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Abstract

The contribution of the paper is twofold. First, we define a general
notion of type system equipped with an entailment relation between
type environments; this generalisation serves as a pattern for instan-
tiating type systems able to support separate compilation and inter-
checking of Java-like languages, and allows a formal definition of
soundess and completeness of inter-checking w.r.t. global compila-
tion. These properties are important in practice since they allow
selective recompilation. In particular, we show that they are guaran-
teed when the type system has principal typings and provides sound
and complete entailment relation between type environments.

The second contribution is more specific, and is an instantiation of
the notion of type system previously defined for Featherweight Java
with method overloading and field hiding. The aim is to show that
it is possible to define type systems for Java-like languages, which,
in contrast to those used by standard compilers, have principal typ-
ings, hence can be used as a basis for selective recompilation.
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D.3.3[Programming languages]: Language constructs and
features–classes and objects; D.3.1[Programming languages]: For-
mal definitions and theory–syntax, semantics; D.3.4[Programming
languages]: Processors–incremental compilers
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Keywords: principal typings, selective recompilation, Java-like
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1 Introduction

The fact thatseparate compilationis a highly desirable property
is a generally accepted principle. However, as pointed out in the
seminal Cardelli’s paper [4], even though module mechanisms have
received considerable theoretical attention, the notion of separate
compilation and the associated notion of linking have not been em-
phasized, and there is little work on formal models for them; as
a consequence, despite of the popularity of the word, it is often
difficult to establish in a precise way whether a programming envi-
ronment actually supports separate compilation or not.

The mentioned paper [4] can be considered a milestone in this di-
rection and is based on the definition of a simple formal framework
where separate compilation, which is there simplified to typecheck-
ing, is modeled by a judgmentΓ ` s : τ. The intended meaning is
thats is a source fragment assumed to be open, that is, to contain
references to names defined in other fragments,τ is the resulting
type, andΓ is a type environment intuitively containing all the as-
sumptions on other fragments needed to typechecks. In this paper
we are also interested in code generation, since, as we will show
later, in Java-like languages different bytecode is produced under
different assumptions inΓ; hence, we model separate compilation
by a judgmentΓ`s:τ;b whereb is the binary fragment generated
by the compilation ofs.

A source fragment is a compilation unit, and exports one or more
names to other fragments. For instance, in the case of Java-like
languages, the most elementary (non-empty) compilation unit cor-
responds just to a class declaration, but several class declarations
can be part of the same compilation unit as well, as happens for all
Java systems. Hence, in general,s will be a sequence of declara-
tions (e.g., class declarations in Java) andτ a sequence of types for
the declared class names.

At this point, given a collection of successfully compiled fragments,
it is possible to test whether they successfullyinter-check, that is,
the mutual assumptions between fragments are satisfied. Formally,
we have alinksetΓi `si :τi;bi

i∈1..n and we have to check that, for
eachi ∈ 1..n, assumptionsΓi required bysi are matched by other
fragments1, in a sense to be made precise depending on the nature
of the type assumptions.

For instance, in the simple case in which a type environment is just

1Here we simplify the presentation by considering only self-
contained linksets; in the following, linksets will be possibly open,
that is, they will also include a type environment containing as-
sumptions on the external fragments.



a sequence of pairsc : τ meaning that the entity (e.g., class) named
c should have typeτ, inter-checking just amounts to check that, for
eachi, j ∈ 1..n, if c : τ appears inΓ j , thenτ must be the same type
c has inτi (as it is in [4]). However, a type environment could in
general contain other kinds of type assumptions, such as subtyping
assumptionsc1 ≤ c2 or others depending on the language we are
considering. Hence, we need a definition of inter-checking which
abstracts from the particular form of type assumptions.

In this paper we provide such a definition (Definition 8), based on
the idea that an effective inter-checking procedure can be modeled
by anentailmentrelation` on type environments, so that inter-
checking succeeds ifc1 : τ1, . . .cm : τm`Γi holds for all i ∈ 1..n,
wherec1, . . . ,cm are all the classes declared in the linkset and, for
all j ∈ 1..m, τ j is the type derived forc j in the linkset. Intuitively,
this means that it is possible to prove all the required type assump-
tions whenever fragment types are those in the linkset.

The advantages of separate compilation plus inter-checking w.r.t.
global compilation ofs1, . . . ,sn altogether are clear. Each frag-
ment can be compiled without inspecting the fragments it depends
on; then, a collection of fragments can be put together to form an
executable application by just considering the type information
(type environment and type) of fragments, without any need of re-
inspecting code. However, in order to really offer these advantages,
inter-checking should satisfy some properties which ensure that it
can actually replace global compilation. This issue was not con-
sidered in [4] and its formalization in the abstract framework for
inter-checking described above is the first main contribution of this
paper.

Of course, inter-checking should at least besoundw.r.t. global com-
pilation, in the sense that, if for some linksetΓi `si :τi;bi

i∈1..n

inter-checking succeeds, then we can be sure that compiling alto-
gethers1, . . . ,sn we successfully get the same binary fragments.
This is a minimal property which we expect to be always satisfied
by separate compilation (Definition 10), and which is guaranteed
under the hypothesis that the entailment relation is sound (Theo-
rem 11).

Consider now the situation in which inter-checking fails. This
means that there is some type assumption in someΓi which is not
satisfied by the types of other fragments. However, this does not
necessarily mean that the fragments cannot be safely linked. In-
deed, in general for each pair(s,b), many judgmentsΓ`s:τ;b
can be derived, and for some fragment we could have taken a too
restrictive type environment (that is, containing unnecessary type
assumptions).

We can be sure that this is not the case only if the typing(Γ,τ) gives
all the type information about(s,b), that is, representsall possible
typings of(s,b); in other words,Γ contains only the type assump-
tions that are strictly needed for compilings generatingb. This
property can be expressed by saying that(Γ,τ) is aprincipal typing
of (s,b), and has been recently formalized in a general setting (that
is, independent of the particular type system we are considering) in
[14]. If (Γ1,τ1), . . . , (Γn,τn) are principal typings for(s1,b1), . . . ,
(sn,bn), respectively, then we can be sure that no further type infor-
mation about fragments can be obtained by re-inspecting the code,
hence failure of inter-checking was not due to our particular choice
of typings. Hence, we can conclude that global compilation would
either fail as well, or would produce different binary fragments.

We will call completenessof inter-checking w.r.t. global compila-

tion the fact that, with a suitable choice of typings in linksets, failure
of inter-checking guarantees that we could not generate the binary
fragments in the linkset by global compilation (Definition 12). We
show that a sufficient condition for this is that the type system sup-
ports principal typings and complete environment entailment rela-
tion (Theorem 14).

The second contribution of this paper is more specific, and is an
instantiation of the notion of type system previously defined for
Featherweight Java [8] enriched by overloading and hiding. The
aim is to show that it is possible to define type systems for Java-like
languages, which, in contrast to those used by standard compilers,
have principal typings, hence can be used as a basis for selective
recompilation.

We briefly explain the essence of the problem of finding princi-
pal typings for Java-like languages on a simple example (more ex-
tended discussions and other examples can be found in [3, 2]).

Consider the following class:

class C extends Parent {
...

