
A provenly correct translation of Fickle into Java

D. Ancona

DISI - Università di Genova

and

C. Anderson

Imperial College - London

and

F. Damiani

DI - Università di Torino

and

S. Drossopoulou

Imperial College - London

and

P. Giannini

DI - Università del Piemonte Orientale

and

E. Zucca

DISI - Università di Genova

We present a translation from Fickle, a small object-oriented language allowing objects to change
their class at run-time, into Java. The translation is provenly correct, in the sense that it preserves
the static and dynamic semantics. Moreover, it is compatible with separate compilation, since the
translation of a Fickle class does not depend on the implementation of used classes. Based on the
formal system, we have developed an implementation.

The translation turned out to be a more subtle problem than we expected. In this paper,
we discuss four different possible approaches we considered for the design of the translation and
justify our choice, we present formally the translation and the proof of preservation of the static
and dynamic semantics, and we discuss the prototype implementation. Moreover, we outline an
alternative translation based on generics that avoids most of the casts (but not all) needed in the
previous translation.

The language Fickle has undergone, and is still undergoing several phases of development. In
this paper we are discussing the translation of FickleII.

Categories and Subject Descriptors: D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; D.3.2 [Programming Languages]: Language Classifications—Object-oriented lan-
guages; D.3.3 [Programming Languages]: Language Constructs and Features—classes and ob-
jects; inheritance; polymorphism; D.3.4 [Programming Languages]: Processors—preprocessor;
F.3.3 [Logics and Meanings of Programs]: Studies of Program Constructs—object-oriented
constructs; type structure

General Terms: Theory, Languages

Additional Key Words and Phrases: Type and Effect Systems, Semantics Preserving Translation

Work partially supported by IST-2001-33477 DART and MIUR Cofin’04 EOS projects. The
founding bodies are not responsible for any use that might be made of the results presented here.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1–??.

2 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

1. INTRODUCTION

Dynamic object re-classification is a programming language feature that allows
an object to change its class membership at run-time while retaining its iden-
tity. Thus, one can express fundamental change of an object’s behavior (e.g., non-
empty lists becoming empty, iconified windows getting expanded, etc.) through
re-classification, rather than through replacing objects of the old class by objects
of the new class. Lack of re-classification primitives has long been recognized as a
practical limitation of object-oriented programming.
FickleII [Drossopoulou et al. 2001; 2002] is a small Java-like language that

supports dynamic object re-classification, aiming to demonstrate how object re-
classification could extend an imperative, typed, class-based, object-oriented lan-
guage. Other approaches to the expression of fundamental change of behaviour
have been suggested (some of them will be considered in the final section of the
paper). FickleII is type-safe, i.e., any type correct program (in terms of the type
system) is guaranteed never to attempt to access non-existing fields or methods.

In FickleII, there is a re-classification operation that changes the class member-
ship of an object while preserving its identity. The biggest challenge is achieving a
sound type system in the presence of re-classification. If some object has a field of
type c, then soundness requires forbidding re-classification from a subclass of c to
a class outside c’s subhierarchy, as such re-classification could change the contents
of the field to something that does not have its type. Classes for which this kind of
re-classification does not happen are said to be “respected” by re-classification and
can be safely used as types for fields. In FickleII there is an incomparable set of
root classes, and re-classification can only occur within a hierarchy rooted at a root
class. Subclasses of root classes are called state classes. Classes that are neither
root nor state classes are the only ones that are respected by re-classification.

Re-classification is traced by effects, and methods are annotated with the effects
that may be caused by the execution of their body. Effects are sets of root classes,
{c1, . . . , cn}, meaning that there could be a re-classification between two subclasses
of a class in the set.

We wanted to study the problem of simulating re-classification in a language
without re-classification both theoretically and practically. We proceeded by devel-
oping, hand in hand, both a formalization and a prototype implementation of such
a simulation. The translation turned out to be a more complex task than we had
originally anticipated, and several subtle issues had to be considered. The formal-
ization maps FickleII into Fickle−II, the re-classification free fragment of FickleII.
We decided to make the translation as simple as possible, neglecting efficiency in
favor of uniformity (i.e., fewer different cases) and simplicity. Our prototype imple-
mentation [Anderson 2003] maps Ficklest, a statement oriented version of FickleII,
onto Java. Besides the presence of re-classification, Ficklest is a subset of Java.

The translation of FickleII into Fickle−II is provenly correct: We present here
the proofs that it preserves the static and dynamic semantics – i.e., well-formed
FickleII programs are translated into well-formed Fickle−II programs that behave
“in the same way”.

The development of the formal system highlighted design errors in our earlier
attempts at the translation. For example, we were unable to prove the dynamic
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 3

correctness of the translation with respect to field assignment and method call. By
inspecting where the proofs had failed, we had an insight into how to repair the
translation.

Moreover, the translation is compatible with separate compilation, in the sense
that the translation of a FickleII class does not depend on the implementation of
any classes it uses. Therefore, our translation could form the basis for an extension
of a Java compiler; namely any type information needed by the translation can be
retrieved from type information stored in binary files, as is done, indeed, by Java
compilers for ordinary compilation.

The paper is organized as follows: In Section 2 we introduce FickleII informally
in terms of an example. In Section 3 we give a brief formal description of FickleII
(syntax, operational semantics, and typing) and state the properties of the type
system. In Section 4 we discuss the various design alternatives considered for the
translation. In Section 5 we give an informal overview of the translation, while
in Section 6 we give the formal description. In Section 7 we state the properties
of the translation (preservation of static and dynamic semantics) and illustrate
the compatibility of the translation with Java separate compilation. In Section 8
we describe our current implementation of the translation [Anderson 2003]. In
Section 9 we discuss how the translation could be enhanced in order to exploit
new features of Java 1.5. We conclude by comparing our work with the one of
others in Section 10 and then summarizing the relevance of this work and discussing
further research directions in Section 11. Some technical definitions are illustrated
in Appendix A. Proofs of the main results are given in Appendices B and C.
In Appendix D we give the full translation (using generics and wildcards) of the
example in used in Section 9.

2. FICKLE II, AN INFORMAL OVERVIEW

In this section we introduce FickleII informally using an example. In the example
we will use the types int, float, void, String, arithmetical expressions, and the
if without else expression that are not present in the formalization of Section 3.1.

The FickleII example in Fig. 1 describes accounts that belong to people, and
which may be daily accounts, or savings accounts. It consists of a class Person, and
a class Account, with subclasses SavingsAccount and DailyAccount. An Account
belongs to a person (field owner), and holds some money (field amount). Accounts
implement the method transact(int x) that increments or decrements the field
amount of x. If the amount exceeds a threshold (field sup), then the account turns
into a SavingsAccount. Similarly, if the amount falls below a threshold, (field inf)
then the account turns into a DailyAccount. Savings accounts pay interest.1

In FickleII class definitions may be preceded by the keyword state or root. The
state classes are the classes that may serve as targets of re-classification. Such
classes cannot be used as types for fields; in our example DailyAccount and
SavingsAccount. The root classes define the fields and methods common to their
state subclasses; in our example, class Account defines the fields amount and owner,

1The example would be expressed more naturally using abstract classes, constructors, and excep-
tions, but these are not part of FickleII.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

class Person {

int age;

String name

}

root class Account {

int amount;

Person owner;

void transact(int x) {Account} {}

int interest() {} { 0; }

}

state class DailyAccount extends Account {

int sup;

void transact(int x) {Account} {

amount = amount + x;

if (amount > sup) {

this!!SavingsAccount; this.interestRate = 10; this.inf = 200;

}

}

}

state class SavingsAccount extends Account {

float interestRate;

int inf;

void transact(int x) { Account } {

amount = amount + x;

if (amount < inf) {

this!!DailyAccount; this.sup = 1000;

}

}

int interest() { } { interestRate*amount; }

}

Fig. 1. Program Account - accounts with re-classifications

and the two methods transact and interest. The subclasses of root classes must
be state classes.2

A re-classification expression has the form id!!C, and sets the class of id to C,
where C must be a state class with the same root class of the static type of id. The
re-classification operation preserves the types and the values of the fields defined in
the root class, removes the other fields, and adds the fields of C that are not defined
in the root class, initializing them in the usual way. Re-classifications may be caused
by re-classification expressions, e.g., this!!SavingsAccount in method transact
in class DailyAccount, or, indirectly, by method calls, like a.transact(...).3

At the start of method transact of class DailyAccount the receiver is an object

2A root class is the first non-state superclass of a state class. The reason for introducing root
classes as a separate kind of class is that in a system with separate compilation and without root
classes, it would be impossible to enforce that if a class has a state subclass then all its further
subclasses are state classes.
3In the example, only this is re-classified; note that FickleII also allows re-classification of pa-
rameters and local variables.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 5

of (a subclass of) DailyAccount, therefore it has the fields amount, owner and
sup, while it does not have the fields interestRate and inf. After execution of
this!!SavingsAccount the receiver is of class SavingsAccount, the fields amount
and owner retain their values, the field sup disappears, and the fields interestRate
and inf become available.

Annotations like {} and {Account} before method bodies are called effects. Ef-
fects list the root classes of all objects that may be re-classified by invocation of
that method.

Methods with the empty effect {}, e.g., interest, may not cause any re-classification.
Methods with non-empty effects, e.g., transact, with effect {Account}, may re-
classify objects of a subclass of their effect; in our case of Account.

Consider the following fragment of code:

// a is of type DailyAccount and m is of type int
1. a = new DailyAccount(); a.sup = 1000;
2. m = a.interest();
3. a.transact(1500);
4. m = a.interest();

The call in line 2 selects the method interest from class Account, while the call
in line 4 selects the method interest from class SavingsAccount, since now the
object referred to by a is of class SavingsAccount.

Re-classification removes from the object all fields that are not defined in its root
superclass and adds the remaining fields of the target class:

// a is of type DailyAccount and m is of type int
1. a = new DailyAccount(); a.sup = 1000;
2. m = a.sup;
3. a.amount = 1500;
4. a!!SavingsAcccount;
5. m = a.inf;
6. a.amount;

After line 1 the object denoted by a has the field sup and amount but not inf (or
interestRate), whereas, after line 4 the same object has the field inf but not sup,
and the field amount keeps its value (1500).

Re-classification is transparent to aliasing. For instance, in

// a1, a2 are of type DailyAccount
1. a = new DailyAccount(); a.sup = 1000;
2. a2 = a1;
3. a1.transact(1500);
4. a2.interest();

line 3 re-classifies the object, but does not affect the binding. Therefore, the call
of method interest in line 4 selects the method from SavingsAccount. Thus,
through aliasing, one re-classification may affect several variables; in the previous
example it affects both a1 and a2.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

Because the class membership of objects of state class is transient, access to
their members is only legal in contexts where it is certain that the object belongs
to the particular class. This can be done for “local” entities, i.e., for parameters,
the receiver this, and for local variables, but it cannot be done for fields, as their
lifetime exceeds a method activation. Therefore, we do not allow state classes as
the types of fields.

For example, the declaration of field a in the following is illegal:

class B {
DailyAccount a;

int m(){} { a.sup; }
}

Indeed, if the declaration of field a in class B were legal, then, in the following
code

// b is of type B and acc is of type DailyAccount
1. acc.transact(1500);
2. b.m();

where acc is an alias of b.a, (e.g., through execution of acc = new DailyAccount();
b = new B(); b.a = acc;), the execution of line 1 would re-classify the object
bound to b.a to SavingsAccount, and the field access b.a.sup inside the call of
b.m in line 2 would raise a fieldNotFound error.

Therefore, state classes may not be used as types of fields. However, they may be
used as types of this, parameters, local variables, or as return types for methods
(in our type system we trace the type of this, parameters, and local variables).

Consider the following fragment of code that could be contained in a method of
class DailyAccount.

// this is of type DailyAccount
this.sup; // type correct
this.interestRate; // type incorrect
this!!SavingsAccount;
this.sup; // typeincorrect
this.interestRate; // type correct

this is of type DailyAccount before re-classification and of type SavingsAccount
after. Similarly for the type of parameters and local variables.
Changes to the type of this or a parameter or local variable may be caused either
by explicit re-classifications, as before, or by potential, indirect re-classification,
due to aliasing, as in the following method:

int n(Account a, DailyAccount da) {Account} {
1. da.sup; // type correct
2. a.transact(1500); // may re-classify a and all its aliases
3. da.sup; // type incorrect
4. da.owner; // type correct: da is certainly an Account
}

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 7

The method call of line 2, if a.amount is bigger than 1000 (the value of a.sup),
re-classifies the object referred to by a, whereas it does not if a.amount is less
than 1000. Since at the time of the call a and da might be aliases, the possible re-
classification of the object referred to by a might re-classify also the object referred
to by da. Therefore, after the call, the only type-safe assumption is that the type
of da is Account. In order to capture such potential re-classifications, each method
declares as its effect the set of root classes of objects that may be re-classified
through its execution. In our case, transact has effect {Account}. After the call
a.transact(1500), the type of da is Account, i.e., the application of the effect
{Account} to the class DailyAccount.

A method annotated with effects can be overridden only by methods annotated
with the same or fewer effects.4 By relying on effects annotations, the type and
effect system of FickleII ensures that re-classifications will not cause accesses to
fields or methods that are not defined for the object.

3. THE LANGUAGE FICKLE II, A FORMAL DESCRIPTION

The language FickleII, as considered in the present paper, is slightly different from
the language introduced in [Drossopoulou et al. 2002]. The differences are listed
(and motivated) as follows.

—The language considered in this paper is richer: it includes type casts, a test
for the null value and blocks (with local variables). These additional constructs
are introduced by the translation. By adding them we made the target language
a subset of the source language. This allowed us to simplify the presentation
(e.g., both the source and the target languages use the same type system and
operational semantics).

—In the language considered in [Drossopoulou et al. 2002] the dynamic seman-
tics is unconventional with respect to the generation of null pointer exceptions
(nullPntrExc).5 If e evaluates to null, then e.f = e1 and e.m(e1 , . . . , en) pro-
duce nullPntrExc without even evaluating e1. This behaviour is not faithful to
the semantics of Java that evaluates all the ei’s (which may, in their turn, raise
exceptions). The operational semantics considered in this paper conforms to the
Java semantics.

3.1 Syntax

The syntax of FickleII is specified in Fig. 2. We use standard extended BNF,
where a [-] pair means optional, A∗ means zero or more repetitions of A, and A+

means one or more repetitions of A. We follow the convention that non terminals

4This means that adding a new effect in a method of a class c does not require any change
to the subclasses of c, but may require some changes to its superclasses, and the classes using
them. Note also that effects are explicitly declared by the programmer rather than inferred by
the compiler. Even though effects inference could be implemented in practice, more flexibility
in method overriding can be achieved by requiring the programmer to annotate methods with
more effects than those that would be inferred (similarly to what happens with throws clauses for
exceptions).
5Thanks to an anonymous referee of a previous version of the present paper for pointing this out.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

appear as nonTerm and terminals appear as term. In the concrete syntax we use
separator “, ” and terminator “; ” following Java style.

p ::= class∗

class ::= [root | state] class c extends c′{field∗ meth∗}
field ::= t f
meth ::= t m(par∗) φ block
t ::= bool | c
par ::= t x
φ ::= {c∗}
block ::= {var∗e+}
var ::= t x
e ::= id | sval | isnull(e) | e.f | (c)e | new c |

id !!c | x = e | e.f = e1 | e.m(e∗) |
if e then e1 else e2 | block

id ::= x | this
sval ::= true | false | null

Fig. 2. FickleII syntax

Metavariables c, f , m and x range over sets of class names, field names, method
names and variables, respectively. We assume a distinguished class name Object
that cannot be used as name of a declared class.

A program is a sequence of class definitions. A class definition may be preceded
by the keyword root or state. As already explained, state classes describe the
properties of an object while it satisfies some conditions, whereas root classes ab-
stract over state classes.6 Any subclass of a state or a root class must be a state
class. Objects of a state class c may be re-classified to class c′, where c′ must be a
subclass of the uniquely defined root superclass of c.

A class specifies its superclass and declares a sequence of fields and methods.
The type of fields may be either a primitive type or a non-state class; we call such
types non-state types. Thus, fields may point to objects that change class, but
these changes do not affect their type. In contrast, the type of identifiers (this,
parameters and local variables) may be a state or root class.

Method declarations have the shape:

t m (t1 x1 , . . . , tq x q) {c1 , . . . , cn} block

where t is the result type, m the name, t1, . . . , tq are the types of the formal
parameters x1, . . . , xq , and block is the body. The effect consists of root classes c1,
. . . , cn, with n≥ 0.

A block consists of a possibly empty sequence of local variable declarations and a
sequence of expressions. Expressions include identifiers (that is, this, parameters
and local variables), source language values (that is, constants of primitive types

6Notice that our proposal is orthogonal to the “abstract superclass rule” discussed in [Hürsch
1994]. In fact, root classes are not necessarily abstract classes, and state classes may be super-
classes only of other state classes.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 9

and null), test for the null value, field selection, casting, object creation, re-
classification, assignment to a local variable or parameter, assignment to a field,
method call, conditional and block.

In object creation new c, c may be any class, including a state class. Re-
classification expressions, id !! c, set the class of id to c – c must be a state or
a root class.

We require the inheritance hierarchy to be a tree, root classes to extend only
non-root and non-state classes, and state classes to extend either root classes or
state classes.

3.2 Operational semantics

We give a structural operational semantics that rewrites pairs of expressions and
stores into pairs of either values or exceptions, and stores, in the context of a given
program p.

The signature of the rewriting relation ; is:

; : p −→ e × store −→ (val ∪ exc) × store

store = ({this} −→ addr) ∪ (x −→ val) ∪ (addr −→ object)
val = sval ∪ addr
exc = {nullPntrExc, castExc}
object = { [[f 1 : v1, . . . , f r : vr]]

c | f 1, . . . , f r are field identifiers,
v1, . . . , vr ∈ val , and c is a class name }

Values are the source language values in Section 3.1, or addresses. Addresses
may point to objects, but not to other addresses, primitive values, or null. Thus
in FickleII, as in Java, pointers are implicit, and there are no pointers to pointers.

Note that in the operational semantics of [Drossopoulou et al. 2002] we had, in
addition to null pointer exception and cast exception, also stuck error, which was
meant to describe the kind of errors that a non well-typed expression could produce.
In particular, access to undefined members of objects, undefined identifiers, etc.
The rules for the evaluation of expressions that would produce such error were
given. Such rules (and stuck error) are not needed for proof of Theorem 3.1 (type
preservation), and are omitted in the present paper.

We denote stores with σ, and addresses with ι.
The store is a partial function with finite domain, which maps this to an address,

variables to values, and addresses to objects. The store includes both

—the stack that maps this, local variables, and parameters to values, and
—the heap that maps addresses (unique object identifiers) to objects.

An alternative, more elegant solution, would have been to separate stack and heap
explicitly. However, we chose to use a semantics which is, with minor differences
(no stuck error, additional clauses for blocks and casts, different treatment of null
pointer exceptions), that of [Drossopoulou et al. 2002], in order to get from there the
type preservation result (Theorem 3.1), which is needed in the proof of adequacy of
the translation (Theorem 7.5). This also implies that we chose a big-step semantics.
Note that giving a small step operational semantics for the language requires to

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

extend the language to include the intermediate expressions resulting from the
evaluation. Moreover, typing rules must be defined for the extended language.
This was done in [Damiani et al. 2004], where a small step semantics was needed
in order to model multi-threading.

To define the operational semantics we need some operations on objects and
stores.
For object o = [[f 1 : v1, . . . , f l : v l, . . . , f r : vr]]

c , store σ, value v , address ι,
identifier or address z, field identifier f, value or object w, we define:

—field access o(f) =
{

v l if f = f l for some l ∈1 , . . . , r ,
Udf otherwise

—object update o[f 7→v] =

 [[f 1 : v1, . . . , f l : v , . . . , f r : vr]]
c

if f = f l for some l ∈1 , . . . , r ,
Udf otherwise

—store update σ[z 7→w](z) = w , σ[z 7→w](z ′) = σ(z ′) if z ′ 6= z .

