Principal Typings for Java-like Languages

Davide Ancona Elena Zucca
DISI - Universita di Genova DISI - Universita di Genova
Via Dodecaneso, 35 Via Dodecaneso, 35
16146 Genova, ltaly 16146 Genova, Italy
davide@disi.unige.it zucca@disi.unige.it
Abstract 1 Introduction

The contribution of the paper is twofold. First, we define a general The fact thatseparate compilations a highly desirable property
notion of type system equipped with an entailment relation between is a generally accepted principle. However, as pointed out in the
type environments; this generalisation serves as a pattern for instanseminal Cardelli's paper [4], even though module mechanisms have
tiating type systems able to support separate compilation and inter-received considerable theoretical attention, the notion of separate
checking of Java-like languages, and allows a formal definition of compilation and the associated notion of linking have not been em-
soundess and completeness of inter-checking w.r.t. global compila-phasized, and there is little work on formal models for them; as
tion. These properties are important in practice since they allow a consequence, despite of the popularity of the word, it is often
selective recompilation. In particular, we show that they are guaran- difficult to establish in a precise way whether a programming envi-
teed when the type system has principal typings and provides soundronment actually supports separate compilation or not.
and complete entailment relation between type environments.

The mentioned paper [4] can be considered a milestone in this di-
The second contribution is more specific, and is an instantiation of rection and is based on the definition of a simple formal framework
the notion of type system previously defined for Featherweight Java where separate compilation, which is there simplified to typecheck-
with method overloading and field hiding. The aim is to show that ing, is modeled by a judgmeifitt- s : T. The intended meaning is
it is possible to define type systems for Java-like languages, which, that s is a source fragment assumed to be open, that is, to contain
in contrast to those used by standard compilers, have principal typ-references to names defined in other fragments,the resulting
ings, hence can be used as a basis for selective recompilation. type, and" is a type environment intuitively containing all the as-

sumptions on other fragments needed to typechkedk this paper
Categories and Subject Descriptors: we are also interested in code generation, since, as we will show
D.3.3[Programming languages]: Language constructs and later, in Java-like languages different bytecode is produced under
featureselasses and object®.3.1[Programming languages]: For- different assumptions ifi; hence, we model separate compilation
mal definitions and theorgyntax, semantic®.3.4[Programming DY @ judgment Fs:T~~b whereb is the binary fragment generated
languages]: Processoiseremental compilers by the compilation of.

A source fragment is a compilation unit, and exports one or more
names to other fragments. For instance, in the case of Java-like
languages, the most elementary (non-empty) compilation unit cor-
Keywords: principal typings, selective recompilation, Java-like responds just to a class declaration, but several class declarations
languages can be part of the same compilation unit as well, as happens for all
Java systems. Hence, in generalyill be a sequence of declara-
tions (e.g., class declarations in Java) amdsequence of types for

the declared class names.

General Terms: languages, theory, design

*Partially supported by Dynamic Assembly, Reconfiguration and
Type-checking - EC project IST-2001-33477, APPSEM Il - The-
matic network 1ST-2001-38957, and Murst NAPOLI - Network

Aware Programming: Oggetti, Linguaggi, Implementazioni.

At this point, given a collection of successfully compiled fragments,

it is possible to test whether they successfititer-check that is,

the mutual assumptions between fragments are satisfied. Formally,
we have dinksetlj Fsi:Ti~b;'€1" and we have to check that, for
eachi € 1..n, assumption§; required bys; are matched by other
fragments, in a sense to be made precise depending on the nature
of the type assumptions.

For instance, in the simple case in which a type environment is just
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation 1Here we simplify the presentation by considering only self-

on the first page. To copy otherwise, to republish, to post on servers or to redistribute oo ntained linksets; in the following, linksets will be possibly open,
to lists, requires prior specific permission and/or a fee. . R . . e
POPL 04, January 14-16, 2004, Venice, Italy. that is, they will also include a type environment containing as-

Copyright 2004 ACM 1-58113-729-X/04/0001 ...$5.00 sumptions on the external fragments.

a sequence of pairs: T meaning that the entity (e.g., class) named tion the fact that, with a suitable choice of typings in linksets, failure

c should have type, inter-checking just amounts to check that, for ~ of inter-checking guarantees that we could not generate the binary

eachi, j € 1..n, if c : T appears iff j, thent must be the same type fragments in the linkset by global compilation (Definition 12). We

c has int; (as itis in [4]). However, a type environment could in show that a sufficient condition for this is that the type system sup-

general contain other kinds of type assumptions, such as subtypingports principal typings and complete environment entailment rela-

assumptiong; < c or others depending on the language we are tion (Theorem 14).

considering. Hence, we need a definition of inter-checking which

abstracts from the particular form of type assumptions. The second contribution of this paper is more specific, and is an
instantiation of the notion of type system previously defined for

In this paper we provide such a definition (Definition 8), based on Featherweight Java [8] enriched by overloading and hiding. The

the idea that an effective inter-checking procedure can be modeledaim is to show that it is possible to define type systems for Java-like

by anentailmentrelationt- on type environments, so that inter- languages, which, in contrast to those used by standard compilers,

checking succeeds ify : T1,...cm : Tmk T holds for alli € 1..n, have principal typings, hence can be used as a basis for selective

wherecs,...,cm are all the classes declared in the linkset and, for recompilation.

all j € 1..m, 1j is the type derived fot; in the linkset. Intuitively,

this means that it is possible to prove all the required type assump-We briefly explain the essence of the problem of finding princi-

tions whenever fragment types are those in the linkset. pal typings for Java-like languages on a simple example (more ex-
tended discussions and other examples can be found in [3, 2]).

The advantages of separate compilation plus inter-checking w.r.t.

global compilation ofsy,..., sy altogether are clear. Each frag- Consider the following class:

ment can be compiled without inspecting the fragments it depends

on; then, a collection of fragments can be put together to form an

executable application by just considering the type information ""°

(type environment and type) of fragments, without any need of re- ,

inspecting code. However, in order to really offer these advantages,

inter-checking should satisfy some properties which ensure that it Let us wonder which is the minimal type information on other

can actually replace global compilation. This issue was not con- classes needed for typechecking the class and generating the cor-

sidered in [4] and its formalization in the abstract framework for responding bytecode.

inter-checking described above is the first main contribution of this

class C extends Parent {

Typel m (Type2 x) { return new Used().g(x);}

paper. For classesypel andType2, since they are just used as pure types,
itis enough to assume that they exist (we will model this in our type
Of course, inter-checking should at leassbendw.r.t. global com- system by type assumptioASypel, I Type2).

pilation, in the sense that, if for some linksgtrs;:Tji~b;' "

inter-checking succeeds, then we can be sure that compiling alto-Looking at the method call, we can say that the ctasan be type-

getherss,...,sn, we successfully get the same binary fragments. checked in any type environment where a classd is available