Type1 m (Type2 x) { return new Used().g(x);}
}

Let us wonder which is the minimal type information on other
classes needed for typechecking the class and generating the cor-
responding bytecode.

For classesType1 andType2, since they are just used as pure types,
it is enough to assume that they exist (we will model this in our type
system by type assumptions∃Type1, ∃Type2).

Looking at the method call, we can say that the classC can be type-
checked in any type environment where a classUsed is available
which provides, besides the default constructor, a method (either
directly declared or inherited) with nameg and one parameter of
a supertype ofType2; moreover we have the constraint that its re-
turn type must be a subtype ofType1. For instance, classC can be
typechecked in the following context (1):

class Parent{}
class Type1{}
class Type2 extends Type1{}
class Type3 extends Type2{}
class UsedParent { Type3 g(Type1 x) { ...}}
class Used extends UsedParent {}

and also in this context (2):

class Parent{}
class Type1{}
class Type2 extends Type1{}
class Used {

Type2 g(Type2 x) {...}
int f() {...}

}

Hence, we would be tempted to express this by a type assumption
expressing that classUsed must have a methodg with one parame-
ter of a supertype ofType2 and return type subtype ofType1. How-
ever, in order to produce the corresponding bytecode, a Java com-
piler must knowexactlywhich are the parameter and return type of
the method which will be selected, since they appear as annotations
in bytecode (see Section 3 for more details). In the example,C can
be typechecked, e.g., in a type environmentΓ1 where the methodg



selected for method invocations with receiver typeUsed and argu-
ment typeType2 has return typeType3, and parameter typeType1,
as in environment (1); this constraint is formalized by the judgment
Γ1 ` Used.g(Type2) m-res→ (Type1,Type3).

As well, C can be typechecked in a type environmentΓ2 where
the selected method has return and parameter typeType2, as in
environment (2); this constraint is formalized by the judgmentΓ2 `
Used.g(Type2) m-res→ (Type2,Type2).

The example clearly shows that, in order to get a principal typing
property (in particular, a “minimal” type environment), we must
type pairs consisting of a source and a binary fragment.

The rest of the paper is organized as follows: in Section 2 we de-
fine the formal notions of type system for separate compilation and
inter-checking and soundness and completeness of inter-checking.
In Section 3 we define an instantiation of the notion of type sys-
tem defined in the previous section for Featherweight Java [8] with
method overloading and field hiding. In Section 4 we prove that
this type system satisfies the hypotheses which guarantee sound-
ness and completeness of inter-checking. We also prove that it has
principal typings and that the environment entailment is complete.
Finally in the Conclusion we summarize the contribution of the pa-
per and draw some direction for further work.

2 Type systems for separate compilation

In this section we define a general notion of type system for separate
compilation.

The main motivation is reuse: this general notion of type system
serves as a pattern to be instantiated by a “real” type system where
all definitions and details which have been intentionally omitted
here are provided (including, e.g., the syntax of terms and types,
and the typing rules for judgments). However, each correct instan-
tiation (as we will see, there are some basic properties expected to
hold) is guaranteed to support well selective recompilation [1]. We
will denote byT a generic instantiation of our general notion of type
system.

Even though in this paper we define just one instantiation (for
Featherweight Java [8] enriched by overloading and hiding, see
Section 3), we expect our general notion of type system to be useful
for a number of other possible instantiations including both more
significant subsets of Java and C# and toy languages defined for
studying the interaction of Java or C# with advanced features like,
for instance, generic types that will be soon included in Java and
have been formally studied with GJ [8].

2.1 Basic notions

We start by listing the basic syntax categories and typing judgments
that are expected to be defined by every instantiation.

Basic syntax categories

Each instantiation should at least define the following sets
(metavariables used for the elements of such sets are shown in
parentheses):

• Class names (c).

• (Sequences of) source class declarations (s).

• (Sequences of) binary class declarations (b).

• (Sequences of) class types (τ).

• Type assumptions (γ). They always include the type assump-
tions of the formc:τ which are calledstandard.

• Type environments (Γ). An environment is just a possibly
empty sequence of type assumptionsγ1, . . . ,γn.

We assume that each (source/binary) class declaration introduces
a class namec that can be extracted by a functionnamemapping
a sequence of source or binary class declarations to the sequence
of their corresponding names. As already explained in the In-
troduction, binaries are needed for modeling the situation where
some source class modification can change the binary generated
from other source classes.

Notation for sequences

We denote by |σ| the length of a sequenceσ, by σ1,σ2 the con-
catenation of the two sequencesσ1 andσ2. A sequence is written
eithere1, . . . ,en or ei∈1..n

i ; however, the first notation is only used
when there is no ambiguity with concatenation.

Basic judgments

Each instantiation should at least define the following two judg-
ments:

• Γ`s:τ;b: source class declarationss compileto b and have
type τ in Γ. We assume that ifΓ`s:τ;b is valid, then
|s| = |τ| = |b| = n, name(s) = name(b) = c1, . . . ,cn, with
ci 6= c j for all i, j ∈ 1..n, i 6= j. Note that for Java-like lan-
guages the information about the inferred typeτ is, in a sense,
redundant, since it does not depend onΓ, but it is a function
of just the sources; nevertheless, we have preferred to leave
this information in the judgment for readability.

• Γ1 ` Γ2: Γ1 entails Γ2, that is, Γ1 enforces stronger type
requirements than those ofΓ2.

Intuitively, the notion of entailment should correspond to a com-
putable relation (at least) sound w.r.t. the notion of stronger envi-
ronment (see Definition 4 in Section 2.2).

A basic expected property of the compilation judgment iscomposi-
tionality.

Let the expressionenv(s:τ) denote the type environment:
c1:τ1, . . . ,cn:τn if name(s) = ci∈1..n

i , τ = τi∈1..n
i and s does not

contain class name conflicts (that is,ci = c j implies i = j, for all
i, j ∈ 1..n) otherwise, it is undefined2.

Def. 1 (COMPOSITIONALITY). We say thatT is compositional
iff for all Γ, s = s1, . . . ,sn, τ = τ1, . . . ,τn, b = b1, . . . ,bn:
Γ`s :τ;b ⇔ Γ,env(s :τ)`s i :τi;bi , for all i ∈ 1..n.

2.2 Principal typings

The system independent definition of principal typing given by
Wells [14] fits well our general notion of type system. We recall

2Hence a judgment of the formΓ,env(s:τ)` . . . is valid if and
only if env(s:τ) is defined and denotes a type environmentΓ′ s.t.
Γ,Γ′` . . . is valid.



here the basic notions and notations on principal typings inspired
by Wells and adapted to our purposes.

Def. 2 (TYPING). If Γ`s :τ;b holds, then we say that the pair
(Γ,τ) is a typing of (s ,b). We say that(s ,b) is typableiff it has a
typing.

Note that we could have adopted Well’s definition of typing by con-
sidering binary sequences as part of the type so that(Γ,(τ,b)) is a
typing ofs if Γ`s:τ;b holds. However, this definition would lead
to a rather strong definition of principal typing for Java-like lan-
guages that, in fact, would not be satisfied by any system adopting
the usual notion of bytecode (see the Conclusion).

