
True Separate Compilation of Java Classes
∗

D. Ancona
DISI ­ Università di Genova

Via Dodecaneso, 35
16146 Genova, Italy

davide@disi.unige.it

G. Lagorio
DISI ­ Università di Genova

Via Dodecaneso, 35
16146 Genova, Italy

lagorio@disi.unige.it

E. Zucca
DISI ­ Università di Genova

Via Dodecaneso, 35
16146 Genova, Italy

zucca@disi.unige.it

ABSTRACT

We define a type system modeling true separate compilation
for a small but significant Java subset, in the sense that a
single class declaration can be intra-checked (following the
Cardelli’s terminology) and compiled providing a minimal
set of type requirements on missing classes. These require-
ments are specified by a local type environment associated
with each single class, while in the existing formal defini-
tions of the Java type system classes are typed in a global
type environment containing all the type information on a
closed program. We also provide formal rules for static inter-
checking and relate our approach with compilation of closed
programs, by proving that we get the same results.

Categories and Subject Descriptors

F.3 [Logics and meanings of programs]: Studies of Pro-
gram Constructs—object-oriented constructs, type structure

General Terms

Languages, Theory

Keywords

Types, separate compilation, object-oriented programming

1. INTRODUCTION

1.1 What separate compilation means
In the seminal paper [3], Cardelli has discussed and made

precise the notion of separate compilation, which is one of
the most desired properties of modern programming envi-
ronments, especially in contexts where dynamic reconfigu-

∗Partially supported by DART - Dynamic Assembly, Recon-
figuration and Type-checking - EC project IST-2001-33477,
Murst NAPOLI - Network Aware Programming: Oggetti,
Linguaggi, Implementazioni, and APPlied SEMantics - Es-
prit Working Group 26142.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’02, October 6­8, 2002, Pittsburgh, Pennsylvania, USA.
Copyright 2002 ACM 1­58113­528­9/02/0010 ...$5.00.

ration and mobility is allowed; we adopt his approach and
terminology in this paper, with some slight adjustment.

By separate compilation we mean the separate typecheck-
ing of source fragments including generation of binary code
(e.g., bytecode in the Java case). A source fragment cannot
be compiled in isolation, but it can be compiled in an en-
vironment where adequate type information about missing
fragments is available. This can be modeled by a judgment
of the form Γ ⊢ S : τ ❀ B, where S is the source code, τ

is the fragment’s inferred type, B is the generated binary
code1 and Γ is a type environment playing the role of inter-
face, providing information on the fragments whose names
appear as free variables in S. Note that this view abstracts
from the concrete way in which this type environment is ob-
tained, either from an ad-hoc interface file written by the
programmer (as, for instance, in Modula-2 or Ada), or by
extracting or inferring this information from the source code
of the fragment which is typechecked and/or from others (see
the discussion on the Java case in the following subsection).

The process of separate compilation described above is
also called in [3] intra-checking, to stress that only the checks
related to the internal coherence of a single fragment are
performed, under some assumptions on the others.

Of course, a single binary code fragment B obtained from
separate compilation is (in general) incomplete, and can-
not be executed in isolation. In order to be sure that we
have a collection of fragments which can be successfully
linked together, inter-checking must be performed. Assume
to have a collection of fragments with associated names,
say, f1, . . . , fn (a linkset following the terminology in [3]),
which have been successfully intra-checked, formally deriv-
ing named judgments f1 7→ Γ1 ⊢ S1 : τ1 ❀ B1, . . . , fn 7→
Γn ⊢ Sn : τn ❀ Bn. Then, inter-checking consists in check-
ing that, for each i = 1..n, the inferred type τi of the i−th
fragment conforms to the assumptions made on fi in all
Γ1, . . . , Γn. In the simple example language adopted in [3],
where a type environment consists of a sequence of judg-
ments of the form f : τ , and there is no subtyping, this
mutual consistency check amounts to require that in each
Γj the required type for fi, if any, must be τi; of course this
definition needs to be refined in more complex type systems.

In strongly typed languages supporting static linking, inter-
checking is actually performed by the linker, and this also
includes generation of an executable program from the single
binary fragments B1, . . . , Bn. Inter-checking should guaran-
tee that the resulting program never raises linkage errors

1In the original formulation in [3] compilation is simplified
to typechecking.

at run-time. In languages supporting dynamic linking, as
in Java, there is no assembly of binary code before execu-
tion. However, inter-checking, if performed, still guaran-
tees safe execution, in the following sense. In an execution
environment where the available code fragments are some
f1 7→ B1, . . . , fn 7→ Bn which have been inter-checked as
described above, then starting the execution from any2 Bi

never raises linkage errors. We will discuss in the following
whether and how inter-checking is performed in standard
Java programming environments.

1.2 Does Java support true separate compila­
tion?

Though Java is widely known as a paradigmatic example
of language supporting separate compilation, neither stan-
dard Java compilers nor existing formal definitions of the
Java type system (e.g., [4]; see [7] for more references) match
the above schema. First, let us briefly recall how a standard
Java compiler works. Assume for simplicity that source frag-
ments coincide with .java files containing exactly one class
or interface declaration3, and that we invoke the compiler on
only one class, say C. First of all, the classes C1, . . . , Cn which
C depends on must be present at least in binary form. This
is due to two reasons: in Java there are no separate interface
files, hence type information must be extracted from code,
and moreover assumptions on C1, . . . , Cn cannot be extracted
by type inference from the code of C, for reasons that we will
discuss in detail later on. Second, if some of C1, ..., Cn are
only available in source form, then Java compilers enforce
their compilation too.

Hence, the behavior of a standard Java compiler when in-
voked on C does not simply consist in intra-checking C. We
could still argue that Java supports the intra-checking and
inter-checking schema in the sense that, even though these
two phases are interleaved in a standard Java compiler, it
is possible to formalize its overall behavior following this
schema. In other words, a standard Java compiler could
be seen as playing the double role of a separate compila-
tion mechanism and an inter-checker (that is, a tool which
performs the checks a static linker would do, but with no
code assembly). However, this is only partially true, in the
sense that a standard Java compiler does not perform all
the inter-checks a safe mechanism of separate compilation
plus inter-checking would perform; this is only true in the
particular case in which all C1, . . . , Cn are in source form.
We will come back to this point in Sect.3.

We consider now existing formal definitions of the Java
type system. These definitions (we refer for instance to [4])
do not model separate compilation of classes, but “global”
compilation of a “closed program” (self-contained collection
of classes in source form). More in detail, this means that a
“global” type environment ΓG containing the type informa-
tion part of the program (roughly, the program deprived of
method bodies) is considered; the internal coherence of this
type environment is checked (in this phase, for instance,
cycles in the inheritance hierarchy are detected) and then

2For simplicity we assume that execution can be started
from any fragment; in Java this holds only for fragments
corresponding to classes with a main method.
3Unfortunately there is a name clash between interfaces in
the sense of [3] and Java interfaces, hence in the sequel we
will always say “class” meaning either class or interface. In
the small Java subset in Sect.2 we will only consider classes.

the well-formedness of each class body is checked against
the type environment ΓG.

These definitions formalize the behavior of Java compilers
only in the particular case in which they are invoked on a
closed collection of classe declarations in source form. Some
generalization is achieved in [5], where it is assumed that
the information in the global type environment ΓG can be
extracted from a binary as well as from a source fragment,
as Java compilers actually do. In [2] we have proposed a for-
malization of the Java compilation process where the judg-
ment corresponding to intra-checking is clearly isolated from
other components (extraction of the type environment from
the program and determination of the fragments on which
compilation is propagated). However, still each class is intra-
checked against a unique global type environment extracted
from the compilation environment. Note that with this ap-
proach inter-checking trivially succeeds, since the type envi-
ronment is directly extracted from the code and is the same
for all fragments, but in intra-checking a single fragment
we use much more type information than needed; in other
words the type system is not as abstract as it could be (see
next subsection).

