
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

A parametric calculus for mobile open code

Davide Ancona 2 and Sonia Fagorzi 3 and Elena Zucca 4

DISI
University of Genova, Italy

Abstract

We present a simple parametric calculus of processes which exchange open mobile
code, that is, code which may contain free variables to be bound by the receiver’s
code.

Type safety is ensured by a combination of static and dynamic checks. That is,
internal consistency of each process is statically verified, by relying on local type
assumptions on missing code; then, when code is sent from a process to another,
a runtime check based on a subtyping relation ensures that it can be successfully
received, without requiring re-inspection of the code. In order to refuse communi-
cation in as few cases as possible, the runtime check accepts even mobile code which
would be rejected if statically available, by automatically inserting coercions driven
by the subtyping relation, as in the so-called Penn translation.

The calculus is parametric in some ingredients which can vary depending on the
specific language or system. Notably, we abstract away from the specific nature of
the code to be exchanged, and of the static and dynamic checks. We formalize the
notion of type safety in our general framework and provide sufficient conditions on
the above ingredients which guarantee this property.

We illustrate our approach on a simple lambda-calculus with records, where type
safe exchange of mobile code is made problematic by conflicts due to components
which were not explicitly required. In particular, we show that the standard coercion
semantics given in the literature, with other aims, for this calculus, allows to detect
and eliminate conflicts due to inner components, thus solving a problem which was
left open in previous work on type-safe exchange of mobile code.

Key words: Process calculi, mobile code, rebinding, dynamic
typing, subtyping

1 Partially supported by MIUR EOS DUE - Extensible Object Systems for Dynamic and
Unpredictable Environments.
2 Email: davide@disi.unige.it
3 Email: fagorzi@disi.unige.it
4 Email: zucca@disi.unige.it

c©2007 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

Ancona and Fagorzi and Zucca

Introduction

In a previous paper [8], we have presented a parametric calculus of processes
which exchange mobile code in a type-safe manner. This calculus, built on
a simple coordination mechanism with standard send/receive primitives, for-
malizes in a language-independent setting the ideas advocated in MoMi [3,4,2]:

• Each process statically checks type safety of its local code, by relying on
requirements on missing code, formally expressed by types.

• Mobile code exchanged among processes is equipped with its type, obtained
by the previous phase.

• Dynamic checks ensure that code sent from a process to another is accepted
only if it satisfies receiver’s requirements.

• Hence, whenever code is accepted, it can be safely composed with local code
without being inspected again.

The calculus is parametric in some ingredients which can vary depending on
the specific language or system. Notably, we abstract away from the specific
nature of the code to be exchanged (modeled by a core calculus), and of the
static and dynamic checks.

We consider two distinct subtyping relations in our framework: the static
subtyping relation simply models subtyping which could be possibly provided
by the static type system, whereas dynamic checks are modeled by a dynamic
subtyping relation, which is intuitively expected to be more liberal. Indeed, in
order to refuse communication in as few cases as possible, the runtime check
accepts even mobile code which would be rejected if statically available, by
automatically inserting coercions driven by the dynamic subtyping relation.
In this way, mobile code exchange is both safe, since after coercion code has
a statically permitted type, and flexible, since more code can be accepted.

In this paper we extend this previous work in two respects.

First, and more importantly, we extend the above ideas to the case where
mobile code is open, that is, may contain free variables to be rebound in
receiver’s code. To this end, the send primitive explicitly specifies a set of
unbinders, that is, which variables in sent code have to be remotely bound,
possibly discarding their local definitions, if any; and the receive primitive,
conversely, specifies a set of rebinders, that is, which variables are allowed to
be free in code to be received, also providing corresponding local definitions.
That is, the unbinding/rebinding mechanism is controlled by the programmer
(no accidental captures may happen), analogously to what has been proposed
e.g. in [6].

Mobile code is now equipped with, besides its type, a type context spec-
ifying expected types for free variables. The runtime check becomes sym-
metric, since mobile code must satisfy receiver’s requirements, and conversely
the receiver must provide appropriate definitions for the free variables. More
interestingly, coercions are inserted in both directions as well.