Also, we follow the convention that σ(ι)(f) = Udf whenever σ(ι) = Udf .
Figures 3, 4, 5, and 6 list all the rewrite rules of FickleII. We discuss the two

most significant rewrite rules of FickleII: method call and re-classification.
For method calls, e.m(e1 , . . . , en), we evaluate the receiver e, obtaining an ad-

dress, say ι. We then evaluate the arguments, e1, . . . , en. We find the appropriate
body by looking up m in the class of the object at address ι – we use the term
M(p, c,m) that returns the definition of method m in class c going through the
class hierarchy in p, if needed (see Appendix A). We execute the body after sub-
stituting this with the current object, and assigning to the formal parameters
the values of the actual parameters. After the call, we restore the receiver and
parameters to the values they had immediately before execution of the body.7

For re-classification expressions, id !! d , we take the value of id , which must be
the address of an object of some class c. We replace the original object by a new
object of class d . We preserve the fields belonging to the root superclass of c and
initialize the other fields of d according to their types. The term R(p, t), defined
by

R(p, t) =
{

c if t is a state class and c is the root superclass of t
t otherwise,

denotes the least superclass of t that is not a state class, if t is a class, and denotes
t itself if t is not a class or a non-state class. Moreover, Fs(p, c) denotes the set of
all fields (either directly defined or inherited) of class c, and F(p, c, f) the type of
field f in class c (see Appendix A). Note that we do not allow hiding of fields in
FickleII.8

7We restore the references, but not the contents: thus, after a method call the side effects caused
by execution of the method body survive. Note also that if one of the method parameters was
undefined before the call, then it will be undefined after the call as well.
8In well-typed programs, R(p, c) = R(p, d) always holds, and c and d must be state or root
classes. This implies that re-classification depends only on the target class d, not on the class c of
the receiver. Therefore, a compiler could fold the type information into the code, by generating
specific re-classification code for each state class. The rule for re-classification uses the types of
the fields to initialize the fields, similarly to the rule for object creation.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 11

v, σ ;p v, σ
(val)

e, σ ;p ι, σ′

σ′(ι) = [[. . .]]c
′

p ` c′ ≤ c

((c))e, σ ;p ι, σ′
(cast) e, σ ;p null, σ′

((c))e, σ ;p null, σ′
(n-cast)

σ(id) 6= Udf
id , σ ;p σ(id), σ

(id)

e, σ ;p ι, σ′

σ′(ι)(f) 6= Udf
e.f, σ ;p σ′(ι)(f), σ′

(field)

e, σ ;p null, σ′

isnull(e), σ ;p true, σ′
(t−isnull)

e, σ ;p ι, σ′

σ′(ι) 6= Udf
isnull(e), σ ;p false, σ′

(f−isnull)

e, σ ;p v , σ′

x = e, σ ;p v , σ′[x 7→v]

(a-var)

e, σ ;p ι, σ′′

e1, σ′′ ;p v , σ′′′

σ′′′(ι)(f) 6= Udf
σ′ = σ′′′[ι 7→σ′′′(ι)[f 7→v]]

e.f = e1, σ ;p v , σ′
(a-field)

e, σ ;p true, σ′′

e1, σ′′ ;p v , σ′

if e then e1 else e2, σ ;p v , σ′
(t-cond)

e, σ ;p false, σ′′

e2, σ′′ ;p v , σ′

if e then e1 else e2, σ ;p v , σ′
(f -cond)

v l initial for tl (l ∈ {1, . . . , s})
σ0 = σ[x1 7→v1, . . . , xs 7→vs]
ei, σi−1 ;p v i, σi (i ∈ {1, . . . , n})
{t1 x1; . . . ts xs; e1; . . . en; }, σ ;p vn, σn [x1 7→σ(x1), . . . , xs 7→σ(xs)]

(block)

Fs(p, c) = {f 1, . . . , f r}
v l initial for F(p,c, f l) (l ∈ {1, . . . , r})
ι is new in σ

new c, σ ;p ι, σ[ι 7→[[f 1 : v1, . . . , f r : vr]]
c]

(new)

e, σ ;p ι, σ0

ei, σi−1 ;p v i, σi (i ∈ {1, . . . ,n})
σn (ι) = [[. . .]]c

M(p, c, m) = t m((t1 x1, . . . , tn xn)) φ block
σ′ = σn[this 7→ι, x1 7→v1, . . . , xn 7→vn]
block, σ′ ;p v , σ′′

e.m(e1 , . . . , en), σ ;p v , σ′′[this 7→σn(this), x1 7→σn(x1), . . . , xn 7→σn(xn)]

(meth)

Fig. 3. FickleII expression evaluation – without generation and propagation of exceptions

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

σ(id) = ι
σ(ι) = [[. . .]]c

Fs(p,R(p, c)) = {f 1, . . . , f r}
v l = σ(ι)(f l) (l ∈ {1, . . . , r})
Fs(p, d) \ {f 1, . . . , f r} = {f r+1, . . . , f r+q}
v l initial for F(p,d, f l) (l ∈ {r + 1, . . . , r + q})
id !! d , σ ;p ι, σ[ι7→[[f 1 : v1, . . . , f r+q : vr+q]]

d]

(recl)

σ(id) = null

id !! d , σ ;p null, σ

(n-recl)

Fig. 4. FickleII expression evaluation – without generation and propagation of exceptions

e, σ ;p ι, σ′

σ′(ι) = [[. . .]]c
′

p 6` c′ ≤ c

((c))e, σ ;p castExc, σ′
(e-cast) e, σ ;p null, σ′

e.f, σ ;p nullPntrExc, σ′
(field-null)

e, σ ;p null, σ′′

e1, σ′′ ;p v , σ′

e.f = e1, σ ;p nullPntrExc, σ′
(a-field-null)

e, σ ;p null, σ0

ei, σi−1 ;p v i, σi (i ∈ {1, . . . ,n})
e.m(e1 , . . . , en), σ ;p nullPntrExc, σn

(meth-null)

Fig. 5. FickleII expression evaluation – generation of exceptions

3.3 Typing

3.3.1 Widening, environments, effects. The following assertions, defined in Fig. 20
of Appendix A, describe kinds of classes, and the widening relationship between
types:

—p ` c 3ct means that c is any class,

—p ` c 3rt means that c is a re-classifiable type, i.e., either a root or a state class,

—p ` t 3ft means that t is a non-state type, i.e., bool or a non-state class, and

—p ` t ≤ t′ means that type t′ widens type t, i.e., t is a subclass of, or identical
to, t′.

Environments, γ, map parameter names and local variables to types, and the
receiver this to a class. They have the form x 1 : t1, . . . , xn : tn, this : c. Lookup,
γ(id), and update, γ[id 7→t], have the usual meaning, and are defined in Fig. 21 of
Appendix A.

An effect, φ, is a set { c1, . . . , cn } of root classes; it means that any object
of a subclass of ci (including ci itself) may be re-classified. The empty effect,
{ }, guarantees that no object is re-classified. Effects are well-formed, i.e., p `
{ c1, . . . , cn } 3, iff c1,. . . ,cn are distinct root classes. Thus, p ` { c1, . . . , cn } 3

implies that ci are not subclasses of each other.

3.3.2 Typing rules. The typing rules are given in Fig. 7. We use the look-up
functions F andM, which search for fields and methods through the class hierarchy
(see Appendix A).
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 13

e, σ ;p exc, σ′

((c))e, σ ;p exc, σ′

x = e, σ ;p exc, σ′

e.f , σ ;p exc, σ′

isnull(e), σ ;p exc, σ′

e.m(e1, . . . , en), σ ;p exc, σ′

e.f = e1, σ ;p exc, σ′

e, σ ;p ι, σ′′

σ′′(ι) 6= Udf
e1, σ

′′ ;p exc, σ′

e.f =e1, σ ;p exc, σ′

e, σ ;p ι, σ0

σ0(ι) 6= Udf
ei, σi−1 ;p v i, σi (i ∈ {1, . . . , q}, q < n)
eq+1, σq ;p exc, σq+1

e.m(e1, . . . , en), σ ;p exc, σq+1

e, σ ;p ι, σ0

ei, σi−1 ;p v i, σi (i ∈ {1, . . . , n})
σn(ι) = [[. . .]]c

M(p, c, m) = t m((t1 x1, . . . , tn xn)) φ block
σ′ = σn [this7→ι, x1 7→v1, . . . , xn 7→vn]
block, σ′ ;p exc, σ′′

e.m(e1, . . . , en), σ ;p exc, σ′′[this7→σn(this), x1 7→σn(x1), . . . , xn 7→σn(xn)]

e, σ ;p exc, σ′

or (e, σ ;p true, σ′′ and e1, σ
′′ ;p exc, σ′)

or (e, σ ;p false, σ′′ and e2, σ
′′ ;p exc, σ′)

if e then e1 else e2, σ ;p exc, σ′

v l initial for tl (l ∈ {1, . . . , s})
σ0 = σ[x1 7→v1, . . . , x s 7→vs]
ei, σi−1 ;p v i, σi (i ∈ {1, . . . , q}, q < n)
eq+1, σq ;p exc, σq+1

{t1 x1; . . . ts x s; e1; . . . en; }, σ ;p exc, σq+1[x1 7→σ(x1), . . . , x s 7→σ(x s)]

Fig. 6. FickleII expression evaluation – propagation of exceptions

In the rules, t tpt′ is the least upper bound of t and t′ w.r.t. the ≤ relation
between types in p, and γ tpγ′ associates with an identifier the least upper bound
in p of its types in γ and γ′. (The formal definitions can be found in Fig. 21 of
Appendix A.) Moreover, we define the application of effects to types:

{ c1, . . . , cn }@pt =
{

ci if R(p, t) = ci for some i ∈1 , . . . ,n
t otherwise

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

p, γ ` true : bool [] γ [] { }
p, γ ` false : bool [] γ [] { }
p, γ ` id : γ(id) [] γ [] { }

p ` c 3ct

p, γ ` null : c [] γ [] { }
p, γ ` new c : c [] γ [] { }

p, γ ` e : c′ [] γ′ [] φ
(p ` c′ ≤ c or p ` c ≤ c′)

p, γ ` ((c))e : c [] γ′ [] φ

p, γ ` e : c [] γ′ [] φ
F(p, c, f) = t

p, γ ` e.f : t [] γ′ [] φ

p, γ ` e : c [] γ1 [] φ1

p, γ1 ` e1 : t [] γ2 [] φ2

F(p, φ2@pc, f) = t′

p ` t ≤ t′

p, γ ` e.f = e1 : t [] γ2 [] φ1 ∪ φ2

p, γ ` e : t [] γ′ [] φ
γ′(x) = t′

p ` t ≤ t′

p, γ ` x = e : t [] γ′ [] φ

p, γ ` e : c [] γ′ [] φ

p, γ ` isnull(e) : bool [] γ′ [] φ

p, γ ` e : c [] γ0 [] φ0

p, γi−1 ` ei : ti [] γi [] φi (i ∈ {1 , . . . ,n})
M(p, (φ1 ∪ · · · ∪ φn)@pc, m) = t m((t′1 x1, . . . , t

′
n xn)) φ { ... }

p ` (φi+1 ∪ · · · ∪ φn)@pti ≤ t′i (i ∈ {1 , . . . ,n})
p, γ ` e.m((e1, . . . , en)) : t [] φ@pγn [] φ ∪ φ0 ∪ · · · ∪ φn

p, γ ` e : bool [] γ0 [] φ0

p, γ0 ` e1 : t1 [] γ1 [] φ1

p, γ0 ` e2 : t2 [] γ2 [] φ2

p, γ ` if e then e1 else e2 : t1 tpt2 [] γ1 tpγ2 [] φ0 ∪ φ1 ∪ φ2

γ0 = γ[x1 7→t1, . . . , xs 7→ts]
p, γi−1 ` ei : t′i [] γi [] φi (i ∈ {1 , . . . ,n})
p, γ ` {t1 x1; . . . ts x s; e1; . . . en; } : t′n [] γn[x1 7→γ(x1), . . . , xs 7→γ(xs)] [] φ1 ∪ · · · ∪ φn

p ` c 3rt

R(p, c) = R(p, γ(id))

p, γ ` id !! c : c [] ({R(p, c) }@pγ)[id 7→c] [] {R(p, c) }

Fig. 7. FickleII – typing rules for expressions

Note that, if

p, γ ` e : t [] γ′ [] φ

is a derivable judgment, then the environments γ, and γ′ are defined for the same
set of identifiers, and any differences in the types associated with an identifier in γ
and γ′ are due to the effect φ. So, if e is a Fickle−II expression, then γ = γ′ and
φ = {}.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 15

3.3.3 Well-formed Programs. A program is well formed (written ` p 3) if the
inheritance hierarchy is well-formed (` p 3h) and all its classes are well-formed
(p ` c 3): Methods may override superclass methods only if they have the same
name, argument, and result type, and their effect is a subset of that of the overridden
method. Method bodies must be well formed, return a value appropriate for the
method signature, and their effect must be a subset of that in the signature. See
Fig. 8, where C(p, c) returns the definition of class c in program p, and the look-up
functions FD(p, c, f), MD(p, c,m) search for fields and methods only in class c
(see Appendix A).

C(p, c) =[root | state] class c extends c′ { . . . }
∀f : FD(p, c, f) = tf =⇒ p ` tf 3ft and F(p, c′, f) = Udf
∀m : MD(p, c, m) = t m((t1 x1, . . . , tn xn)) φ block =⇒

p ` φ 3

p, t1 x1, . . . , tn xn, c this ` block : t′ [] γ′ [] φ′

p ` t′ ≤ t
φ′ ⊆ φ
M(p, c′, m) = Udf or (M(p, c′, m) = t m((t1 x1, . . . , tn xn)) φ′′ { . . . } and φ ⊆ φ′′)

p ` c 3

` p 3h

∀c : C(p, c) 6= Udf =⇒ p ` c 3

` p 3

Fig. 8. FickleII – rules for well-formed classes and programs

3.3.4 Type Preservation. The main property of the type system is type preser-
vation. This result will be needed in the proof of correctness of the translation.

In Fig. 9 we introduce the agreement relations between programs stores and
values.

—p, σ ` v � t means that value v has type t in p, σ. When the value is an address
ι, then t must be a class type c, and the store σ must map ι to an object of class
c whose fields have the right type. The definition of p, σ ` v′ ≺ t′ is needed to
break the circularity of the definition, since the value of one of the fields of the
object could be ι.

—p, γ ` σ 3 means that for all addresses ι, if σ(ι) = [[· · ·]]c (c is the class of
the object to which ι is mapped in σ) then ι has type c in p, σ (see the previous
definition). Moreover, the value of the identifiers and of this in the store σ agree
with their type in the environment γ.

—p, φ ` σ � σ′ means that store σ′ is the store that may be obtained from σ after
the evaluation of an expression whose effects are φ. So the address bound to
this is not changed, and the only objects that may have been re-classified are
the objects whose class is a subclass of one of the classes in φ.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

v = true or v = false

p, σ ` v ≺ bool
(bool ≺)

p ` c 3ct

p, σ ` null ≺ c
(null ≺)

σ(ι) = [[...]]c p ` c ≤ c′

p, σ ` ι ≺ c′
(ι ≺)

p, σ ` v ≺ t v ∈ sval

p, σ ` v � t

(sval �)
σ(ι) = [[...]]c p, σ ` ι ≺ c′

∀f ∈ Fs(p, c) : p, σ ` σ(ι)(f) ≺ F(p, c, f)

p, σ ` ι � c′

(ι �)

σ(this) 6= null and σ(ι) = [[. . .]]c =⇒ p, σ ` ι � c (for all addresses ι)
γ(id) 6= Udf =⇒ p, σ ` σ(id) � γ(id) (for all identifiers id)

p, γ ` σ 3

(3)

σ(this) = σ′(this)

σ(ι) = [[...]]c =⇒ σ′(ι) = [[...]]c
′
, φ@pc = φ@pc′

p, φ ` σ � σ′
(σ �)

Fig. 9. Agreement between programs, stores, and values

The following theorem asserts that the evaluation of a well-typed expression in a
store that agrees with the typing environment, results either in an exception, or in
a value that is of the right type. Moreover, the store resulting from the evaluation
agrees with the environment resulting from the typing judgment. That is, types are
preserved by reductions. The proof of the theorem can be found in [Drossopoulou
et al. 2002].9

Theorem 3.1. Let p, γ ` e : t [] γ′ [] φ. If p, γ ` σ 3 and e, σ ;
p

w, σ′, then

—w = v, p, γ′ ` σ′ 3, p, σ′ ` v � t, and p, φ ` σ � σ′, or

—w ∈ {castExc, nullPntrExc}.

4. TRANSLATION OF FICKLE II INTO FICKLE−
II: RATIONALE AND DESIGN

ALTERNATIVES

For the design of the translation we had to consider the following issues:

(1) an appropriate encoding for re-classifiable objects,

(2) the relation between the types of a FickleII expression and the corresponding
translated Java expression,

9In [Drossopoulou et al. 2002] this result was mislabelled type soundness. As pointed out by
an anonymous referee of a previous version of the present paper, in today’s type terminology,
Theorem 3.1 is a type preservation theorem, not a type soundness theorem. In fact, Theorem 3.1
says that if a program produces a result, then it is consistent with the program static type. This
does not imply soundness, because a program that doesn’t produce a result might have gone
wrong.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 17

(3) ensuring that a translated Java expression of class type will always denote the
object in its most current state,

(4) the fact that a standard Java class c can be extended by a re-classifiable class,
possibly after c has been translated (i.e., compiled),

(5) making the translation compatible with separate compilation.

Concerning point 1), the basic idea is to represent each re-classifiable FickleII
object o through a pair <id, imp> of Java objects. Roughly speaking, id provides
the (immutable) identity of o, whereas imp is the implementor object of the id
object, and provides its (mutable) behavior. A re-classification of o changes imp
but not id, and method invocations are resolved by imp.

Concerning point 2), our initial idea was that there should be an isomorphism
between the types of FickleII expressions and the types of the translated Java
expressions. However, as we shall argue in section 4.1, this lead to a complex
system, and made the issues around point 3) more difficult. In our current solution
all FickleII expressions of class type are translated to Java expressions of the same
type, namely Identity.

Concerning point 3), originally we were maintaining a chain of objects where
each was delegating to the next, more recent implementation object. Thus, every
field access or method call needed to follow the chain in order to find the most
recent implementation object. However, this solution grew rather complex, and we
abandoned it for the pair <id, imp> described above.

Concerning points 4), and 5), we decided to represent all objects, even the non-
re-classifiable ones, through such pairs <id, imp>. Thus, all Fickle classes, even
the ones that describe objects that may not be re-classified, are translated in a
uniform way. Also, field accesses or method calls need to find the implementation
object, and are therefore translated in a uniform way, independently of whether the
receiver belongs to a re-classifiable class, or not. Thus, a class may be translated
without internal knowledge of the classes it is using.

Lastly, we also had to reconcile the requirements for the production of efficient
Java code, the simplicity of the translation, and simplicity of the proofs. We de-
cided to make the translation as simple as possible, neglecting efficiency in favor of
uniformity (i.e., fewer different cases) and simplicity.

4.1 Four design alternatives

The design of the translation of Fickle is the outcome of several iterations. In this
section we outline and compare these.

We first developed Version 1, which we implemented through Carmela, a Java
program mapping Ficklest onto Java [Anderson 2001]. Ficklest is a statement
oriented version of FickleII. The development of Carmela proved more complex
than anticipated, and we thus started a formal treatment, which we continued after
the development of the software. This work led to Version 2 [Ancona et al. 2001].
We had then some further ideas for improvement, which lead to Version 3 [Ancona
et al. 2002]. Finally, we developed Version 4, the approach described in this paper.
Version 4 has been implemented through Isabella [Anderson 2003], a Java program
that maps Ficklest onto Java.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

All translations are based on the idea of pairs of <id, imp> objects, which repre-
sent the identity and the implementor of the corresponding Fickle object. Starting
from that basic idea, the following questions needed to be assessed:

—Would one translated object play both the role of the identity and implementor?
Originally we allowed translated objects to take on the role of both the identity
and implementor. This requires the object to have both id and imp fields. Later
we separated the roles and each object was either an implementor or identity.
Hence, each object contained either an id or imp field.