1.3 True separate compilation of Java classes
In this paper, we start from a different point of view, that

is, from considering a Java class in isolation and wondering
which is the type information on other classes (modeled by
a local type environment ΓL) needed for intra-checking the
class and generating the corresponding bytecode.

Let us consider a simple example in the toy Java subset
on which we will formally define intra-checking and inter-
checking in Sect.2.

class C extends Parent {

Pure h (Pure x){ return x;}

int h1 (Cons x) { return 0;}

int m1 (Type1 x) { return new C.h1(new Cons);}

int m2 (Type2 x) { return new C.m1(x);}

Type1 m (Type2 x) { return new Used.g(x);}

}

First consider class Pure; it is used as a “pure abstract type”
with no subtyping constraints, therefore there are no re-
quirements on Pure in order for C to be compilable and, in
fact, class C can be correctly executed even in environments
where no bytecode for Pure is available (see the specification
of the Java Virtual Machine in [8]). On the contrary, classes
Cons, Type1 and Type2 must satisfy some constraints. Class
Cons must at least exist since otherwise creation of Cons

instances would not be possible (for simplicity we assume
that each class only has the default constructor, and we
omit parentheses in the invocation), while class Type2 must
be a subtype of Type1. We will formalize these constraints
by the judgments ΓL ⊢L ∃ Cons and ΓL ⊢L Type2 ≤ Type1,
respectively.

Let us look now at the method invocation4 in the body of
m. The class C can be intra-checked in any type environment
where a class Used is available which provides a method
(either directly declared or inherited) with name g and one

4In the toy Java subset class members are only methods;
however, method invocations are the most challenging is-
sue, and the generalization to field accesses and constructor
invocations is trivial.

parameter of a supertype of Type2; moreover we have the
constraint that its return type must be a subtype of Type1.
For instance, class C can be typechecked in the following
environment (1):

class Parent{}

class Cons{}

class Type1{}

class Type2 extends Type1{}

class Type3 extends Type2{}

class UsedParent { Type3 g(Type1 x) { ...}}

class Used extends UsedParent {}

and also in this environment (2):

class Parent{}

class Cons{}

class Type1{}

class Type2 extends Type1{}

class Used {

Type2 g(Type2 x) {...}

int f() {...}

}

Hence, we would be tempted to store in the local type en-
vironment ΓL just the information that class Used must
have a method g with one parameter of a supertype of
Type2 and return type subtype of Type1. However, in or-
der to produce the corresponding bytecode, a Java com-
piler must know exactly which are the parameter and re-
turn type of the method, and even in which superclass of
User it has been declared. Indeed, in bytecode method
invocations are annotated with a method descriptor indi-
cating the method which has been selected for the invo-
cation at compile-time. A method descriptor is a triple
consisting of the class which contains the method declara-
tion, the parameter types and the return type5. We get
new Used[UsedParent, Type1, Type3].g(x) in the first exam-
ple and new Used[Used, Type2, Type2].g(x) in the second.

Formally, this means that local type environments can
require that, for a method invocation where the receiver
type is C, method name m and argument types T̄, the method
descriptor for the invocation must be selected among those
in a given set {µ1, . . . , µn}. We will formalize this constraint
by the judgment ΓL ⊢ Sel(C, m, T̄) = µ1, . . . , µn.

In the example, C can be intra-checked, e.g., in a type en-
vironment ΓL

1 where the method g selected for method invo-
cations with receiver type Used and argument type Type2 is
declared in class UsedParent, has return type Type3, and pa-
rameter type Type1, as in environment (1); this constraint
is formalized by the judgment ΓL

1 ⊢ Sel(Used, g, Type2) =
[UsedParent, Type1, Type3].

As well, C can be intra-checked in a type environment
ΓL

2 where the selected method is declared in class Used,
and has return and parameter type Type2, as in environ-
ment (2); this constraint is formalized by the judgment
ΓL

1 ⊢ Sel(Used, g, Type2) = [Used, Type2, Type2].
Note that in the example there is exactly one selectable

method; however, in the general case, more than one method
5We refer in this paper to SDK compilers until version 1.3;
in version 1.4, the first component of the annotation has
become the receiver’s type instead of the class which con-
tains the method declaration; however, the class where the
method is declared is still needed for overloading resolution
which has remained the same.

can be selectable, and, when typing the invocation, the most
specific among them must be chosen according to the Java
rules for overloading resolution.

The example clearly shows that there is no “least” local
type environment in this case; this is due to the fact that
Java bytecode is much “less abstract” than Java source code,
as we will discuss in more detail in Sect.3.

Finally, let us consider the parent class. Class Parent is
never used inside the body of C; however, we cannot con-
clude that there are no requirements on Parent, since some
choice could violate Java rules on overriding, for instance the
following: class Parent { Parent m (Type2 x) { ...}}.
In other words, we must require in ΓL that, if the class
Parent has a (directly declared or inherited) method with
name m and one argument of type Type2, then this method
has return type Type1. We will write this constraint as
Parent#Type1 m (Type2).

In summary, the local type environment needed for intra-
checking a class (generating the corresponding bytecode)
will express the following kinds of constraints on other classes:
a class C must exist, written ∃ C, a class C1 must be a subtype
of another class C2, written C1 ≤ C2, the method selected for
invocations with receiver type C, method name m and argu-
ment types T̄ must be chosen in a certain set of methods,
written Sel(C, m, T̄) = µ1, . . . , µn, and a class C cannot have
a method with name m and parameter types T̄ unless this
method has return type T, written C#T m (T̄).

Let us briefly illustrate the advantages of this approach in
comparison with that of traditional type systems for object-
oriented languages.In these type systems, e.g., those used
in existing Java formal definitions, typically a type environ-
ment associates with each class a class type consisting of its
parent class and (considering only methods as we do here),
the sequence of all the method headers.

The problem with this approach is that it hardly supports
separate compilation, in the sense that, if a class C1 can be
compiled in an environment where another class C2 has some
class type CT, then it is not guaranteed that compilation suc-
ceeds and gives the same result in an environment with a
different C2 which has as class type (a supertype of) CT. To
see this, consider the environment (1) of the previous exam-
ple where class C can be successfully typechecked. Suppose
we model the corresponding type information as follows.

Parent 7→ <Object, Λ>

Cons 7→ <Object, Λ>

Type1 7→ <Object, Λ>

Type2 7→ <Type1, Λ>

Type3 7→ <Type2, Λ>

UsedParent 7→ <Object, Type3 g (Type1)>

Used 7→ <UsedParent, Λ>

We would expect that class C can be successfully typechecked,
generating the same bytecode as in environment (1), in any
other environment where classes Parent, Cons, Type1, Type2,
Type3, UsedParent and Used have all the methods indicated
above, and possibly others. This is true in most cases, but
there are two situations in which the existence of other meth-
ods in these classes can affect the typechecking of C. First,
overloading resolution for some invocation can change, as in
the following case

class UsedParent {

Type3 g(Type1 x) { ...}

Type2 g(Type2 x) {...}

}

where method g(Type2) instead of g(Type1) is selected for
the invocation new Used.g(x), thus generating a different
bytecode, hence different executions (it is easy to construct
an analogous example where typechecking not even succeeds
since the invocation becomes ambiguous).

Second, constraints on overriding can be violated, as in
the case we already mentioned.

In summary, local type environments not only express
“positive” requirements (like “this class must provide this
method”), but two kinds of judgments embody a “negative”
requirement:

• Sel(C, m, T̄) = µ1, . . . , µn, which states that class C can-

not have a method m with parameter types more gen-
eral than T̄ and more specific than all those in {µ1, . . . , µn}
(for instance, class UsedParent as above would violate
the constraint
Sel(Used, g, Type2) = [UsedParent, Type1, Type3]),

• C#T m (T̄) which states that class C cannot have a
method m with parameter types T̄ and return type dif-
ferent from T (for instance, class Parent above would
violate the constraint Parent#Type1 m (Type 2)).