2

Ancona and Fagorzi and Zucca

Second, we realized that our approach for modeling flexible and type safe
mobile code exchange, that is, by coercions driven by a subtyping relation, is
the same which can be used, mainly with performance reasons, for compiling
source code with subtyping in lower-level code without subtyping, see Sect.15.6
of [13]. In this context, the translation which inserts run-time coercions is
often called the Penn translation, after the group at the University of Penn
that first studied it [7]. Recognizing this coincidence leaded to a much cleaner
presentation of our framework. Moreover, and more substantially, in one
classical case-study, that is, when mobile code to be exchanged has a record-
based structure 5 , and type safe exchange of mobile code is made problematic
by conflicts due to components which were not explicitly required, choosing
a runtime check based on the Penn translation found in the literature allows
to simply and nicely express detection and elimination of conflicts due to
arbitrarily nested components, whereas in previous work on type safe exchange
of mobile code [4,8] only top-level conflicts were considered.

The rest of the paper is organized as follows: we first present the untyped
version of our calculus in Sect.1, then add static and dynamic checks in Sect.2.
We formalize the notion of type safety in our parametric framework and pro-
vide sufficient conditions on the ingredients to be provided as arguments which
guarantee this property. In Sect.3 we formally define an instantiation which
takes a simple lambda-calculus with records as core calculus, and coercions
which delete, at any nested level, components which were not explicitly re-
quired 6 . Finally, in Sect.4 we summarize our contribution and briefly discuss
related and further work.

1 The Untyped Calculus

The untyped calculus for exchange of mobile open code is defined in a para-
metric way on top of a core calculus providing the following ingredients:

• variables x , y , z , . . . ∈ Var;

• (core) expressions e ∈ Expc, with Var ⊆ Expc; a substitution ρ is a mapping

from variables into (core) expressions, written xi
i∈I7→ ei, ;

• free variables FV (e) of an expression e;

• application of a substitution ρ to an expression e, written e{ρ};
• (core) reduction relation e

c−→e ′.

The syntax is given in Fig.1. Since the focus of our framework is on dynamic
retrieval and typechecking of open code, we consider a very simple coordina-
tion mechanism based on standard synchronous send/receive primitives. In
particular, a process can be, besides a process variable, either the null process

5 For instance, when exchanging records, objects, classes, mixins: in this paper we will
study the problem in the more foundational context of records for simplicity.
6 Corresponding, as explained above, to the Penn translation found in the literature.

3

Ancona and Fagorzi and Zucca

p ∈ Proc ::= x | nil | p1‖p2 | process

send([υ]E).p | receive(x [ρ]).p

E ∈ Exp ::= e | p mobile code

υ ::= x i∈Ii unbinding

ρ ::= xi
i∈I7→Ei rebinding

λ ::= τ | ![υ]E | ?[υ]E label

![υ]E = ?[υ]E complement

?[υ]E = ![υ]E

Fig. 1. Untyped calculus: syntax

nil, a parallel composition of processes, a sending or a receiving process. A
process send([x i∈Ii]E).p sends open code E (which can be either core code or in
turn a process) with free variables (contained in) x i∈Ii . Conversely, a process

receive(x [xi
i∈I7→Ei]).p receives open code, say E , and makes it close by binding

free variables in E as specified by the substitution xi
i∈I7→Ei (a mapping from

variables into expressions); the resulting code is available in the subsequent
process p via x . Note that we keep the language as simple as possible, hence
do not consider additional syntactic constructs (e.g., let-in) which could be
useful in practice, but are not significant to our aim.

We will use the following notations for mappings (e.g., substitutions): ρ\x
is the map obtained from ρ by removing the association for x (if present);
ρ1, ρ2 is the union of substitutions ρ1 and ρ2 with disjoint domains. Moreover,
we will use the following abbreviations:

• send(E).p for send([]E).p, that is, when sent code is closed,

• receive(x).p for receive(x []).p, that is, when received code must be closed,

• receive(x [ρ, y]).p for receive(x [ρ, y 7→ y]).p, that is, when a variable in re-
ceived code is bound to an outer binder in local code (see below).

Reduction semantics of process terms is modeled by a labelled relation p
λ−→p ′

where the label is either τ , denoting an internal step, or ![υ]E , ?[υ]E , denoting,
respectively, sending and receiving an expression E with free variables υ. An
internal step occurs as effect of either a reduction step at the core level, or an
exchange of code in a parallel composition of processes (see below).

We denote by λ the complement of λ, defined for λ 6= τ in the usual way.
Moreover, we will use on labels the same abbreviations used for processes and
write ?E and !E when υ is empty.

Before giving the formal reduction rules, we illustrate how exchange of
mobile code works by some examples.