Def. 3 (CONSISTENT ENVIRONMENT). An environment iscon-
sistentiff there exists , τ, andb s.t.Γ`s :τ;b.

Def. 4 (STRONGER ENVIRONMENT). An environment Γ1 is
strongerthanΓ2 (writtenΓ1≤ Γ2) iff Γ2 is consistent and for alls ,
τ, andb, if Γ2`s :τ;b holds, thenΓ1`s :τ;b holds as well.

Note that the relation of Definition 4 is a pre-order, but, in general,
is not a partial order.

Def. 5 (STRONGERTYPING). A typing(Γ1,τ1) is strongerthan
(Γ2,τ2) (written (Γ1,τ1)≤ (Γ2,τ2)) iff Γ2 ≤ Γ1 andτ1 = τ2.

The definition of stronger typing given here differs from Well’s def-
inition in two respects:

• Well’s definition does not require that if(Γ1,τ1) is stronger
than (Γ2,τ2), thenΓ2 is stronger thanΓ1 and τ1 equalsτ2.
However, this stronger property clearly holds in the setting
of Java-like languages where the type of a class is uniquely
determined by the annotations contained in its body. Under
this property, the notion of stronger typing can be simply cap-
tured by the notion of entailment between environments (see
Theorem 14).

• In Well’s definition there is no notion of consistent
type/environment. However, if non-consistent types and en-
vironments were not ruled out from Definition 4, then some
expected completeness property would not hold, like, for in-
stance,Γ1 ≤ Γ2 ⇒ Γ1`Γ2; indeed, we may not want a sys-
tem whereΓ1`Γ2 is provable for anyΓ2, just becauseΓ1 is
not consistent. On the other hand, we would like to consider
concatenation of environments as a total function, therefore
non-consistent environments cannot simply ruled out from all
definitions.

Def. 6 (PRINCIPAL TYPING). A principal typingof (s ,τ) is a
typing of(s ,τ) which is stronger than all typings of(s ,τ).
We say thatT has principal typingsiff all typable (s ,b) have a
principal typing.

Finally, the definition of principal typing given here is strictly
stronger than Well’s definition; indeed, our definition could be re-
garded as a refinement of Well’s principality suitable for type sys-
tems in the Church style (that is, with explicitly typed terms).

2.3 Linksets

Selective recompilation tries to minimize compilation steps after
changes to a certain software configuration. Software configura-
tions can be modeled by the notion oflinkset, which was firstly
introduced by Cardelli [4].

Def. 7 (LINKSET). A linkset is a pair, written

Γ|Γi `s i :τi;bi
i∈1..n

consisting of a type environment and a (possibly empty) sequence
of valid compilation judgments s.t.s = s1, . . . ,sn does not contain
class name conflicts.

Intuitively, the environmentΓ contains the type assumptions on the
external classes (that is, not defined in the linkset), whereas for all
i ∈ 1..n the judgmentΓi `si :τi;bi corresponds to the successful
compilation of a single compilation unitsi to bi in the type envi-
ronmentΓi .

Since here the emphasis is on inter-checking, the definition of
linksets assumes that the compilation judgments are valid, hence
our linksets correspond tointra-checkedCardelli’s linksets [4].
Moreover, in [4] type environments are just sequences of standard
type assumptionsc : τ, and class names inΓ need to be different
from those in eachΓi . Indeed, typechecking of a single fragment
si is performed in the type environmentΓ,Γi containing type as-
sumptions on external classes and classes in the linkset, respec-
tively. In our notion of linkset, instead, type environments contain
arbitrary type assumptions, each one possibly involving more than
one class, and typechecking ofsi is performed in the type environ-
mentΓi which contains type assumptions on both external classes
and classes in the linkset. Thus,Γ,Γi can contain redundant as-
sumptions, even though intuitively the best situation occurs when
Γi contains exactly the minimal type assumptions on other classes
needed to compilesi andΓ contains exactly the minimal type as-
sumptions on external classes needed to compile allsi .

Finally, judgments are not named as in Cardelli’s linksets, since the
type environment exported by any compilation unitΓ`s:τ;b is
simply obtained via thenamefunction.

The definition of inter-checking is a generalization of that given by
Cardelli.

Def. 8 (LINKSET INTER-CHECKING). Let

L = Γ|Γi `s i :τi;bi
i∈1..n

be a linkset and sets = s1, . . . ,sn, τ = τ1, . . . ,τn. We say thatL
inter-checks(written` L�) iff Γ,env(s :τ)`Γi holds for all i∈ 1..n.

2.4 Sound and complete inter-checking

As already explained, the inter-checking procedure allows sepa-
rate compilation of the units which need to be assembled in the
linkset, and prevents code inspection and recompilation, since the
overall consistency of the linkset is checked via the entailment rela-
tion on environments which completely relies on unit interfaces.
On the other hand, one could always adopt a “brute force” al-
gorithm by (re)compiling all units as a whole. We model global

(re)-compilation by a judgmentΓ`s1, . . . ,sn
G;b1, . . . ,bn, express-

ing that source fragmentss1, . . . ,sn are compiled altogether, gen-
erating binary fragmentsb1, . . . ,bn in the type environmentΓ (see
Def. 9).

Def. 9 (GLOBAL COMPILATION ). For all Γ, s , b, the judgment

Γ`s
G;b is valid iff Γ`s :τ;b can be proved for someτ.

Of course we expect separate compilation plus inter-checking to
produce the same binaries as we would have got from global com-



pilation; if so, we say that inter-checking is sound w.r.t. global com-
pilation.

Def. 10 (SOUND INTER-CHECKING). Inter-checking is sound
w.r.t. global compilation iff for all linksetsL = Γ|Γi `s i :τi;bi

i∈1..n

if ` L� thenΓ`s1, . . . ,sn
G;b1, . . . ,bn.

Soundness of inter-checking is guaranteed under some reasonable
conditions: the type system should be compositional, and the en-
tailment judgment should be sound with respect to the relation of
stronger environment.

Theorem 11 (SOUNDNESS OF INTER-CHECKING). Let T be a
compositional type system satisfying the following additional prop-
erty :

(∗) Γ1`Γ2 ⇒ Γ1 ≤ Γ2 for all Γ1,Γ2 (entailment is sound).

Then, inter-checking is sound w.r.t. global compilation.

PROOF. Let L be Γ|Γi `si :τi;bi
i∈1..n be a linkset s.t.` L�

holds and sets = s1, . . . ,sn, τ = τ1, . . . ,τn. Then, by Defini-
tion 8, Γ,env(s:τ)`Γi holds for all i ∈ 1..n. By hypothesis(∗),
Γ,env(s:τ)≤ Γi , thereforeΓ,env(s:τ)`si :τi;bi for all i ∈ 1..n. Fi-

nally, by compositionality,Γ`s1, . . . ,sn
G;b1, . . . ,bn.

From the point of view of selective recompilation, soundness of
inter-checking ensures that recompilation steps are really unneces-
sary in case of successful inter-checking since they would lead to
the same result. On the other hand, we would like to be sure that if
inter-checking fails, then some recompilation step is really needed,
so that it never happens that a recompilation step turns out to be
useless. This happens if inter-checking is complete w.r.t. global
compilation.