—Does the translation of a reference to a Fickle object refer to the identity or
implementor part of the pair?
Having the representation of the Fickle object point to the implementor allows for
a type preserving translation. However, it also allows references to objects that
are “outdated”. This reduces the garbage collection possibilities and increases
the length of expressions required to reach the “active” implementation object.
Referencing the identity simplifies expressions and allows for garbage collection
of “outdated” objects.

—How are variables of state class type translated?
In the original definition of Fickle only this could have state class type. There-
fore, the early designs did not cater for that, and only the Version 4 does.

Figures 10, 11, 12 and 13 show the representation of the Fickle objects before
and after re-classification in Version 1, Version 2, Version 3, and Version 4, re-
spectively. The bold arrows represent references that exist between Fickle objects,
whereas the normal arrows represent references introduced by the translation. Fig-
ures 14 and 15 summarize the differences between the various translations.

4.1.1 Version 1. Fickle objects may be represented through one or through a
pair of objects, depending on their history. Namely, objects that have not been
re-classified are represented by a single object. Implementor and identity objects
belong to state subclasses of the root class. This follows because an object that has
not yet been re-classified is both the implementor and identity. Both the identity
and implementor objects contain a field id and imp.

Access to members of all classes goes through the indirection of id and imp.
References to Fickle objects are represented through references to the implementor
object, e.g.., the variable account in Fig. 10. Therefore, during run-time of the
translated program references to “outdated” objects are possible: again in Fig. 10,
account refers to an outdated object after the re-classification.

The translation preserves types up to roots, i.e., the translation of a Fickle
expression of type t has type R(p, t). The translation is optimized in terms of type
casts and number of objects created at run-time.

4.1.2 Version 2. Version 2 is a simplification over Version 1, in that all Fickle
objects are represented through a pair of <id, imp> objects. In contrast to Carmela,
implementor objects belong to state classes, and identity objects belong to root
classes. As in Version 1, identity objects contain a field id and implementor ob-
jects contain a field imp.

Access to members of all classes goes through the indirection of id and imp.
Type casts are required when accessing members because the imp field has type
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 19

Fig. 10. Objects in Version 1

Fig. 11. Objects in Version 2

FickleObject. FickleObject is the superclass of all translated Fickle classes. Ref-
erences to Fickle objects are represented through references to the identity object.
References to “outdated” objects are not possible. This opens more possibilities
for garbage collection.

This translation preserves types up to roots. Overall the translation is simpler,
but less efficient than Version 1.

4.1.3 Version 3. In Version 3 we realized that we could achieve a significant
simplification over Version 2, by representing identities through objects of the
same class, regardless of the root class of the Fickle object. Thus, we introduced
the class Identity, which has the field imp, pointing to the implementor of class
FickleObject. The translated Fickle classes contain a field id, pointing to objects
of type Identity.

Access to members of all classes goes through the indirection of id and imp.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

Fig. 12. Objects in Version 3

Type casts are required when accessing members from all classes. References to
Fickle objects are represented through references to the implementor object, and
therefore references to “outdated” objects are possible.

The translation preserves types, i.e., the translation of a Fickle expression of type
t has type t. Compared with Version 2, Version 3 requires the same number of
objects, but the identity objects are smaller than the corresponding objects of root
class type in Version 2, as they only contain the field imp. Thus, the translation is
simpler, and more efficient than Version 2.

4.1.4 Version 4. Finally, we realized that we could achieve a further simplifi-
cation, by adopting the identity objects as they are in Version 3, and representing
references to Fickle objects though references to identity objects.

Access to members of all classes goes through the indirection of imp only, thus,
requiring fewer access than any other translation. Type casts are required for all
field accesses and method calls. Access to members of the receiver (this) is differ-
ent because this is the only Fickle entity that is represented by an implementor
rather than an identity object. Because this may be re-classified during a method
activation, access to its members goes through the indirection of both id and imp.
As in Version 2, because references to Fickle objects are represented through ref-
erences to the identity, references to “outdated” objects are not possible, and thus
more possibilities for garbage collection are open.

The translation does not preserve types, i.e., the translation of any Fickle ex-
pression of class type c has type Identity.

Comparing Version 4 with Version 3, it requires the same number of objects,
but fewer intermediate steps to represent field access and method call, and allows
more opportunities to garbage collection. Therefore, Version 4 combines simplicity
with efficiency.

5. TRANSLATION OF FICKLE II INTO FICKLE−
II: AN INFORMAL OVERVIEW

In this section we give an informal overview of the translation; we outline the
encoding of objects (Section 5.1), and then discuss an example (Section 5.2).

5.1 Encoding of objects

The translation is based on the idea that each object o of a state class c can
be encoded in Fickle−II by a pair <id, imp> of objects; we call id the identity
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 21

Fig. 13. Objects in Version 4

Version 1 Version 2 Version 3 Version 4
Variables of type c are repre-
sented by variables of type:

R(p, c) R(p, c) R(p, c) Identity

References represented
through reference to:

implementor identity implementor identity

The id field has type: R(p, c) FickleObject Identity Identity

The imp field has type: R(p, c) FickleObject FickleObject FickleObject
Expression of type c translates
to expression of type:

R(p, c) R(p, c) c Identity

References to outdated objects Possible Impossible Possible Impossible

Fig. 14. Comparison of translation approaches

FickleII Version 1 Version 2 Version 3 Version 4

A a A a A a A a Identity a

P p P p P p P p Identity p

a.i() a.i() ((A)a.imp).i() ((A)((A)a.id.imp)).i() ((A)a.imp).i()

this.o ((SA)this ((SA)((A)this.id) ((P)((SA)this.id.imp)) ((SA)this.id

.id.imp).o .imp).o .o.id.imp) .imp).o

a1 = a2 a1 = a2 a1 = a2 a1 = (A)(a2.id.imp) a1 = a2

SA sa -- -- -- Identity sa

sa.o -- -- -- sa.imp.o

Fig. 15. Differences between the translation of expressions, with
Account,SavingsAccount,Person,Account::interestRate(),Account::owner represented
by A,SA,P,i(),o respectively. a1,a2 have type Account and this has type SavingsAccount.

object of imp and imp the implementor object of id. Roughly speaking, id provides
the identity of o, and imp the behavior of o, so that any re-classification of o
changes imp but not id and method invocations are resolved by imp. Hence, two
implementors paired with the same identity represent the same object at different
execution stages.

An object o that is not an instance of a state class does not need to be encoded
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

in principle; however, for uniformity, the same kind of encoding described above
is adopted also in this case, so that during the execution of a translated program
there will be exactly an identity object for any FickleII object. Note that, while there
could be more than one implementor encoding a FickleII object, say <id, imp> and
<id, imp′>, the converse cannot be true: if <id, imp> and <id′, imp> are pairs
encoding FickleII objects, then id = id′.

Re-classification of objects can be exemplified by the diagram in Fig. 16. As
shown there, the identity object is the same during the lifetime of a FickleII object,
whereas at different times the implementor object can change; the right implemen-
tor can always be recovered by the imp field of the identity object (dotted lines in
the figure show obsolete values of this field).

re−classification re−classification

imp

id

id

imp

id

imp

implementor i2implementor i1 implementor i3

identity o

Fig. 16. Re-classification of objects

Classes are translated according to the following two rules:

—each FickleII class (including Object) is translated into exactly one Fickle−II class
(whose instances are implementors);

—the translation preserves the inheritance hierarchy.

We illustrate the above in terms of the classes in Example 5.1.

Example 5.1. The following FickleII program defines the classes P, R, S1, and
S2.

class P extends Object

{ int f1;

R m1(){}{R s; s = new S1;}

int m2(S1 x){R}{x!!S2; 1}

int m3 (S1 x){R} { x.m(this.m2(x));}

int m4 (S1 x){R} { x.f1 = this.m2(x);}

int m(int x){}{this.f1 = x; }

}

root class R extends P { }

state class S1 extends R {

int m5(S2 x){R}{this!!S2; this.f2 = x.f2;}

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 23

}

state class S2 extends R{

int f2;

int m(int x){}{this.f2 = x; }

}

After the instruction

s=new S1;

in the body of m1, the FickleII object referred by s is encoded in the translation,
as sketched in Fig. 17, by the two Fickle−II objects o and o1 in which the field imp
of o points to o1 and the field id of o1 points to o.

Fig. 17. Encoding of the FickleII object referred by s

The object o1 has two fields: id of type Identity (inherited from class FickleObject,
see Section 6.2), and f1 (inherited from P). The fields id and imp are used to re-
cover the identity and the implementor of an object, respectively. In this case the
field id points to the object o of class Identity referred by s.

Assume now that the object referred by s is re-classified to S2, e.g. through
s!!S2. Then, a new object, o2, of class S2 is created, and the field imp of the
identity o points to the new object o2.

5.2 An example of translation

In this section we illustrate the translation of the classes in Example 5.1. Below we
give the result of the translation of class P, together with the definitions10 of classes
Identity and FickleObject that are added in the translation of any program.

10The declarations are just the signatures in some cases.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

class Identity extends Object{FickleObject imp;}

class FickleObject extends Object{Identity id;}

class P extends FickleObject{

int f1;

Identity m1(){} {

Identity s;

s = {

Identity theId; S1 theImp; theId=new Identity; theImp=new S1;

theImp.id=theId; theId.imp=theImp;

theId;

}

}

int m2(Identity x){} {

{

Identity theId; S2 theImp; R theLastImp;

if (isnull(theId=x)) then null

else {

theImp=new S2; theLastImp=(R)theId.imp; theImp.id=theId;

theId.imp=theImp; theImp.f1=theLastImp.f1;

}

theId;

}

1;

}

int m3(Identity x){} {

{

Identity theId; int arg;

theId=x;

arg={

Identity theId1; Identity arg1;

theId1= this.id;

arg1=x;

((P)(theId1.imp)).m2(arg1);

}

((R) (theId.imp)).m(arg);

}

}

int m4(Identity x){}{

int rightval;

rightval = ((P)(this.id.imp)).m2(x);

((R) (x.imp)).f1 = rightval;

}

int m(int x){this.id.imp.f1=x;}

}

The translation maps the FickleII class P into the Java class P, which extends
FickleObject, and hence inherits field Identity id.

We now consider the translation of method m1. First of all, note that type R in
the result type of the method and in the local variable declaration is translated to
Identity. Indeed, a property of the translation is that expressions of a class type
are translated to expressions of type Identity (see Theorem 7.1).

The translation of the method body also demonstrates the encoding of the cre-
ation of a new object of class S1: As explained above, two new objects (the identity
and the implementor) are created, which point to each other through their fields
imp and id, respectively. Then, the identity object is returned.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 25

The translation of method m2 demonstrates the encoding of the re-classification of
the parameter x to S2. First of all, it is necessary to check whether x is null, since
in this case the re-classification will have no effect. Otherwise, a new implementor
object of class S2 is created and this implementor object and the identity object
are made to point to each other. Moreover, all fields common to the new and old
implementor object,11 are copied from the old (theLastImp) to the new (theImp)
implementor object.

The translation of method m3 demonstrates the encoding of method calls. Con-
sider the external method call x.m(...). First, the receiver (the variable x) is
evaluated and assigned to the auxiliary variable theId. Second, the argument
(the method call this.m2(x)) is evaluated. Finally, the current implementor,
theId.imp, of the receiver is selected and the method m is invoked on it. If x
is null then theId.imp raises a null pointer exception. Note, that the implemen-
tor can be correctly selected only after the evaluation of the argument, because this
evaluation could re-classify the receiver object. This is exactly what happens in
this case: namely, the receiver is reclassified from S1 to S2, and thus the method m
from class S2 has to be executed; if we selected the implementor earlier, then the
method m from class P would be executed instead, which contravenes the FickleII
semantics. This is the reason for the introduction of the auxiliary variables theId
and arg. For the same reason, there is a cast to R (indeed, since evaluation of the
argument could re-classify the receiver, we can only assume that the implementor
has type R).

The internal method call is translated in the same way. Note that the cast to P
is necessary because the field imp has type FickleObject.

The translation of method m4 demonstrates the encoding of field assignment. The
schema is analogous to that for method calls, except that here we have optimized
the translation omitting unnecessary blocks and local variables. However, as in
method m3, it is necessary to select the implementor only after evaluation of the
right hand side of the assignment, because this evaluation could also re-classify the
object containing the field; otherwise, 1 would be assigned to the field of the old
implementor.

The translation of the method m has been optimized too, as well as the translation
of the classes R, S1 and S2 below:

class R extends P {

}

class S1 extends R {

int m4(Identity x){}{

{

Identity theId; S2 theImp; R theLastThis; theId=this.id; theImp=new S2;

theLastThis=(R)(theId.imp); theImp.id=theId;

theId.imp=theImp;theImp.f1=theLastThis.f1;

theId;

}

((S2)this.id.imp).f2= ((S2)x.imp).f2;

}

}

11Common fields are those inherited from their common root superclass.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

class S2 extends R{

int f2;

int m(int x){}{((S2)this.id.imp).f2 = x}

}

6. TRANSLATION OF FICKLE II INTO FICKLE−
II: A FORMAL DEFINITION

In this section we give the formal definition of the translation.

6.1 Translation of programs

The translation of a FickleII program p consists of the declaration of the two
special classes FickleObject and Identity, together with the translation of all
classes declared in p. Since the translation of expressions depends on their types,
the program p is passed as parameter to the translation function for classes.

[[p]]prog
∆
= class Identity extends Object{FickleObject imp;}

class FickleObject extends Object{Identity id;}

[[class1]]class(p) . . . [[classn]]class(p), where p = class1 . . . classn

For simplicity, here we are implicitly assuming no name conflicts between the
classes and fields declared in p and the names FickleObject, Identity and id;12

however, such conflicts could be always avoided by a slightly more complex trans-
lation where class names and fields are suitably renamed.

6.2 Translation of classes

As previously said, each translated class extends class FickleObject. An object o
that needs to be re-classified to a state class c (recall that in the translation every
class except for Identity is subclass of FickleObject), and that is encoded by
the pair <id, imp>, is transformed into <id, imp′>, where imp′ denotes the new
implementor of class c (provided by a proper constructor of c; see definition below).
Fields are initialized so that the identity and the new implementor point to each
other. We introduce the translation of types.

Definition 6.1. Given a type t and a class c define:

—theType(t) = Identity if t is a class, and theType(t) = t otherwise, and
—theName(c) = FickleObject if c =Object, and theName(c) = c otherwise.

Each FickleII class c is translated into a single Fickle−II class containing the
translation of all field and method declarations of c.

The translation of fields and methods is the same for any kind of class. Since
the translation of expressions depends on their types, the program p and the class
c defining the type of this is passed as parameter to the translation function for
methods.

[[[root | state] class c extends c′{field1 · · ·fieldm meth1 · · ·methn}]]class(p)
∆
=

class c extends theName(c′){ [[field1]]field · · · [[fieldm]]field

[[meth1]]meth(p, c) · · · [[methn]]meth(p, c)
}

12Field imp of class Identity does not conflict since no translated class extends Identity.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 27

6.3 Translation of field and variable (i.e. parameter or local variable) declarations

[[t f]]field

∆
= theType(t) f

[[t x]]var
∆
= theType(t) x

6.4 Translation of method declarations

Translating methods consists of translating their bodies. Effects are omitted, and
types in the signature are substituted with their translation. Since the translation
of expressions depends on their types, the program p and the environment γ defin-
ing the type of the parameters and of this must be passed as argument to the
corresponding translation functions.

[[t m(t1 x1, . . . , tnxn) φ block]]meth(p, c)
∆
=

theType(t) m([[t1 x1]]var , . . . [[tn xn]]var){ }[[block]]expr(p, γ)
where γ = t1 x1, . . . , tn xn, c this

6.5 Translation of expressions

6.5.1 Values, variables, this, null test, field selection, and cast. In our encod-
ing, in order to access the current implementor of an object we have to select the
implementor currently pointed to by the identity of the object.

[[sval]]expr(p, γ)
∆
= sval

[[x]]expr(p, γ)
∆
= x

[[this]]expr(p, γ)
∆
= this.id

[[isnull(e)]]expr(p, γ)
∆
= isnull([[e]]expr(p, γ))

[[e.f]]expr(p, γ)
∆
= ((theName(c)) ([[e]]expr(p, γ).imp)).f

where p, γ ` e : c || γ′ || φ.

Downcasting to c is needed because field imp has type FickleObject.

[[(c)e]]expr(p, γ)
∆
= { Identity x;

if (isnull(x = [[e]]expr(p, γ)))
then null

else ((theName(c))(x.imp)).id
}

where γ(x) = Udf

6.5.2 Variable assignment, field assignment, and method call. Field f of the
object denoted by the translation of e is accessed through the implementor of
its identity. In earlier versions of the translation we naively translated variable
assignment expressions as follows: [[e]]expr(p, γ).imp.f = [[e1]]expr(p, γ). When we
tried to prove the correctness of the translation we discovered that this was not
correct. In particular, the evaluation of the translation of e1 could re-classify the
receiver of the assignment. Therefore, the selection of field imp from the translation
of e must occur after the evaluation of the translation of e1. We achieved this by
introducing auxiliary local variables. The same idea is applied to the translation of
method call.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

28 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

[[x = e]]expr(p, γ)
∆
= x = [[e]]expr(p, γ)

[[e.f = e1]]expr(p, γ)
∆
= { Identity x; theType(t) x1;

x = [[e]]expr(p, γ);
x1 = [[e1]]expr(p, γ1);
((φ2@ptheName(c))(x.imp)).f = x1

}
where p, γ ` e : c || γ1 || φ1 and p, γ1 ` e1 : t || γ2 || φ2, and γ(x) = γ(x1) = Udf .

[[e.m(e1, . . . , en)]]expr(p, γ)
∆
= { Identity x; theType(t1) x1; . . . theType(tn) xn;

x = [[e]]expr(p, γ);
x1 = [[e1]]expr(p, γ0);
. . .
xn = [[en]]expr(p, γn−1);
(((φ1 ∪ · · · ∪ φn)@ptheName(c))(x.imp)).m(x1, . . . , xn)

}
where p, γ ` e : c || γ0 || φ0, for all i ∈ {1, . . . , n} p, γi−1 ` ei : ti || γi || φi,

and γ(x) = γ(x1) = · · · = γ(xn) = Udf .

6.5.3 Object creation and re-classification. According to the FickleII semantics,
only the fields of the root superclass are preserved by re-classification.

[[new c]]expr(p, γ)
∆
= { theName(c) theImp;

Identity theId ;
theId = new Identity;
theImp = new theName(c);
theImp.id = theId ;
theId .imp = theImp;
theId

}
where γ(theImp) = Udf , γ(theId) = Udf

[[this!!c;]]expr(p, γ)
∆
= { Identity theId ;

theName(c) theImp;
R(p, c) theLastThis;
theId = this.id;
theImp = new theName(c);
theLastThis = (R(p, c))(theId .imp);
theId .imp = theImp;
theImp.id = theId ;
theImp.f1 = theLastThis.f1;
. . .
theImp.fr = theLastThis.fr;
theId

}
where {f1, . . . , fr} = Fs(p,R(p, c)) and γ(theImp) = γ(theId) = γ(theLastThis) = Udf

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 29

[[x!!c;]]expr(p, γ)
∆
= { Identity theId ;

theName(c) theImp;
R(p, c) theLastImp;
if (isnull(theId = x))
then null

else { theImp = new theName(c);
theLastImp = (R(p, c))(theId .imp);
theId .imp = theImp;
theImp.id = theId ;
theImp.f1 = theLastImp.f1;
. . .
theImp.fr = theLastImp.fr

};
theId

}
where {f1, . . . , fr} = Fs(p,R(p, c)) and γ(theImp) = γ(theId) = γ(theLastImp) = Udf
6.5.4 Conditionals and blocks.