First of all, consider the following parallel composition:

4

Ancona and Fagorzi and Zucca

send([x]x + 1).nil ‖ receive(y [x 7→ 2]).send(y).nil

The left-side process sends open code x + 1, whereas the right-side process
is willing to receive code with a free variable x to be locally bound to 2. As
a result of synchronization between the two processes, the right-side process
replaces y by the code sent by the left-side process, where x has been in
turn replaced by 2, hence 2 + 1 is then sent. Formally we have the following
reduction sequence:

send([x]x + 1).nil ‖ receive(y [x 7→ 2]).send(y).nil
τ−→

nil ‖ send(2 + 1).nil
!2+1−−→nil ‖ nil

Note that in the calculus there are three different kinds of binders: in a process

receive(x [xi
i∈I7→Ei]).p, x binds subsequent local code p, whereas the x i∈Ii will

(re)bind dynamically received code; in a process send([x i∈Ii]E).p, the x i∈Ii bind
sent code E , in such a way that free occurrences of x i∈Ii are unbound from
their local binders, if any. We will call these three kinds of binders local
binders, rebinders, and unbinders, respectively. In the process p above, the
first occurrence of x is an unbinder, the first occurrence of y is a local binder,
and the third occurrence of x is a rebinder.

A local binder can also affect subsequent dynamically received code, when
it binds free variables in a rebinding ρ, as shown by the following example:

receive(x).receive(y [x]).send(y + x).nil
?2−→

receive(y [x 7→ 2]).send(y + 2).nil
?[x]x∗3−−−−→

send(2 ∗ 3 + 2).nil

In this example, note the use of the abbreviation y [x], which means that free
variable x in received code will be bound to a definition which is still to be
received as well. This abbreviation formally stands for y [x 7→ x]. It is also
worth noting that, since the process send(y +x).nil has no unbinders specified,
both y and x must be locally replaced before sending the code; compare with
the following reduction sequence where x is unbound instead.

receive(x).receive(y [x]).send([x]y + x).nil
?2−→

receive(y [x 7→ 2]).send([x]y + x).nil
?[x]x∗3−−−−→

send([x]2 ∗ 3 + x).nil

The following example illustrates the case where mobile code is in turn a
process.

receive(x).send(receive(y [x]).send(y + x).nil).nil
?1−→

send(receive(y [x 7→ 1]).send(y + 1).nil).nil

5

Ancona and Fagorzi and Zucca

p FV (p)

x {x}
nil ∅

send([υ]E).p (FV (E) \ υ) ∪ FV (p)

receive(x [ρ]).p FV (ρ) ∪ (FV (p) \ {x})
p1‖p2 FV (p1) ∪ FV (p2)

E E{ρ}

e e{ρc}
x , x 6∈ dom(ρ) x

x , x ∈ dom(ρ) ρ(x)

nil nil

p1‖p2 p1{ρ}‖p2{ρ}
send([υ]E ′).p, υ ∩ FV (ρ) = ∅ send([υ]E ′{ρ\υ}).p{ρ}

receive(x [ρ′]).p, x 6∈ FV (ρ) receive(x [ρ′{ρ}]).p{ρ\{x}}

ρ′ ρ′{ρ}

xi
i∈I7→Ei xi

i∈I7→ (Ei{ρ})

Fig. 2. Untyped calculus: free variables and substitution

Finally, the following example shows that a local binder can affect not only
dynamically received code but also, in case process code is received, code
dynamically received by this code, and so on.

receive(x).receive(y [x]).y
?1−→

receive(y [x 7→ 1]).y
?[x]send(x+2).receive(z [x]).z−−−−−−−−−−−−−−−−→

send(1 + 2).receive(z [x 7→ 1]).z

Before formally defining the reduction relation, we extend, in Fig.2, the defini-
tions of free variables and application of a substitution, provided as ingredients
at the core level, to mobile code. We denote by ρc the subset of substitution
ρ mapping variables into core expressions. Conditions υ ∩ FV (ρ) = ∅ and
x 6∈ FV (ρ) avoid unexpected captures of free variables in ρ.

Reduction rules are defined in Fig.3. Rules (core-send) and (core-rcv) allow reduc-
tion at the core level. Note that core code can be either sent or further reduced
in a non deterministic way, and analogously for core code in a rebinding. This
means that we do not care about where core mobile code is executed, either
by the sender or the receiver, even though this will of course make a difference
in practice, e.g., in case of non termination. Sending a process term, instead,
intuitively means sending coordination code to be executed by the receiver.