Def. 12 (COMPLETE INTER-CHECKING). Inter-checking is
completew.r.t. global compilation iff, for all typable(s ,b), we can
select a typing(Γ(s ,b),τ(s ,b)) of (s ,b) s.t.

for all linksetsL = Γ|Γi `s i :τi;bi
i∈1..n,

with (Γi ,τi) = (Γ(s i ,b i),τ(s i ,b i)), i ∈ 1..n,

if Γ`s1, . . . ,sn
G;b1, . . . ,bn holds, theǹ L� holds.

Note that the property above is weaker than the opposite implica-
tion of Def. 10, which does not hold; indeed, for an arbitrary linkset,
inter-checking could fail since for some fragment we have taken a
too restrictive type environment. However, completeness as stated
above requires that for each fragment we can selecta priori a typ-
ing s.t., for any possible future context, failure of linking will ensure
that we could not get the same binary fragments by global compi-
lation.

Prop. 13 (COMPLETENESS OF INTER-CHECKING). Let T be a
compositional type system satisfying the following additional prop-
erty:

for all typable (s ,b), there exists aprovably principal
typing of(s ,b), that is a typing(Γ,τ) of (s ,b) s.t. for
all typings(Γ′,τ′) of (s ,b), Γ′`Γ andτ = τ′.

Then, inter-checking iscompletew.r.t. global compilation.

PROOF. Let us take, for all(s,b), (Γ(s,b),τ(s,b)) a provably prin-
cipal typing of(s,b).

Let L be Γ|Γi `si :τi;bi
i∈1..n with (Γi ,τi) provably principal for

(si ,bi), i ∈ 1..n, and s.t.Γ`s G;b holds.

By compositionality:

for all i ∈ 1..n, Γ,env(s1, . . . ,sn:τ′1, . . . ,τ
′
n)`si :τ′i;bi ,

for someτ′1, . . . ,τ
′
n.

Therefore, since(Γi ,τi) is provably principal for(si ,bi), τi = τ′i
andΓ,env(s1, . . . ,sn:τ1, . . . ,τn)`Γi hold for all i ∈ 1..n, hencè L�
by Definition 8.

The following is just a corollary of Theorem 13 stating that com-
pleteness of inter-checking holds wheneverT is compositional, has
principal typings and the entailment relation is complete.

Theorem 14. LetT be a compositional type system with principal
typings, satisfying the following additional property:

(∗∗) Γ1 ≤ Γ2 ⇒ Γ1`Γ2 for all Γ1,Γ2 (entailment is complete).

Then, inter-checking is complete w.r.t. global compilation.

PROOF. Let (s,b) be typable; then by hypothesis(s,b) has a prin-
cipal typing(Γ,τ). By definition of principal typing, for all(Γ′,τ′)
of (s,b), τ = τ′ andΓ′ ≤ Γ, hence by hypothesis(∗∗), Γ′ `Γ. Fi-
nally, theorem 13 can be applied.

2.5 Selective recompilation

In this section we illustrate more in detail the role of soundness
and completeness of inter-checking for selective recompilation. As-
sume that in a compositional systemT some of a successfully inter-
checked linkset has been modified and recompiled, obtaining the
new linksetΓ|Γi `si :τi;bi

i∈1..n. Of course, this change could have
affected compatibility with some other fragment, therefore further
recompilation steps could be required in principle. However, to
avoid a pointless recompilation, we can use Definition 8; if all
checks are passed, then by soundness we are sure that the modifi-
cation did not affect any other fragment, hence any further recom-
pilation step would be useless.

On the other hand, if inter-checking is not passed, and typings in the
linkset are those selected according to Definition 12, then, by com-

pleteness, we know that fors = s1, . . . ,sn, b = b1, . . . ,bn, Γ`s G;b
does not hold, hence, by completeness,

• either we simply introduced some name conflict, hence we
obtain an ill-formed linkset;

• or ∃ i ∈ 1..n s.t.Γ,env(s:τ)`si :τi;bi is not valid.

In this latter case we recompile thei-th unit, since we are sure we
will obtain either a different binary or a compilation error, but not
the same result as before.

Note that it would be even better to be able to infer, in case of failure
of inter-checking, whether recompilation would generate a different
binary or a compilation error; indeed in this way we could avoid
recompilation in the latter case and get an optimal procedure of
selective recompilation. In languages where, differently from what
happens in Java, changes to a fragment cannot affect other binary
fragments, this is always the case since the former possibility does
not hold. For Java-like languages, the same result could be achieved
by introducing two different judgments, one for type-checking (not
taking into account code generation) and one for compilation (that



s ::= CDs
1 . . . CDs

n
CDs ::= class c extends c′ { FDS MDSs }
FDS ::= FD1 . . . FDn
FD ::= c f;

MDSs ::= MDs
1 . . . MDs

n
MDs ::= MH {return Es;}
MH ::= c0 m(c1 x1, . . . ,cn xn)
Es ::= x | Es.f | Es

0.m(E
s
1, . . . ,E

s
n)

| new c(Es
1, . . . ,E

s
n) | (c)Es

b ::= CDb
1 . . . CDb

n
CDb ::= class c extends c′ { FDS MDSb }
MDSb ::= MDb

1 . . . MDb
n

MDb ::= MH {return Eb;}
Eb ::= x | Eb�c.f c′�

Eb
0 � c.m(c̄)c′� (Eb

1, . . . ,E
b
n)

| new �c c̄�(Eb
1, . . . ,E

b
n) | (c)Eb

c̄ ::= c1, . . . ,cn

Implicit assumptions:

• field names inFDS are distinct
• parameter types of methods with the same name are dis-

tinct in MDSs andMDSb

• parameter names inMH are distinct
Figure 1. Syntax

introduced in next section). See the Conclusion for more on this
point.

3 Separate compilation for FJ

3.1 Syntax

The language we consider at the source level is an extended version
of Featherweight Java [8], shortly FJ in the following. More pre-
cisely, we keep the same syntax, but take a more liberal type system
allowingfield hiding(a heir class can declare a field already present
in the parent; the new field hides the inherited field, which can only
be recovered by an up cast3) andmethod overloading(a class can
have many methods, either directly declared or inherited, with the
same name and different parameter types; they are considered as
different methods and the right method associated to an invocation,
if any, is determined by the rules foroverloading resolution, see in
the sequel).

We include these features from full Java since they are significant
for the problem we are studying. Indeed, in both cases, the type
which can be assigned to an expression in a fragment and the cor-
responding generated bytecode cannot be determined by simply in-
specting the fragment, but depend on the context, as explained at
the end of the Introduction.

The syntax of the language is defined in Figure 1; metavariables
c, f, m andx range over sets of class, field, method and parameter
names, respectively.

A source fragments is a sequence of class declarations, each one
consisting of the name of the class, the name of the superclass, a
sequence of field declarationsFDS and a sequence of method dec-

3Or, in full Java, bysuper.

larationsMDSs. If c′ is the superclass ofc, then we also say thatc
(directly) extendsc′, andextendsany classc′′ which c′ (directly)
extends. We assume a distinguished class nameObject, denoting
the root of the inheritance hierarchy, which cannot be declared.

