉, xv  H, σ〈m,l〉, σ(xv)
(this)H, σ〈m,l〉, this H, σ〈m,l〉, σ(this)

(jump)

H(σ(this)) = 〈c, 〉
block(c,m, l ′) = l ′ : e

H, σ〈m,l〉, jump l ′  H, σ〈m,l′〉, e
(if)

H(σ(this)) = 〈c, 〉

l ′ =


l1 ν = true

l2 ν = false

block(c,m, l ′) = l ′ : e

H, σ〈m,l〉, if (ν) jump l1 else jump l2  
H, σ〈m,l′〉, e

(return)H,D[σ〈m,l〉{return xv}] H,D[σ(xv)]
(main)

εH, ε〈⊥,⊥〉{e} ∗max H, e
cd

n
e ⇒ e

Figure 8. Small-step semantics.
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obvious case is the translation of stack frame expressions σ〈m,l〉{e}; all variables in
e defined in σ must be substituted with the corresponding values, before translat-
ing e. Particular care must be taken for ϕ functions: variables in ϕ(xv1 , . . . , xvn

)
must not be substituted even when σ(xv1 , . . . , xvn) is defined, otherwise subject
reduction does not hold. Consider for instance the following code fragment in SSA
form:

b1:{x0=0;i0=0; jump b2;}

b2:{x1=ϕ(x0,x4); i2=ϕ(i0,i1);

if(i2 >2) jump b7 else jump b3;}

b3:{if(i2%2==0) jump b4 else jump b5;}

b4:{x2=true;jump b6;}

b4:{x3=1; jump b6;}

b6:{x4=ϕ(x2,x3);i1=i2+1; jump b2;}

b7:{ return x1;}

The type statically inferred for variable x1 is int∨bool, however during execution
x1 is assigned both an integer and a boolean value, and the type of the returned
value can only be decided when block b7 is executed, otherwise subject reduction
would not hold, since int and bool are not comparable.

To prove progress we need the following lemmas.

Lemma 6.1. If H,D[σ〈m,l〉{C[e]}]  (t |B), then H, e  (t ′ |B ′), with B ′′ ⊆
B, where B ′′ is obtained from B ′ by an appropriate bijective renaming of logical
variables.

Proof. By case analysis on the contexts and by induction on their structure. �

Lemma 6.2. If for all i = 1..n cd i  Hf i, Hf = Hf d,Hf
n

, and there exists a
substitution θ s.t. invoke(c,m, [t1, . . . , tn], t)θ is in M≤Hf , then firstBlock(c,m) =
l : e and params(c,m) = x0

n for some variables x0
n and block l : e.

Proof. By induction on the height of the inheritance tree. Recall that by assump-
tion (see Figure 2) inheritance cannot be cyclic. �

Theorem 6.3 (Progress). If for all i = 1..n cd i  Hf i, Hf = Hf d,Hf
n

, H, e  
(t |B) and there exists a substitution θ s.t. all atoms in Bθ are contained in M≤Hf ,
then either e is a value or H, e  H′, e ′ for some H′ and e ′.

The following lemma is instrumental to the proof of the subject reduction prop-
erty.

Lemma 6.4. If for all i = 1..n cd i  Hf i, Hf = Hf d,Hf
n

, H, σ, e  (t |B),
there exists a substitution θ s.t. all atoms in Bθ are contained in M≤Hf , and
H, σ, e  H′, σ′, e ′, then there exist t ′, B ′ and θ′ s.t. H′, σ′, e ′  (t ′ |B ′), all
atoms in B ′θ′ are contained in M≤Hf , and t ′θ′ ≤ tθ.

Theorem 6.5 (Subject reduction). If for all i = 1..n cd i  Hf i, Hf = Hf d,Hf
n

,
H, e  (t |B), there exists a substitution θ s.t. all atoms in Bθ are contained in
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M≤Hf , and H, e  H′, e ′, then there exist t ′, B ′ and θ′ s.t. H′, e ′  (t ′ |B ′), all
atoms in B ′θ′ are contained in M≤Hf , and t ′θ′ ≤ tθ.

Finally, to prove soundness we need the following main lemma.

Lemma 6.6. Let us assume that the following conditions hold: If for all i =
1..n cd i  Hf i, Hf = Hf d,Hf

n
, H, e  (t |B), there exists a substitution θ s.t.

all atoms in Bθ are contained in M≤Hf , H, e  ∗ H′, e ′, and there exist no H′′, e ′′

s.t. H′, e ′  H′′, e ′′. Then e ′ is a value.