1.4 Inter­checking
True separate compilation of a Java class C in a type en-

vironment Γ as described in the preceding section is formal-
ized by a judgment Γ ⊢L S : CT ❀ B where S is the source
of C, CT is the inferred class type and B is the generated bi-
nary fragment (.class file). Assume that classes C1, . . . , Cn

are separately compiled into binary fragments B1, . . . , Bn,
respectively. In other words, there exist valid judgments
Γi ⊢L Si : CTi ❀ Bi, where Si is the source of Ci, for i ∈ 1..n.
Then, inter-checking the set of binary fragments B1, . . . , Bn

amounts to check that, for each class Ci, the other classes
satisfy the type assumptions Γi required by Ci; the formal
definition will be given in Sect.2.3.

Inter-checking guarantees safe execution in the sense that
starting execution from any Bi in the binary context B1, . . . , Bn

never raises linkage errors. Note that, since Java supports
dynamic class loading, inter-checking at run time performed
by the JVM cannot be avoided (to deal with fragments which
are not known to be the result of some compilation); never-
theless, whenever it is possible, static inter-checking should
be performed (and Java standard compilers perform static
inter-checking indeed in some cases, see Sect.3).

The obvious advantage is earlier error detection; then, in
principle, the possibility that execution in a context of “cer-
tified” bytecode fragments obtained by a “smart” compiler
could be performed without some run-time checks (as it is
already the case for a context of binary fragments resulting
from the compilation of all source fragments). Moreover,
due to the lazy nature of the Java Verifier, some linkage
errors might not be detected during the testing phase, but
only later on when the application has already been deliv-
ered. Finally, the JVM is not able to detect some kinds
of unwanted behavior; for instance, since method overload-
ing is resolved statically rather then dynamically, it may
happen that a method different from that intended is exe-
cuted. Consider again the example of the preceding section.
By compiling the invocation new Used.g(x) in environment
(1) we get

new Used[UsedParent,Type1,Type3].g(x)

Now, if we change UsedParent by adding method Type2

g(Type2), then all classes can be safely linked by the JVM;
the problem is that the behavior of the code is not that
expected, since the method invocation in C still invokes the
method Type3 g(Type1) rather than Type2 g(Type2) which
is more specific.

An unpleasant consequence of this problem is illustrated
by the following scenario. Class Used and UsedParent are
part of a library, class C is a client which has only access to
the bytecode of the library, and initially class UsedParent

declares only the Type3 g(Type1) method. After some time
a new version of the library is released in which method
Type2 g(Type2) is added in UsedParent. In the Java stan-
dard environment, the client can remain unaware of the
change, since its code still safely links with the new version.
However, we have the unpleasant effect that a method invo-
cation new Used.g(t2) with t2 of type Type2 has two differ-
ent behaviors when it appears in the library’s code, which
has been recompiled (the method Type2 g(Type2) is exe-
cuted) and in the client’s code (the method Type3 g(Type1)

is executed).
In our approach, on the contrary, assuming that the client

class C is equipped with its interface, corresponding to a local
environment ΓL

1 s.t. the judgments

ΓL
1 ⊢L Type3 ≤ Type1

ΓL
1 ⊢ Sel(Used, g, Type2) = [UsedParent, Type1, Type3]

are valid, the problem could be detected by the client before
execution, since class C does not inter-check with classes
Used and UsedParent (see the formal rule given in Sect.2.3).

1.5 Summary
We have so far recalled the notions of true separate com-

pilation (intra-checking) and inter-checking as introduced in
[3], pointed out that standard Java compilers and existing
formal definitions of the Java type system do not obey this
schema, and illustrated the kinds of constraints on other
classes needed for intra-checking a single Java class.

The rest of the paper is structured as follows. In Sect.2
we formally define a small Java subset which embodies the
relevant cases of type constraints previously illustrated. We
also define a corresponding bytecode language which is a
very abstract version of Java bytecode. We formally define
a type system corresponding to a true separate compilation
schema, that is a judgment Γ ⊢L S : CT ❀ B where S is a
source fragment (class declaration), B is a binary fragment,
CT is the inferred class type and Γ is a type environment
expressing constraints on other classes. Moreover, we for-
malize the inter-checking phase. At the end of the section,
we state theorems relating true separate compilation, as de-
fined here, to standard Java compilation (formalized by a
type system which is an adaptation to our Java subset of
existing formal definitions of Java).

In Sect.3, we compare more in detail the behavior or stan-
dard Java compilers with true separate compilation and out-
line how the given formal definition of true separate compi-
lation could lead to the development of a tool to be used as
an alternative to a standard Java compiler.

Finally in the Conclusion we summarize the results we
have achieved and describe further work.

S ::= class C extends C′ { MDSs }
MDSs ::= MDs

1 . . . MDs
n (n ≥ 0)

MDs ::= MH { return Es; }
MH ::= T0 m(T1 x1, . . . , Tn xn) (n ≥ 0)
Es ::= new C | x | N | Es

0.m(E
s
1, . . . , E

s
n)

T ::= C | int

B ::= class C extends C′ { MDSb }
MDSb ::= MDb

1 . . . MDb
n (n ≥ 0)

MDb ::= MH { return Eb; }
Eb ::= new C | x | N | Eb

0.mµ (Eb
1, . . . , E

b
n) (n ≥ 0)

µ ::= [C, T1 . . . Tn, T]

Figure 1: Syntax and types

2. FORMALIZATION

2.1 A Type System for Separate Compilation
The toy language we consider is a small subset of Java,

defined in Fig.1; metavariables C, m, x and N range over sets
of class, method and parameter names, and integer literals,
respectively.

A source fragment S is a class declaration consisting of the
name of the class, the name of the superclass and a sequence
of method declarations MDSs. A method declaration MDs con-
sists of a method header and a method body (an expression).
A method header MH consists of a (return) type, a method
name and a sequence of parameter types and names. There
are four kinds of expression: instance creation, parameter
name, integer literal and method invocation. A type is ei-
ther a class name or int. In the following we will use the
metavariable T̄ for type tuples.

Our toy bytecode is rather abstract: we only annotate
method invocations with method descriptors µ; as already
explained in the Introduction, a method descriptor is a triple
consisting of the class which contains the method declara-
tion, and the parameter and return types, and specifies the
method which has been selected for the invocation at com-
pile time. A binary fragment B is structurally equivalent
to a source class declaration except that method bodies are
binary expressions.

ΓG ::= γG
1 . . . γG

n

γG ::= C 7→ <C′, MSS>

MSS ::= MS1 . . . MSn

MS ::= T m(T̄)

ΓL ::= γL
1 . . . γL

n

γL ::= ∃ C | C ≤ C′ | Sel(C, m, T̄) = µs | C#MS

µs ::= µ1 . . . µn

Γ ::= γ1 . . . γn

γ ::= γG | γL

Figure 2: Environments

In Fig.2 we define local type environments for compilation
of open programs as opposite to global type environments

for compilation of closed programs (self-contained collection
of classes); the former are sequences of type assumptions
γL that we call local, while the latter are sequences of type
assumptions γG that we call global. However, for achieving
more uniformity and expressive power, we have also intro-
duced the more generic notion of type environment Γ where
local and global type assumptions can be mixed up.

Global type environments are used in existing formaliza-
tions of the Java type system [4, 5], and associate with each
class C its superclass C′ and the sequence MSS of the signa-
tures of methods declared in the class. A method signature
MS consists of a method header deprived of the parameter
names. This type environments can be trivially extracted
from the programs.

Local type environments contain four kinds of local type
assumptions:

• ∃C requires class C to be defined and is needed for
compiling object creation;

• C ≤ C′ requires class C to be a subclass of class C′;

• Sel(C, m, T̄) = µs requires the following properties:

– the method descriptors in µs determine a set of
selectable methods that are effectively applicable
(in the sense of Java [6] 15.12.2.1) to an invocation
of method m on a receiver of static type C and with
arguments of static type T̄; more formally, for all
[C′, T̄′, T] in µs, method T m(T̄′) must be declared
in class C′ and C ≤ C′ and T̄ ≤ T̄

′ must hold;
clearly, both class C and C′ must exist;

– this set of selectable methods must contain all
most specific methods (see [6] 15.12.2.2); more
formally, for all class C′′ s.t. C ≤ C′′ and for all
methods T′ m(T̄′′) declared in C′′, if T̄ ≤ T̄

′′ (that
is, m is applicable), then there exists a descrip-
tor [C′, T̄′, T] in µs s.t. C′ ≤ C′′ and T̄

′ ≤ T̄
′′ (that

is, among the set of selectable methods, there ex-
ists a method which is more specific than method
T′ m(T̄′′) declared in C′′).