This is a minimal property which we expect to be always satisfied which provides, besides the default constructor, a method (either

by separate compilation (Definition 10), and which is guaranteed directly declared or inherited) with nameand one parameter of

under the hypothesis that the entailment relation is sound (Theo-a supertype ofype2; moreover we have the constraint that its re-

rem 11). turn type must be a subtype ofpel. For instance, classcan be
typechecked in the following context (1):

Consider now the situation in which inter-checking fails. This

means that there is some type assumption in sbpvehich is not class Parent{}

satisfied by the types of other fragments. However, this does notclass Typel{}

necessarily mean that the fragments cannot be safely linked. In-class Type2 extends Typel{}

deed, in general for each pdi¢,b), many judgments Fs:t~b class Type3 extends Type2{}

can be derived, and for some fragment we could have taken a too® 255 UsedParent { Typed g(Typel x) { ...}

s i . e class Used extends UsedParent {}

restrictive type environment (that is, containing unnecessary type

assumptions). and also in this context (2):

We can be sure that this is not the case only if the typing) gives class Parent (]

all the type information about,b), that is, representll possible class Typel(}

typings of(s,b); in other words[" contains only the type assump- 1,55 Type2 extends Typel()

tions that are strictly needed for compilinggeneratingo. This class Used {

property can be expressed by saying {that) is aprincipal typing Type2 g(Type2 x) {...}

of (s,b), and has been recently formalized in a general setting (that int £() {...}

is, independent of the particular type system we are considering) in !

[14]. If (T1,T1), ..., ([n,Tn) are principal typings fofs1,b1), ...,

(sn,bn), respectively, then we can be sure that no further type infor- Hence, we would be tempted to express this by a type assumption

mation about fragments can be obtained by re-inspecting the code expressing that classed must have a methaglwith one parame-

hence failure of inter-checking was not due to our particular choice ter of a supertype afype2 and return type subtype 0fpel. How-

of typings. Hence, we can conclude that global compilation would ever, in order to produce the corresponding bytecode, a Java com-

either fail as well, or would produce different binary fragments. piler must knowexactlywhich are the parameter and return type of
the method which will be selected, since they appear as annotations

We will call completenessf inter-checking w.r.t. global compila- in bytecode (see Section 3 for more details). In the exanipten
be typechecked, e.g., in a type environmieptvhere the method

selected for method invocations with receiver typed and argu-
ment typeType2 has return typeype3, and parameter typeypel,
as in environment (1); this constraint is formalized by the judgment

m-res

1+ Used.g(Type2) — (Typel,Type3).

(Sequences of) hinary class declaratians (

(Sequences of) class typas.(

Type assumptionsy). They always include the type assump-
tions of the forme:T which are callegtandard

As well, ¢ can be typechecked in a type environm&atwhere

Type environmentsl{). An environment is just a possibly

the _selected meth(_)d has return and parameter Type2, as in empty sequence of type assumptigns.. ., yn.
environment (2); this constraint is formalized by the judgnierit
Used.g(Type2) "=5° (Type2, Type2). We assume that each (source/binary) class declaration introduces

a class name that can be extracted by a functioamemapping

The example clearly shows that, in order to get a principal typing & Séquence of source or binary class declarations to the sequence

property (in particular, a “minimal” type environment), we must Of their corresponding names. As already explained in the In-
type pairs consisting of a source and a binary fragment. troduction, binaries are needed for modeling the situation where

some source class modification can change the binary generated

The rest of the paper is organized as follows: in Section 2 we de- from other source classes.

fine the formal notions of type system for separate compilation and

inter-checking and soundness and completeness of inter-checkingNotation for sequences

In Section 3 we define an instantiation of the notion of type sys-

tem defined in the previous section for Featherweight Java [8] with \We denote by|o| the length of a sequenag by 01,05 the con-
method overloading and field hiding. In Section 4 we prove that catenation of the two sequenc@sandos. A sequence is written
this type system satisfies the hypotheses which guarantee soundgithere ..., e, or e<"; however, the first notation is only used

ness and completeness of inter-checking. We also prove that it hasyhen there is no ambiguity with concatenation.
principal typings and that the environment entailment is complete.

Finally in the Conclusion we summarize the contribution of the pa-

per and draw some direction for further work. Basic judgments

A Each instantiation should at least define the following two judg-
2 Type systems for separate compilation ments:
In this section we define a general notion of type system for separate e [I's:T~b: source class declaratioaxompileto b and have
compilation. type T in . We assume that if -s:t~b is valid, then

|s| = |t| = |b] = n, namés) = naméb) = c1,...,cn, With

The main motivation is reuse: this general notion of type system ci#cjforalli,jel.n,i# j. Note that for Java-like lan-
serves as a pattern to be instantiated by a “real” type system where guages the information about the inferred typs, in a sense,
all definitions and details which have been intentionally omitted redundant, since it does not dependrarbut it is a function
here are provided (including, e.g., the syntax of terms and types, of just the source; nevertheless, we have preferred to leave
and the typing rules for judgments). However, each correct instan- this information in the judgment for readability.

tiation (as we will see, there are some basic properties expected to
hold) is guaranteed to support well selective recompilation [1]. We
will denote byT a generic instantiation of our general notion of type
system. Intuitively, the notion of entailment should correspond to a com-

)] o] o putable relation (at least) sound w.r.t. the notion of stronger envi-
Even though in this paper we define just one instantiation (for ronment (see Definition 4 in Section 2.2).

Featherweight Java [8] enriched by overloading and hiding, see

Section 3), we expect our general notion of type system to be useful A basic expected property of the compilation judgmerimposi-
for a number of other possible instantiations including both more tjonality.

significant subsets of Java and C# and toy languages defined for

studying the interaction of Java or C# with advanced features like, Let the expressioan\(s:r) denote the type environment:

for instance, generic types that will be soon included in Java and C1Th,...,cnin if namds) = Cgel..n, 1= T%elun and s does not

have been formally studied with GJ [8]. contain class name conflicts (that is,= cj impliesi = j, for all
i,j € 1..n) otherwise, it is undefinéd

e [1FT: I entailsly, that is, 1 enforces stronger type
requirements than those Ib$.

2.1 Basic notions

Def.1 (COMPOSITIONALITY). We say thafl is compositional
We start by listing the basic syntax categories and typing judgmentsiff forall ', s =S1,...,Sn, T="T1,...,Tn, b=Db1q,...,bn:
that are expected to be defined by every instantiation. Ms:t~b < I en(s:1)s:Ti~b;j, foralli € 1..n.