[[if e then e1 else e2]]expr(p, γ)
∆
=

if [[e]]expr(p, γ) then [[e1]]expr(p, γ0) else [[e2]]expr(p, γ0)
where p, γ ` e : bool || γ0 || φ0

[[{t1 x1; . . . ; tsxs; e1; . . . ; en}]]expr(p, γ)
∆
= { [[t1 x1]]var ;

. . .
[[ts xs]]var ;
[[e1]]expr(p, γ0);
. . .
[[en]]expr(p, γn−1)

}
where, γ0 = γ[x1 7→t1, . . . , xs 7→ts] and for all i ∈ {1, . . . , n} p, γi−1 ` ei : t′i || γi || φi

7. PROPERTIES OF THE TRANSLATION

In this section we formalize and prove the good properties of the translation previ-
ously mentioned.

7.1 Preservation of static semantics

For any environment γ, its translation [[γ]] is defined by

[[γ]] = {theType(t) x | γ(x) = t} ∪ {theName(γ(this)) this}.
Theorem 7.1. Let p be a program s.t. ` p 3, γ, and γ′ environments s.t. p `

γ(this) 3ct, e an expression, t a type and φ an effect.
If p, γ ` e : t [] γ′ [] φ, then [[p]]prog , [[γ]] ` [[e]]expr(p, γ) : theType(t) [] [[γ]] [] { }.

Proof. See Appendix B.

Theorem 7.2. Let p be a program s.t. ` p 3, and c a class name. If p ` c 3,
then [[p]]prog ` c 3.

Proof. See Appendix B.

Theorem 7.3. Let p be a program. If ` p 3, then ` [[p]]prog 3.

Proof. See Appendix B.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

30 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

7.2 Preservation of dynamic semantics

In this section we show that the dynamic semantics of expressions is preserved by
the translation.

We introduce a relation between stores p, γ ` σ ≈ σ′ that expresses the fact that
store σ′ contains the “translation” of the objects in store σ. More precisely, an
object o of class c in σ is translated in σ′ into an object of class Identity whose
imp field points to an implementor object o′ that is an instance of the translation
of the class c. Values of identifiers in σ are preserved in σ′, except for this, whose
value in σ′ is (the address of) an implementor object whose id field points to the
address that is the value of this in σ. The store σ and σ′ (except for this), are
assumed to agree with the environments γ and [[γ]], that is, they contain values
that agree, w.r.t. typing, with their definitions (see Fig. 9 for the formal definition
of p, γ ` σ 3). Regarding the agreement of this in store σ′, observe that the store
σ′′ resulting from the evaluation of the translation of the re-classification of this,
from class c to class d, is such that σ′′(this) = ι and σ′′(ι) = [[id : ι′ · · ·]]c,
(the translation of the expression does not contain re-classifications, whereas the
original expression did) and σ′′(σ′′(ι′))(imp) = [[id : ι′ · · ·]]d. So σ′′(this) does
not agree with d but agrees with c that is the type of this before re-classification.

Definition 7.4. Let p be a program, γ an environment, σ and σ′ stores such
that p, γ ` σ 3 and [[p]], [[γ]][this 7→ c] ` σ′ 3, for some c. We say that σ′ is the
translation of σ, and write p, γ ` σ ≈ σ′, if

(1) σ(this) = σ′(σ′(this))(id)
(2) for all x , γ(x) 6= Udf implies σ(x) = σ′(x), and
(3) for all ι, if σ(ι) = [[f 1 : v1, . . . , f n : vn]]

c then
—σ′(ι) = [[imp : ι′]]Id,
—σ′(ι′) = [[id : ι, f 1 : v1, . . . , f n : vn]]

theName(c).

for a suitable renaming of the addresses in σ′ (or σ).

We can now state the theorem that asserts that our translation is adequate. The
proof of the theorem is in Appendix C.

Theorem 7.5. Let e be an expression such that: p, γ ` e : t [] γ′ [] φ, and σ,
and σ1, be stores such that p, γ ` σ ≈ σ1. Then

e, σ ;
p

w, σ′ if and only if [[e]], σ1 ;[[p]] w, σ′1

where either

—w = v, and p, γ′ ` σ′ ≈ σ′1, or
—w ∈ {castExc, nullPntrExc}.

Proof. See Appendix C.

Remark 7.6. From the preservation of dynamic semantics we derive that, the
casts introduced by the translation are all safe, since if the original program did not
rise a cast exception also its translation does not raise a cast exception. Indeed, the
casts are needed to obtain the preservation of static semantics, that is to convince
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 31

the type checker that the field imp of Identity objects has the right type. Note
that, during the lifetime of an Identity object such type may change, so the field
imp cannot be given a specific re-classifiable type. As we will see, also with a
translation in which the field imp has a generic type we cannot avoid some cast (see
Section 9), since a generic type must be instantiated to a specific (re-classifiable)
type upon creation.

8. ISABELLA, A PROTOTYPE IMPLEMENTATION

Our prototype implementation, Isabella, see [Anderson 2003], follows Version 4
to map Ficklest onto Java. It is an extension of Carmela [Anderson 2001], which
followed Version 1. Isabella is written in Java and follows a design based on the Sun
Java compiler (version 1.4). Isabella consists of a type checker and code generator,
both implemented using the visitor pattern [Gamma et al. 1995] as in the Java
compiler. The whole compiler consists of approximately 6000 lines of code and can
be found at http://www.macs.hw.ac.uk/DART/software/isabella/index.html.
Isabella extends Ficklest in order to make testing easier, the extensions include:

—Output via System.out

—Integers and booleans with relevant operations such as ++,-- etc.

One of the challenges in Isabella was representing the blocks of code that arise in
the translation Version 4. Noting that Java does not allow blocks as expressions,
any entity in the source that requires a block of code in the translation must be
represented as a flattened statement and a fresh local variable to contain the result.
The variable can then be used where the value of the block is required.

For example, consider the translation of a = new DailyAccount (); a.transact
(1200);a.interest();. For expression, a = new DailyAccount () we first
translate new DailyAccount to get:

DailyAccount s1;
Identity s2;
s2= new Identity();
s1= new DailyAccount();
s1.id = s2;
s2.imp = s1;

Note the use of new temporary variables s1 and s2, with the result being in
variable s2. The assignment to variable a is represented as a = s2. For method
call a.transact(1200) we have:

Identity s3 = a;
int s5 = 1200;
((Account)(s3.imp)).transact (s5);

Note the use of temporary variables s3 for the receiver and s5 for the argument.
As method transact is void we have no temporary variable for the return value.
Finally for method call a.interest(); we have:

Identity s6 = a;int s7;
s7 = ((Account)(s6.imp)).interest ();

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

32 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

As with the previous method call we have a temporary variable for the receiver
and in this case a temporary variable for the result s7.

Thus, the code produced by Isabella is identical to that produced by the trans-
lation given in this paper, apart from erasure of blocks and the extra features
mentioned above.

9. TRANSLATING FICKLE ST INTO JAVA 1.5

As seen in Section 8, the prototype Isabella translates Ficklest into Sun Java 1.4
by following the formal translation of FickleII into Fickle−II defined in Section 6.
However, during the review process of this article, the new version 1.5 of the Sun
Java Compiler was released, including the new interesting features of generics and
wildcards [Joy et al. 2005].

This section informally proposes a new translation schema which is still mainly
based on Version 4 from Section 6, but exploits the expressive power of generics and
wildcards, and uses Java 1.5 as target language. This new approach has two main
advantages: first, it is possible to minimize the insertion of cast operators needed for
ensuring the type safety of the code generated by the translation. Second, method
overloading is supported, since the subtyping relation is fully preserved by the new
translation.

These advantages come at the cost of an increased complexity of the translation
scheme; for reasons of space and time limits, no formal definition is provided here,
but only the basic ideas are outlined by means of examples. We leave to future
work the full formalization, which would include the extension of Fickle−II (and,
thus, of FickleII as well) with generics, and the adaptation of the proofs presented
here.

Remark. Even though the translation scheme outlined here represents a signif-
icant improvement, the two advantages mentioned above are lost at the bytecode
level, because of the limitation of the JVM implementation of generic classes which
relies on type erasure.13

Despite this, the translation scheme presented here is more appealing than the
one on which the prototype Isabella is based; clearly, the only source of problem
is the JVM limitation, which we hope will be eventually overcome in some future
release.

9.1 Definition of classes Identity and FickleObject

The main drawback of the translation Version 4 is that any field access or method
invocation requires a type cast in order to ensure the type correctness of the gen-
erated code. Consider, for instance, the classes in Example 5.1 and the following
code fragment:

P p; ... p.f1=1; (1)

According to Version 4, the code in (1) is translated into

13Basically, at the bytecode level each parameterized type C<T1,...,Tn> is translated into the
corresponding raw type C, and, consequently, appropriate type casts must be inserted by the
compiler.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 33

Identity p;
...
((P) p.imp).f1=1;

The type cast is needed since the type of imp is FickleObject. Because of type
preservation, we know that p.imp will always contain objects of type P; therefore,
the down cast will never throw an exception. However, the cast does affect the
performance of field access in the translated code. The same issue arrises with all
the translations in Section 4, except for Version 1. In Version 1 although the casts
are avoided the fields imp and id are redefined in each of the translated classes.
This results in each instance of a class with n ancestors having n+1 imp and n+1
id fields.

By replacing the class Identity with a generic class we can assign to field imp
the most specific correct type:

class Identity<X>{
X imp;
Identity(X imp){

this.imp=imp;
}

}

With this new definition of Identity we could translate code fragment (1) as
follows:

Identity<P> p;
...
p.imp.f1=1;

We see that the cast is no longer required because p.imp has type P.
Let us now consider how the translation of P needs to be modified w.r.t. Ver-

sion 4.
First, the translated class must have a field id of type Identity<P> (recall that

id is needed for retrieving the identity of this). Furthermore, we would like to
avoid duplication of id in the descendant classes; therefore, in the translation, field
id is declared once at the root of the class hierarchy, i.e., in class FickleObject
(the translation of Object), and each class is parametric in the type of field id:

class FickleObject<X extends FickleObject<?>>{
Identity<X> id;

}

class P<X extends P<?>> extends FickleObject<X>{
...
}

We see that P inherits the field id of type X from FickleObject, where X is a
type variable with upper bound P<?>. The type bounds in FickleObject and P
exploit wildcards [Joy et al. 2005]; if C is a generic class, then C<?> corresponds to
the existential type ∃ X≤Object.C<X>. In Section 9.3 we shall see why this upper
bound is essential for ensuring the type safety of the translation.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

34 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

C

S S

C CFix

SFix

TRANSLATION

Fig. 18. Mapping of the inheritance hierarchy

Note that the following alternative translation of class P:

class P extends FickleObject<P>{
...
}

would prevent the translation of the descendent classes of P inheriting id with the
most specific type. The two classes FickleObject and P serve as class generators.
The “fix-points” of these generators can be obtained by declaring two other classes:

class FickleObjectFix extends FickleObject<FickleObjectFix>{}

class PFix extends P<PFix>{}

The sole purpose of fixed point classes is to allow object creation without having to
resort to the use of raw types. Raw types allow the use of a name of a generic type
declaration without any accompanying actual type parameters; for instance, new
P() returns a new instance of the class obtained from P by erasing the parameter
X. However, the use of raw types is allowed only as a concession to compatibility of
legacy code; therefore, is strongly discouraged since it is possible that they will be
dropped from future versions of the Java programming language.

Generalizing the discussion above, the new proposed translation has to adhere to
the following pattern: each class C, with direct superclass S, is translated into two
classes named C and CFix having the following shape:

class C<X extends C<?>> extends S<X>{ // class generator
// the translation of the body of the original C is inserted here
...
}
class CFix extends C<CFix>{// fix-point of C
// the body is empty
}

Figure 18 shows the inheritance hierarchy produced by our translation.

9.2 Translation of reference types

Another important consequence of the use of generic classes is that the subtyping
relation can be fully preserved by the translation.

For Version 4 it is possible to prove that if two expressions have types t1 and t2
respectively, and t1 ≤ t2, then the two translated expressions have types t′1 and
t′2, respectively, such that t′1 ≤ t′2. This follows directly from Theorem 7.1 and
Lemma B.8 since all reference types are flattened to Identity. However, because
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 35

of the flattening, subtyping is obviously not preserved in the opposite direction.
Therefore, Version 4 does not support method overloading as in Java.

By using a generic version of the class Identity, we avoid the type flattening
and make it possible to preserve subtyping. However, our tentative translation of
P to Identity<P> does not work for several reasons.

First, in the translated program class P is a raw type; something we want to
avoid. Clearly, we cannot translate P into Identity<PFix>, because, as shown
in Figure 18, the classes CFix and SFix are unrelated; even though in the source
program C is a (direct) subclass of S. Therefore, the use of Identity<PFix> would
not preserve subtyping. However, in the translation, C is a (direct) subclass of
S; therefore, C<?> is a subtype of S<?>. This makes the translation of P into
Identity<P<?>> a possible candidate.

The difference between type P<?> and PFix is minimal; in the translated code
all implementors of P are instances of PFix. Both specify the same set of ac-
cessible class members with the same types except for field id which has type
Identity<PFix> in PFix and type Identity<?> in P<?>. In fact, type P<?> is the
most general non-raw type containing all the accessible members of P; despite its
generality it fits our purposes. We don’t require a type more specific than P<?>
because: (a) in each class generator the only member depending on the type pa-
rameter is the field id, inherited from FickleObject; (b) in the translation, the
field imp is never directly used as a target to access the id field; (c) if p has type
Identity<P<?>>, then p.imp has typeP<?>.

Finally, note that if C is subtype of S, then Identity<C<?>> is not a subtype of
Identity<S<?>>. By exploiting wildcards we see that Identity<? extends C<?>>
is a subtype of Identity<? extends S<?>>. Therefore, the correct translation of
code fragement (1) is:

Identity<? extends P<?>> p;
...
p.imp.f1=1;

Note that the inferred type for p.imp is P<?>; therefore, p.imp.f1 has, as expected,
type int.

Summarizing, a reference type C is translated14 to Identity<? extends C<?>>,
and it is not difficult to prove the following property:
C1 ≤ C2 iff Identity<? extends C1<?>> ≤ Identity<? extends C2<?>>.

9.3 Translation of expressions

So far, we have outlined the translation of class declarations (except for the bodies)
and of reference types. The translation of class bodies (that is, field and method
declarations) is immediate once one has specified how types and expressions are
translated. Therefore, it remains to show the translation of expressions. Because
of space limits, we do not provide a general definition, but only show the behavior
of the translation on some examples. We only focus on those kinds of expression
whose translation is different from Version 4.

14This translation is only applied to types used in field and local variable declarations, and in
method headers. We refer to Section 9.3 for the translation of types used in cast expressions.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

36 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

The whole translation of Example 5.1 has been tested and can be found in Ap-
pendix D.

Member access and assignment. As already shown, the translation is the same
as in Version 4, except for the avoidance of type casts.

Instance creation. Let us consider the translation of S1 s1=new S1:

Identity<? extends S1<?>> s1;
S1Fix temp=new S1Fix();
temp.id=new Identity<S1Fix>(temp);
s1=temp.id;

Note that the inferred type of temp.id is Identity<S1Fix>; by definition, S1Fix
is a subtype of S1<S1Fix> which, in turn, is a subtype of S1<?>. Therefore,
Identity<S1Fix> is a subtype of Identity<? extends S1<?>>, and the last as-
signment is statically correct.

Type cast. Let us consider the translation of R r=(R) p where we assume that
p has type P:

Identity<? extends R<?>> r = ((p==null)?null:((R<?>) p.imp).id);

As happens in Version 4, if the object is null then the cast succeeds and null
is returned. Otherwise, the cast must be performed on the implementor and, if
successful, the identity is returned.

One could be tempted to give the simpler translation:

Identity<? extends R<?>> r = (Identity<? extends R<?>>) p;

which works only in principle. Because the implementation of generics is based on
type erasure, the cast above would be unchecked. That is, the cast could succeed
when it should not. To see why, observe that Identity<? extends P<?>> is not
a subtype of Identity<? extends R<?>>, but both erase to Identity. If we
consider the implementor field, imp, as in our proposed translation of casts, we
can elide the problem. For example, an expression e of type C will translate to an
expression e′ of type C′, where the imp field of e′ has type C<?>. Recall that, the
erasure of type C<?> always preserves subtyping, i.e., C1 ≤ C2 iff C1<?> ≤ C2<?>.
Hence, the cast to R<?> instead of Identity<? extends R<?>> is equivalent to
casting to the corresponding raw type R which is always checked in Java.

We now give some explanation of why the proposed translation is type safe. If
we assume that p has type P in the source code, then p has type Identity<?
extends P<?>> in the translated code. Therefore, p.imp has type P<?> which
is a supertype of R<?>; this means that the cast expression is statically correct.
Finally, note that id is accessed only after the cast has been performed; therefore,
the assigned expression has type Identity<? extends R<?>>, which is the type of
r. This follows because, according to the translation, the upper bound of the type
parameter in R is R<?>.

Object re-classification, this and variables. Let us assume that s1 has type S1
in the following code fragment:
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 37

s1!!S2;
s1.f2=2;

According to the new translation, the assignment expression after the re-classification
of s1 is translated into s1.imp.f2=2. Since in the code generated by the transla-
tion the type of s1 becomes Identity<? extends<S1<?>>, it follows that s1.imp
has type <S1<?> which implies that the expression is ill-typed.

A possible solution to this problem consists in mimicking the approach followed
in the type system. Indeed, according to the typing rules of FickleII, after the
re-classification the type of s1 in the type environment becomes S2. Since the
static type of s1 cannot be changed, what the translation can do is to “replace”
the old variable s1 with a new variable, say s1_S2, declared with the proper new
type (in this case, the translation of S2, that is, Identity<? extends S2<?>>),
and referencing the same object as s1.

The translation has to keep track of this name change, in order to properly
translate the next occurrences of s1 into s1_S2, as happens with the assignment
immediately following the re-classification:

Identity<? extends S2<?>> s1_S2=null;
if(s1!=null){

S1<?> oldImp=s1.imp;
S2Fix temp=new S2Fix();
temp.f1=oldImp.f1;
temp.id=(Identity<S2Fix>) (Object) s1;
temp.id.imp=temp;
s1_S2=temp.id;

}
s1_S2.imp.f2=2; // must use s1_S2 and not s1!!!

After re-classification, s1 and s1_S2 contain the same object; what changes is their
static type. Since temp.id and s1 have type Identity<S2Fix> and Identity<?
extends S1<?>> respectively, and the former type is not a supertype of the latter,
a type cast is needed to make the assignment statically correct. However, since
the types of temp.id and s1 are unrelated, the expression (Identity<S2Fix>) s1
would not be type correct. The problem can be avoided by first inserting a cast
to Object (this is always allowed and type safe). Note that the second cast to
Identity<S2Fix> is unchecked because of type erasure (recall the comments in the
previous paragraph). Type preservation ensures that temp.id is never used in an
unsafe way.

Finally, note that for the same reason explained above, the expression this.id,
used in Version 4 for accessing members of this, has to be replaced with a corre-
sponding variable whose name and type depends on the context (for instance, see
the translation of method m5 in Appendix D).