A field declarationFD consists of the type and the name of the de-
clared field. A method declarationMDs consists of a method header
and a method body (an expression). A method headerMH consists of
a (return) type, a method name and a sequence of parameter types
and names. There are five kinds of expression: parameter name,
field access, method invocation, instance creation and cast. Types
of expressions are class names, andc is a subtype ofc′ iff either c
extendsc′ or c = c′.

In FJ, any classc is assumed to have exactly one constructorKc,
which takes a canonical form explained below.

Let us define the sequence of the fields ofc as follows: the sequence
of the fields ofObject is empty; ifc directly extendsc′, then the
sequence of the fields ofc is obtained appending to the sequence
of the inherited fields (that is, the fields ofc′) the sequence of the
fields directly declared inc, in the given order.

Then

Kc ::= c(c1 f1, . . . ,cn+m fn+m){ KEc; }
KEc ::= super(f1, . . . ,fn);

this.fn+1 = fn+1; . . .this.fn+m = fn+m;

wherec1f1, . . . ,cn+mfn+m, for n,m≥ 0, are the fields ofc and, in
particular,cn+1fn+1, . . . ,cn+mfn+m are the directly declared fields
(hencec1f1, . . . ,cnfn are the inherited fields).

Note that, if the whole FJ program is available, then the canon-
ical constructor for a classc is completely determined by the in-
heritance hierarchy ofc, hence it is immaterial to either explicitly
write its declaration in the class or not. However, this considera-
tion does not apply to separate compilation; indeed, if constructors
are explicit, then compilation of a class requires the existence of
all its ancestors, since we must check that the constructor matches
inherited and declared fields. On the other hand, if constructors
are implicit, then the availability of all ancestors is not required for
compiling a class.

Here, we have chosen the second alternative, which allows a more
modular type-checking. Another alternative would consist in allow-
ing arbitrary constructors as in full Java. Here we preferred to keep
the simpler FJ choice, since the problem of constructor overloading
is basically an easier version of method overloading [10].

As already mentioned, the bytecode language we define for FJ dif-
fers from the source code only for field accesses, which contain a
symbolic reference�c.f c′� to the field to be selected, method
invocations, which contain a symbolic reference�c.m(c̄)c′� to
the method to be invoked, and instance creation expressions, which
contain a symbolic reference�c c̄� to the canonical constructor.

Type assumptions are defined in Figure 2.

A standard type assumption has formc:(c′,FS,MSS) with the mean-
ing “c extendsc′ and declares exactly all fields specified byFS and
all methods specified byMSS”, whereFS is a set of fields (field type
and field name) andMSS is a set of methodsignatures(return type,
method name and parameter types).



γ ::= c :τ | ∃c | c≤ c′ | c.f f-res→ c′ | c.m(c̄) m-res→ (c̄′,c) | c k-res→ c̄ | c,MS | c 6≤ c′

τ ::= (c,FS,MSS)
FS ::= {F1, . . . ,Fn}
F ::= c f

MSS ::= {MS1, . . . ,MSn} (where parameter types of methods with the same name are distinct)
MS ::= c m(c̄)

Figure 2. Type environments

Other forms of type assumptions are listed below:

• ∃c with the meaning “c is declared”;

• c≤ c′ with the meaning “c is a subtype ofc′”;

• c.f
f-res→ c′ with the meaning “the access to fieldf of an object

of typec is successfully resolved to a field (obviously named
f) with typec′”.

• c.m(c̄) m-res→ (c̄′,c′) with the meaning “the invocation of
methodm of an object of typec and with arguments of types
c̄ is successfully resolved to a method (obviously namedm)
with parameters of types ¯c′ and return typec′”.

• c
k-res→ c̄ with the meaning “the canonical constructor ofc has

parameter types ¯c”;

• c,c′ m(c̄) with the meaning “c can be extended by a sub-
class with a methodc′ m(c̄) without breaking the Java rule on
method overriding”;

• c 6≤ c′ with the meaning “c is not a subtype ofc′”;

Typing rules for separate compilation are given in Figure 3.

The top-level rule (fragment) defines the compilation of a sequence
of source class declarationss1, . . . ,sn, whose type isτ1, . . . ,τn, into
a sequence of binary class declarationsb1, . . . ,bn. The provided
environment,Γ, is enriched with the standard type assumptions as-
signing to classes their declared types to deal with mutual recursion.
The resulting environment must be well-formed; the definition of
well-formed type environments (typing rules for the judgment` Γ�
are given in Figure 4) relies on that for well-formed standard type
environments (that is, those which only contain standard type as-
sumptions, ranged over byΓs). That is,Γ is well-formed iff there
exists a well-formed standard type environmentΓs which entailsΓ.
A standard type environment is well-formed if the inheritance re-
lation is acyclic, for each class all its ancestor classes are available
and the Java rules on overriding are respected (that is, a class can-
not declare a method with the same name and parameter types of
an inherited method and different return type).This is modeled by
means of a judgmentΓs ` c:MSS� which holds if we can calculate
in Γs the set of all method signatures of classc (empty forObject).

Rule (class), which defines the compilation of a single source class
declaration for classc, checks that the superclassc′ can be safely
extended with the methods declared inc and that there are no cycles
involving c andc′ (existence of the superclass is guaranteed by this
last check). Note that there is no constraint on the fields declared in
c since we allow field hiding.

Compilation of a sequence of method declarations consists in com-
pilation of each method declaration.

Rule (method) for compiling a single method declaration checks the

existences of the return type and of the types of the parameters and,
moreover that, under the type assumptions for parameters in the
method header, the body is a well-formed expression of a subtype
of the method return type.

The judgment for separate compilation of expressions takes an ad-
ditional Π which is a mapping from variables to class names.

Rule (field access) for compiling a field accessEs.f checks thatEs

is a well-formed expression of some typec, and an access to field
f of an object of typec is successfully resolved to a field of some
typec′, which is the resulting type of the field access. Moreover,
the corresponding binary field access is annotated with the static
type ofEs and the type of the selected field.

Rule (meth call) for compiling a method invocation
Es

0.m(E
s
1, . . . ,E

s
n) checks thatEs

0 is a well-formed expression of some
typec, all arguments are well-formed expressions of some types ¯c,
and an invocation of methodm of an object of typec and with argu-
ments of types ¯c is successfully resolved to a method, whose return
type is the resulting type of the method invocation. Moreover, the
corresponding binary method invocation is annotated with the static
type of the receiver and the parameter types and return type of the
selected method.

Rule (new) for compiling an instance creation
new c(Es

1, . . . ,E
s
n) checks that all arguments are well-formed ex-

pressions, an invocation of the canonical constructor ofc is suc-
cessfully resolved and the argument types are subtypes of the cor-
responding parameter types of the canonical constructor. Moreover,
the corresponding binary instance creation is annotated with the pa-
rameter types of the canonical constructor.

There are two typing rules for compiling a cast expression(c)Es,
which both check thatEs is a well-formed expression of some type
c′; then, the cast expression is well-formed and has typec if either
c is a subtype ofc′ (down cast) or conversely (up cast). Note that
up casts are removed from the binaries. In [8], also casts between
classes which are not in the subtyping relation (stupid casts) are
allowed, in order to get the subject reduction property4, but no user-
defined expression can be typed by using the corresponding rule.
Here we do not deal with the reduction semantics of FJ, hence we
do not include stupid casts.