Basic syntax categories 2.2 Principal typings

Each instantiation should at least define the following sets The system independent definition of principal typing given by

(metaVﬁfiabk)?S used for the elements of such sets are shown inwells [14] fits well our general notion of type system. We recall
parentheses):

2Hence a judgment of the forf, eny(s:T) ... is valid if and
only if ens:1) is defined and denotes a type environmehs.t.
e (Sequences of) source class declaratias (r,r-...isvalid.

e Class namesj.

here the basic notions and notations on principal typings inspired Def. 7 (LINKSET). Alinksetis a pair, written
by Wells and adapted to our purposes. .
M| FsiTi~bj €N
Def.2 (TYPING). If ['Fs:t~b holds, then we say that the pair
(I,7) is atyping of (s,b). We say thats, b) is typableiff it has a
typing.

consisting of a type environment and a (possibly empty) sequence
of valid compilation judgments s¢.=s1,...,Sp does not contain
class name conflicts.

Note that we could have adopted Well's definition of typing by con-
sidering binary sequences as part of the type so(fhdt,b)) is a
typing of s if ' Fs:T~b holds. However, this definition would lead

to a rather strong definition of principal typing for Java-like lan-
guages that, in fact, would not be satisfied by any system adopting

Intuitively, the environmeni contains the type assumptions on the
external classes (that is, not defined in the linkset), whereas for all
i € 1..n the judgment; Fsj:Tj~bj corresponds to the successful
compilation of a single compilation un#; to b in the type envi-

the usual notion of bytecode (see the Conclusion). ronmentr;.

Def.3 (CONSISTENT ENVIRONMENT. An environment igon- Since here the emphasis is on inter-checking, the definition of

sistentiff there exiss. T. andb s.t.T ~S T~wb. linksets assumes that the compilation judgments are valid, hence
Y our linksets correspond tmtra-checkedCardelli's linksets [4].

Def.4 (STRONGER ENVIRONMENT. An environmently is Moreover, in [4] type environments are just sequences of standard

strongetthan, (written 'y < I"p) iff [, is consistent and for a, type assumptions : T, and class names in need to be different

1, andb, if [y Fs:T~b holds, ther 1 Fs:t~b holds as well. from those in eacl;. Indeed, typechecking of a single fragment

si is performed in the type environmehtl’; containing type as-
Note that the relation of Definition 4 is a pre-order, but, in general, sumptions on external classes and classes in the linkset, respec-

is not a partial order. tively. In our notion of linkset, instead, type environments contain
arbitrary type assumptions, each one possibly involving more than

Def.5 (STRONGERTYPING). A typing(I1,T1) is strongerthan one class, and typecheckinggfis performed in the type environ-

(T2,T2) (written (M1, T1) < (F2,T2)) iff F2 < T andty = To. mentlj which contains type assumptions on both external classes

and classes in the linkset. Thus,I; can contain redundant as-
The definition of stronger typing given here differs from Well's def- sumptions, even though intuitively the best situation occurs when
inition in two respects: I'i contains exactly the minimal type assumptions on other classes
needed to compile; andl" contains exactly the minimal type as-
e Well's definition does not require that {'1,11) is stronger sumptions on external classes needed to compilg.all
than (I'2,12), thenl 5 is stronger tharf’'; and 11 equalst,.
However, this stronger property clearly holds in the setting Finally, judgments are not named as in Cardelli’s linksets, since the
of Java-like languages where the type of a class is uniquely type environment exported by any compilation uRits:T~b is
determined by the annotations contained in its body. Under simply obtained via th@amefunction.
this property, the notion of stronger typing can be simply cap-
tured by the notion of entailment between environments (see The definition of inter-checking is a generalization of that given by
Theorem 14). Cardelli.

e In Well's definition there is no notion of consistent
type/environment. However, if non-consistent types and en- Def.8 (LINKSET INTER-CHECKING). Let
vironments were not ruled out from Definition 4, then some L =|[iFsiTi~bii €0
expected completeness property would not hold, like, for in- b
stance[1 < p = 1T; indeed, we may not want a sys- be a linkset and set = s1,...,Sn, T =T1,...,Th. We say that
tem wherel"1 -T2 is provable for any, just becausé is inter-checkgwrittent- Lo) iff I',ens:T)FT; holds forallie 1..n.
not consistent. On the other hand, we would like to consider
concatenation of environments as a total function, therefore
non-consistent environments cannot simply ruled out from all
definitions.

2.4 Sound and complete inter-checking

As already explained, the inter-checking procedure allows sepa-
rate compilation of the units which need to be assembled in the
linkset, and prevents code inspection and recompilation, since the
overall consistency of the linkset is checked via the entailment rela-
tion on environments which completely relies on unit interfaces.
On the other hand, one could always adopt a “brute force” al-
Finally, the definition of principal typing given here is strictly ~90rithm by (re)compiling all units as a whole. We model global
stronger than Well's definition; indeed, our definition could be re- (re)-compilation by ajudgmeﬂl’thL...,sn«G»bl,...,bn, express-
garded as a refinement of Well's principality suitable for type sys- ing that source fragments, ..., sy are compiled altogether, gen-
tems in the Church style (that is, with explicitly typed terms). erating binary fragmentsy, . ..,bp in the type environmerit (see

Def. 9).

Def.6 (PRINCIPAL TYPING). A principal typingof (s,T) is a
typing of(s, 1) which is stronger than all typings @¢§,1).

We say thafl has principal typingsff all typable (s,b) have a
principal typing.

2.3 Linksets :

Def.9 (GLOBAL COMPILATION). Forall I', s, b, the judgment
Selective recompilation tries to minimize compilation steps after '+s S is valid iff M Fs:T~b can be proved for sone
changes to a certain software configuration. Software configura-
tions can be modeled by the notion lafkset which was firstly Of course we expect separate compilation plus inter-checking to
introduced by Cardelli [4]. produce the same binaries as we would have got from global com-

pilation; if so, we say that inter-checking is sound w.r.t. global com-
pilation.

Def.10 (SOUND INTER-CHECKING). Inter-checking issound
w.r.t. global compilation iff for all linksets = I"| [s;:Tj~b;' <"

if - Lo thenls1,...,Sn<>by, ..., bn.

Soundness of inter-checking is guaranteed under some reasonabl
conditions: the type system should be compositional, and the en-
tailment judgment should be sound with respect to the relation of
stronger environment.

Theorem11l (SOUNDNESS OF INTERCHECKING). LetT be a
compositional type system satisfying the following additional prop-
erty :

(x) F1FT2=T1 <lyforall 1,2 (entailment is sound).

Then, inter-checking is sound w.r.t. global compilation.

PROOF. Let L be I|jFsiTi~bi'“t" be a linkset s.t- Lo
holds and set = sj,...,spn, T =T11,...,Tn. Then, by Defini-
tion 8, I',ens:T) I holds for alli € 1..n. By hypothesis(x),
I, enys:T) <Tj, thereford”,en(s:T)Fsj:Ti~Db;j forall i € 1..n. Fi-

nally, by compositionalityl'}—sl,...,san»bl,.,.,bn. O

From the point of view of selective recompilation, soundness of

inter-checking ensures that recompilation steps are really unneces
sary in case of successful inter-checking since they would lead to
the same result. On the other hand, we would like to be sure that if
inter-checking fails, then some recompilation step is really needed,
so that it never happens that a recompilation step turns out to be
useless. This happens if inter-checking is complete w.r.t. global

compilation.