In other words, given an invocation of method m on a
receiver of static type C and with arguments of static
type T̄, the set of selectable methods determined by
µs must be contained in the set of all applicable meth-
ods (for a given program) and must contain, in turn,
all most specific methods, so that method resolution
can be correctly performed by picking the most spe-
cific among selectable methods. Note that we do not
impose selected methods to coincide with the set of
all applicable methods, since this would make the re-
quirement stronger without any change in the expres-
sive power of the type system. The same consideration
holds if we would impose selected methods to coincide
with the set of all most specific applicable methods.

Finally, note that restricting local type environments
to type assumptions of the form Sel(C, m, T̄) = µ where
the right hand side is a single method descriptor rather
than a sequence (that is, there must be exactly one
most specific method) would decrease the expressive
power of the type system; indeed, in the case no as-
sumptions of the form Sel(C, m, T̄) = µ can be derived
for a given method invocation, we are not able to dis-
criminate the following three different cases:

1. there are no enough type information for resolving
and, therefore, compiling the method invocation;

2. there is no applicable method;

3. there is more than one most specific method (that
is, the invocation is ambiguous).

On the contrary, these cases can be discriminated al-
lowing as right hand side a sequence of method descrip-
tors: in case 1 no judgment of the form Sel(C, m, T̄) =
µs holds, in case 2 the judgment Sel(C, m, T̄) = Λ holds,
while in case 3 the judgment Sel(C, m, T̄) = µs holds
with µs a sequence of more than one (not compara-
ble) method descriptors.

• C#T m(T̄) requires that parent class C exists and can be
correctly extended with method T m(T̄), that is, if C has
(that is, either directly declares or inherits) a method
named m with argument types T̄, then its return type
is T. As already explained in the Introduction, this
requirement ensures the correctness of method over-
riding (see [6]).

The rules for typechecking and compiling a source frag-
ment in a type environment Γ are defined in Fig.3. Note
that, even though the rules can be instantiated with generic
type environments, the most interesting case occurs when
Γ is a local type environment, since this ensures that sepa-
rate compilation can be performed under a set of local type
assumptions.

The main rule defines the typechecking of a class declara-
tion in a type environment Γ. Since we expect Γ to contain
type information only on the classes used by C, but not on C

itself, the compilation of all method declarations of C must
be performed on the type environment Γ, C 7→ <C′, MSS>,
where Γ has been enriched by the global type assumption
C 7→ <C′, MSS>. The judgment Γ, C 7→ <C′, MSS> ⊢L MDSs :
MSS′ ❀ MDSb holds whenever the method declarations MDSs

have type MSS′ and are compiled into the binary method
declarations MDSb in the type environment Γ, C 7→ <C′, MSS>.
Clearly, the type MSS associated with class C in the environ-
ment must coincide with the type returned by the judgment
for compilation of method declarations (note that MSS can
be easily extracted from the declaration of C).

The judgment ⊢L Γ, C 7→ <C′, MSS>⋄ ensures that the envi-
ronment where the compilation is performed is well-formed
(see the rule below); note that compilation can be successful
even when Γ contains assumptions on C itself, providing that
such assumptions are consistent with the global assumption
C 7→ <C′, MSS>.

The class declaration is correct if the methods of the su-
perclass C′ of C are correctly overridden by the methods de-
clared in C; therefore, for all method signatures MSi = T m(T̄)
in MSS declared in C, if C′ has the method T′ m(T̄), then T = T′

must hold (judgment Γ ⊢L C
′#MSi).

Finally, we must check the existence of the superclass C′;
this hypothesis is really necessary only when class C declares
no methods (otherwise, indeed, from the validity of ⊢L C

′#MS

we can derive ⊢L ∃C
′; see comments on Fig.4).

The second rule defines the typechecking and compilation
of a sequence of method declarations by simply typechecking
and compiling each single method declaration. The side con-
dition ensures that the Java rule for overloading is verified
(see [6]) by checking that there are no different declarations
for a method with the same name and argument types. The

auxiliary function name&Par (defined in Fig.5) returns the
name and the parameter types of a method declaration.

Each method declaration is correct (third rule) in the type
environment Γ if the body is compilable in Γ and in the
environment Π assigning their types to the parameter names
of the method; furthermore, the type T inferred for the body
Es must be a subtype of the return type T0. Note that,
according to the rules of the Java verifier (see [8]), existence
of the types of the arguments is not required.

An instance creation expression, new C, is well-typed in Γ,
and has type C, only when we can infer from Γ the existence
of C. This is sufficient in our language where every class
has always exactly one constructor (with no parameters);
however in Java, where classes may have more than one
constructor (or even no constructors at all can be invoked
for a given class) we should introduce a type assumption
similar to that defined for selectable methods.

An integer literal is always trivially well-typed and has
type int.

A parameter is well-typed in Γ and Π if it belongs to
the domain of the parameter environment, and it has the
corresponding type.

Method invocation is the only construct of our toy source
language whose translation in the toy bytecode is not triv-
ial, since overloading must be resolved and an appropri-
ate method descriptor must be computed to annotate the
method invocation. To this aim, first, the receiver and all
the argument expressions are typechecked and compiled ob-
taining their type and bytecode. Then, from the method
name and the receiver and argument types, the sequence of
all selectable methods is inferred in the type environment
Γ. If no sequence can be inferred, then compilation fails be-
cause the type assumption in Γ are not sufficient for resolv-
ing the invocation; otherwise, if we can only infer sequences
which are either empty or contain more than one method
descriptor, then compilation fails because either no appli-
cable method can be found or the invocation is ambiguous,
respectively. Finally, if we can infer a single method de-
scriptor, then it corresponds to the most specific applicable
methods (see rules for selectable methods in Fig.4).

The first rule of Fig.4 defines well-formed type environ-
ments; this is done in a rather indirect way on top of the
definition for well-formed global type environments as given
in [4] (the corresponding rules can be found in Fig.5): a
type environment Γ is well-formed (in the sense of separate
compilation) if there exists a global type environment which
entails Γ and is well-formed (in the sense of closed programs
compilation). Since a global environment ΓG must be closed
in order for the judgment ⊢G ΓG⋄ to be valid, this means
that a type environment Γ is well-formed if there exists a
closed and statically correct program P satisfying Γ (that
is, the global environment extracted from P entails Γ). In
other words, well-formedness of type environments coincides
with their consistency.

This rule has the drawback that it cannot be directly con-
verted into an algorithm for checking consistency of type
environments. However, the problem is decidable and an
intuitive idea of a possible algorithm is given in Sect.3 and
developed in [1].

is valid whenever γ ∈ ΓL.
The remaining rules in Fig.4 define type environment en-

tailment: if Γ1 entails Γ2 (that is, Γ1 ⊢ Γ2 is valid), then we
expect that every closed and statically correct program sat-

Γ, C 7→ <C′, MSS> ⊢L MDS
s : MSS ❀ MDSb ⊢L Γ, C 7→ <C′, MSS>⋄

∀ i ∈ 1..n Γ ⊢L C
′#MSi Γ ⊢L ∃ C

′

Γ ⊢L class C extends C′ { MDSs } : <C′, MSS> ❀ class C extends C′ { MDSb }
MSS = MS1 . . . MSn

∀i ∈ 1..n Γ ⊢L MD
s
i : MSi ❀ MDb

i

Γ ⊢L MDs
1 . . . MDs

n : MS1 . . . MSn ❀ MDb
1 . . . MDb

n

name&Par(MDs
i) = name&Par(MDs

j) =⇒ i = j

Γ; {x1 7→ T1, . . . , xn 7→ Tn} ⊢L E
s : T ❀ Eb Γ ⊢L T ≤ T0

Γ ⊢L T0 m(T1 x1, . . . , Tn xn) { return Es; } : T0 m(T1 . . . Tn) ❀ T0 m(T1 x1, . . . , Tn xn) { return Eb; }