The typing rules for entailment of type environments are given in
Figure 5. The first three rules for environment entailment simply
say thatΓ1 ` Γ2 is valid if each type assumptionγ contained inΓ2
is entailed byΓ1; the remaining rules cover the cases whenΓ2 is a
single atomic type assumptionγ.

There are two rules which deal with resolution of fields. Rule

4Since, e.g.,(B)(Object)new A() reduces to(B)new A() for A, B
heirs ofObject.



(fragment)

` Γ,env(s:τ)�
Γ,env(s:τ)`si :τi;bi ∀i ∈ 1..n

Γ`s:τ;b
s = s1, . . . ,sn,τ = τ1, . . . ,τn,b = b1, . . . ,bn
∀i ∈ 1..n.τi = type(si)

(class)

Γ`MDSs;MDSb

Γ`c′,MSi ∀ i ∈ 1..n
Γ`c′ 6≤ c

Γ ` class c extends c′ {FDS MDSs} : (c′,FS,{MS1, . . . ,MSn}) ;
class c extends c′ {FDS MDSb}

type(MDSs) = {MS1, . . . ,MSn}
type(FDS) = FS

(methods)
Γ`MDs

i ;MDb
i ∀i ∈ 1..n

Γ`MDs
1 . . . MDs

n;MDb
1 . . .MDb

n
(method)

Γ;x1:c1, . . . ,xn:cn`Es:c;Eb

Γ`c≤ c0
Γ`∃ci ∀ i ∈ 0..n

Γ ` c0 m(c1 x1, . . . ,cn xn) {return Es;};
c0 m(c1 x1, . . . ,cn xn) {return Eb;}

(parameter)

` Γ�
Π`x :c

Γ;Π`x:c;x
(field access)

Γ;Π`Es:c;Eb

Γ`c.f f-res→ c′

Γ;Π`Es.f:c′;Eb�c.f c′�

(meth call)

Γ;Π`Es
0:c;Eb

0
Γ;Π`Es

i :ci;Eb
i ∀i ∈ 1..n

Γ`c.m(c1, . . . ,cn)
m-res→ (c̄′,c′)

Γ;Π`Es
0.m(E

s
1, . . . ,E

s
n):c′;Eb

0 � c.m(c̄′)c′� (Eb
1, . . . ,E

b
n)

(new)

Γ;Π`Es
i :c

′
i;Eb

i ∀i ∈ 1..n

Γ`c k-res→ c1, . . . ,cn
Γ`c′i ≤ ci ∀i ∈ 1..n

Γ;Π`new c(Es
1, . . . ,E

s
n):c;new �c c1, . . . ,cn�(Eb

1, . . . ,E
b
n)

(down cast)

Γ;Π`Es:c′;Eb

Γ`c≤ c′

Γ;Π`(c)Es:c;(c)Eb (up cast)

Γ;Π`Es:c′;Eb

Γ`c′ ≤ c
Γ`∃c

Γ;Π`(c)Es:c;Eb

type(CDs
1 . . . CDs

n) = type(CDs
1), . . . , type(CDs

n)
type(class c extends c′ { FDS MDSs }) = (c′, type(FDS), type(MDSs))
type(FD1 . . .FDn) = {type(FD1), . . . , type(FDn)}
type(c f;) = c f
type(MDs

1 . . .MDs
n) = {type(MDs

1), . . . , type(MDs
n)}

type(MH { return Es; }) = type(MH)
type(c0 m(c1 x1, . . . ,cn xn)) = c0 m(c1..cn)
name(CDs

1 . . . CDs
n) = name(CDs

1), . . . ,name(CDs
n)

name(class c extends c′ { FDS MDSs }) = c

Figure 3. Separate compilation

(non standard)
Γs`Γ ` Γs�

` Γ�

(standard)
c1:τ1, . . . ,cn:τn ` ci :MSSi � ∀i ∈ 1, . . . ,n

` c1:τ1, . . . ,cn:τn�
n≥ 0
ci = c j =⇒ τi = τ j ∀i, j ∈ 1, . . . ,n

(msigs obj)
Γs ` Object: /0 �

(msigs down)
Γs ` c′:MSS′�

Γs ` c:MSS∪MSS′�
Γs(c) = (c′,−,MSS)
c1 m(c̄) ∈ MSS,c2 m(c̄) ∈ MSS′ =⇒ c1 = c2

Figure 4. Well-formed type environments



(empty)
` Γ�
Γ`Λ

(conc)
Γ`Γ1 Γ`γ

Γ`Γ1,γ
(singleton)̀

Γ1,γ,Γ2�
Γ1,γ,Γ2`γ

(def class)
Γ`c :τ
Γ`∃c

(def obj)
` Γ�

Γ`∃Object

(refl)
` Γ�

Γ`c≤ c
(trans)

Γ`c1 ≤ c2 Γ`c2 :(c3,−,−)
Γ`c1 ≤ c3

(≤obj)
` Γ�

Γ`c≤ Object

(≤vector)
Γ`ci ≤ c′i∀ i ∈ 1..n

Γ`c1, . . . ,cn ≤ c′1, . . . ,c
′
n

(direct field res)
Γ`c :(−,FS,−)

Γ`c.f f-res→ c′
c′ f ∈ FS (inh field res)

Γ`c1 :(c2,FS,−) Γ`c2.f
f-res→ c

Γ`c1.f
f-res→ c

6 ∃c′.c′ f ∈ FS

(exact meth res)
Γ`c2 :(−,−,MSS) Γ`c1 ≤ c2

Γ`c1.m(c̄)
m-res→ (c̄,c)

c m(c̄) ∈ MSS

(complete meth res)

applAll(Γ,c,m, c̄) = µs
Γ` c̄⇑
mostSpec(Γ,µs) = (c̄′,c′)

Γ`c.m(c̄) m-res→ (c̄′,c′)
(match meth res)

applAll(Γ,c,m, c̄) = µs
matchAll(Γ,c,m,n) = µs
mostSpec(Γ,µs) = (c̄′,c′)

Γ`c.m(c̄) m-res→ (c̄′,c′)

(K obj)
` Γ�

Γ`Object k-res→ Λ
(K up)

Γ`c :(c′,FS,−) Γ`c′ k-res→ c̄

Γ`c k-res→ c̄,c1, . . . ,cn

FS = c1 f1 . . .cn fn

(,obj)
` Γ�

Γ`Object,c m(c̄)
(,down)

Γ`c1 :(c2,−,MSS)
Γ`c2,c m(c̄)

Γ`c1,c m(c̄)
(c′ m(c̄) ∈ MSS) =⇒ c′ = c

(6≤)
notSub(Γ,c,c′)