Def.12 (COMPLETE INTER-CHECKING). Inter-checking is
completew.r.t. global compilation iff, for all typablés,b), we can

select a typingr (S:P) 1(5:0)) of (s, b) s.t.

for all linksetsL = I'| [Fs:Ti~b; €M,
with (I, 1) = (TSP 1(Sib)y e 1 n,
ifIFsq,....Sn~3by,...,bp holds, ther Lo holds.

Note that the property above is weaker than the opposite implica-

tion of Def. 10, which does not hold; indeed, for an arbitrary linkset,
inter-checking could fail since for some fragment we have taken a

too restrictive type environment. However, completeness as stated

above requires that for each fragment we can selgeiori a typ-

ing s.t., for any possible future context, failure of linking will ensure
that we could not get the same binary fragments by global compi-
lation.

Prop. 13 (COMPLETENESS OF INTERCHECKING). LetT be a
compositional type system satisfying the following additional prop-
erty:

for all typable (s,b), there exists grovably principal
typing of (s,b), that is a typing(I', T) of (s,b) s.t. for
all typings(r'’,v') of (s,b), "I andt =1

Then, inter-checking isompletew.r.t. global compilation.

PROOF. Let us take, for al(s,b), (F(5-2) 1(5)) a provably prin-
cipal typing of (s,b).

Let L beT]| ik siTi~bi €3N with (Fi,7i) provably principal for
(si,bj), i€ 1..n, and s.tI'Fs~>b holds.

By compositionality:

/

for all i € 1..n, I',ensy,..., T

for somet],...,Tp.

?herefore, sincél’, Ti) is provably principal _for(si,bi), T =T
andr,enVsy,...,sn:T1,...,Tn)F T hold for alli € 1..n, hencé- Lo
by Definition 8. [

The following is just a corollary of Theorem 13 stating that com-
pleteness of inter-checking holds wheneveés compositional, has
principal typings and the entailment relation is complete.

Theorem 14. LetT be a compositional type system with principal
typings, satisfying the following additional property:

(xx) Ty <T2 =TTy forall 1,7 (entailment is complete).

Then, inter-checking is complete w.r.t. global compilation.

PROOF Let (s,b) be typable; then by hypothedis, b) has a prin-
cipal typing (',). By definition of principal typing, for al(l”’,1’)
of (s,b), T=T andl"’ <T, hence by hypothesis:x), " -T. Fi-
nally, theorem 13 can be applied(]

2.5 Selective recompilation

In this section we illustrate more in detail the role of soundness
and completeness of inter-checking for selective recompilation. As-
sume that in a compositional systeareome of a successfully inter-
checked linkset has been modified and recompiled, obtaining the
new linkset | T Fsi:Ti~bi €1-". Of course, this change could have
affected compatibility with some other fragment, therefore further
recompilation steps could be required in principle. However, to
avoid a pointless recompilation, we can use Definition 8; if all
checks are passed, then by soundness we are sure that the modifi-
cation did not affect any other fragment, hence any further recom-
pilation step would be useless.

On the other hand, if inter-checking is not passed, and typings in the
linkset are those selected according to Definition 12, then, by com-

pleteness, we know that far=s1,...,sp, b =Db1,...,bn, MFs~b
does not hold, hence, by completeness,

e either we simply introduced some name conflict, hence we
obtain an ill-formed linkset;

e ordie l.ns.t.l,ens:T)Fsj:Ti~bj is not valid.

In this latter case we recompile tirth unit, since we are sure we
will obtain either a different binary or a compilation error, but not
the same result as before.

Note that it would be even better to be able to infer, in case of failure
of inter-checking, whether recompilation would generate a different
binary or a compilation error; indeed in this way we could avoid
recompilation in the latter case and get an optimal procedure of
selective recompilation. In languages where, differently from what
happens in Java, changes to a fragment cannot affect other binary
fragments, this is always the case since the former possibility does
not hold. For Java-like languages, the same result could be achieved
by introducing two different judgments, one for type-checking (not
taking into account code generation) and one for compilation (that

s u= CD§...CD} larationsMDS®. If ¢’ is the superclass af, then we also say that

CD® = class cextends ¢’ { FDS MDS® } (directly) extends’, andextendsany classz” which ¢’ (directly)
FDS 1= FDy... FDp extends. We assume a distinguished class namect, denoting
FD == cf; the root of the inheritance hierarchy, which cannot be declared.
MDSS = MDS... MD} _) _
MDS = WMH {returnES;} A field declaratiorFD consists of the type and the name of the de-
MH = com(cyx1,...,CnXn) clared field. A method declarati_on)s consists of a method_header
ES = x|ESf|E3m(E},....E}) and a method body (an expression). A method heaideonsists of
| new c(ES,...,Eq) | (c)ES a (return) type, a method name and a sequence of parameter types
and names. There are five kinds of expression: parameter name,
b = CDE... CDR field access, method invocation, in_stance creation and_cast. Types
P = classcextends ¢’ { FDS MDSP } of expressions are class names, arisla subtype ot iff either c

extends:’ orc = ¢,

Mps® = MDY... MD}
MDE = MH {geturn E/b?} In FJ, any class is assumed to have exactly one construgtgr
E’ = x|E’<cfc> which takes a canonical form explained below.
E§ < c.m(c)c’ > (ED,...,EB)

| new <c c> (E‘f, L ERY | (c)EP Let us define the sequence of the fields a6 follows: the sequence

c = c1,...,Cn of the fields ofobject is empty; if c directly extends’, then the
o) sequence of the fields efis obtained appending to the sequence
Implicit assumptions: of the inherited fields (that is, the fields of) the sequence of the

fields directly declared in, in the given order.
o field names irFDS are distinct
e parameter types of methods with the same name are dis- Then

tinct in MDSS andMDSP
e parameter names it are distinct K. o= c(c1f1,...,cnym Enym){ KEc; }

- KE. := super(f1,...,fn);
Flgure 1. Syntax thiS.fn+l = frH,l; .. .thiS.fn+m = fn+m;

. whereci£y, ...,cnemfntm, for n,m> 0, are the fields of and, in

mt_roduced in next section). See the Conclusion for more on this particular,cns 1fns1, - . . , cnimEnsm are the directly declared fields

point. (hencecify, ...,cnfn are the inherited fields).