6

Ancona and Fagorzi and Zucca

(core-send)

e
c−→e ′

send([υ]e).p
τ−→send([υ]e ′).p

(send)

send([υ]E).p
![υ]E−−−→p

FV (E)⊆υ

(core-rcv)

e
c−→e ′

receive(x [ρ, y 7→ e]).p
τ−→ receive(x [ρ, y 7→ e ′]).p

(rcv)

receive(x [ρ]).p
?[υ]E−−−→p{x 7→E{ρ}}

υ⊆dom(ρ)

(par-left)

p1
λ−→p ′1

p1‖p2
λ−→p ′1‖p2

(par-right)

p2
λ−→p ′2

p1‖p2
λ−→p1‖p ′2

(sync)

p1
λ−→p ′1 p2

λ−→p ′2

p1‖p2
τ−→p ′1‖p ′2

Fig. 3. Untyped calculus: reduction rules

In rule (send), mobile code can be sent only if it does not contain free variables
apart from those specified by the unbinders. That is, unbinders are used by the
programmer to specify whether a variable has to be bound locally or remotely,
as illustrated by the second example above.

In rule (rcv), mobile code can be received only if all variables declared as
free are explicitly rebound in receiver’s code. That is, rebinders are used
by the programmer to control which free variables in mobile code can be
accepted, thus preventing accidental captures. Rules (par-left), (par-right) and (sync),
are straightforward.

The use of explicit unbinders and rebinders guarantees that exchange of
open code does not introduce unbound variables (of course, provided that core
reduction does neither), as stated below.

Assumption 1 (Core Free Variables) If e
c−→e ′, then FV (e ′) ⊆ FV (e).

Proposition 1.1 (Free Variables) Under Assumption 1:

If p
τ−→p ′, then FV (p ′) ⊆ FV (p).

We prove the above proposition as a case of the following, which takes
into account communication steps with the outside world. Intuitively, when
receiving code E , no unbound variables are introduced only if E has no more
free variables than those it declares. Conversely, code sent to the external
world has no more free variables than those it declares (this is inductively
used to prove the property on internal steps).

Proposition 1.2 Under Assumption 1:

• If p
τ−→p ′, then FV (p ′) ⊆ FV (p).

• If p
![υ]E−−−→p ′, then FV (p ′) ⊆ FV (p) and FV (E) ⊆ υ.

• If p
?[υ]E−−−→p ′ and FV (E) ⊆ υ, then FV (p ′) ⊆ FV (p).

7

Ancona and Fagorzi and Zucca

Proof. By induction on reduction rules. We show the most interesting cases:

(core-send) We have that send([υ]e).p
τ−→ send([υ]e ′).p and e

c−→ e ′. Hence the
thesis follows by Assumption 1.

(send) We have that send([υ]E).p
![υ]E−−−→ p, with FV (E) ⊆ υ. Hence the thesis

trivially follows.

(rcv) We have that receive(x [ρ]).p
?[υ]E−−−→p{x 7→E{ρ}}, with υ ⊆ dom(ρ). Since,

by hypothesis, FV (E) ⊆ υ, we have FV (E) ⊆ dom(ρ); hence, FV (E{ρ}) ⊆
FV (ρ) and the thesis trivially follows.

2

We conclude this section with two slight variants, expressed in our frame-
work, of examples presented in [6] (Fig. 5) to show rebinding scenarios in
distributed systems. We assume the core calculus to include expressions of
string, unit and functional types (we write some type annotations as an help
to the reader, but types are not relevant here), and we enrich the process
syntax with the construct let ρ in p, with the usual semantics.

Let us consider the process let print :string→ unit 7→ . . . in (p1‖p2), where:

p1 = let here :string 7→ “site 1” in

send(print here :unit).send([here]print here :unit).nil

p2 = receive(c[here 7→ “site 2”] :unit).send(c :unit).nil

This process reduces as follows:
τ−→ let print . . . in (send(print “site 1”:unit).send([here]print here :unit).nil‖p2)
!print “site 1”:unit−−−−−−−−−−→ let print . . . in (send([here]print here :unit).nil‖p2)
τ−→ let print . . . in (nil‖send(print “site 2”:unit).nil)

!print “site 2”:unit−−−−−−−−−−→
Hence, in the left-hand side process, variable here is first sent to be printed
with its local definition, i.e. ,“site 1”, then is sent and rebound at a remote
site to the label “site 2”.