Γ ⊢L ∃ C

Γ;Π ⊢L new C : C ❀ new C Γ;Π ⊢L N : int ❀ N Γ;Π ⊢L x : T ❀ x
Π(x) = T

Γ;Π ⊢L E
s
0 : C ❀ Eb

0

∀i ∈ 1..n Γ;Π ⊢L E
s
i : Ti ❀ Eb

i

Γ ⊢L Sel(C, m, T1 . . . Tn) = [C′, T̄′, T′]

Γ;Π ⊢L Es
0.m(Es

1, . . . , E
s
n) : T′ ❀ Eb

0.m [C′, T̄′, T′] (Eb
1, . . . , E

b
n)

j ∈ {1, . . . , n}

Figure 3: Separate compilation

isfying Γ1 must also satisfy Γ2. Note that entailment does
not implies well-formedness: if Γ1 is not well-formed then
any judgment of the form Γ1 ⊢ Γ2 that can be inferred is
sound since there are no programs satisfying Γ1; on the con-
trary, if Γ2 is not well-formed, then Γ1 must necessarily be
not well-formed.

The first two rules for environment entailment simply say
that Γ1 ⊢ Γ2 is valid if each type assumption γ contained
in Γ2 is entailed by Γ1; the remaining rules cover the cases
when Γ2 is a single atomic type assumption γ.

There are three rules for class existence; the side condition
C 6= C′, C′ 6= Object corresponds to the fact that a subtyping
check of the form either C ≤ C or C ≤ Object is always passed
by the Java Verifier (see [8]), even when C is not available. A
type assumption of the form Sel(C, m, T̄) = µs1 [C′, T̄′, T′] µs2

clearly implies the existence of the static type of the receiver
C and of the classes C′ where selectable methods are found,
but not of the arguments and return types [8]. A type as-
sumption of the form Γ ⊢L C# implies the existence of the
(parent) class C.

Rules for subtyping assumptions are straightforward.
There are seven rules for assumptions on selectable meth-

ods.
The first four rules allow to construct a sequence of se-

lectable methods valid for a given invocation, that is, a se-
quence of methods which are all applicable and which con-
tains all those which are most specific.

The set of selectable methods for any invocation on a re-
ceiver having static type Object is always empty, since in our
language we assume that the root class declares no methods.

If the sequence MSS of the signatures of all methods de-
clared in class C contains the method T m(T̄), then a sequence
of selectable methods for the invocation of m on a receiver
of type C with arguments of type T̄ is just the descriptor
[C, T̄, T]. This means that in this case the compilation of the
method invocation can be successful even when no informa-
tion on the methods of the superclass of C is available.

If a sequence of selectable methods for a given invocation
on a receiver of the superclass C′ of C is available, and we

know which are all the methods declared in C, then we can
compute all applicable methods of C for the given invocation
and add them to the selectable methods of the superclass in
order to obtain the selectable methods of class C.

Finally, a sequence of selectable methods for a given invo-
cation is still a sequence of selectable methods for an invoca-
tion with less specific receiver and argument types provided
that all the methods in the sequence are still applicable.

The following two rules are used for restricting a set of
selectable methods: if method descriptors µ1 and µ2 belong
to the same sequence µs of selectable methods, and µ1 is
less specific than µ2, then µ1 can be safely removed from µs;
if in the sequence of selectable methods there is a method
descriptor which exactly corresponds to the invocation, then
all other method descriptors can be safely removed.

The last rule has been introduced only for safe of com-
pleteness (actually, it could be omitted without changing the
validity of the separate compilation judgment) and states
that a sequence of selectable methods can always be enriched
by other methods which are applicable to the invocation.

The auxiliary function Appl(Γ, C, MSS, m, T̄) computes in Γ
(needed for the subtyping relation) the method descriptors
obtained by prefixing by C all the method signatures in MSS

which are applicable to an invocation of method m with ar-
guments of type T̄:

Appl(Γ, C, MSS, m, T̄) = {[C, T̄′, T] | T m(T̄′) ∈ MSS, Γ ⊢ T̄ ≤ T̄
′}.

Finally, there are four rules for assumptions on parent classes.
Class Object can be safely extended with any method, since
it is empty. The second rule states that if a class C can be
correctly extended with a certain method, then its super-
classes can be extended as well with the same method. The
next rule expresses the trivial fact that any class can be cor-
rectly extended with its methods. The last rule says that
if a class can be correctly extended with a certain method,
then each subclass that does not declare such method (that
is, there are no methods with the same name and arguments
type) can be safely extended with it as well.

ΓG ⊢L Γ ⊢G ΓG⋄

⊢L Γ⋄ Γ ⊢L Λ

Γ ⊢L Γ1 Γ ⊢L γ

Γ ⊢L Γ1, γ Γ1, γ, Γ2 ⊢L γ

Γ ⊢L C ≤ C′

Γ ⊢L ∃ C
Γ ⊢L ∃ C

′

C 6= C′,

C′ 6= Object

Γ ⊢L Sel(C0, ,) = [C1, ,] . . . [Cn, ,]

∀ i ∈ 0..n Γ ⊢L ∃ Ci

Γ ⊢L C#

Γ ⊢L ∃ C

Γ ⊢L T ≤ Object Γ ⊢L T ≤ T

Γ ⊢L C1 ≤ C2 Γ ⊢L C2 ≤ C3

Γ ⊢L C1 ≤ C3 Γ1, C 7→ <C′, >, Γ2 ⊢L C ≤ C′

Γ ⊢L Sel(C, m, T1 . . . Tn) = µs1 [C′, T′1 . . . T′n, T′] µs2

∀i ∈ 1..n Γ ⊢L Ti ≤ T′i
Γ ⊢L C ≤ C′

∀ i ∈ 1..n Γ ⊢L Ti ≤ T′i
Γ ⊢L T1 . . . Tn ≤ T′1 . . . T′n

Γ ⊢L Sel(Object, m, T̄) = Λ Γ1, C 7→ <C′, MSS1 T m(T̄) MSS2>, Γ2 ⊢L Sel(C, m, T̄) = [C, T̄, T]

Γ ⊢L Sel(C′, m, T̄) = µs

Γ ⊢L Sel(C, m, T̄) = µsµ1 . . . µn

Γ = Γ1, C 7→ <C′, MSS>, Γ2

Appl(Γ, C, MSS, m, T̄) = {µ1, . . . , µn}

Γ ⊢L Sel(C, m, T̄) = [C1, T̄1, T1] . . . [Cn, T̄n, Tn]
∀ i ∈ 1..n Γ ⊢L C

′ ≤ Ci Γ ⊢L T̄
′ ≤ T̄i Γ ⊢L C ≤ C′ Γ ⊢L T̄ ≤ T̄

′

Γ ⊢L Sel(C′, m, T̄′) = [C1, T̄1, T1] . . . [Cn, T̄n, Tn]

Γ ⊢L Sel(C, m, T̄) = µs1 [C1, T̄1, T1] µs2 Γ ⊢L C2 ≤ C1 Γ ⊢L T̄2 ≤ T̄1

Γ ⊢L Sel(C, m, T̄) = µs1 µs2

µs1 µs2 = µs3 [C2, T̄2, T2] µs4

Γ ⊢L Sel(C, m, T̄) = µs1 [C′, T̄′, T′] µs2

Γ ⊢L Sel(C′, m, T̄′) = [C′, T̄′, T′]

Γ ⊢L Sel(C, m, T̄) = µs1 Γ ⊢L Sel(C′, m, T̄′) = µs2 Γ ⊢L C ≤ C′ Γ ⊢L T̄ ≤ T̄
′

Γ ⊢L Sel(C, m, T̄) = µs1 µs2

Γ ⊢L Object#T m(T̄)

Γ ⊢L C#T m(T̄) Γ ⊢L C ≤ C′

Γ ⊢L C′#T m(T̄) Γ1, C 7→ < , MSS1 MS MSS2>, Γ2 ⊢L C#MS

Γ1, C 7→ <C′, MS1 . . . MSn>, Γ2 ⊢L C
′#T m(T̄)

Γ1, C 7→ <C′, MS1 . . . MSn>, Γ2 ⊢L C#T m(T̄)
∀ i ∈ 1..n MSi 6= m(T̄)

Figure 4: Type environments well-formedness and entailment

2.2 Results
The following three theorems relate separate compilation

as formally defined here with the standard compilation of
closed programs as defined for instance in [4, 5] (see Fig.5
for the formal rules).