3 Separate compilation for FJ Note that, if the whole FJ program is available, then the canon-
ical constructor for a class is completely determined by the in-

3.1 Syntax heritance hierarchy of, hence it is immaterial to either explicitly

write its declaration in the class or not. However, this considera-
fion does not apply to separate compilation; indeed, if constructors

of Featherweight Java [8], shortly FJ in the following. More pre- &€ explicit, then t_:ompilation of a class requires the existence of
cisely, we keep the same syntax, but take a more liberal type SystemaII its ancestors, since we must check that the constructor matches
allowingfield hiding(a heir class can declare a field already present nherited and declared fields. On the other hand, if constructors
in the parent; the new field hides the inherited field, which can only are |mpI|C|t, then the availability of all ancestors is not required for
be recovered by an up casandmethod overloadinga class can ~ cOmpiling a class.

have many methods, either directly declared or inherited, with the . .

same name and different parameter types; they are considered aki€ré, we have chosen the second alternative, which allows a more
different methods and the right method associated to an invocation, Modular type-checking. Another alternative would consist in allow-

if any, is determined by the rules foverloading resolutionsee in ing arbitrary constructors as in full Java. Here we preferred to keep
the sequel). the simpler FJ choice, since the problem of constructor overloading

is basically an easier version of method overloading [10].

The language we consider at the source level is an extended versio

We include these features from full Java since they are significant . .)

for the problem we are studying. Indeed, in both cases, the type As already mentioned, the bytecode_ language we defl_ne for FJ_d|f-

which can be assigned to an expression in a fragment and the corfers from the source code only for field accesses, which contain a
.) ;

responding generated bytecode cannot be determined by simply in-Symbolic reference<c.£ ¢">> to the field to be selected, method

specting the fragment, but depend on the context, as explained affVocations, which contain a symbolic refererce.m(c)c’>to
the end of the Introduction. the method to be invoked, and instance creation expressions, which

contain a symbolic referenegc c>> to the canonical constructor.

The syntax of the language is defined in Figure 1; metavariables
c, £, mandx range over sets of class, field, method and parameter
names, respectively.

Type assumptions are defined in Figure 2.

A standard type assumption has fotnic’, FS, MSS) with the mean-
A Sle ; ; Y
A source fragment is a sequence of class declarations, each one INd “c extends:” and declares exactly all fields specifieditsyand

consisting of the name of the class, the name of the superclass, &l méthods specified hyss”, whereFs is a set of fields (field type

sequence of field declaratioBss and a sequence of method dec- 2and field name) andss is a set of methogignatureg(return type,
method name and parameter types).

30r, in full Java, bysuper.

y = cit|dc e |c.ff§sc/\c.m(am§5(g,c) |ckESE\C©MS|c$c/
T &= (c,FS,MSS)
Fs 1= {F1,...,Fn}
F = cf
MSs 1= {MSy,...,MSn} (Where parameter types of methods with the same name are distinct)
MS = cmn(c)
Figure 2. Type environments
Other forms of type assumptions are listed below: existences of the return type and of the types of the parameters and,
moreover that, under the type assumptions for parameters in the
e Jc with the meaning ¢ is declared”; method header, the body is a well-formed expression of a subtype

. . . of the method return type.
e c < ¢’ with the meaning ¢ is a subtype ot’”;

o c.f Z5° ¢/ with the meaning “the access to fielaf an object

of typec is successfully resolved to a field (obviously named
£) with typec’”.

The judgment for separate compilation of expressions takes an ad-
ditional M which is a mapping from variables to class names.

Rule field accespfor compiling a field accesg’.f checks thag®S
e cm(c) "= (Z,¢) with the meaning “the invocation of is a well-formed expression of some typeand an access to field
methodn of an object of type: and with arguments of types £ 0of an object of type is successfully resolved to a field of some

¢ is successfully resolved to a method (obviously named ~ type c’, which is the resulting type of the field access. Moreover,

with parameters of types and return type’”. the corresponding binary field access is annotated with the static

fres _ _ type ofES and the type of the selected field.

e ¢ — c with the meaning “the canonical constructorcdias
parameter types”; Rule (meth cal) for compiling a method invocation

Eg.m(E3,. .., ER) checks thaEg is a well-formed expression of some

typec, all arguments are well-formed expressions of some types —

and an invocation of methadof an object of type and with argu-

ments of typeg is successfully resolved to a method, whose return

e cOc’ m(c) with the meaning & can be extended by a sub-
class with a method’ m(c) without breaking the Java rule on
method overriding”;

e c £ ¢’ with the meaning ¢ is not a subtype of"”; type is the resulting type of the method invocation. Moreover, the
corresponding binary method invocation is annotated with the static
Typing rules for separate compilation are given in Figure 3. type of the receiver and the parameter types and return type of the
selected method.
The top-level ruleftagmen) defines the compilation of a sequence
of source class declaratioss, .. ., sn, whose type is1, ..., Tp, into Rule (hew) for compiling an instance creation
a sequence of binary class declarations...,bn. The provided new c(Ej,...,Ep) checks that all arguments are well-formed ex-

environment[", is enriched with the standard type assumptions as- pressions, an invocation of the canonical constructor &f suc-

signing to classes their declared types to deal with mutual recursion.cessfully resolved and the argument types are subtypes of the cor-

The resulting environment must be well-formed; the definition of responding parameter types of the canonical constructor. Moreover,

well-formed type environments (typing rules for the judgmefit- the corresponding binary instance creation is annotated with the pa-

are given in Figure 4) relies on that for well-formed standard type rameter types of the canonical constructor.

environments (that is, those which only contain standard type as-

sumptions, ranged over by?). That is,I" is well-formed iff there ~ There are two typing rules for compiling a cast expressioE®,

exists a well-formed standard type environmehtvhich entails™. which both check tha® is a well-formed expression of some type

A standard type environment is well-formed if the inheritance re- c’; then, the cast expression is well-formed and has tyfeither

lation is acyclic, for each class all its ancestor classes are availablec is a subtype of’ (down cast) or conversely (up cast). Note that

and the Java rules on overriding are respected (that is, a class cantp casts are removed from the binaries. In [8], also casts between

not declare a method with the same name and parameter types oflasses which are not in the subtyping relatistupid casts) are

an inherited method and different return type).This is modeled by allowed, in order to get the subject reduction properbyt no user-

means of a judgment® - c:MSso which holds if we can calculate ~ defined expression can be typed by using the corresponding rule.

in 'S the set of all method signatures of clas@mpty forobject). Here we do not deal with the reduction semantics of FJ, hence we
do not include stupid casts.

Rule (clasg, which defines the compilation of a single source class

declaration for class, checks that the superclasscan be safely ~ The typing rules for entailment of type environments are given in

extended with the methods declared iand that there are no cycles ~ Figure 5. The first three rules for environment entailment simply

involving c andc’ (existence of the superclass is guaranteed by this say that™; I is valid if each type assumptioncontained i,

last check). Note that there is no constraint on the fields declared inis entailed byl';; the remaining rules cover the cases wheris a

c since we allow field hiding. single atomic type assumptign

Compilation of a sequence of method declarations consists in com-There are two rules which deal with resolution of fields. Rule
pilation of each method declaration.