10. RELATED WORK

Several other approaches to the expression of fundamental change of behaviour
have been suggested. Predicate classes [Chambers 1993; Ernst et al. 1998] support
a form of dynamic classification of objects based on their run-time value: Code is

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

38 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

broken down on a per-function basis, while Fickle follows the mainstream, where
code is broken down on a per-class basis. Similarly, for single method dispatch, in
[Tailvasaari 1992] classes have “modes” representing different states, e.g., opened
vs. iconified window. Wide classes from [Serrano 1999] are the nearest to our
approach; they allow an object to be temporarily “widened” or “shrunk”, to a sub-
class or a superclass. However they differ from Fickle, by dropping the requirement
for a strong type system, and requiring run-time tests for the presence of fields.
Finally, the language Gilgul [Costanza 2001] is an extension of Java that allows
for dynamical object replacement through implementation-only classes, i.e., classes
that cannot be used as types. Objects belonging to a Java class can be replaced
only by instances of the same class or of any subclass, while objects belonging to
an implementation-only class can be replaced also by instances of any class having
the same least non-implementation-only superclass. Like the other approaches we
discussed, Gilgul is not strongly typed, and a run-time exception is raised when
a forbidden object replacement is attempted.

Promoting innovation by extending a popular existing language, and defining the
new language features by translation into the old, is a widely-used technique that
has been proved successful in many cases. For the Java case, a seminal work has
been that on Pizza [Odersky and Wadler 1997], the first proposal for an extension
of Java with generics (and also higher-order functions and algebraic data types),
hence we report here some general ideas from this paper. The authors first identify
as essential goals a Java extension should meet the fact that new code should
compile into the Java Virtual Machine, and that existing code compiled from Java
should smoothly inter-operate with new code. However, since JVM and Java are
tightly coupled, a language that compiles into JVM can lose little in efficiency
and gain much in clarity by translating into Java as an intermediate stage. When
an extension is directly implemented by translation, inter-operability amounts to
say that the translation is the identity on old code. This paper also introduces
the heterogeneous and homogeneous terminology for translation of generics. A
heterogeneous translation produces a specialised copy of code for each instantiation,
yielding code that runs faster, whereas a homogeneous translation uses a single
copy of the code with a universal representation, yielding more compact code. The
homogeneous translation is at the basis of GJ [Bracha et al. 1998] and of the new
version 1.5 of the Sun Java Compiler.

Also implementation of Jam [Ancona et al. 2003], a Java extension supporting
mixin classes (parametric heir classes) is done by translation into Java source code.
The current prototype translates each mixin instantiation into a Java class ob-
tained, roughly, by extending the parent by a copy of the definitions contained in
the mixin, that is, adopts a heterogeneous translation, which favors running time
of the generated code, penalizing size and modularity. In particular, the approach
is not compatible with separate compilation, since for translating a mixin instanti-
ation the mixin source code is needed. Alternative solutions could be homogeneous
translation or direct generation of bytecode, as done in Jiazzi, a system for con-
structing and linking components in Java [McDirmid et al. 2001].

Translations into plain Java have also been adopted for explaining the semantics
of inner classes [Igarashi and Pierce 2002] and for extending Java with parasitic
methods [Boyland and Castagna 1997], an encapsulated form of multimethods. The
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 39

MultiJava project [Clifton et al. 2004], an extension that adds open classes and sym-
metric multiple dispatch, adopts compilation into Java bytecode. The compilation
schema has been carefully designed to overcome a major obstacle to adding sym-
metric multimethods to an existing statically-typed programming language, that
is, their modularity problem (solved by employing asymmetric multiple dispatch
in [Boyland and Castagna 1997]). In MultiJava, each class can be compiled sep-
arately. Moreover, MultiJava retains backward-compatibility and interoperability
with existing Java source and bytecode.

Summarizing the work above, we can say that the issues that any Java extension
should deal with are compilation in either source or bytecode, preserving separate
compilation, and inter-operability with Java code. In addition, extensions that
allow to write parametric code in place of many instances must choose a hetero-
geneous or homogeneous approach: however, this is not the case of our extension
that goes in the direction of a more flexible run-time behaviour. The Fickle compi-
lation schema presented in this paper chooses the approach of translation into Java
source code, which, as mentioned above, is the most appropriate for a prototype
mainly aiming at showing a clear and simple semantics of the extension. Gaining
in efficiency via direct generation of Java bytecode could be investigated, but we
do not think it would cause major changes in the translation. An important result
is that our translation allows separate compilation, since a Fickle class can be com-
piled in a context where only type information on other Fickle classes is available.
On the contrary, inter-operability with old code is an important issue for further
work. Currently, translation of plain Java classes is not the identity, hence we can-
not compile separately Fickle code in a context where Java bytecode produced by
standard compilation is available, since Fickle code does not manipulate objects as
standard Java objects but via identity and implementor fields.

11. CONCLUSIONS AND FURTHER WORK

We have defined a translation from FickleII into Fickle−II (the subset of FickleII
without re-classification), and have proven that this translation is well-behaved in
the sense that it preserves static and dynamic semantics. The translation described
in this paper is the basis of Isabella, an implementation that maps Ficklestonto Java.

We believe that the work presented in this paper is significant for (at least)
two complementary reasons. On the one hand, it is a worked example of a formal
description of an implementation technique, based on few clean ideas and supported
by a complete correctness proof. Though much other work would be necessary in
order to have a real implementation (see discussion below), the formalization given
here provides a solid starting point where many subtle problems have been already
solved in a simplified context, and the proofs give us confidence in the correctness.
On the other hand, the work we carried out can also be considered a nice example
of how formalization can help in the development of an implementation. Let us
illustrate this point more in detail.

This work started when we decided to implement FickleII through a translation
into Java. In the beginning, we expected the translation to be straightforward, and
the formal work and the various prototype implementations mentioned in Sect. 4
take place in parallel. However, as soon as we started to reason about correctness,
we realized that the translation had to be based on a simple formal correspondence

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

40 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

between FickleII objects and Fickle−II objects, and also between FickleII heaps
and Fickle−II heaps. These invariants were necessary for the formulation of the
theorems, but also expressed concepts that arose naturally as properties of the
translation. Through the investigation of these invariants, we discovered several
alternative designs, as discussed in Section 4.1, and we were able to compare them
on a formal basis. Therefore, we conclude that the formalization of the translation
and its properties was indispensable, and that any such translation tasks should
not be attempted without.

Moreover, formal reasoning allowed us to discover design errors at a very prelim-
inary stage, e.g., the translation of field assignment and method call (see Section
6.5.2).

Except for the prototype implementations, we are interested in investigating the
possibility of implementing an extension of Java with re-classification. From this
point of view, our translation is a good basis since it exhibits the following additional
properties:

—It is fully compatible with Java separate compilation, since each FickleII class can
be translated without having other class bodies. Therefore, it would be sufficient
to have the other classes in binary form, as done by current Java compilers.

—The dependencies across classes are exactly those of standard Java compilation,
in the sense that a FickleII class can be translated only if the type information
from all the ancestor and all used classes is available.

Further work includes the extension of FickleII onto the full Java language. On the
one hand, such an extension should take into account other Java features (like over-
loading) that, though in principle orthogonal to re-classification, should be carefully
analyzed in order to be sure that the interaction behaves correctly. On the other
hand, as mentioned above, an extended compiler should be able to work even in a
context where only binary files are available, while our prototype implementation
works on source files. Finally, the issue of inter-operability with code produced by
standard Java compilation should be considered.

A. DEFINITIONS OF LOOKUP, SUBTYPES, ACYCLIC PROGRAMS, AND AGREE-
MENTS

Fig. 19 defines the judgment ` p 3u, which guarantees that a program has unique
definitions. In the judgment defs is defined by

defs ::= (field | meth)∗

The first requirement says that there should be no more than one class definition
for any identifier c – note that it implicitly guarantees c′ = c′′ and that the class
bodies are identical. The second requirement says that there should be no more
than one field definition in c for any identifier f – note that it implicitly guarantees
t = t′. The third requirement says that there should be a unique method definition
in c for any identifier m – note that it implicitly guarantees t = t′, t1=t′1, . . . ,
tq=tq′ , x 1=x ′1, . . . , x q=x q′ , φ=φ′, and block = block ′.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 41

∀c : p = p1 [root | state] class c extends c′{ . . . } p2,
p = p3 [root | state] class c extends c′′{ . . . } p4

=⇒ p1 = p3, p2 = p4

∀f : p = p1 [root | state] class c extends c′{ defs1 t f defs2 } p2,
p = p1 [root | state] class c extends c′{ defs3 t′ f defs4 } p2

=⇒ defs1 = defs3, defs2 = defs4;
∀m : p = p1 [root | state] class c extends c′{ defs1 t m ((t1 x1, . . . , tq xq)) φ block defs2 } p2,

p = p1 [root | state] class c extends c′{ defs3 t′ m ((t′1 x ′1 . . . , t′n x ′n)) φ′ block ′ defs4 } p2

=⇒ defs1 = defs3, defs2 = defs4

` p 3u

Fig. 19. Programs with unique definitions

For program p with ` p 3u, class name c 6= Object, and qualifier qual = root,
or qual = state, or qual = ε, we define the lookup of the class declaration for c:

C(p, c) =
{

qual class c extends c′{defs} if p = p′ qual class c extends c′{cBody} p′′,
Udf otherwise

The assertion p ` c v c′, defined in Fig. 20, means that the class c is a subclass
of c′. The class hierarchy in a program p is well-formed, i.e., ` p 3h, if the
subclass relationship is acyclic, root classes extend only non-root and non-state
classes, and state classes extend either root classes or state classes. Notice that
` p 3u whenever ` p 3h.

It is straightforward to prove the following properties of programs with well-
formed inheritance hierarchies: Two types that are in the subclass relationship are
classes, the relation v is reflexive, transitive and antisymmetric, and the subclass
hierarchy forms a tree with Object at its root.

The following judgments, also defined in Fig. 20, distinguish the kinds of classes:
p ` c 3ct means that c is any class, p ` c 3rt means that c is a re-classifiable
type i.e., either a root or a state class. The judgment p ` t 3ft means that t is a
non-state type, i.e., either a primitive type or a non-state class.

Widening, the extension of the subclass relationship to types, is expressed by the
assertion p ` t ≤ t′, and is also defined by the rules in Fig. 20.

Environment lookup and update, and the least upper bound operation on types
and environments are defined in Fig. 21.

For program p with ` p 3h, class name c such that

C(p, c) = [root | state] class c extends c′{defs},

field name f and method name m we define:

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

42 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

FD(p, c, f) =
{

t if defs = . . . t f . . .
Udf otherwise

F(p, c, f) =
{
FD(p, c, f) if FD(p, c, f) 6= Udf ,
F(p, c′, f) otherwise

F(p, Object, f) = Udf
Fs(p, c) = {f | F(p, c, f) 6= Udf }

MD(p, c,m) =
{

t m((t1 x1 , . . . , tn xn))φ body if defs = . . . t m ((t1 x1 . . . tn xn))φ body . . .
Udf otherwise

M(p, c,m) =
{
MD(p, c,m) if MD(p, c,m) 6= Udf ,
M(p, c′,m) otherwise

M(p, Object,m) = Udf

` p 3u

p ` Object v Object

` p 3u

p = . . .[root | state] class c extends c′{ . . . } . . .

p ` c v c
p ` c v c′

p ` c v c′

p ` c′ v c′′

p ` c v c′′

∀c, c′ :
p ` c v c′ and p ` c′ v c =⇒ c = c′

C(p, c) = class c extends c′ { . . . } =⇒ C(p, c′) = class c′ . . .
C(p, c) = root class c extends c′ { . . . } =⇒ C(p, c′) = class c′ . . .
C(p, c) = state class c extends c′ { . . . } =⇒

((C(p, c′) = root class c′ . . .) or (C(p, c′) = state class c′ . . .))

` p 3h

` p 3h

C(p, c) = class c...

p ` c 3ft

p ` c 3ct

` p 3h

C(p, c) = root class c...

p ` c 3ft

p ` c 3rt

p ` c 3ct

` p 3h

C(p, c) = state class c...

p ` c 3rt

p ` c 3ct

p ` bool 3ft p ` bool ≤ bool

p ` c v c′

p ` c ≤ c′

Fig. 20. Subclasses, well-formed inheritance hierarchy, subtypes

B. PROOF OF PRESERVATION OF STATIC SEMANTICS

We write γ ⊆ γ′ if for all id γ(id) 6= Udf ⇒ γ(id) = γ′(id).

Lemma B.1. Let p be a program, γ, γ′ two environments s.t. γ ⊆ γ′, e an
expression, and t a type.
If p, γ ` e : t [] γ [] { }, then p, γ′ ` e : t [] γ′ [] { }.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 43

γ = x1 : t1, . . . , xn : tn , this : c

γ(id) =

{
ti if id = x i

c if id = this

Udf otherwise

γ[id 7→ t](id′) =

{
t if id′ = id

γ(id′) otherwise

t1 tpt2 =

{
t if p ` t1 ≤ t p ` t2 ≤ t ∀t′.(p ` t1 ≤ t′ and p ` t2 ≤ t′) ⇒ p ` t ≤ t′

Udf otherwise

γ tpγ′ = {id : (t tpt′) | γ(id) = t and γ′(id) = t′}

Fig. 21. Environment lookup and update, lub on types and environments

Proof. First, by induction on the typing rules for expressions the following
claim can be proved:

(∗) if p, γ ` e : t [] γ′ [] { }, then γ = γ′.

Then, the lemma is proved by induction on the typing rules using claim (∗).

Lemma B.2. Let p be a program, γ, γ′ two environments, e an expression, t a
type, and φ an effect.
If p, γ ` e : t [] γ′ [] φ is provable, then [[γ]] = [[γ′]].

Proof. By induction on the typing rules for expressions.

Lemma B.3. Let p be a program s.t. ` p 3, c, c′ two class names s.t. p ` c ≤ c′,
f a field name, m a method name, t, t1, . . . , tn types (n ≥ 0), x1, . . . , xn variables,
and φ an effect. Then

(1) F(p, c′, f) = t ⇒ F(p, c, f) = t

(2) M(p, c′,m) = t m((t1 x1, . . . , tn xn)) φ { ... } ⇒
M(p, c,m) = t m((t1 x1, . . . , tn xn)) φ′ { ... } for some effect φ′.

Proof. By induction on the height of the inheritance tree.

Lemma B.4. Let p be a program s.t. ` p 3, c a class name, f a field name, m
a method name, t, t1, . . . , tn types (n ≥ 0), x1, . . . , xn variables, and φ an effect.
Then

(1) F(p, c, f) = Udf ⇒ F([[p]]prog , theName(c), f) = Udf ;
(2) F(p, c, f) = t ⇒ F([[p]]prog , theName(c), f) = theType(t);
(3) M(p, c,m) = Udf ⇒M([[p]]prog , theName(c),m) = Udf ;
(4) M(p, c,m) = t m((t1 x1, . . . , tn xn)) φ { ... } ⇒

M([[p]]prog , theName(c),m) = theType(t) m((theType(t1) x1, . . . , theType(tn) xn)) { } { ... }.

Proof. By induction on the height of the inheritance tree.

Lemma B.5. Let p be a program s.t. ` p 3, and c a class name s.t. p ` c 3ct.
Then F([[p]]prog , theName(c), id) = Identity.

Proof. By induction on the height of the inheritance tree.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

44 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

Lemma B.6. Let p be a program s.t. ` p 3, and c a class name s.t. p ` c 3ct.
Then [[p]]prog ` theName(c) ≤ FickleObject.

Proof. By induction on the height of the inheritance tree.

Lemma B.7. Let p be a program.
If ` p 3, then ` [[p]]prog 3h.

Proof. By induction on the height of the inheritance tree.

Lemma B.8. Let p be a program, and t, t′ two types.
Then p ` t ≤ t′ implies [[p]]prog ` theType(t) ≤ theType(t′).

Proof. Trivial.

Lemma B.9. Let p be a program s.t. ` p 3. Then [[p]]prog ` Identity 3ct.

Proof. Trivial.

Lemma B.10. Let p be a program s.t. ` p 3. Then
F([[p]]prog , Identity, imp) = FickleObject.

Proof. Trivial.

Lemma B.11. Let p be a program s.t. ` p 3, t a type, and φ an effect.
Then p ` t ≤ φ@pt.

Proof. Trivial.

Lemma B.12. Let p be a program s.t. ` p 3, and t, t′ two types.
Then theType(t tpt

′) = theType(t) t[[p]]prog theType(t′).

Proof. Trivial.

Proof of Theorem 7.1

Proof. The proof proceeds by induction on the typing rules (or, equivalently,
on the structure of expressions) and by case analysis on the kinds of expressions and
relies on the fact that the generation (or inversion) lemma for the typing relation,
see [Pierce 2002], is trivial since there is a one-to-one relation between typing rules
and kinds of expressions.

Cases e ≡ true, false are trivial.
Case e ≡ id .

If id ≡ x , then [[e]]expr(p, γ) ≡ x and by hypothesis γ(x) = t, therefore [[γ]](x) =
theType(t) and we can conclude by applying the suitable typing rule.
If id ≡ this, then [[e]]expr(p, γ) ≡ this.id and by hypothesis γ(this) = t, with
p ` t 3ct and t 6= Object; therefore theType(t) = Identity, theName(t) = t,
[[γ]](this) = t, and Lemma B.5 is applicable hence F([[p]]prog , t, id) = Identity; we
conclude by applying the suitable typing rules.

Case e ≡ null.
Then [[e]]expr(p, γ) ≡ null and by hypothesis p ` t 3ct, therefore theType(t) =
Identity and by Lemma B.9 [[p]]prog ` Identity 3ct, hence we can conclude by
applying the suitable typing rule.

Case e ≡ isnull(e′).
Then [[e]]expr(p, γ) ≡ isnull([[e′]]expr(p, γ)) and by hypothesis p, γ ` e′ : c [] γ′ [] φ,
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 45

therefore by inductive hypothesis [[p]]prog , [[γ]] ` [[e′]]expr(p, γ) : Identity [] [[γ]] [] { },
hence we can conclude by applying the suitable typing rule.

Case e ≡ new c.
Then [[e]]expr(p, γ) ≡ { theName(c) theImp;

Identity theId ;
theId = new Identity;
theImp = new theName(c);
theImp.id = theId ;
theId .imp = theImp;
theId

}
where theImp and theId are chosen s.t. γ(theImp) = Udf , γ(theId) = Udf . By hy-
pothesis p ` t 3ct, therefore theType(t) = Identity; furthermore by Lemmas B.5,
B.10 and B.6 it is possible to apply the suitable typing rules to derive the conclusion.

Case e ≡ (c) e′.
Then [[e]]expr(p, γ) ≡ { Identity x;

if (isnull(x = [[e′]]expr(p, γ)))
then null
else ((theName(c))(x.imp)).id

}
where x is chosen s.t. γ(x) = Udf . By hypothesis p, γ ` e′ : c′ [] γ′ [] φ and t = c,
therefore theType(t) = Identity and by inductive hypothesis
[[p]]prog , [[γ]] ` [[e′]]expr(p, γ) : Identity [] [[γ]] [] { } and by Lemma B.1,
[[p]]prog , [[γ0]] ` [[e′]]expr(p, γ) : Identity [] [[γ0]] [] { } where γ0 = [[γ]][x7→Identity];
finally, by Lemmas B.5, B.9, B.10 and B.6, it is possible to apply the suitable typing
rules in order to conclude.

Case e ≡ e′.f .
By hypothesis p, γ ` e′ : c [] γ′ [] φ, then the translation is well-defined:
[[e]]expr(p, γ) ≡ ((theName(c)) ([[e′]]expr(p, γ).imp)).f
By inductive hypothesis [[p]]prog , [[γ]] ` [[e′]]expr(p, γ) : Identity [] [[γ]] [] { }, further-
more, by hypothesis F(p, c, f) = t, therefore by Lemma B.4, F([[p]]prog , theName(c), f) =
theType(t); finally, by Lemmas B.10 and B.6, it is possible to apply the suitable
typing rules in order to conclude.