The first theorem claims that separate compilation “gives
the same result” of standard compilation. More precisely,
assume that a closed source program P is compiled (that
is, by using ⊢G) yielding a collection of binary fragments ceb

(formally, a finite partial function from class names to bina-
ries). Assume also that a source fragment S declaring class
C = className(S) in P is separately compiled (that is, by
using ⊢L) yielding a binary fragment B in a type environ-
ment Γ entailed by the global type environment ΓG = τ (P)
extracted from the program P . Then, the the binary ceb(C)
of C obtained by compiling the whole program must coincide
with the binary B obtained by separately compiling C.

The auxiliary functions className and τ (defined in Fig.5)
returns the class name in a class declaration and the global

type environment extracted from a program, respectively.
We only sketch the proof of this theorem and show the

main lemmas required to prove it.

Lemma 2.1. If ΓG ⊢L Γ, Γ ⊢ C1 ≤ C2, {C1, C2} ⊆ Def (ΓG)
then ΓG ⊢G C1 ≤ C2.

Lemma 2.2. If ⊢G ΓG⋄, ΓG ⊢L Γ, Γ ⊢L Sel(C, m, T̄) = µs

and MostSpecsΓG(C, m, T̄) = {µ}, then Γ ⊢L Sel(C, m, T̄) = µ.

the two following cases:

the most specific one;

µs ⊆ ApplΓG(C, m, T̄). So, if a most Lemma 2.1.

Lemmas 1 and 2 are necessary to prove Lemma 3 below.

Lemma 2.3. If ⊢G ΓG⋄, ΓG ⊢L Γ then:

1. if Γ, Π ⊢L Es : T1 ❀ Eb
1 and ΓG, Π ⊢G Es : T2 ❀ Eb

2,

then T1 = T2 and Eb
1 = Eb

2

2. Γ ⊢L MDs : MS ❀ MDb
1 and ΓG ⊢G MDs

❀ MDb
2, then

MDb
1 = MDb

2;

∀i ∈ 1..n ΓG ⊢G Si ❀ Bi ⊢G ΓG⋄

⊢G S1 . . . Sn ❀

S

i∈1..n
className(Si) 7→ Bi

className(Si) = className(Sj) =⇒ i = j

ΓG = τ (S1 . . . Sn)

∀i ∈ 1..n ΓG ⊢G MD
s
i ❀ MDb

i

ΓG ⊢G class C extends C′ MDs
1 . . . MDs

n ❀ class C extends C′ MDb
1 . . . MDb

n

name&Par(MDs
i) = name&Par(MDs

j) =⇒ i = j

∀i ∈ 0..n ΓG ⊢G Ti ⋄type ΓG, {x1 7→ T1, . . . , xn 7→ Tn} ⊢G E
s : T ❀ Eb ΓG ⊢G T ≤ T0

ΓG ⊢G T0 m(T1 x1, . . . , Tn xn) {return Es; } ❀ T0 m(T1 x1, . . . , Tn xn) {return Eb; }
xi = xj =⇒ i = j

ΓG, Π ⊢G new C : C ❀ new C
C ∈ Def (ΓG)

ΓG, Π ⊢G x : Π(x) ❀ x
x ∈ Def (Π)

ΓG, Π ⊢G N : int ❀ N

ΓG, Π ⊢G E
s
0 : C ❀ Eb

0

∀i ∈ 1..n ΓG, Π ⊢G E
s
i : Ti ❀ Eb

i

ΓG, Π ⊢G Es
0.m(E

s
1, . . . , E

s
n) : T′ ❀ Eb

0.m[C
′, T̄

′
, T′](Eb

1, . . . , E
b
n)

MostSpecsΓG(ApplΓG(C, m, T1 . . . Tn)) = {[C′, T̄′, T′]}

ApplΓG(Object, m, T̄) = ∅
ApplΓG(C, m, T̄) = {[C, T̄i, Ti]|i ∈ 1..n, ΓG ⊢G T̄ ≤ T̄i, m = mi} ∪ ApplΓG(C′, m, T̄) if ΓG(C) = <C′, T1 m1(T̄1) . . . Tn mn(T̄n)>

else ⊥
MostSpecsΓG({[C1, T̄1, T1] . . . [Cn, T̄n, Tn]}) = {[Ci, T̄i, Ti]|∀i ∈ 1..n, j ∈ 1..n ΓG ⊢G Ci ≤ Cj , ΓG ⊢G T̄i ≤ T̄j}

ΓG ⊢G ∅⋄ ΓG ⊢G C⋄type
C ∈ Def (ΓG)

ΓG ⊢G int⋄type ΓG ⊢G Object : Λ

ΓG ⊢G C
′ : MSS′

ΓG ⊢G C : MSS′[MSS]

MSS′[MSS] 6= ⊥
ΓG(C) = <C′, MSS>

ΓG ⊢G ΓG
1 ⋄ ΓG ⊢G C : <C′, MSS>

ΓG ⊢G ΓG
1 ∪ {C 7→ <C′, MSS>}⋄

C 6∈ Def (ΓG
1)

ΓG ⊢G ΓG⋄

⊢G ΓG⋄

ΓG ⊢G int ≤ int ΓG ⊢G C ≤ C
C ∈ Def (ΓG)

ΓG ⊢G C ≤ C′
ΓG(C) = <C

′
, >

ΓG ⊢G C ≤ C′ ΓG ⊢G C
′ ≤ C′′

ΓG ⊢G C ≤ C′′

∀i ∈ 1..n ΓG ⊢G Ti ≤ T′i
ΓG ⊢G T1 . . . Tn ≤ T′1 . . . T′n

className(class C extends C′ { MDSs }) = C

If MDs = T0 m(T1 x1, . . . , Tn xn){ return Es; }, then
signature(MDs) = T0 m(T1 . . . Tn),
name&Par(MDs) = <m, T1 . . . Tn>,

returnType(MDs) = T0

τ (S1 . . . Sn) =
S

i∈{1,...,n} τ (Si)

τ (class C extends C′ { MDs
1 . . . MDs

n }) = C 7→ <C′, signature(MDs
1) . . . signature(MDs

n)>

MS′1 . . . MS′n[MS1 . . . MSk] =

8

>

>

>

<

>

>

>

:

⊥ if ∃ i ∈ 1..k, j ∈ 1..n : name&Par(MSi) = name&Par(MS′j)∧
returnType(MSi) 6= returnType(MS′j)

MS′i1 . . . MS′ip
MS1 . . . MSk otherwise, where: {i1, . . . , ip} =

{i ∈ 1..n| 6 ∃j ∈ 1..k : name&Par(MS′i) = name&Par(MSj)}

Figure 5: Compilation of a closed program, well-formedness of global environments, and auxiliary functions

3. Γ ⊢L MDS
s : MSS ❀ MDSb

1 and ΓG ⊢G MDS
s

❀ MDSb
2, then

MDSb
1 = MDSb

2.

Lemma 2.2;

Theorem 2.4. If Γ ⊢L S : CT ❀ B, className(S) = C,

P = P1 S P2, ⊢G P ❀ ceb and τ (P) ⊢L Γ then ceb(C) = B.

Proof
Using Lemma 2.3.

The remaining two theorems state that there exists a local
type environment ΓL where class declaration S is separately
compilable if and only if there exists a closed program P

satisfying ΓL and containing S which is compilable.