4Since, e.g.(B)(Object)new A() reduces tqB)new () for &, B
Rule (method for compiling a single method declaration checks the heirs ofobject.

FTenys:T)o
renst)kFsiTi~b Vi€el.n s=sq,...,50,T=Tq,...,Tn,b=b1,...,bn

(fragment)

FFsT~ob Vi€ 1.n.T = type(si)
I FMDSS~>MDSP
MN-c'emsivie 1.n
rec) =
(class) ¢ Lec type(MDS®) = {MSy,...,MSp}

I+ class c extends ¢’ {FDSMDSS}: (¢/,FS, {MSq,...,MSp}) ~+ type(FDS) = FS
class c extends ¢’ {FDS MDSP}

[;x1:c1,...,%niCn FES:c~oEP
MNc<co
I +MDS~MDP Vi € 1..n M-3ciVieo.n

(methodsy} (method),
Fmps ... up§~—MpP .. MDR

TH oo m(cy X1,...,Cn Xn) {return ES; } ~

fTo I';I'H—Ei:c«»Eb
MEx:c Mct =°¢

arameter field access}
® i MExic~~ox ([MHES.£:c/~EP < c.f />

r:n I—ES:c«»E(%
M NEEFci~EY Vie l.n

Mcn(eg,...,cn) "= (&,c)
/!

(meth call)
™n FE§.m(ES,. .. ,Eﬁ):c’MEg < cm(c)c! > (EE, ...,ER)

M MEESc~EPVie 1.n

k-res
MNc —="c1,...,cn

M-cf<ciVvieln
I Minew c(ES,...,E8)icnew <c ci,...,cn> (EY,... ,ER)

(new)

I MFES;c'~EP

[T HES: ¢!~ EP Mre'<e
) Mec<c t M-3c
1) A s ob
(down cas TN (c)ES:co (c)EP (up cas ;M (c)ES:c~EP

type(CDS ... CD) = type(CD3), .. ., type(CDR)

type(class c extends ¢’ { FDS MDS® }) = (¢, typg(FDS), typgMDSS))
type(FD1 ...FDp) = {typ&(FD1),...,typeFDn)}

typgcf;)=cf

type(MDS .. .MD§) = {type(MD3)....., type(MD) }

typgMH { return ES; }) = type(MH)

typdco m(Cl X1,--+,Cn Xn)) =Co m(Cl--Cn)

namecb3 ... CDj) = naméCDy), ..., nameCDy)

nameclass c extends ¢/ { FDSMDSS }) =c

Figure 3. Separate compilation

ngar TP
(non standart FTo

c1:T1,...,cnTnFciMSsjo Viel,...,.n n>0
(standard) . =T Vi.iel
Fc1iT1,...,cniTho ci=cj = T =1;Vl,J€l,...;n

MSkcmss’ec IS(c)=(c/,—,M883)

(msigs ObJFS F Object:0o (msigs dow ?:S FciMssUMSS’e c1m(c) € MSS,com(c) €MSS' = c1=cp

Figure 4. Well-formed type environments

t\}— Mo THEML Thy et AR
CPYEEA M Ty MY oy
tor el M-c:t det o Flo
Cefdassir 3. O O Sopseet
r Mci1<cp Tkeai(es—,—) . Fle
fl) —————) P < obiect
(re)chSc (trans) MFci<cs (so J)rkc§0bject

M-ci<cViel.n

(<vector)

M-ci,...,en<cf,...,ch

f-res
MFc:(—,FS,— MFcq: FS,— MN-co.f
(direct field res)% ' £EFS (inhfield resy——* (2,8, —) - 22 & ¢ Ad.c feFs
Mecf =°¢ Mo =°c
Mcoi(—,—,MSS) Thep <
(exact meth resy c2i(= H?_res — as=cz, m(c) € MSS
MFcim(c) = (c,c)
applAll(TF, c,m,c) = us applAll(T, c,m,c) = us
e matchAlll, c,m,n) = us
mostSped, us) = (¢, <) mostSped, us) = (¢, c’)

(complete meth res}

Mcem(c) "=° (@,

(match meth res} —
" Them(@) "= (@,

_ FTo Mhc:i(c,FS,—) Tk “X°¢C
(K obj) res (K up) ros — FS=c1f1...cnfn
M-0bject — A Fc™ =" c,c1,...,Cn
MFcqi(c2,—,MSS)
Fro MFco®@cm(c) , ,
T = —— ©down) MSS) = ¢’ =
(©0 DI'%Object@c m(c) (Edown) MN-c1®@cm(c) (c"m(c) € uss) c=c
notSulgl, c, ¢’
() OSUHT .)
McLc

Figure 5. Type environments entailment

Mc1,...,enft=TFcift A AT Fenfh

true
Fhef=4 MR
false

if c =0Object
if M=ci(c/,—,—)
otherwise

notSulil, c,c’) = M-cf A’ ¢ supertypef, c)

{Object} if c =0bject
supertyped ,c) = {c}Usupertypef,c’) ifMtc:(c/,—,—)
L otherwise
- ! / - -) H .
applT,c,m,3) = { E_<c,c /> m(d)emss,Mc<c} Icl;trr]gn;:v.ié;,—.,MSS)

applAll(T, c,m,c) =
matchT,c,m,n) = {
matchAl(l", c,m,n) =

mostSped , us) = {

0 if c=0bject
usiUps if appl(l,c,m,c) = psy, FFc:(c/,—,—), applAI(F, ¢/ ;m,c) = U
il otherwise
{<c,cl, . on >/ m(ch,...,cp) eMss if FFc:_(—,—,MSS)
1L otherwise
0 if c=0bject
Ms UpS if matcHT, c,m,n) = psy, FFc:(c/,—,—), matchAl(l, ¢/, m,n) = us
il otherwise
<cp,c0,c0> if <co,co,cH> € psandl co,co < ¢, ¢, forall <c,c,c’> e ps
i otherwise

Figure 6. Auxiliary functions

(direct field re$ states that an access to figlfior an object of type

c can be successfully resolved if clasglirectly declares a field
namedf. Rule (nh field reg states that an access to figldor an
object of typecs can be successfully resolved if it can be resolved
for an object of the parent type andc; declares no fields named
£ (which would hide the inherited field).

There are three rules which deal with resolution of methods.

Rule exact meth rgscovers the simple case where there exists an

Lemma 15.

1. If F1+T> holds, thenr- " 1o holds.
2. If -1, 20 holds, therd 1,211 holds.
3. If M2 andlM2-T3 hold, then 1 T3 holds.

4. If 1+ holds, thert- >0 holds.

applicable method which perfectly matches the invocation, hence Lemma 16. I is consistent iff- ['o.

can be directly selected.

Otherwise, all applicable methods must be collected, and then thecompositional, that is, for all', s = s1,...,

most specific method (if any) is selected [7].