Proof. By induction on the number n of reduction steps. The claim for n = 0
holds by progress. If n > 0, then there exist H′′, e ′′ s.t. H, e  H′′, e ′, and
H′, e ′  ∗ H, e in n − 1 steps. By subject reduction we have that there exist t ′,
B ′ and θ′ s.t. H′′, e ′′  (t ′ |B ′), and all atoms in B ′θ′ are contained in M≤Hf ,
therefore we can conclude by inductive hypothesis. �

Theorem 6.7 (Soundness). Let us assume that the following conditions hold:
cd
n

e  (Hf |B), there exists a substitution θ s.t. all atoms in Bθ are contained
in M≤Hf , cd

n
e  e. Then e is a value.

Proof. If cd
n

e  (Hf |B), then by definition, for all i = 1..n cd i  Hf i, e  
(t |B), and Hf = Hf d,Hf

n
. If e  (t |B), then by definition, εH, e  (t |B);

furthermore, if cd
n

e  e, then by definition εH, ε〈⊥,⊥〉{e}  ∗max H, e, that is,
εH, ε〈⊥,⊥〉{e} ∗ H, e, and there exist no H′, e ′ s.t. H, e  H′, e ′. Therefore we
can conclude by lemma 6.6. �

7. Related work and conclusion

We have defined abstract compilation [4, 8] for a simple imperative Java-like
language to allow precise type inference of imperative constructs as assignment to
local variables and object fields, conditional execution and iteration.

This has been achieved by considering programs in SSA form and translating
them into Horn formulas where ϕ functions are translated into union types. Fur-
thermore, subtyping between record types has been extended to deal correctly
with field updates and to allow more precise type inference in contexts where a
field is only accessed (read only) or assigned (write only); finally, the two pred-
icates var upd and field upd have been defined to allow abstract compilation of
assignment to local variables and to fields.

We have shown, by means of an example, how the type system can infer types
also for infinite objects, like circular lists. The type system has been formalized
by providing the full encoding of a simple object-oriented language in SSA form.
The small-step semantics of the language has been defined; to our knowledge this
is the first formalization of the operational semantics of a language in SSA form.
Soundness of the type system w.r.t. such operational semantics has been proved.

27



Besides type inference, recent work has shown how coinductive logic program-
ming [31] and coinductive CLP can be fruitfully applied to a handful applica-
tions ranging over verification of real time systems [25], model checking, and SAT
solvers [22].

The first works on constraint-based type inference for object-oriented languages
date the early 90s [24, 27, 28]. Agesen has developed the Cartesian Product Al-
gorithm (CPA) [1] to perform more efficient type inference with parametric poly-
morphism for the language Self. However all these approaches fail to support data
polymorphism.

To our knowledge, the only existing approaches in literature able to support
data polymorphism are the iterative flow analysis (IFA) proposed by Plevyak and
Chien [29] based on iterative refinement of whole program analysis, and the DCPA
algorithm [35], an extension of the CPA algorithm able to verify the correctness of
Java downcasts. We are not yet able to compare these approaches with ours w.r.t.
scalability, since we are still working on a prototype implementation of the infer-
ential engine based on coinductive constraint logic programming [3], to investigate
whether it is possible to get a reasonable trade-off between precision and efficiency.
However our approach has two main advantages. (1) It is modular: maintaining a
strict distinction between the translation phase and the logical inference one, when
the goal and the constraints are solved, allows a much clearer specification of type
inference and different type inference algorithms can be obtained by just modifying
the translation phase, while reusing the same engine defined in the logical inference
phase. Similar benefits have been experienced by Sulzmann and Stuckey [33] who
have mapped the generalized Hindley/Milner type inference problem HM(X) [26]
to inductive CLP(X). (2) Easy integration with compiler technology: an advan-
tage emerged in this paper is that abstract compilation can be easily and fruitfully
integrated with optimization techniques used in compiler theory. SSA is just an
example, but other more advanced intermediate forms based on virtual register
renaming [32], could be exploited to enhance type inference.

There exist several papers on type inference for dynamic object-oriented lan-
guages as JavaScript and Ruby [9,17,18,36]. All these works are mainly concerned
with object extension and member initialization, but do not support data poly-
morphism.

Finally, the relation between abstract compilation and abstract interpretation
[14] certainly deserves investigation, since our approach is based on the same idea
that program analysis, and more specifically type inference [13], can be seen as
an abstract semantics which approximates the standard concrete semantics of the
program to be analyzed. The main differences are that in our approach the abstract
semantics is implemented by a compiler, rather then by an interpreter, and that
the semantics is coinductive. A first step towards studying the relationship with
abstract interpretation would consist in directly defining an abstract coinductive
operational semantics [21] for the language under consideration.

Even though this paper is mainly focused on theoretical aspects, we are inten-
sively working on solving the implementation issues of abstract compilation. A
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first prototype13 has been developed for a small Java-like functional language. Its
inferential engine is a Prolog meta-interpreter which implements the operational
semantics of coinductive logic programming [31]. Currently we are extending such
a meta-interpreter14 to support subtyping, hence, coinductive constraint logic pro-
gramming [3].
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