Case e ≡ e1.f =e2.
By hypothesis p, γ ` e1 : c [] γ1 [] φ1 and p, γ1 ` e2 : t [] γ2 [] φ2, then the
translation is well-defined:
[[e]]expr(p, γ) ≡ { Identity x1;

theType(t) x2;
if (isnull(x1 = [[e1]]expr(p, γ)))
then null.f = x2

else { x2 = [[e2]]expr(p, γ1);
((φ2@ptheName(c))(x1.imp)).f = x2

}
}

with x1 and x2 chosen s.t. γ(x1) = γ(x2) = Udf . By inductive hypothesis
[[p]]prog , [[γ]] ` [[e1]]expr(p, γ) : Identity [] [[γ]] [] { } and
[[p]]prog , [[γ1]] ` [[e2]]expr(p, γ1) : theType(t) [] [[γ1]] [] { }

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

46 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

furthermore by Lemma B.2, [[γ]] = [[γ1]], and by Lemma B.1,
[[p]]prog , γ0 ` [[e1]]expr(p, γ) : Identity [] γ0 [] { } and
[[p]]prog , γ0 ` [[e2]]expr(p, γ1) : theType(t) [] γ0 [] { }
with γ0 = [[γ]][x1 7→Identity, x2 7→theType(t)].
Again, by hypothesis F(p, φ2@pc, f) = t′ and p ` t ≤ t′, and by definition
theName(φ2@pc) = φ2@ptheName(c), therefore by Lemmas B.4 and B.8, F([[p]]prog , φ2@ptheName(c), f) =
theType(t′) and [[p]]prog ` theType(t) ≤ theType(t′). Finally, by Lemmas B.10 and
B.6, it is possible to apply the suitable typing rules in order to conclude.

Case e ≡ x = e1.
Then [[e]]expr(p, γ) ≡ x = [[e1]]expr(p, γ)
By hypothesis p, γ ` e1 : t [] γ′ [] φ, γ′(x) = t′ and p ` t ≤ t′, therefore by inductive
hypothesis and Lemmas B.2 and B.8, [[p]]prog , [[γ]] ` [[e1]]expr(p, γ) : theType(t) [] [[γ]] [] { },
[[γ]] = [[γ′]] hence [[γ]](x) = theType(t′), and ` theType(t) ≤ theType(t′). Finally, it
is possible to apply the suitable typing rule in order to conclude.

Case e ≡ e0.m((e1, . . . , en)).
By hypothesis, p, γ ` e0 : c [] γ0 [] φ0 and p, γi−1 ` ei : ti [] γi [] φi for all
i = 1, . . . , n, then the translation is well-defined:
[[e]]expr(p, γ) ≡ { Identity x;

theType(t1) x1;
. . .
theType(tn) xn;
if (isnull(x = [[e0]]expr(p, γ)))
then null.m(x1, . . . , xn)
else { x1 = [[e1]]expr(p, γ0);

. . .
xn = [[en]]expr(p, γn−1);
(((φ1 ∪ · · · ∪ φn)@ptheName(c))(x.imp)).m(x1, . . . , xn)

}
}

with x,x1, . . . , xn chosen s.t. γ(x) = γ(x1) = · · · = γ(xn) = Udf . By Lemma B.2,
[[γ]] = [[γ0]] = · · · = [[γn]], and by inductive hypothesis and Lemma B.1,
[[p]]prog , γ′ ` [[e0]]expr(p, γ) : Identity [] γ′ [] { } and
[[p]]prog , γ′ ` [[ei]]expr(p, γi−1) : theType(ti) [] γ′ [] { } for all i = 1, . . . , n, with
γ′ = [[γ]][x7→Identity, x1 7→theType(t1), . . . , xn 7→theType(tn)].
Again by hypothesis, M(p, (φ1 ∪ · · · ∪ φn)@pc,m) = t m((t′1 x1, . . . , t

′
n xn)) φ { ... }

and p ` (φi+1 ∪ · · · ∪ φn)@pti ≤ t′i for all i = 1, . . . , n, and by definition theName((φ1 ∪ · · · ∪ φn)@pc) =
(φ1 ∪ · · · ∪ φn)@ptheName(c) and { }@[[p]]prog theType(ti) = theType(ti) for all i =
1, . . . , n, therefore by Lemmas B.4, B.8 and B.11 and transitivity of the subtyping
relation,
M([[p]]prog , (φ1 ∪ · · · ∪ φn)@ptheName(c),m) =

theType(t) m((theType(t ′1) x1 , . . . , theType(t ′n) xn)) { } { ... } and
[[p]]prog ` { }@[[p]]prog theType(ti) ≤ theType(t′i) for all i = 1, . . . , n. Finally, by Lem-
mas B.10 and B.6 it is possible to apply the suitable typing rules in order to
conclude.

Case e ≡ id !!c.
Let us consider the case id ≡ x (the case id ≡ this is analogous); the translation
is defined by
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 47

[[e]]expr(p, γ) ≡ { Identity theId ;
theName(c) theImp;
R(p, c) theLastImp;
if (isnull(theId = x)) then null
else { theImp = new theName(c);

theLastImp = (R(p, c))(theId .imp);
theId .imp = theImp;
theImp.id = theId ;
theImp.f 1 = theLastImp.f 1;
. . .
theImp.f r = theLastImp.f r

};
theId

}
with theId , theImp and theLastImp chosen s.t. γ(theImp) = γ(theId) = γ(theLastImp) =
Udf and {f 1, . . . , f r} = Fs(p,R(p, c)).
By hypothesis, p ` c 3rt,R(p, c) = R(p, γ(x)). By definition, f i ∈ Fs(p,R(p, c)) ⇒
∃ t F(p,R(p, c), f i) = t for all i = 1, . . . , r; furthermore, since by definition p `
c ≤ R(p, c), by Lemma B.3, F(p, c, f i) = t for all i = 1, . . . , r. Since by definition,
theName(R(p, c)) = R(p, c), by Lemma B.4, F([[p]]prog ,R(p, c), f i) = F([[p]]prog , theName(c), f i) =
theType(t) for all i = 1, . . . , r. Finally, by Lemmas B.5, B.9, B.10 and B.6 the suit-
able typing rules can be applied in order to conclude.

Case e ≡ if e0 then e1 else e2 .
By hypothesis,
p, γ ` e0 : bool [] γ0 [] φ0

p, γ0 ` e1 : t1 [] γ1 [] φ1

p, γ0 ` e2 : t2 [] γ2 [] φ2

Then the translation is well-defined:
[[e]]expr(p, γ) ≡ if [[e0]]expr(p, γ) then [[e1]]expr(p, γ0) else [[e2]]expr(p, γ0)
By Lemma B.2, [[γ]] = [[γ0]] = [[γ1]] = [[γ2]] and by inductive hypothesis,
[[p]]prog , [[γ]] ` [[e0]]expr(p, γ) : bool [] [[γ]] [] { }
[[p]]prog , [[γ]] ` [[e1]]expr(p, γ0) : theType(t1) [] [[γ]] [] { }
[[p]]prog , [[γ]] ` [[e2]]expr(p, γ0) : theType(t2) [] [[γ]] [] { }
Finally, it is possible to conclude by applying the suitable typing rule and Lemma B.12.

Case e ≡ {t1 x 1; . . . ts x s; e1; . . . en}.
By hypothesis,
γ0 = γ[x 1 7→t1, . . . , x s 7→ts]
p, γi−1 ` ei : t′i [] γi [] φi for all i = 1, . . . , n
Then the translation is well-defined:
[[e]]expr(p, γ) ≡ {[[t1 x 1]]var ; . . . [[ts x s]]var ; [[e1]]expr(p, γ0); . . . [[en]]expr(p, γn−1)}
By Lemma B.2, [[γ0]] = · · · [[γn]] and by translation of variable declarations and by
inductive hypothesis,
[[p]]prog , [[γ0]] ` [[ei]]expr(p, γi−1) : theType(t′i) [] [[γ0]] [] { } for all i = 1, . . . , n
where, by definition, [[γ0]] = [[γ]][x 1 7→theType(t1), . . . , x s 7→theType(ts)]. Finally, it
is possible to conclude by applying the suitable typing rule.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

48 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

Proof of Theorem 7.2

Proof. Let us take an arbitrary class named c and defined in p (recall that in
the translation of programs – see comments in Section 6.1 – we assume no name
conflicts, so that c 6= Identity, FickleObject and f 6= id for any field f declared in
p); by translation of class and field declarations, for any type t′f , and field name f 6=
id, FD([[p]]prog , c, f) = t′f implies FD(p, c, f) = tf , for a type tf s.t. theType(tf) = t′f .
By definition of theType, [[p]]prog ` t′f 3ft; furthermore, by hypothesis, F(p, c′, f) =
Udf , therefore, by Lemma B.4, F([[p]]prog , theName(c′), f) = Udf .

By translation of class and method declarations, for all types t′0, . . . , t
′
n(n ≥ 0),

method name m, variables x1, . . . , xn, effect φ0, and block block′,
MD([[p]]prog , c,m) = t ′0 m((t ′1 x1 , . . . , t ′n xn)) φ0 block ′ ⇒
φ0 = { } and MD(p, c,m) = t m((t1 x1, . . . , tn xn)) φ block,
for types t, t1, . . . , tn, s.t. theType(t) = t′0, theType(ti) = t′i for i = 1, . . . , n, an effect
φ, and a block block s.t. [[block]]expr(p, γ) = block′, with γ = t1 x1, . . . , tn xn, c this.

Therefore p ` φ0 3 trivially holds, [[p]]prog , [[γ]] ` block′ : theType(t′) [] [[γ]] [] { }
is provable by hypothesis and Theorem 7.1, [[p]]prog ` theType(t′) ≤ t′0 holds by
hypothesis and Lemma B.8 and trivially { } ⊆ φ0, therefore we can conclude by
applying the typing rule for class declarations.

Proof of Theorem 7.3

Proof. By Lemma B.7, ` [[p]]prog 3h; by definition of Identity and FickleObject,
and by the typing rules, [[p]]prog ` Identity 3 and [[p]]prog ` FickleObject 3. More-
over, every class c 6= Identity, FickleObject defined in [[p]]prog is defined also in
p (by definition of translation of programs and classes), and by Theorem 7.2 we
have [[p]]prog ` c 3. Hence we can conclude the result from the typing rule for
programs.

C. PROOF OF PRESERVATION OF DYNAMIC SEMANTICS

Lemma C.1. Let p be a program s.t. ` p 3, c, c′ two class names. If p ` c ≤ c′,
then p ` theName(c) ≤ theName(c′).

Proof. If both c and c′ are different from Object then it is obvious since
theName(c) = c and theName(c′) = c′. If either one is equal to Object then
since p ` c ≤ c′ it must be c′ = Object. Therefore, theName(c′) = FickleObject
and for all classes d we have that p ` d ≤ FickleObject.

Lemma C.2. Let t be a type. If v is the initial value of type t then v is also the
initial value of type theType(t).

Proof. If t is a class type then v = null which is initial also for Identity,
otherwise t is a primitive type and theType(t) = t.

Lemma C.3. Let e be an expression such that: p, γ ` e : t [] γ′ [] φ, and σ be
a store such that [[p]], [[γ]][this 7→ c] ` σ 3, for some c. If

[[e]], σ ;[[p]] w, σ′

then for all x , γ(x) = Udf implies σ′(x) = σ(x).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 49

Proof. By induction on the depth of the derivation tree of [[e]], σ ;[[p]] w, σ′.
For the translation of the expressions corresponding to values, variables, this,
null test, and field selection [[e]] does not contain assignments, therefore for all x,
σ(x) = σ′(x).

For the translation of assignment, note that for x = e′ to be well-typed, it must
be γ(x) 6= Udf . So since [[e]] ∆= x = [[e′]], the result is by induction hypothesis on
[[e′]].

For all the other expressions note that the translation of the expression is a block
in which the local variables y are such that γ(y) = Udf . From the operational
semantics of blocks we have that for all the local variables y, σ′(y) = σ(y) (for all
the local variables the value before execution of the block is restored). So the result
is by induction hypotheses on the subexpressions.

Proof of Theorem 7.5

We will prove the two implications separately.

Proof of: e, σ ;p w, σ′ implies [[e]], σ1 ;[[p]] w, σ′1 . By induction on the
depth of the derivation tree of the judgement: e, σ ;p w, σ′.

We will consider a subset of the rules applied. Namely: (id), (new), (recl),
(meth), (cast), (n-cast), (e-null), and (e-cast). The other cases are similar, and
for the propagation rules the result is derived directly from the inductive hypothesis.

Consider rule (id): id, σ ;
p

σ(id), σ. Since [[id]]expr(p, γ) ∆= id we derive that
[[id]], σ1 ;[[p]] σ1(id), σ1. Moreover, p, γ ` σ ≈ σ1 implies that σ(id) = σ1(id).

Consider rule (new):

new c, σ ;p ι, σ[ι7→[[f 1 : v1, . . . , f r : vr]]
c]

where ι is new in σ and v l is initial for F(p, c, f l), 1 ≤ l ≤ r. Assume that
c 6= Object, so theName(c) = c. (The proof for the case c = Object is sim-
pler since Fs(p, c) = ∅.) From the definition of the translation [[new c]](p, γ) ∆=
{c theImp; Identity theId ; e1; e2; e3; e4; theId} where

—e1 is theId = new Identity,
—e2 is theImp = new c,
—e3 is theImp.id = theId , and
—e4 is theId .imp = theImp.

and γ(theId) = γ(theImp) = Udf .
Let σ′′1 = σ1[theImp 7→ null, theId 7→ null]. From the definition of the operational
semantics of blocks, and the fact that null is the initial value for an object, we
have that

—e1, σ
′′
1 ;[[p]] ι, σ2 where we assume that ι is new also in σ1 (otherwise we could

rename all its occurrences in σ1 with a new address), and
σ2 = σ′′1 [ι 7→ [[imp : null]]Id, theId 7→ ι]

—e2, σ2 ;[[p]] ι, σ3 where ι′ 6= ι is new in σ1 (we also assume that ι′ does not appear
in σ), and, since c extends FickleObject,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

50 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

σ3 = σ2[ι′ 7→ [[id : null, f 1 : v ′1, . . . , f r : v ′r]]
c , theImp 7→ ι′] and v ′l is initial for

theType(F(p, c, f l)), 1 ≤ l ≤ r,
—e3; e4, σ3 ;[[p]] ι, σ′′′1 , where σ′′′1 is

σ1[ι′ 7→ [[id : ι, f 1 : v ′1, . . . , f r : v ′r]]
c , theImp 7→ ι′, ι 7→ [[imp : ι′]]Id, theId 7→ ι].

Let σ′1 = σ′′′1 [theImp 7→ σ1(theImp), theId 7→ σ1(theId)]

[[new c]], σ1 ;[[p]] ι, σ′1

Let σ′ = σ[ι7→[[f 1 : v1, . . . , f r : vr]]
c]. For all x, σ′(x) = σ(x), and σ′1(x) =

σ1(x) (by definition of σ′1). Therefore, since p, γ ` σ ≈ σ1 clauses 1. and 2. of
Definition 7.4 hold for σ′ and σ′1. Moreover, for all ι′′, ι′′ 6= ι, σ′(ι′′) = σ(ι′′) and
ι′′ 6= ι′, implies also σ′1(ι

′′) = σ1(ι′′). So we have to consider only ι.

—σ′(ι) = [[f 1 : v1, . . . , f r : vr]]
c ,

—σ′1(ι) = [[imp : ι′]]Id, σ′1(ι
′) = [[id : ι, f 1 : v ′1, . . . , f r : v ′r]]

c

Since we assumed that σ(ι′) = Udf , and from Lemma C.2, we derive that v′i = vi,
1 ≤ i ≤ r, then also clause 3. of Definition 7.4 is verified, and we conclude that
p, γ′ ` σ′ ≈ σ′1.

Consider rule (recl), and assume that the expression is this !! d , therefore:

σ(this) = ι
σ(ι) = [[. . .]]c

Fs(p,R(p, c)) = {f 1, . . . , f r}
v l = σ(ι)(f l) (l ∈ {1, . . . , r})
Fs(p, d) \ {f 1, . . . , f r} = {f r+1, . . . , f r+q}
v l initial for F(p,d, f l) (l ∈ {r + 1 , . . . , r + q})
this !! d , σ ;

p ι, σ[ι7→[[f 1 : v1, . . . , f r+q : vr+q]]
d]

(2)

Since the expression is well-typed, and Object is not a root or state class, we have
that d 6= Object, and so theName(d) = d. From the definition of the translation
we have:

[[this !! d]](p, γ) ∆= {d theImp; Identity theId ;R(p, d) theLastThis; e1; e2; e3; e4; e ′1; · · · ; e ′r; theId}

where

—e1 is theId = this.id,
—e2 is theLastThis = (R(p, d))theId .imp,
—e3 is theImp = new d,
—e4 is theImp.id = theId ,
—e5 is theId .imp = theImp,
—e ′i is theImp.f i = theLastThis.f i for 1 ≤ i ≤ r.

and γ(theId) = γ(theLastThis) = γ(theImp) = Udf . From the fact that p, γ ` σ ≈
σ1, and rule (2) we have that:

σ1(this) = ι′ σ1(ι′) = [[id : ι, . . .]]c′
σ1(ι) = [[imp : ι′′]]Id

σ1(ι′′) = [[id : ι, f 1 : v1, . . . , f r : vr, f r+1 : v′1, . . . , f r+p : v′p]]
c (3)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 51

and v′i = σ(this)(fr+i) for 1 ≤ i ≤ p.
Let σ′′1 = σ1[theImp 7→ null, theId 7→ null, theLastThis 7→ null].From the

definition of the operational semantics of blocks, the fact that null is the initial
value for an object, we have that:

—e1, σ
′′
1 ;[[p]] ι, σ′′′1 where σ′′′1 = σ′′1 [theId 7→ ι]

—e2, σ
′′′
1 ;[[p]] ι′′, σ2 where σ2 = σ′′′1 [theLastThis 7→ ι′′] since

theId .imp, σ′′′1 ;[[p]] ι′′, σ′′′1 and from the hypothesis that this !! d is well-typed
we have that c ≤ R(p, d), so also (R(p, d))theId .imp, σ′′′1 ;[[p]] ι′′, σ′′′1 (no cast
exception may occur).

—e3, σ2 ;[[p]] ι′′′, σ3 where ι′′′ is new in σ1 (we also assume that it does not appear
in σ), and, since d extends FickleObject,
σ3 = σ2[ι′′′ 7→ [[id : null, f 1 : v ′′1 , . . . , f r : v ′′r , f r+1 : v′′r+1, . . . , f r+q : v′′r+q]]

d, theImp 7→
ι′′′] where v ′′l is initial for theType(F(p, c, f l)), l ∈ {1, . . . , r + q} ,

—e4; e5, σ3 ;[[p]] ι, σ4, where σ4 is
σ3[ι 7→ [[imp : ι′′′]]Id, ι′′′ 7→ [[id : ι, f 1 : v ′′1 , . . . , f r : v ′′r , f r+1 : v′′r+1, . . . , f r+q : v′′r+q]]

d],
and

—e ′1; · · · ; e ′r, σ4 ;[[p]] ι, σ′′′1 where from (3)
σ′′′1 = σ4[ι′′′ 7→ [[id : ι, f 1 : v1, . . . , f r : vr, f r+1 : v′′r+1, . . . , f r+q : v′′r+q]]

d].

Let σ′1 = σ′′′1 [theImp 7→ σ1(theImp), theId 7→ σ1(theId), theLastThis 7→ σ1(theLastThis)].

[[this !! d]], σ1 ;[[p]] ι, σ′1

Let σ′ = σ[ι7→[[f 1 : v1, . . . , f r+q : vr+q]]
c] . We have to show that, p, γ′ ` σ′ ≈ σ′1.

First notice that from Theorem 3.1, p, γ′ ` σ′ 3, and since [[p]], [[γ]][this 7→ c′] `
σ1 3, see (3), also [[p]], [[γ′]][this 7→ c′] ` σ′1 3. So we have to show that the three
clauses of Definition 7.4 are satisfied. From the definition σ′ and σ′1, we have that
for all x, σ′(x) = σ(x), and σ′1(x) = σ1(x). Therefore, clause 1. of Definition 7.4
holds for σ′ and σ′1, and since σ′1(this)(id) = σ1(this)(id), then also clause 2.
holds. To conclude the proof, we have to verify clause 3. for the address ι.