The setapplAll(T, c,m, c), formally defined in Figure 6, contairadl
methods of: (either directly declared or inherited) namedhose
parameter types are supertypesdh T (note that for calculating
this set all ancestors afare needed).

However, in general we cannot be sure that this set actually con-

tainsall the applicable methods, since there could exist sorime
c for which we do not have it the type assumptions stating that
the parameter types are supertypes.ofVe can conclude that we

have collected all applicable methods (hence the most specific, if
any, can be selected) only in two cases: if we have all ancestors

of the argument typed ¢ c1} in rule complete meth ré¢sor if the
setapplAll(I", c,m, c) coincides with the sanatchAl(T", c,m,n) of

all methodsn of classc whose number of parameters matches the
number of arguments in the invocation (ra@tch meth réshence
the set of all applicable methods cannot be larger.

Rules K obj) and K up) deal with resolution of constructors. The
former states that the canonical constructor of clas®b ject has

no parameters/\ denotes the empty sequence). The latter states
that the canonical constructor of a claswhich extends:’ has as

Fact17 (CoMPOSITIONALITY OF TFY). The type systefifJis
e 7Tn, b =

by,...,bn: ’
lks:t~b & Mens:t)ks;:Ti~b;, foralli € 1..n.

Theorem 18. The environment entailment is sound, that is, for all
M,Mo, MFTy=T1<T5.

Theorem 19. In the type systefi? inter-checking is sound w.r.t.
global compilation.

Theorem 20. For all typable(s,b), there exists a typing
(r(8:0) 7(s.b))

of (s,b) s.t. for all typings(T", T) of (s,b), T (S:P) andt(SP) =
T.

Theorem 21. In the type systeriit? inter-checking is complete
w.r.t. global compilation.

Theorem 22. The type systefF? has principal typings.

Theorem 23. The environment entailment is complete, that is, for
alr,r',r<r'=rer.

sequence of parameter types the sequence of the parameter types of

the canonical constructor af, followed by the types of the fields
directly declared irc.

Rule (®obj) states thatbject can be extended by any method.

Rule ©down states that if we know that a certain classcan be
extended by a methodm(c), then a heir class; which does not
define the method with a different return type can be extended with
the same method as well.

Finally, the last rule states that we can conclude thatnot a sub-

type ofc’ if all ancestors of are available and’ is not among them
(see the definition afiotSubin Figure 6).

4 Results

In this section we prove that the type systef® Tor FJ extended
with overloading and hiding defined in the previous section satisfies

the hypotheses of Theorem 11 and 13, hence supports sound an

complete inter-checking. We also prove that it has principal typings
and that the environment entailment is complete.

In order to prove these results, we need the following lemmas, stat-

ing that entailment is a pre-order on well-formed type environments
and that well-formedness actually coincides with consistency.

5 Conclusion

We have defined an abstract framework for modeling separate com-
pilation and inter-checking, provided a formal definition of sound-
ness and completeness of inter-checking, and proved that these
properties can be guaranteed when the type system has principal
typings and provides sound and complete entailment relation be-
tween type environments.

The fact that a type system has principal typings is often claimed
to be a highly desirable feature since they allmmpositional type
analysisin the sense that the procedure of finding types for a term
uses only the analysis results for its immediate subterms, which can
be analyzed independently in any order [14] amder need to be
inspected agaiffsee also [9, 5]). Perhaps the most important result
of this paper on the foundational side is that we are able to for-
mally express this property in the context of separate compilation
and linking and to prove that it is actually guaranteed by principal
typings.

g)n the side of application to Java-like languages, this paper is part

of a stream of work [3, 2, 10, 11] on alternative type systems for
Java.

In [3] we firstly realized that, despite the fact that Java is consid-
ered a paradigmatic example of language supporting separate com-
pilation, compilation as performed by standard Java compilers and

modeled in current Java formal definitions is not truly separate in Finally, another interesting topic for further investigation is the re-
the sense made precise in [4] and in this paper. Indeed, each clastation between the notions of binary compatibility [6] and inter-
is typechecked against the same “global” type environment, that is, checking.

that extracted from a particular program context. Hence, a differ-

ent type system for a subset of Java has been designed, introducg Acknowledgements

ing type assumptions expressing minimal requirements needed for

typechecking a class in isolation, similar to those shown in this pa- \ye would like to thank Eugenio Moggi for his helpful suggestions
per. on the relation between Well's and our notion of principality.

In [2] itis shown that this type system actually allogisongertyp-
ings w.r.t. to standard type systems for Java and that it can be the
basis for selective recompilation of Java applications.

7 References

[1] Rolf Adams, Walter Tichy, and Annette Weinert. The

Concerning the applicability of these results to the whole Java lan- cost of selective recompilation and environment processing.

guage, [10] and [11] outline the extension of this type system to ACM Transactions on Software Engineering and Methodol-
a large Java subset (including, e.g., constructors, access modifiers, ~ °9% 3(1):3-28, January 1994.

static members, throws clauses and unreachable code) and the de-[2] D. Ancona and G. Lagorio. Stronger typings for separate
velopment of a corresponding smart compiler. The reader interested compilation of Java-like languages (Extended Abstract). In
into aspects related to Java and selective recompilation can refer to 5th Intl. Workshop on Formal Techniques for Java Programs
these papers. 2003 July 2003.

D. Ancona, G. Lagorio, and E. Zucca. True separate compila-

. . - [3]
Here, our aim was to formally prove a result of existence of prin tion of Java classes. IACM SIGPLAN Conference on Prin-

cipal typings for a Java-like language (the first to our knowledge), ; A ; . ,
hence we have preferred to consider a simple and clean language ciples and Practice of Declarative Programming (PPDP'02)
as Featherweight Java, enriched with the features which pose the pages 189-200. ACM Press, 2002.

main problems in the Java type system. We believe a nice side- [4] L. Cardelli. Program fragments, linking, and modulariza-
contribution of this paper is that we have “exported” the notion of tion. INACM Symp. on Principles of Programming Languages
principal typing, more familiar in the community of functional lan- 1997, pages 266-277. ACM Press, 1997.

guages, to a completely different context, and show that, whereas [5]
in classical type systems with principal typings they are usually ob- conditional expression&CM Transactions On Programming
tained by making the type more general (typically by introducing Languages and Systen®5(4):401—451, 2003
polymorphism or intersection types), in Java-like languages the op- ' ' '

posite happens, that is, principal typings can be obtained by making [6] S. Drossopoulou, D. Wragg, and S. Eisenbach. Vi$haava

F. Damiani. Rank 2 intersection types for local definitions and

type environments less restrictive. binary compatibility? IPACM Symp. on Object-Oriented Pro-
gramming: Systems, Languages and Applications 1968

In the notion of type system introduced in this paper, we have con- ume 33(10) ofSIGPLAN Noticespages 341-358, October

sidered fragments as paits b). As already mentioned, an interest- 1998.