Γ`c 6≤ c′

Figure 5. Type environments entailment

Γ`c1, . . . ,cn⇑= Γ`c1⇑ ∧ . . .∧Γ`cn⇑

Γ`c⇑=

 true if c = Object
Γ`c′⇑ if Γ`c :(c′,−,−)
false otherwise

notSub(Γ,c,c′) = Γ`c⇑ ∧c′ 6∈ supertypes(Γ,c)

supertypes(Γ,c) =

 {Object} if c = Object
{c}∪supertypes(Γ,c′) if Γ`c :(c′,−,−)
⊥ otherwise

appl(Γ,c,m, c̄) =
{
{<c, c̄′,c′> | c′ m(c̄′) ∈ MSS,Γ ` c̄≤ c̄′ } if Γ`c :(−,−,MSS)
⊥ otherwise

applAll(Γ,c,m, c̄) =

 /0 if c = Object
µs1∪µs2 if appl(Γ,c,m, c̄) = µs1, Γ`c :(c′,−,−), applAll(Γ,c′,m, c̄) = µs2
⊥ otherwise

match(Γ,c,m,n) =
{
{<c,c′1, . . . ,c

′
n,c

′> | c′ m(c′1, . . . ,c′n) ∈ MSS if Γ`c :(−,−,MSS)
⊥ otherwise

matchAll(Γ,c,m,n) =

 /0 if c = Object
µs1∪µs2 if match(Γ,c,m,n) = µs1, Γ`c :(c′,−,−), matchAll(Γ,c′,m,n) = µs2
⊥ otherwise

mostSpec(Γ,µs) =
{

<c0, c̄0,c
′
0> if <c0, c̄0,c

′
0> ∈ µsandΓ`c0, c̄0 ≤ c, c̄, for all <c, c̄,c′> ∈ µs

⊥ otherwise

Figure 6. Auxiliary functions



(direct field res) states that an access to fieldf for an object of type
c can be successfully resolved if classc directly declares a field
namedf. Rule (inh field res) states that an access to fieldf for an
object of typec1 can be successfully resolved if it can be resolved
for an object of the parent typec2 andc1 declares no fields named
f (which would hide the inherited field).

There are three rules which deal with resolution of methods.

Rule (exact meth res) covers the simple case where there exists an
applicable method which perfectly matches the invocation, hence
can be directly selected.

Otherwise, all applicable methods must be collected, and then the
most specific method (if any) is selected [7].

The setapplAll(Γ,c,m, c̄), formally defined in Figure 6, containsall
methods ofc (either directly declared or inherited) namedm whose
parameter types are supertypes of ¯c in Γ (note that for calculating
this set all ancestors ofc are needed).

However, in general we cannot be sure that this set actually con-
tainsall the applicable methods, since there could exist somem in
c for which we do not have inΓ the type assumptions stating that
the parameter types are supertypes of ¯c. We can conclude that we
have collected all applicable methods (hence the most specific, if
any, can be selected) only in two cases: if we have all ancestors
of the argument types (Γ` c̄⇑ in rule complete meth res), or if the
setapplAll(Γ,c,m, c̄) coincides with the setmatchAll(Γ,c,m,n) of
all methodsm of classc whose number of parameters matches the
number of arguments in the invocation (rulematch meth res), hence
the set of all applicable methods cannot be larger.

Rules (K obj) and (K up) deal with resolution of constructors. The
former states that the canonical constructor of classc is Object has
no parameters (Λ denotes the empty sequence). The latter states
that the canonical constructor of a classc which extendsc′ has as
sequence of parameter types the sequence of the parameter types of
the canonical constructor ofc′, followed by the types of the fields
directly declared inc.

Rule (,obj) states thatObject can be extended by any method.

Rule (,down) states that if we know that a certain classc2 can be
extended by a methodc m(c̄), then a heir classc1 which does not
define the method with a different return type can be extended with
the same method as well.

Finally, the last rule states that we can conclude thatc is not a sub-
type ofc′ if all ancestors ofc are available andc′ is not among them
(see the definition ofnotSubin Figure 6).

4 Results

In this section we prove that the type system TFJ for FJ extended
with overloading and hiding defined in the previous section satisfies
the hypotheses of Theorem 11 and 13, hence supports sound and
complete inter-checking. We also prove that it has principal typings
and that the environment entailment is complete.

In order to prove these results, we need the following lemmas, stat-
ing that entailment is a pre-order on well-formed type environments
and that well-formedness actually coincides with consistency.

Lemma 15.

1. If Γ1`Γ2 holds, theǹ Γ1� holds.

2. If ` Γ1,Γ2� holds, thenΓ1,Γ2`Γ1 holds.

3. If Γ1`Γ2 andΓ2`Γ3 hold, thenΓ1`Γ3 holds.

4. If Γ1`Γ2 holds, theǹ Γ2� holds.

Lemma 16. Γ is consistent iff̀ Γ�.

Fact 17 (COMPOSITIONALITY OF TFJ). The type systemTFJ is
compositional, that is, for allΓ, s = s1, . . . ,sn, τ = τ1, . . . ,τn, b =
b1, . . . ,bn:
Γ`s :τ;b ⇔ Γ,env(s :τ)`s i :τi;bi , for all i ∈ 1..n.

Theorem 18. The environment entailment is sound, that is, for all
Γ1,Γ2, Γ1`Γ2 ⇒ Γ1 ≤ Γ2.

Theorem 19. In the type systemTFJ inter-checking is sound w.r.t.
global compilation.

Theorem 20. For all typable(s ,b), there exists a typing

(Γ(s ,b),τ(s ,b))

of (s ,b) s.t. for all typings(Γ,τ) of (s ,b), Γ`Γ(s ,b) andτ(s ,b) =
τ.

Theorem 21. In the type systemTFJ inter-checking is complete
w.r.t. global compilation.

Theorem 22. The type systemTFJ has principal typings.

Theorem 23. The environment entailment is complete, that is, for
all Γ,Γ′, Γ≤ Γ′⇒ Γ`Γ′.

5 Conclusion

We have defined an abstract framework for modeling separate com-
pilation and inter-checking, provided a formal definition of sound-
ness and completeness of inter-checking, and proved that these
properties can be guaranteed when the type system has principal
typings and provides sound and complete entailment relation be-
tween type environments.

The fact that a type system has principal typings is often claimed
to be a highly desirable feature since they allowcompositional type
analysisin the sense that the procedure of finding types for a term
uses only the analysis results for its immediate subterms, which can
be analyzed independently in any order [14] andnever need to be
inspected again(see also [9, 5]). Perhaps the most important result
of this paper on the foundational side is that we are able to for-
mally express this property in the context of separate compilation
and linking and to prove that it is actually guaranteed by principal
typings.

On the side of application to Java-like languages, this paper is part
of a stream of work [3, 2, 10, 11] on alternative type systems for
Java.

In [3] we firstly realized that, despite the fact that Java is consid-
ered a paradigmatic example of language supporting separate com-
pilation, compilation as performed by standard Java compilers and



modeled in current Java formal definitions is not truly separate in
the sense made precise in [4] and in this paper. Indeed, each class
is typechecked against the same “global” type environment, that is,
that extracted from a particular program context. Hence, a differ-
ent type system for a subset of Java has been designed, introduc-
ing type assumptions expressing minimal requirements needed for
typechecking a class in isolation, similar to those shown in this pa-
per.

In [2] it is shown that this type system actually allowsstrongertyp-
ings w.r.t. to standard type systems for Java and that it can be the
basis for selective recompilation of Java applications.