Theorem 2.5. If P = P1 S P2, className(S) = C and

⊢G P ❀ ceb then ∃ ΓL : τ (P) ⊢L ΓL and ΓL ⊢L S : CT ❀ B.

Theorem 2.6. If Γ ⊢L S : CT ❀ B then ∃ P s.t. τ (P) ⊢L Γ
and ⊢G P ❀ ceb.

2.3 Inter­checking
In this section we formally define inter-checking for Java

classes; assume that classes C1, . . . , Cn are separately com-
piled into binary fragments B1, . . . , Bn, respectively. In other
words, there exist valid judgments Γi ⊢L Si : CTi ❀ Bi,
where Si is the source of Ci, for i ∈ 1..n. If we assume that
the program consisting of classes C1, . . . , Cn is closed, then
binary fragments successfully inter-check if for each class
Ci the other classes C1, . . . , Ci−1, Ci+1, . . . , Cn satisfy the as-
sumptions required in type environment Γi; this amounts
requiring that each type environment Γi must be entailed by
the global type environment ΓG = C1 7→ CT1, . . . , Cn 7→ CTn.

However, if we want to be able to inter-check open pro-
grams as well, then we need to introduce a type environment
Γ0 containing all assumptions on classes declared outside the
program. As a consequence we obtain the following typing
rule for inter-checking:

⊢L Γ0⋄

∀i ∈ 1..n Γi ⊢L Si : CTi ❀ Bi

∀i ∈ 1..n Γ0, ΓG ⊢L Γi

Γ0 ⊢L B1 . . . Bn ⋄ inter-checked

∀i ∈ 1..n Ci = className(Si)
C1, . . . , Cn distinct
ΓG = C1 7→ CT1, . . . , Cn 7→ CTn

3. STANDARD COMPILATION VERSUS

TRUE SEPARATE COMPILATION
In this section we compare more in detail the behavior of

existing Java compilers with true separate compilation and
show how a Java compiler fully supporting true separate
compilation could be developed on the basis of the type
theory presented in the previous section.

We only touch some design and implementation issues,
leaving for future work a more complete treatment.

3.1 When Java compilers perform true sepa­
rate compilation

As already mentioned, all formal specifications of Java
typechecking/compilation defined so far (e.g., [4, 5], but see
[7] for a more complete list of references) do not consider
the issue of true separate compilation: programs (that is,
collections of class definitions either in source or in byte-
code) are assumed to be closed, that is, they cannot refer to
classes whose definition is not available. However in practice
this constraint is too strict; for instance, in some cases Java
compilers allow the user to successfully compile an open pro-
gram. Consider for example the program P consisting of the
following class declaration6:

class C1 extends Object{int f(){return new C2.g();}}

together with the following available in binary form:

class C2 extends Object{

int g(){return 1;}

C3 h(C3 c){return c;}

}

Even though P is not closed (no definition for C3 is avail-
able), SDK compilers successfully compiles class C1. This
happens because in this case the compiler uses the byte-
code of C2 only for extracting the type information needed

6For uniformity we use the syntax defined in Sect.2.

to compile class C1 but no typechecking is performed on the
code of C2. In other words, the SDK compiler simply intra-
checks class C1 (generating a corresponding bytecode) by
using the type information extracted from C2. In general,
SDK compiler exhibits a behavior corresponding to true sep-
arate compilation when all the classes used in the source
code which are accessed by the compiler are in binary form.

This is modeled in our type system by the fact that class
C1 is compilable in the local type environment

ΓL ≡ Sel(C2, g, Λ) = [C2, Λ, int],

while in the other type systems proposed in literature (like
that defined in Fig.5) C1 is not compilable since the global
type environment

ΓG ≡ C1 7→ <Object, int f()>,
C2 7→ <Object, int g() C3 h(C3)>,

extracted from P is not well formed.
However the ability of modeling real compilers is not the

main motivation of the type system defined in Sect.2; rather,
the principal aim is to define a framework for true separate
Java compilation able to express the set of constraints re-
quired for successfully compiling a class in isolation.

3.2 When Java compilers do not perform true
separate compilation

Currently available Java compilers support true separate
compilation only partly for the following main reasons:

1. Separate compilation and inter-checking are blurred
together;

2. Fragment interfaces are not separated from class defi-
nitions.

Point 1 can be illustrated by the following example; con-
sider the definition of C1 given above together with the cor-
responding source code for C2 (as defined above). Further-
more assume that no bytecode is available for C2. Now, even
though the two class declarations are stored in different files,
it is not possible to compile class C1 separately from C2, as
happened in the previous example; indeed, in this case the
SDK compiler, even though invoked only on C1, tries to com-
pile C2 as well, with a subsequent compilation error in case
no definition for class C3 is available.

In other words, the SDK compiler assumes that class C1

must be linked with the class C2 available at compile time,
therefore it performs a complete inter-checking of the classes
by compiling C2 as well. In general, SDK exhibits a behav-
ior corresponding to complete inter-checking when all the
classes used in the source code which are accessed by the
compiler are in source form. However, this assumption is
arbitrary for a language, like Java, supporting dynamic link-
ing: we can envisage situations where the user does not want
C2 to be compiled, because C1 will be dynamically linked
with a class C2 whose definition is not currently available to
the compiler.

3.3 Are local environments necessary?
A compiler supporting true separate compilation could be

designed without introducing an explicit notion of fragment
interface, but rather by simply extracting from C2 the type
information needed for correctly compiling C1.

However, this solution can still be considered unsatisfac-
tory for the following reasons:

• The user would probably prefer to directly define the
type assumptions on C2, rather than providing a com-
plete definition containing useless and error prone im-
plementation details (point 2);

• The user could be interested in the type assumptions
on C2 used by the compiler for generating the bytecode
of C1 in order to know which kind of classes C2 can be
safely linked with C1; such information can also be
exploited by a static inter-checker (see Sect.1.4).

Type assumptions could be represented by class declara-
tions deprived of method bodies, but, as already pointed out
in the Introduction, this naive solution prevents to express
minimal requirements on used classes. We show another ex-
ample illustrating the problem. Consider the following two
class declarations:

class C1 extends C2{int f(C1 c){return c.g(c);}}

class C2 extends Object{int g(C2 c){return 1;}}

We can successfully compile class C1 under the assumption
extracted from C2 stating that C2 extends Object and de-
clares method int g(C2); more formally, we can separately
compile class C1 w.r.t. the global type environment

ΓG ≡ C2 7→ <Object, int g(C2)>

However, this assumption is too strict since requires C2 not
to have extra methods; for instance, the following definition
for C2, which is compatible with the declaration of C1 above,
does not match ΓG:

class C2 extends Object{

int g(C2 c){return 1;}

int h(C2 c){return 1;}

C2 m(){return new C2;}}

On the other side, the intuitive subtyping rules stating that
C2 can be any class (extending Object) and having at least
method int g(C2) cannot be applied since it is unsound.
To see this, we can replace C1 with the following new decla-
ration:

class C1 extends C2{

int h(Object o){return 2;}

int m(){return new C1.h(new C2);}}

Class C1 can still be separately compiled w.r.t. ΓG, but now
it is no longer compatible with the second declaration for C2
since method m is not correctly overridden; furthermore note
also that method resolution for invocation new C1.h(new

C2) becomes ambiguous.
Our type system offers a more flexible mechanism for sep-

arate compilation since type assumptions on used classes are
expressed by means of local rather than global type environ-
ments, while global type environments are mainly used for
specifying the classes declared in the fragment. Following
this approach, the required type assumptions for compiling
the first declaration C1 could correspond to the local type
environment

ΓL
1 ≡ C2#int f(C1), Sel(C2, g, C1) = [C2, C2, int]

while for the second declaration of C1 we could have

ΓL
2 ≡ C2#int h(Object), C2#int m(), Sel(C2, h, C2) = Λ

The reader may verify that the first declaration of C2 matches
both ΓL

1 and ΓL
2 , whereas the second only matches ΓL

1 .