—σ′(ι) = [[f 1 : v1, . . . , f r+q : vr+q]]
c , σ′1(ι) = [[imp : ι′′]]Id,

—σ′1(ι
′′) = [[id : ι, f 1 : v1, . . . , f r : vr, f r+1 : v′′r+1, . . . , f r+q : v′′r+q]]

d

where for 1 ≤ i ≤ q, vr+i is an initial value for F(p, c, f r+i) and v′′r+i is an initial
value for theType(F(p, c, f r+i)). Therefore, from Lemma C.2, vr+i = v′′r+i, and
clause 3. holds. This concludes the proof that p, γ′ ` σ′ ≈ σ′1.
The proof for the case in which the rule (recl) is applied to x !! d is similar.

Consider rule (n-recl). In this case the expression must be x !! d , since p, γ ` σ 3,
see Fig. 9, implies that σ(this) 6= null. So σ(x) = null and

x !! d , σ ;[[p]] null, σ.

From the definition of the translation (as for the case (recl), we have that theName(d) =
d)

[[x !! d]](p, γ) ∆= {d theImp; Identity theId ;R(p, d) theLastImp; if e1 then e2; theId}

where
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

52 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

—e1 is ((theId = x) 6= null),
—e2 is

{theImp = new d; theLastImp = (R(p, d))theId .imp;
theImp.id = theId ; theId .imp = theImp;
e ′1; . . . e

′
r

}

where e ′i is theImp.f i = theLastImp.f i for 1 ≤ i ≤ r.

and γ(theId) = γ(theLastImp) = γ(theImp) = Udf .
Let σ′′1 = σ1[theImp 7→ null, theId 7→ null, theLastImp 7→ null]. Observe that,

from p, γ ` σ ≈ σ1 we derive that σ1(x) = null, and so also σ′′1 (x) = null. From
the definition of the operational semantics of blocks, and the fact that null is the
initial value for an object, we have that:

e1, σ
′′
1 ;[[p]] false, σ′′1

Therefore,

—if e1 then e2; theId , σ′′1 ;[[p]] null, σ′′1 , and
—[[x !! d]], σ1 ;[[p]] null, σ1 since

σ′1 = σ′′1 [theImp 7→ σ1(theImp), theId 7→ σ1(theId), theLastImp 7→ σ1(theLastImp)] =
σ1, implies σ′1 = σ1.

Consider rule (meth): We will consider methods with a single parameter, e.m(e′).
So

α. e, σ ;
p

ι, σ′′

β. e′, σ′′ ;p v ′, σ′′′

χ. σ′′′(ι) = [[· · ·]]c′
MD(p, c′,m) = t m(t1 y1) φ block

α′. σ̄ = σ′′′[this 7→ ι, y1 7→ v′]
β′. block, σ̄ ;p v , σ̄′

χ′. σ′ = σ̄′[this 7→ σ′′′(this), y1 7→ σ′′′(y1)]
e.m(e′), σ ;

p
v , σ′

(4)

From the fact that the expression is well-typed, we have

a. p, γ ` e : c [] γ0 [] φ0

b. p, γ0 ` e′ : t1 [] γ1 [] φ1

c. MD(p, φ1@pc,m) = t m(t′1 y1) φ′ block
d. p ` t1 ≤ t′1 φ = φ0 ∪ φ1 ∪ φ′ γ′ = φ′@pγ1

p, γ ` e.m(e′) : t [] γ′ [] φ

(5)

Note that, since MD(p, φ1@pc,m) 6= Udf , and p ` c ≤ φ1@pc, we have that
c 6= Object. Therefore theName(c) = c. Consider the translation of the expression,
from (5) we have

[[e.m(e′)]]expr(p, γ) ∆= {Identity x; theType(t1) x1; if e1 then e2 else {e3; e4} }

where

—e1 is isnull(x = [[e]]expr(p, γ))
—e2 is null.m(x1)
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 53

—e3 is x1 = [[e′]]expr(p, γ0)
—e4 is ((φ1@pc)(x.imp)).m(x1)

and γ(x1) = γ(x) = Udf . Since γ, γ0 and γ′ are defined on the same set of
identifiers, we have that also γ0(x1) = γ0(x) = Udf and γ′(x1) = γ′(x) = Udf .

Let σ′′1 = σ1[x 7→ null, x1 7→ v′], where v′ is an initial value of type theType(t).
From p, γ ` σ ≈ σ1 we have that p, γ ` σ ≈ σ′′1 (x1 and x are not defined in γ).
Since (5).a, and (4).α, we can apply the inductive hypothesis to e, and derive that
[[e]], σ′′1 ;[[p]] ι, σ′′′1 where p, γ0 ` σ′′ ≈ σ′′′1 . Therefore, e2, σ

′′
1 ;[[p]] false, σ2, where

σ2 = σ′′′1 [x 7→ ι], and {e3; e4} is evaluated.
From p, γ0 ` σ′′ ≈ σ′′′1 , as before, we can derive that also p, γ0 ` σ′′ ≈ σ2 (x is not
defined in γ0). Since (5).b, and (4).β, we can apply the inductive hypothesis to e′,
and derive that [[e′]], σ2 ;[[p]] ι, σ′2 where p, γ′ ` σ′′′ ≈ σ′2 and from Lemma C.3,
σ′2(x1) = σ2(x1) = ι. Therefore, e3, σ2 ;[[p]] v, σ3, where σ3 = σ′2[x1 7→ v],
p, γ′ ` σ′′′ ≈ σ3, and σ3(x) = σ2(x) = ι.
Now we have to evaluate [[e4]] in the store σ3. From the rule for method call
(meth): we evaluate first (φ1@pc)(x.imp) in the store σ3. Since p, γ′ ` σ′′′ ≈ σ′2,
σ′′2 (ι) = σ3(ι), and

—σ3(x) = ι,
—σ3(ι) = [[imp : ι′ · · ·]]Identity, and

—σ3(ι′) = [[id : ι · · ·]]c′
.

Moreover, from (5).a, (4).α and Theorem 3.1 we have that c′ ≤ c. Again from (5).b,
(4).β and Theorem 3.1 (in particular p, φ ` σ′′�σ′′′) we have that φ1@pc

′ ≤ φ1@pc.
Therefore, the cast succeeds and we have that:

(φ1@pc)(x.imp), σ3 ;[[p]] ι′, σ3 and x1, σ3 ;[[p]] v′, σ3.

From (4).χ, MD(p, c′,m) = t m(t1 y1) φ block. Since the program is well formed
from Figure 8, we have that

(∗) p, γ′′ ` block : t′ [] γ′′′ [] φ′′

where γ′′ = t1 y1, c′ this, t′ ≤ t, and φ′′ ⊆ φ′. From the definition of the translation
of methods we have that

[[t m(t1 y1 φ block]]meth(p, c) ∆=
theType(t) m([[t1 y1]]var){ }[[block]]expr(p, γ′′).

Consider the store σ4 = σ3[this 7→ ι′, y1 7→ v′]. It is immediate to see that
p, γ′′ ` σ̄ ≈ σ4. Applying the inductive hypothesis to (4).β′, (∗), we get:

[[block]]expr(p, γ′′), σ4 ;[[p]] v, σ5

where p, γ′′′ ` σ̄′ ≈ σ5 and, since γ′′(x) = γ′′(x1) = Udf , from Lemma C.3 and
definition of σ4 we have that σ4(x) = σ3(x) = σ5(x) and σ4(x1) = σ3(x1) = σ5(x1).
Let σ6 = σ5[this 7→ σ3(this), y1 7→ σ3(y1)] we have that

[[e4]], σ3 ;[[p]] v, σ6.

Let σ′ be defined in (4).χ′. Since p, γ′ ` σ′′′ ≈ σ3 we have that p, γ′ ` σ′ ≈ σ6.
Let σ′1 = σ6[x 7→ σ1(x), x1 7→ σ1(x1)], it is immediate to show that p, γ′ ` σ′ ≈ σ′1.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

54 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

This concludes the proof.

Consider rule (cast):

e, σ ;p ι, σ′

σ′(ι) = [[. . .]]c′

p ` c′ ≤ c
((c))e, σ ;p ι, σ′

Since the expression is well-typed we have that

a. p, γ ` e : c′ [] γ′ [] φ
b. (p ` c′ ≤ c or p ` c ≤ c′)
p, γ ` ((c))e : c [] γ′ [] φ

(6)

Let [[(c)e]]expr(p, γ) ∆= { Identity x; if e1 then e2 else null }, where

—e1 is (x = [[e]]expr(p, γ)) 6= null), and
—e2 is (theName(c)x.imp).id

Let σ′′1 = σ1[x 7→ null]. From p, γ ` σ ≈ σ1, we have p, γ ` σ ≈ σ′′1 . From (6).a and
e, σ ;p ι, σ′ we can apply the inductive hypothesis to e, and derive that [[e]], σ′′1 ;[[p]] ι, σ′′′1

and p, γ′ ` σ′ ≈ σ′′′1 . So σ′′′1 (ι) = [[imp : ι′]]Id, and σ′′′1 (ι′) = [[. . . , id :
ι]]theName(c′). Therefore, [[e1]], σ′′1 ;[[p]] true, σ2, where σ2 = σ′′′1 [x 7→ ι], and the
expression e2 is evaluated.
Since σ2(x)(imp) = ι′, σ2(ι′)(id) = ι, (6).b, and Lemma C.1, so p ` theName(c′) ≤
theName(c), we have that [[e2]], σ2 ;[[p]] ι, σ2.
Let σ′1 = σ2[x 7→ σ1(x)], we have that [[(c)e]], σ1 ;[[p]] ι, σ′1, and from p, γ′ ` σ′ ≈
σ′′′1 , we get that p, γ′ ` σ′ ≈ σ′1.

Consider rule (n-cast), that is assume that e, σ ;
p

null, σ′. So from rule (n-cast),
(c)e, σ ;p null, σ′. Consider [[(c)e]] as for rule (cast). We can apply the inductive
hypothesis to e, and derive that [[e]], σ′′1 ;[[p]] null, σ′′′1 and p, γ′ ` σ′ ≈ σ′′′1 . There-
fore, [[e1]], σ′′1 ;[[p]] false, σ2, where σ2 = σ′′′1 [x 7→ null], and the expression e2 is
not evaluated. Let σ′1 = σ′′1 [x 7→ σ1(x)], we have that [[(c)e]], σ1 ;[[p]] null, σ′1.
From p, γ′ ` σ′ ≈ σ′′′1 , we get that p, γ′ ` σ′ ≈ σ′1.

Let us now assume that the result of the evaluation is an exception. We will
consider nullPntrExc raised during the evaluation of a field update and castExc
raised by a cast expression.

Consider rule (e-null), and assume that the expression is an assignment to a field:

e, σ ;p null, σ′

e.f = e′, σ ;
p

nullPntrExc, σ′

Consider the translation of the expression as for the case of rule (a-field). Let
σ′′1 = σ1[x1 7→ null, x2 7→ v′], where v′ is an initial value of type theType(t). From
p, γ ` σ ≈ σ1 we have that p, γ ` σ ≈ σ′′1 (x1 and x2 are not defined in γ). Since
the expression is well typed p, γ ` e : c [] γ0 [] φ0 for some c, γ0, and φ0. So,
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 55

from e, σ ;
p

null, σ′, we can apply the inductive hypothesis to e, and derive that
[[e]], σ′′1 ;[[p]] null, σ′′′1 where p, γ0 ` σ′ ≈ σ′′′1 . Therefore, e1, σ

′′
1 ;[[p]] false, σ2,

where σ2 = σ′′′1 [x1 7→ null], and e2 is not evaluated.
Since σ2(x1) = null, we have that e3, σ2 ;[[p]] nullPntrExc, σ2 (we apply the
rule that generate the exception to x1.imp and then the rules for propagation of
exceptions of Fig. 6).
Let σ′1 = σ2[x1 7→ σ1(x1), x2 7→ σ1(x2)], then [[e.f = e′]], σ1 ;[[p]] nullPntrExc, σ′1.
Note that in this case it is important in the translation to avoid the evaluation of
e2, since it could raise a different exception or not terminate.

Consider rule (e-cast):

e, σ ;p ι, σ′

σ′(ι) = [[. . .]]c′

p 6` c′ ≤ c
((c))e, σ ;p castExc, σ′

Let [[(c)e]]expr(p, γ), and σ′′1 = σ1[x 7→ null] be as for the case of rule (cast). From
the inductive hypothesis applied to e,
[[e]], σ′′1 ;[[p]] ι, σ′′′1 and p, γ′ ` σ′ ≈ σ′′′1 . So σ′′′1 (ι) = [[imp : ι′]]Id, and σ′′′1 (ι′) =

[[. . .]]theName(c′). Therefore, [[e1]], σ′′1 ;[[p]] true, σ2, where σ2 = σ′′′1 [x 7→ ι], and
the expression e2 is evaluated.
Since σ2(x)(imp) = ι′, σ2(ι′) = [[. . .]]theName(c′), and p 6` c′ ≤ c, so from
Lemma C.1 also p 6` theName(c′) ≤ theName(c) we have that
[[(c)x.imp]], σ2 ;[[p]] castExc, σ2. Applying the rules for propagation of exceptions
we get that [[e2]], σ2 ;[[p]] castExc, σ2.
Let σ′1 = σ2[x 7→ σ1(x)], we have that [[(c)e]], σ1 ;[[p]] castExc, σ′1. Note that the
cast in the translation is essential to raise the exception, that otherwise would not
occur since every Identity object has the field imp and every FickleObject has
the field id.

Proof of: [[e]], σ1 ;
p w, σ′1 implies e, σ ;[[p]] w, σ′ . The result is proved

by induction on the structure of e. We will consider the following expressions:
identifiers, object creation, re-classification, field update, and cast. The other cases
are similar.

Consider [[id]]∆= id. The only rule applicable is
[[id]], σ1 ;[[p]] σ1(id), σ1. From p, γ ` σ ≈ σ1 we have that σ(id) = σ1(id). There-
fore also id, σ ;p σ(id), σ.

Consider [[new c]]∆= {theName(c) theImp; Identity theId ; e1; e2; e3; e4; theId} where

—e1 is theId = new Identity,
—e2 is theImp = new theName(c),
—e3 is theImp.id = theId , and
—e4 is theId .imp = theImp.

and γ(theId) = γ(theImp) = Udf . Assume that c 6= Object, so theName(c) = c.
(The case c = Object is simpler since Fs(p, Object) = ∅.) From the definition of

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

56 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

the operational semantics, and the fact that: c ≤ FickleObject has the field id and
an object of class Identity has the field imp (so the evaluation of the expressions
cannot produce an exception), as for the case of the corresponding “only if” proof,
we have that:

[[new c]], σ1 ;[[p]] ι, σ′1

where

—e1; e2; e3; e4; theId , σ1[theImp 7→ null, theId 7→ null] ;p ι, σ′′1 ,
—σ′′1 = σ1[ι′ 7→ [[id : ι, f 1 : v ′1, . . . , f r : v ′r]]

c , theImp 7→ ι′, ι 7→ [[imp : ι′]]Id, theId 7→ ι],
and

—σ′1 = σ′′′1 [theImp 7→ σ1(theImp), theId 7→ σ1(theId)].

We choose ι and ι′ such that they are new both in σ1 and σ. Since ι is new in σ
we have

new c, σ ;
p

ι, σ′

where σ′ = σ[ι7→[[f 1 : v1, . . . , f r : vr]]
c], and v l is initial for F(p, c, f l), 1 ≤ l ≤ r.

As for the case of the corresponding “only if” proof, using Lemma C.2 we can show
that p, γ′ ` σ′ ≈ σ′1.

Consider [[x !! d]]∆= {theName(d) theImp; Identity theId ;R(p, d) theLastImp; if e1 then e2; theId}
where

—e1 is ((theId = x) 6= null),
—e2 is

{theImp = new theName(d); theLastImp = (R(p, d))theId .imp;
theImp.id = theId ; theId .imp = theImp;
e ′1; . . . e

′
r

}

—e ′i is theImp.f i = theLastImp.f i for 1 ≤ i ≤ r, and

γ(theId) = γ(theLastImp) = γ(theImp) = Udf .
If σ1(x) = null, then [[x !! d]], σ1 ;[[p]] null, σ1 since

e1, σ1[theImp, theId , theLastImp 7→ null] ;[[p]] false, σ1[theImp, theId , theLastImp 7→ null]

Since the expression is well-typed d 6= Object, and theName(d) = d. Applying rule
(n-recl) also x !! d , σ ;[[p]] null, σ and the result holds.

Consider now the case σ1(x) 6= null. From p, γ′ ` σ ≈ σ1 we have σ(x) 6= null.
Moreover, since the expression is well-typed γ(x) = c , so from p, γ ` σ 3, σ(x) = ι

and σ(ι) = [[· · ·]]c′
for some c′ ≤ c. Again from p, γ′ ` σ ≈ σ1, we derive that

σ1(x) = ι σ1(ι) = [[imp : ι′]]Id σ1(ι′) = [[id : ι, · · ·]]c′
(7)

From the definition of the operational semantics of blocks, and the fact that null
is the initial value for an object, we have that:

—e1, σ1[theImp, theId , theLastImp 7→ null] ;[[p]] false, σ′′1 where
σ′′1 = σ1[theImp, theLastImp 7→ null, theId 7→ ι],

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 57

—theImp = new d, σ′′1 ;[[p]] ι′′, σ2 where ι′′ is new and
σ2 = σ′′1 [theImp 7→ ι′′, ι′′ 7→ [[id : null, f 1 : v ′′1 , . . . , f r : v ′′r , f r+1 : v′′r+1, . . . , f r+q :
v′′r+q]]

d, theImp 7→ ι′′′] where v ′′l is initial for theType(F(p, d, f l)), l ∈ {1, . . . , r +
q} ,

—from equation (7), the fact that the expression is well typed, therefore R(p, d) =
R(p, c′), we have that

theLastImp = (R(p, d))theId .imp, σ2 ;[[p]] ι′, σ3

where σ3 = σ2[theLastImp 7→ ι′](neither the cast operation, nor the access to
field imp produce an exception)

—theImp.id = theId ; theId .imp = theImp; , σ3 ;[[p]] ι′′, σ4 where σ4 = σ3[ι 7→
[[imp : ι′′]]Id, ι′′ 7→ [[id : ι′′, f 1 : v ′′1 , . . . , f r : v ′′r , f r+1 : v′′r+1, . . . , f r+q :
v′′r+q]]

d, theImp 7→ ι′′′], and finally
—e ′1; . . . e

′
r, σ4 ;[[p]] ι′′, σ′′1 where σ′′1 = σ4[ι′′ 7→ [[id : ι′′, f 1 : v1, . . . , f r : vr, f r+1 :

v′′r+1, . . . , f r+q : v′′r+q]]
d] where {f 1, . . . , f r} are the fields of the class R(p, d) and

v i = σ1(x)(f i) for 1 ≤ i ≤ r.

Let σ′1 = σ′′1 [theImp 7→ σ1(theImp), theId 7→ σ1(theId), theLastThis 7→ σ1(theLastThis)].
We derive that

[[x !! d]], σ1 ;[[p]] ι, σ′1.