Concerning the applicability of these results to the whole Java lan-
guage, [10] and [11] outline the extension of this type system to
a large Java subset (including, e.g., constructors, access modifiers,
static members, throws clauses and unreachable code) and the de-
velopment of a corresponding smart compiler. The reader interested
into aspects related to Java and selective recompilation can refer to
these papers.

Here, our aim was to formally prove a result of existence of prin-
cipal typings for a Java-like language (the first to our knowledge),
hence we have preferred to consider a simple and clean language
as Featherweight Java, enriched with the features which pose the
main problems in the Java type system. We believe a nice side-
contribution of this paper is that we have “exported” the notion of
principal typing, more familiar in the community of functional lan-
guages, to a completely different context, and show that, whereas
in classical type systems with principal typings they are usually ob-
tained by making the type more general (typically by introducing
polymorphism or intersection types), in Java-like languages the op-
posite happens, that is, principal typings can be obtained by making
type environments less restrictive.

In the notion of type system introduced in this paper, we have con-
sidered fragments as pairs(s,b). As already mentioned, an interest-
ing alternative would be to consider the binary as part of the type.
In this case, in order to get the principal typings property, we should
introduce polymorphic types.

For instance, consider again the example in the Introduction:

class C extends Parent {
...
Type1 m(Type2 x){ return new Used().g(x);}

}

If we do not care about which bytecode will be generated, then
classC can be correctly linked with any classUsed having a method
α g(β), for any typesα,β s.t.α ≤ Type1 andType2 ≤ β. Clearly,
all these classes cannot be captured by a unique type environment
Γ in our current type system. In order to do that, we should in-
troduce type variables in the type environments, analogously to the
approach followed in [13]; so we could model the requirements
above as follows:

α≤ Type1,Type2≤ β,Used.g(Type2) m-res→ (α,β)

However, in this way the compiler cannot generate bytecode forC,
since method descriptors cannot contain type variables; as a con-
sequence, either JVM should be modified, or we should introduce
a sort of pre-bytecode that may contain type variables that must be
instantiated during static inter-checking in order to produce valid
bytecode (similar solutions can be found in literature [13, 12]).

Finally, another interesting topic for further investigation is the re-
lation between the notions of binary compatibility [6] and inter-
checking.
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A Proofs

Lemma 15

1. By induction on the derivation ofΓ1`Γ2.

2. By rules (conc) and (singleton).

3. By induction on the derivation ofΓ2`Γ3.

4. By rule (non standard) and (3).

Lemma 16

⇒ If Γ is consistent, then we have applied rule (fragment), hence
` Γ,env(s : τ)� holds for somes, τ. Then by lemma 15 (2)
and (4) we get that̀ Γ� holds.

⇐ If ` Γ� holds, then we can apply rule (fragment) withn = 0.

Theorem 18 (Sketch) The fact thatΓ2 is consistent follows from
lemma 15 (4) and lemma 16. Then, we have to prove that, for alls,
τ, b, if Γ2`s:τ;b holds, thenΓ1`s:τ;b holds as well. This can be
shown by induction on the derivation ofΓ2`s:τ;b, by extending
the claim to all other kinds of compilation judgments and by using
the transitivity of entailment.

Theorem 19 From Theorem 11 and Theorem 18.

Theorem 20 (Sketch) We have to prove that,

(1) for all typable(s,b), there existsΓ(s,b), τ(s,b) s.t.
Γ(s,b)`s:τ(s,b);b holds andΓ`Γ(s,b), τ = τ(s,b) for
all Γ s.t.Γ`s:τ;b holds.

Since(s,b) is typable, at least one compilation judgmentΓ`s:τ;b
holds. The proof is by induction on the derivation of this judgment,
by extending the claim to all other kinds of compilation judgments.

Typings for expressions are the most interesting case. Then, prop-
erty (1) becomes,

(2) for all Π, and typable(Es,Eb) w.r.t. Π, there exists
Γ(Es,Eb), c(Es,Eb) s.t. Γ(Es,Eb);Π`Es:c(Es,Eb);Eb holds
andΓ`Γ(Es,Eb), c = c(Es,Eb) for all Γ s.t.Γ;Π`Es:c;Eb

holds,

where (Es,Eb) is typable w.r.t. Π if there exist Γ, c s.t.
Γ;Π`Es:c;Eb holds.

We just outline the proof for the rule (field access). Then we know
that

H1 Γ;Π`Es:c;Eb holds;

H2 Γ`c.f f-res→ c′ holds;

H3 (from (H1) by inductive hypothesis) there existsΓ(Es,Eb) s.t.
property (2) holds.

Let us takeΓ(Es.f,Eb�c.f c′�) = Γ(Es,Eb),c.f
f-res→ c′. We have to

prove that

T1 Γ(Es,Eb),c.f
f-res→ c′;Π`Es.f:c′;Eb�c.f c′�holds;

T2 Γ′ ` Γ(Es,Eb),c.f
f-res→ c′ holds for all Γ′ s.t.

Γ;Π`Es.f:c;Eb�c.f c′�holds.

First of all we prove thatΓ(Es,Eb),c.f
f-res→ c′ is consistent. Since

Γ is consistent by hypothesis,Γ ` Γ(Es,Eb) holds by (H3), Γ `
c.f

f-res→ c′ holds by (H2), by rule (conc) we can conclude thatΓ`
Γ(Es,Eb),c.f

f-res→ c′ holds, and this implies thatΓ(Es,Eb),c.f
f-res→ c′

is consistent by lemma 15 and lemma 16.

We prove now (T1). We can instantiate rule (field access) by
premises:

• Γ(Es,Eb),c.f
f-res→ c′;Π`Es:c;Eb (this follows from the facts

thatΓ(Es,Eb),c.f
f-res→ c′ is consistent,

henceΓ(Es,Eb),c.f
f-res→ c′`Γ(Es,Eb) holds by lemma 15 (2) and

by soundness of environment entailment (Theorem 18)).

• Γ(Es,Eb),c.f
f-res→ c′ ` c.f f-res→ c′ (this follows from the fact

thatΓ(Es,Eb),c.f
f-res→ c′ is consistent by rule (singleton).

Finally, (T2) follows from the fact that, ifΓ′;Π`Es:c;Eb holds,
then we must have instantiated rule (field access), hence we can

apply toΓ′ the previous reasoning and get thatΓ′`Γ(Es,Eb),c.f
f-res→

c′ holds.

Theorem 21 From Theorem 13 and Theorem 20.

Theorem 22 From Theorem 18 and Theorem 20.

Theorem 23 (Sketch) First of all note thatΓ≤ Γ′ implies thatΓ′
andΓ′ are consistent (hencèΓ′� holds).

The proof is by induction on the length ofΓ′.

The caseΓ′ = Λ is trivial by rule (empty).

AssumeΓ ≤ Γ′,γ. ThenΓ ≤ Γ′ and Γ ≤ γ by transitivity, since
Γ′,γ≤ Γ′ andΓ′,γ≤ γ hold sinceΓ′,γ is consistent from lemma 15
(2) and soundness of environment entailment.

Then, by inductive hypothesisΓ`Γ′ holds and we can instantiate
rule (conc) provided that we prove thatΓ≤ γ impliesΓ`γ for each
type assumptionγ. This can be proved by case analysis.