3.4 Implementation Issues
In this section we discuss some implementation issues re-

lated to the design of a prototype Java compiler supporting
true separate compilation and driven by our framework.

The first problem we face is how an interface can be ex-
tracted from a given fragment f .

An appealing solution consists in inferring the interface
from the code of f ; as already shown in the Introduction,
unfortunately, this is not possible for Java without avoiding
radical changes to the overall architecture. For instance,
consider again the example in the Introduction:

class C extends Parent {

...

Type1 m(Type2 x){ return new Used.g(x);}}

Class C can be correctly linked with any class Used having
a method α g(β), for any types α, β s.t. α ≤ Type1 and
Type2 ≤ β; such method can either be directly declared in
Used or inherited from some ancestor γ of Used. Clearly,
all these classes cannot be captured by a unique local type
environment ΓL in our type system. In order to do that, we
should introduce type variables in the type environments,
analogously to the approach followed in [10]; so we could
infer the following class interface for C:

ΓL = . . . , α ≤ Type1, Type2 ≤ β, Sel(Used, g, Type2) = [γ, α, β]
CT = <Parent, . . . Type1 m(Type2)>

However, in this way the compiler cannot generate Java
bytecode for C, since method descriptors cannot contain type
variables; as a consequence, either JVM should be radically
modified, or we should introduce a sort of pre-bytecode that
may contain type variables that must be instantiated during
static inter-checking in order to produce valid Java bytecode
(indeed, the solution proposed in [10] relies on static linking;
see also [9]). Furthermore, it seems hard to define a system
ensuring the existence of principal types.

For these reasons, our prototype compiler will require
users to explicitly annotate fragments with their interfaces;
for instance, following a style common to many module lan-
guages, we may assume that the interface for the fragment
contained in C.java can be found in C.def.

At this point we can follow two different approaches for
implementing our compiler: either radically modify a cur-
rently available compiler (like SDK, for instance), or imple-
ment a forward engineering procedure able to convert .def

(interfaces) into .java files (class declarations) (the analo-
gous tool in [9] is called a stub generator).

The first solution clearly produces a more efficient imple-
mentation and allows to include additional features, as auto-
matic generation of interfaces on demand, when only source
and binary files are available (as commonly happens).

However, the second solution is more appealing for a pro-
totype version and has also the advantage of being more
modular, since the forward engineering procedure can be im-
plemented by a pre-processor allowing the use of any Java
compiler. We outline how this last approach should work by
means of a simple example (a detailed formal description is
presented in [1]).

Consider the following class declaration:

class H extends P{

A1 f(H x){return x.g(x,x.m(x));}

H g(A2 a,int i){return new H;}

}

Assume that the local type environment corresponding to
the interface of H is defined as follows:

ΓL ≡P ≤ A1, P ≤ A2, P#A1 f(H), P#H g(A2, int),
Sel(P, g, H int) = Λ,Sel(P, m, H) = [P, P, int] [A1, A1, int]

The first two constraints require the classes A1 and A2 to
be superclasses of the parent class P; the third and fourth
constraints express the requirements on the parent class nec-
essary to guarantee that rules on overriding are respected.
Finally, the last two constraints are necessary for typecheck-
ing the two method invocations and generating correspond-
ing bytecode. The former allows to resolve overloading for
invocations h.g(h,i) with h of type H and i of type int,
selecting the method g declared in H; indeed the constraint
ensures that the superclass cannot have a method g(H int)

which would make the invocation ambiguous. The latter
allows to resolve overloading for invocations h.m(h) with h

of type H, selecting a method int m (P) which must be de-
clared in P; moreover class A1 must declare a method int m

(A1).
Starting from ΓL the pre-processor can generate the fol-

lowing dummy classes:

class P extends A1{int m(P p){return 0;}}

class A1 extends A2{int m(A1 a){return 0;}}

class A2 extends Object{}

The program P consisting of the declaration of H plus P, A1
and A2 is closed; furthermore the global type environment
ΓG extracted from P verifies ΓG ⊢ ΓL (the reader may easily
check that this property holds). Then, we expect that class
H is separately compilable and generates the binary B if and
only if the program P is compilable in SDK and the binary
generated for H is B.

Note that there exists an infinite number of programs sat-
isfying the property above, but among them P can be con-
sidered minimal, in a sense that needs to be formalized but
corresponds to the intuition that it contains the minimal
amount of declarations needed for satisfying ΓL. However
in this case there exists another minimal fragment (there-
fore, there is no least fragment) defined by:

class P extends A2{ int h(P p){return 0;}}

class A1 extends Object{ int h(A1 a){return 0;}}

class A2 extends A1{}

This happens because for successfully compiling H, both
classes A1 and A2 must be supertypes of H (or, equivalently,
of P), as correctly specified in ΓL; however, since Java does
not supports multiple inheritance among classes, it must be
the case that either A1 is a subclass of A2 or the converse.
Both choices are legal and correspond to the two different
fragments defined above, but none of them is more specific
than the other, so either can be arbitrary chosen by the
pre-processor.

4. CONCLUSION
We have defined a type system modeling true separate

compilation for a small but significant Java subset, in the
sense that a single class declaration can be intra-checked
(following the terminology in [3]) and compiled providing
a set of type requirements on missing classes. These type
requirements are specified by a local type environment as-
sociated with each single class, while in the existing formal

definitions of the Java type system, classes are typed in a
global type environment containing all the type information
on classes composing a closed program.

We have also provided formal rules for static inter-checking
of a collection of classes and related our approach with exist-
ing formal definitions of Java typechecking and compilation
of closed programs, by proving that we get the same results.

We plan to extend our formalization to a larger Java sub-
set and to develop tools for compilation and static analysis
of Java code on the basis of the type theory presented in this
paper. In particular, in [1] we describe in detail the forward
engineering procedure informally illustrated in Sect.3.4.

5. ACKNOWLEDGEMENTS
We are extremely grateful to Sophia Drossopoulou for the

stimulating discussions and precious suggestions.

6. REFERENCES
[1] D. Ancona and G. Lagorio. Supporting true separate

compilation in Java: A modular approach. Technical
report, Dipartimento di Informatica e Scienze
dell’Informazione, Università di Genova, 2002.
Submitted for publication.

[2] D. Ancona, G. Lagorio, and E. Zucca. A formal
framework for Java separate compilation. In
B. Magnusson, editor, ECOOP’02 - European

Conference on Object-Oriented Programming, number
2374 in Lecture Notes in Computer Science, pages
609–635. Springer, 2002.

[3] L. Cardelli. Program fragments, linking, and
modularization. In ACM Symp. on Principles of

Programming Languages 1997, pages 266–277. ACM
Press, 1997.

[4] S. Drossopoulou and S. Eisenbach. Describing the
semantics of Java and proving type soundness. In
J. Alves-Foss, editor, Formal Syntax and Semantics of

Java, number 1523 in Lecture Notes in Computer
Science, pages 41–82. Springer, 1999.

[5] S. Drossopoulou, T. Valkevych, and S. Eisenbach.
Java type soundness revisited. Technical report, Dept.
of Computing - Imperial College of Science,
Technology and Medicine, September 2000.

[6] J. Gosling, B. Joy, G. Steele, and G. Bracha. The

JavaTM Language Specification, Second Edition.
Addison-Wesley, 2000.

[7] P. H. Hartel and L. Moreau. Formalizing the safety of
Java, the Java Virtual Machine and Java card. ACM

Computing Surveys, 33(4):517–558, 2001.

[8] T. Lindholm and F. Yellin. The Java Virtual Machine

Specification. The Java Series. Addison-Wesley,
Second edition, 1999.

[9] S. McDirmid, M.Flatt, and W. Hsieh. Jiazzi: New age
components for old fashioned java. In ACM Symp. on

Object-Oriented Programming: Systems, Languages

and Applications 2001. ACM Press, October 2001.
SIGPLAN Notices.

[10] Z. Shao and A. Appel. Smartest recompilation. In
ACM Symp. on Principles of Programming Languages

1993, pages 439–450. ACM Press, 1993.