On the other hand, since σ(x) = ι, σ(ι) = [[· · ·]]c′
, and {f 1, . . . , f r} are the fields

of the class R(p, d) from rule (recl) we have that

x !! d , σ ;[[p]] ι, σ′

where σ′ = σ[ι 7→ [[f 1 : v ′1, . . . , f r : v ′r, f r+1 : v′r+1, . . . , f r+q : v′r+q]]
d, v ′i =

σ(x)(f i) for 1 ≤ i ≤ r, and v ′i is the initial value for F(p, d, f i), r ≤ i ≤ r + q.
To show that p, γ′ ` σ′ ≈ σ′1 we have to prove that the three clauses of Defini-

tion 7.4 are satisfied for σ′ and σ′1. From the definition of σ′ and σ′1 and the fact
that p, γ ` σ ≈ σ1 we have that for all x′, σ′(x′) = σ′1(x

′). Therefore, clause 1. of
Definition 7.4 holds, and since the only field id that is updated in σ′1 is the one of
a newly created location also σ′1(this)(id) = σ1(this)(id) and clause 2. holds. To
conclude the proof, we have to verify clause 3. for the address ι. Let

—σ′(ι) = [[f 1 : v ′1, . . . , f r : v ′r]]
c , σ′1(ι) = [[imp : ι′′′]]Id,

—σ′1(ι
′′′) = [[id : ι, f 1 : v1, . . . , f r : vr, f r+1 : v′′r+1, . . . , f r+q : v′′r+q]]

d

From p, γ ` σ ≈ σ1 for all i, 1 ≤ i ≤ r, vi = v′i. Moreover, for all i, r ≤
i ≤ r + q, v′i is an initial value for F(p, d, f r+i) and v′′r+i is an initial value for
theType(F(p, d, f r+i)). Therefore, from Lemma C.2, vr+i = v′′r+i, and clause 3.
holds. This concludes the proof that p, γ′ ` σ′ ≈ σ′1.
The case in which the expression is [[this !! d]] is similar.

Consider [[e.f]] ={ Identity x1; theType(c) x2; if e1 then e2 else { e3; e4 } }
where

—e1 is isnull(x1 = [[e]]expr(p, γ)
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

58 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

—e2 is null.f = x2

—e3 is x2 = [[e′]]expr(p, γ0)

—e4 is ((φ′@pc)(x1.imp)).f = x2

and γ(x1) = γ(x2) = Udf . From the fact that the expression is well-typed, we have

a. p, γ ` e : c [] γ0 [] φ0

b. p, γ0 ` e′ : t [] γ′ [] φ′

c. F(p, φ′@pc, f) = t′ p ` t ≤ t′ φ = φ ∪ φ′

p, γ ` e.f = e′ : t [] γ′ [] φ

(8)

Note that, since Fs(p, Object) = ∅, c 6= Object, and therefore theName(c) = c.
Let σ′′1 = σ1[x1 7→ null, x2 7→ v′], where v′ is an initial value of type theType(t).
Since p, γ ` σ ≈ σ1 and x1 and x2 are not defined in γ also p, γ ` σ ≈ σ′′1 . From
[[e.f = e′]], σ1 ;[[p]] w, σ′1 we derive that:

if e1 then e2 else {e3; e4}, σ′′1 ;[[p]] w, σ′′′1 (9)

where σ′1 = σ′′′1 [x1 7→ σ1(x1), x2 7→ σ1(x2)]. Therefore,

(1) e1, σ
′′
1 ;[[p]] w, σ′′′1 , with w ∈ {castExc, nullPntrExc}, or

(2) e1, σ
′′
1 ;[[p]] true, σ2 for some σ2 or

(3) e1, σ
′′
1 ;[[p]] false, σ2 for some σ2.

(1) For the first case observe that, using the propagation rules for exceptions

[[e.f = e′]], σ1 ;[[p]] w, σ′1

Moreover, since an assignment does not produce an exception it must be the
case that

[[e]], σ′′1 ;[[p]] w, σ′′′1

Since e is well-typed, then p, γ ` e : c [] γ0 [] φ0 for some c, γ0, and φ0. So,
from p, γ ` σ ≈ σ′′1 we can apply the inductive hypothesis to e and derive that:
e, σ ;[[p]] w, σ′. From the propagation rules for exceptions we derive

e.f = e′, σ ;[[p]] w, σ′

that proves the result.

(2) Assume that the evaluation of e1 produces false. Therefore

[[e]], σ′′1 ;[[p]] v, σ′′2 (10)

where σ2 = σ′′2 [x1 7→ v] and v 6= null. From p, γ ` σ ≈ σ1 we have that
p, γ ` σ ≈ σ′′1 (x1 and x2 are not defined in γ). From (8).a, and (10), we
can apply the inductive hypothesis to e, and derive that e, σ ;[[p]] v, σ′′ where
p, γ0 ` σ′′ ≈ σ′′2 and since x1 is not defined in γ0 also p, γ0 ` σ′′ ≈ σ2. From (9)
(since e1 evaluates to false) we derive that
—e3, σ2 ;[[p]] w, σ′′′1 , with w ∈ {castExc, nullPntrExc}, or
—e3, σ2 ;[[p]] v′, σ3 for some σ3 and v′.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 59

In the first case, as for the corresponding case of the evaluation of e1,

[[e.f = e′]], σ1 ;[[p]] w, σ′1.

From the inductive hypothesis on e′ and the propagation rules for exceptions
e.f = e′, σ ;[[p]] w, σ′.
In the second case (the evaluation of e3 produces v′) we have that

[[e′]], σ2 ;[[p]] v′, σ′′3 (11)

where σ3 = σ′′3 [x2 7→ v′]. (Note that since γ0(x1) = Udf we also have that
σ3(x1) = σ2(x1) = ι.) From (8).b, (11), and p, γ0 ` σ′′ ≈ σ2 we can apply
the inductive hypothesis to e′ and derive that e′, σ′′ ;[[p]] v′, σ′′′ where p, γ′ `
σ′′′ ≈ σ′′3 , and since x2 is not defined in γ′ then also p, γ′ ` σ′′′ ≈ σ3.
From (8).a, and Theorem 3.1, p, σ′′ ` v � c, therefore v = ι and σ′′(ι) =
[[· · ·]]c′

where c′ ≤ c. From p, γ0 ` σ′′ ≈ σ2 also σ2(ι) = [[imp : ι′]]Id,
σ2(ι′) = [[id : ι · · ·]]c′

, and σ2(x1) = ι. Moreover, (8).b, and Theorem 3.1,
implies that p, φ′ ` σ′′ � σ′′′ and p, γ′ ` σ′′′ 3. So σ′′′(ι) = [[· · ·]]c′′

, and
φ′@pc′ = φ′@pc′′. So (8).c, φ′@pc′ ≤ φ′@pc implies that field f is defined
for σ′′′(ι). From p, γ′ ` σ′′′ ≈ σ3 we have that σ3(ι) = [[imp : ι′′]]Id,
σ2(ι′′) = [[id : ι · · ·]]c′′

(for some ι′′) and field f is defined for σ3(ι′). There-
fore,

e4, σ3 ;[[p]] v′, σ3[ι′′ 7→ σ3(ι′′[f 7→ v′]]

and [[e.f = e′]], σ1 ;[[p]] v′, σ′1 where σ′1 = σ3[x1 7→ σ1(x1), x2 7→ σ1(x2), ι′′ 7→
σ3(ι′′[f 7→ v′]].
On the other hand,
—e, σ ;[[p]] ι, σ′′,
—e′, σ′′ ;[[p]] v′, σ′′′, and
—field f defined for σ′′′(ι),
implies that

e.f = e′, σ ;[[p]] ι, σ′

where σ′ = σ′′′[ι′ 7→ σ′(ι)[f 7→ v′]]. From p, γ′ ` σ′′′ ≈ σ3 it is easy to show that
p, γ′ ` σ′ ≈ σ′1. This concludes the proof of the case in which the evaluation of
e1 was false.

(3) Assume, now, that [[e1]], σ′′1 ;[[p]] true, σ2. Therefore

[[e]], σ′′1 ;[[p]] null, σ2 (12)

and σ2(x1) = null. From p, γ ` σ ≈ σ1 we have that p, γ ` σ ≈ σ′′1 (x1 and
x2 are not defined in γ). From (8).a, and (12), we can apply the inductive
hypothesis to e, and derive that e, σ ;[[p]] null, σ′′ where p, γ0 ` σ′′ ≈ σ2.
Therefore, null.f, σ2 ;[[p]] nullPntrExc, σ2 and from the propagation rules

[[e.f = e′]], σ1 ;[[p]] nullPntrExc, σ′1

where σ′1 = σ2[x1 7→ σ1(x1), x2 7→ σ1(x2)].
On the other hand, applying rule (e-null),

e, σ ;[[p]] null, σ′′

e.f = e′, σ ;[[p]] nullPntrExc, σ′′

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

60 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

and p, γ0 ` σ′′ ≈ σ2 implies p, γ0 ` σ′′ ≈ σ′1

The proof for e.m(e′) is similar.

Consider [[(c)e]]expr
∆= { theType(t) x; if e1 then e2 else null }, where

—e1 is (x = [[e]]expr(p, γ)) 6= null), and
—e2 is (theName(c)x.imp).id

Since the expression is well-typed

a. p, γ ` e : c′ [] γ′ [] φ
b. (p ` c′ ≤ c or p ` c ≤ c′)
p, γ ` ((c))e : c [] γ′ [] φ

(13)

holds. From [[(c)e]]expr , σ1 ;p w, σ′1 and the definition of the operational semantics
of blocks we have that

if e1 then e2 else null, σ′′1 ;p w, σ′′′1 (14)

where σ′′1 = σ1[x 7→ null] and σ′1 = σ′′′1 [x 7→ σ1(x)]. Therefore,

(1) e1, σ
′′
1 ;[[p]] w, σ′′′1 , with w ∈ {castExc, nullPntrExc}, or

(2) e1, σ
′′
1 ;[[p]] true, σ′′′1 or

(3) e1, σ
′′
1 ;[[p]] false, σ′′′1 .

(1) For the first case observe that it must be that,

[[e]], σ′′1 ;[[p]] w, σ′′′1

Using (13).a, and p, γ ` σ ≈ σ′′1 we can apply the inductive hypothesis to e and
derive that: e, σ ;[[p]] w, σ′ and p, γ ` σ ≈ σ′. From the propagation rules for
exceptions we derive that

[[(c)e]]expr , σ1 ;[[p]] w, σ′1

and

(c)e, σ ;[[p]] w, σ′

and p, γ ` σ ≈ σ′ implies p, γ ` σ ≈ σ′ which prove the result.
(2) Assume that the evaluation of e1 produces true. Therefore

[[e]], σ′′1 ;[[p]] v, σ2 (15)

where σ′′′1 = σ2[x 7→ v] and v 6= null. From p, γ ` σ ≈ σ1 we have that
p, γ ` σ ≈ σ′′1 (x is not defined in γ). From (13).a, and (15), we can apply the
inductive hypothesis to e, and derive that e, σ ;[[p]] v, σ′ where p, γ′ ` σ′ ≈ σ2

and since x is not defined in γ′ also p, γ′ ` σ′ ≈ σ′′′1 .
Observe that, (13).a, and Theorem 3.1, implies that p, σ′ ` v � c′, therefore
v = ι and σ′(ι) = [[· · ·]]c′′

where c′′ ≤ c′. From p, γ′ ` σ′ ≈ σ′′′1 also
σ′′′1 (ι) = [[imp : ι′]]Id, σ′′′1 (ι′) = [[id : ι · · ·]]theName(c′′), and σ′′′1 (x) = ι. For
the evaluation of e2 there are two cases:
—e2, σ

′′′
1 ;[[p]] castExc, σ′′′1 if c′ 6≤ c, or

—e2, σ
′′′
1 ;[[p]] ι, σ′′′1 if c′ ≤ c.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 61

For the first case we have that from the propagation rules for exceptions

[[(c)e]], σ1 ;[[p]] castExc, σ′1

and from the application of the rule (e-cast) also (c)e, σ ;[[p]] castExc, σ′.
For the second case

[[(c)e]], σ1 ;[[p]] ι, σ′1

On the other hand we can apply rule (cast) and get (c)e, σ ;[[p]] ι, σ′. From
p, γ′ ` σ′ ≈ σ′′′1 the definition of σ′1, and the fact that γ(x) = Udf we have
p, γ′ ` σ′ ≈ σ′1.

(3) If e1, σ
′′
1 ;[[p]] false, σ′′′1 then

[[e]], σ′′1 ;[[p]] null, σ′′′1

Applying (f -cond) we have

if e1 then e2 else null, σ′′1 ;p null, σ′′′1

and finally

[[(c)e]], σ1 ;
p null, σ′1

From (13).a, we can apply the inductive hypothesis to e, and derive that e, σ ;

[[p]] null, σ′ where p, γ′ ` σ′ ≈ σ′′′1 . Therefore, applying rule (n-cast) we have

(c)e, σ ;[[p]] null, σ′

From p, γ′ ` σ′ ≈ σ′′′1 and the definition of σ′1 we derive that p, γ′ ` σ′ ≈ σ′1.
This concludes the proof.

D. TRANSLATION OF EXAMPLE 5.1 IN JAVA 1.5

class Identity<X>{

X imp;

Identity(X imp){

this.imp=imp;

}

}

class FickleObject<X extends FickleObject<?>>{

Identity<X> id;

}

class P<X extends P<?>> extends FickleObject<X>{

int f1;

Identity<? extends R<?>> m1(){

Identity<? extends R<?>> s;

S1Fix temp=new S1Fix();

temp.id=new Identity<S1Fix>(temp);

s=temp.id;

return s;

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

62 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

}

int m2(Identity<? extends S1<?>> x){

Identity<? extends S2<?>> x_S2;

if(x!=null){

S1<?> oldImp=x.imp;

S2Fix temp=new S2Fix();

temp.f1=oldImp.f1;

temp.id=(Identity<S2Fix>) (Object) x;

temp.id.imp=temp;

x_S2=temp.id;

}

return 1;

}

int m3(Identity<? extends S1<?>> x){

int temp=this.id.imp.m2(x);

return x.imp.m(temp);

}

int m4 (Identity<? extends S1<X>> x){

int temp=this.id.imp.m2(x);

return x.imp.f1=temp;

}

int m(int x){

return this.id.imp.f1=x;

}

}

class R<X extends R<?>> extends P<X>{

}

class S1<X extends S1<?>> extends R<X>{

int m5(Identity<? extends S2<?>> x){

Identity<? extends S1<?>> this_id_S1=this.id;

Identity<? extends S2<?>> this_id_S2;

S1<?> oldImp=this_id_S1.imp;

S2Fix temp=new S2Fix();

temp.f1=oldImp.f1;

temp.id=(Identity<S2Fix>) (Object) this_id_S1;

temp.id.imp=temp;

this_id_S2=temp.id;

return this_id_S2.imp.f2=x.imp.f2;

}

}

class S2<X extends S2<?>> extends R<X>{

int f2;

int m(int x){

return this.id.imp.f2 = x;

}

}

class FickleObjectFix extends FickleObject<FickleObjectFix>{}

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A provenly correct translation of Fickle into Java · 63

class PFix extends P<PFix>{}

class RFix extends R<RFix>{}

class S1Fix extends S1<S1Fix>{}

class S2Fix extends S2<S2Fix>{}

Acknowledgments

We thank the anonymous referees for insightful and constructive comments, which
greatly improved the submitted version.

REFERENCES

Ancona, D., Anderson, C., Damiani, F., Drossopoulou, S., Giannini, P., and Zucca, E. 2001.
An effective translation of Fickle into Java (extended abstract). In Italian Conf. on Theoretical
Computer Science 2001. Number 2202 in Lecture Notes in Computer Science. Springer, 215–
234.

Ancona, D., Anderson, C., Damiani, F., Drossopoulou, S., Giannini, P., and Zucca, E. 2002.
A type preserving translation of Fickle into Java. In TOSCA’01. ENTCS, vol. 62. Elsevier.

Ancona, D., Lagorio, G., and Zucca, E. 2000. Jam: A smooth extension of Java with mixins. In
ECOOP’00 - European Conference on Object-Oriented Programming, E. Bertino, Ed. Number
1850 in Lecture Notes in Computer Science. Springer, 154–178. An extended version is [Ancona
et al. 2003].

Ancona, D., Lagorio, G., and Zucca, E. 2003. Jam–designing a Java extension with mixins.
ACM Transactions on Programming Languages and Systems 25, 5 (September), 641–712.

Anderson, C. 2001. Implementing Fickle, Imperial College, final year thesis - to appear.

Anderson, C. 2003. Isabella-Fickle translator. Available at
http://www.macs.hw.ac.uk/DART/software/isabella/index.html.

Boyland, J. and Castagna, G. 1997. Parasitic methods: An implementation of multi-methods for
Java. In ACM Symp. on Object-Oriented Programming: Systems, Languages and Applications
1997. ACM Press, 66–76.

Bracha, G., Odersky, M., Stoutmire, D., and Wadler, P. 1998. Making the future safe for the
past: Adding genericity to the Java programming language. In ACM Symp. on Object-Oriented
Programming: Systems, Languages and Applications 1998. ACM Press.

Chambers, C. 1993. Predicate Classes. In ECOOP’93 - European Conference on Object-Oriented
Programming. Number 707 in Lecture Notes in Computer Science. Springer, 268–296.

Clifton, C., Millstein, T., Leavens, G. T., and Chambers, C. 2004. MultiJava: Design ra-
tionale, compiler implementation, and applications. Tech. Rep. 04-01b, Iowa State University,
Dept. of Computer Science. Dec. Accepted for publication, pending revision.

Costanza, P. 2001. Dynamic object replacement and implementation-only classes. In WCOP’01
(at ECOOP’01). Available from http://www.cs.uni-bonn.de/∼costanza/implementationonly.pdf.

Damiani, F., Dezani-Ciancaglini, M., and Giannini, P. 2004. Re-classification and multithread-
ing: FickleMT . In OOPS track at SAC’04. Vol. 2. ACM Press, 1297–1304.

Drossopoulou, S., Damiani, F., Dezani-Ciancaglini, M., and Giannini, P. 2001. Fickle: Dy-
namic object re-classification. In ECOOP’01 - European Conference on Object-Oriented Pro-
gramming. Number 2072 in Lecture Notes in Computer Science. Springer, 130–149.

Drossopoulou, S., Damiani, F., Dezani-Ciancaglini, M., and Giannini, P. 2002. More dynamic
object re-classification: FickleII . Transactions On Programming Languages and Systems 24, 2,
153–191.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

64 · D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca

Ernst, M. D., Kaplan, C., and Chambers, C. 1998. Predicate dispatching: A unified theory
of dispatch. In ECOOP’98 - European Conference on Object-Oriented Programming. Number
1445 in Lecture Notes in Computer Science. Springer, 186–211.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns: Elements od
Reusable Object-Oriented Software. Addison-Wesley Professional Computing Series. Addison-
Wesley.

Hürsch, W. 1994. Should superclasses be abstract? In ECOOP’94 - European Conference on
Object-Oriented Programming. Number 821 in Lecture Notes in Computer Science. Springer,
12–31.

Igarashi, A. and Pierce, B. 2002. On inner classes. Information and Computation 177, 1
(Aug.), 56–89.

Joy, B., Gosling, J., Steele, G., and Bracha, G. 2005. The Java Language Specification (third
edition). Addison-Wesley.

McDirmid, S., M.Flatt, and Hsieh, W. 2001. Jiazzi: New age components for old fashioned
Java. In ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA 2001). ACM Press. SIGPLAN Notices.

Odersky, M. and Wadler, P. 1997. Pizza into Java: Translating theory into practice. In ACM
Symp. on Principles of Programming Languages 1997. ACM Press.

Pierce, B. C. 2002. Types and Programming Languages. The MIT Press, Cambridge, MA.

Serrano, M. 1999. Wide classes. In ECOOP’99 - European Conference on Object-Oriented
Programming. Number 1628 in Lecture Notes in Computer Science. Springer, 391–415.

Tailvasaari, A. 1992. Object oriented programming with modes. Journal of Object Oriented
Programming, 27–32.

Torgersen, M., Ernst, E., Hansen, C. P., Ahé, P., and G. Bracha, N. G. 2004. Adding
wildcards to the Java programming language. Journal of Object Technology 3, 11 (December),
97–116.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