ing alternative would be to consider the binary as part of the type. [7] J. Gosling, B. Joy, G. Steele, and G. Brachhe Javd" Lan-

!n this case, in order to get the principal typings property, we should guage Specification, Second Editigkddison-Wesley, 2000.
introduce polymorphic types.]] i
[8] A.Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A

For instance, consider again the example in the Introduction: minimal core calculus for Java and GJ. ACM Symp. on
Object-Oriented Programming: Systems, Languages and Ap-
class C extends Parent { plications 1999pages 132-146, November 1999.

o) [9] T.Jim. What are principal typings and what are they good

} Typel m(Type2 x) { return new Used().g(x);} for? In Proceedings of the 23rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languagesges

If we do not care about which bytecode will be generated, then 42-53. ACM Press, 1996.

classC can be correctly linked with any clagsed having amethod [10] G. Lagorio. Towards a smart compilation manager for Java.

o g(B), for any typesa, B s.t.a < Typel andType2 < B. Clearly, In Blundo and Laneve, editor#talian Conf. on Theoretical
all these classes cannot be captured by a unique type environment Computer Science 200Bumber 2841 in Lecture Notes in
" in our current type system. In order to do that, we should in- Computer Science, pages 302-315. Springer, October 2003.

troduce type variables in the type environments, analogously to the
approach followed in [13]; so we could model the requirements
above as follows:

[11] G. Lagorio. Another step towards a smart compilation man-
ager for Java. IPACM Symp. on Applied Computing (SAC
2004), Special Track on Object-Oriented Programming Lan-

n-res guages and Systen004. To appear.

o < Typel,Type2 < B,Used.g(Type2) — (a,B o o
() (.P) [12] S. McDirmid, M.Flatt, and W. Hsieh. Jiazzi: New age compo-

However, in this way the compiler cannot generate bytecode,for nents for old fashioned Java. ACM SIGPLAN Conference

since method descriptors cannot contain type variables; as a con- on O_bje_ct-Orlented Programming, Systems, Languages and
sequence, either JVM should be modified, or we should introduce Applications (QOPSLA 2001)CM Press, October 2001.

a sort of pre-bytecode that may contain type variables that must be[13] Z. Shao and A.W. Appel. Smartest recompilation. AGM
instantiated during static inter-checking in order to produce valid Symp. on Principles of Programming Languages 192®es
bytecode (similar solutions can be found in literature [13, 12]). 439-450. ACM Press, 1993.

[14] J.B. Wells. The essence of principal typings. lierna-
tional Colloquium on Automata, Languages and Program-
ming 2002 number 2380 in Lecture Notes in Computer Sci-
ence, pages 913-925. Springer, 2002.

A Proofs

Lemma 15

1. By induction on the derivation df1+-T».

n

By rules gong and Gingletor).

w

By induction on the derivation df T 3.

P

By rule (non standard) and (3).

Lemma 16

= If I' is consistent, then we have applied rule (fragment), hence
FT,enVs:1)o holds for somes, 1. Then by lemma 15 (2)
and (4) we get that "o holds.

< If - T¢ holds, then we can apply rule (fragment) with= 0.

Theorem 18 (Sketch) The fact thdts is consistent follows from
lemma 15 (4) and lemma 16. Then, we have to prove that, far, all
T,b, if M2Fs:1~b holds, ther 1 Fs:1~b holds as well. This can be
shown by induction on the derivation bbFs:t~b, by extending
the claim to all other kinds of compilation judgments and by using
the transitivity of entailment. |

Theorem 19 From Theorem 11 and Theorem 18. O

Theorem 20 (Sketch) We have to prove that,

(1) for all typable(s,b), there existd (5P), 1(sD) s t.
() pg:1(8P)Lp holds and™ (8P, 1 = 1(5:0) for
allT s.t.T Fs:1~b holds.

Since(s,b) is typable, at least one compilation judgmetits:T~b
holds. The proof is by induction on the derivation of this judgment,
by extending the claim to all other kinds of compilation judgments.

We just outline the proof for the rule (field access). Then we know
that

H1 I;MFES:c~EP holds:

H2 k£ =5° ¢ holds;

H3 (from (H1) by inductive hypothesis) there exigt&) s.t.
property (2) holds.

Let us takel (BSf.E°<e.f ') _ F(B5E°) . £ 285 o/ We have to

prove that

T1 F(ES’Eh>, o.f PE5S ¢:MFES f:c'~EP < c.f ¢>> holds;

T2 F FEE) o 5% o holds
r:n FES f:c~EP <c.f ¢/>> holds.

for all " st

First of all we prove that E*E”) c.£ "5° ¢’ is consistent. Since
[is consistent by hypothesis; - FEE”) holds by (H3),T F
c.f "% ¢ holds by (H2), by rule (conc) we can conclude that
F(ESE) ¢ "5° ¢/ holds, and this implies tha(EE") c.£ "55° ¢/
is consistent by lemma 15 and lemma 16.

We prove now (T1).
premises:

We can instantiate rule (field access) by

o MEE) ¢ g T58° o/ M-ES:c~EP (this follows from the facts
that B%E") ¢ £ “755° o/ is consistent,

hence™ E°E") ¢ £ “55° o/ - (B°E”) holds by lemma 15 (2) and
by soundness of environment entailment (Theorem 18)).

o T(EE) ¢ £ "5° o/ c.f "258° ¢/ (this follows from the fact
thatr BE”) c.£ "5° ¢/ is consistent by rule (singleton).

Finally, (T2) follows from the fact that, if’; M+ES:c~EP holds,
then we must have instantiated rule (field access), hence we can

apply tor” the previous reasoning and get ti4t I (E°E") c.£ "5°
¢’ holds.

Theorem 21 From Theorem 13 and Theorem 20.
Theorem 22 From Theorem 18 and Theorem 20.

O

Theorem 23 (Sketch) First of all note thdt < " implies that™
andr’ are consistent (henc¢el” o holds).

The proof is by induction on the length Bf.

Typings for expressions are the most interesting case. Then, prop-The casd’ = A'is trivial by rule (empty).

erty (1) becomes,

(2) for all M, and typable(ES,EP) w.r.t. I, there exists
FEE) (EE) gt [EE) M-S EE)LEP holds
andr - (EE) o — o(BE") for all T s.t.1: MHES:c~oEP
holds,

where (ES,EP) is typable w.r.t M if there exist, c s..
;M FES:c~EP holds.

Assumel <T’)y. Thenl < T’ andl <y by transitivity, since
I,y<T"andr’,y<yhold sincd™,yis consistent from lemma 15
(2) and soundness of environment entailment.

Then, by inductive hypothesisHT’ holds and we can instantiate
rule (conc) provided that we prove tHat yimpliesI -y for each
type assumptioy. This can be proved by case analysis.