Let us now consider a variant of the process above, able to perform a
customized linking. This is obtained by changing the definition of p2 in the
following way:

p2 = receive(c[here 7→ e] :unit).send(c :unit).nil

where e = if trusted() then “site 2” else “site 33”.
Here, p2 has two possible rebindings for the variable here: the real site name
“site 2” for trusted programs and the fake name “site 33” for untrusted
ones. Which rebinding to perform is determined by the hypothetical function
trusted, which takes into account some security criteria, such as the origin of
the message.

It is worth to note that in our framework the rebinding is obtained without
any need of a lazy semantics for the substitution, as instead happens in [6],

8

Ancona and Fagorzi and Zucca

where a delayed instantiation is required.

2 The Typed Calculus

To define the typed calculus, we need the following additional core ingredients:

• (core) types t ∈ Typec,

• (core) type judgment Γ c̀ e : t , where Γ is a type context, that is, a mapping
from variables into (core) types, written xi : t i∈Ii ,

• static subtyping relation ` t ′ ≤s t , required to be a preorder.

• dynamic subtyping relation ` t ′ ≤d t T , where T is a partial mapping,
called coercion, T : Expc → Expc.

Dynamic subtyping is expected to accept more terms than static subtyp-
ing, and coercion consequently adapts the received code to the local context;
indeed, mobile code exchange requires, besides dynamic checks guaranteeing
type safety, also the ability of the system to dynamically modify code.

Intuitively, we expect static and dynamic subtyping to satisfy a number of
properties, such as:

• if ` t ′ ≤d t T , then coercion T transforms expressions of (a static
subtype of) type t ′ to expressions of (a static subtype of) type t , and is
undefined on other expressions;

• in ` t ′ ≤d t T , the pair t ′, t uniquely determines T ,

• ≤d is a preorder as well,

• ` t ≤d t id (the identity mapping),

• if ` t ≤d t ′ T , ` t ′ ≤d t ′′ T ′, ` t ′ ≤d t ′′ = T ′ ◦ T 7

• ≤s is a subset of ≤d, and ` t ≤d t ′ id whenever ` t ≤s t ′.

However, we do not formally assume here any of the above properties, since
they are not necessary for our main result, that is, type safety (Theorem 2.4),
which can be proved under somewhat weaker assumptions, see Assumption 3
and Assumption 5. We leave to further work the investigation of other sig-
nificant requirements the framework should satisfy which will likely explicitly
require some, if not all, of the assumptions as above.

As mentioned in the Introduction, coercions driven by a subtyping relation
are also used, mainly with performance reasons, for compiling source code
with subtyping in lower-level code without subtyping, see Sect.15.6 of [13]. In
this context, the translation which inserts coercions is often called the Penn
translation [7]. Apart from the different context and aims, our presentation
here differs for some other reasons.

7 These properties altogether amount to say that there is a functor from the category which
has types as objects and ≤d as arrows to the subcategory of Set which has as objects the
sets of expressions of (a static subtype of) a certain type.

9

Ancona and Fagorzi and Zucca

p ∈ Proc ::= x | nil | p1‖p2 | send(Γ ` [υ]E :T).p | process

receive(Γ ` x [ρ] :T).p

E ∈ Exp ::= e | p mobile code

T ∈ Type ::= t | � type

Γ ::= xi:Ti
i∈I type context

λ ::= τ | !Γ ` [υ]E : T | ?Γ ` [υ]E : T label

!Γ ` [υ]E : T = ?Γ ` [υ]E : T complement

?Γ ` [υ]E : T = !Γ ` [υ]E : T

Fig. 4. Typed calculus: syntax

First, our technical treatment is lighter, since, following the style of re-
cent work where type-checking is generalized to compilation, as, e.g., [1], we
pack relation between types and coercion in a unique “compilation” judgment,
which we expect to be inductively defined in instantiations of the framework,
as, for instance, we do in Sect,3. In [13], on the contrary, the translation
is modeled as a function which takes derivations of subtyping judgments as
arguments. Another drastic simplification is that we need to insert coercions
only in a single situation, that is, when received code is incorporated with lo-
cal code, whereas in the original Penn translation coercions must be inserted
in a term everywhere there is a subterm of a certain type which appears in a
context of a supertype. The technical counterpart of this simplification is that
our coercion function can take just terms as arguments, instead of requiring
to keep the typing judgment of the term as in [7].

Second, and more interestingly, since we handle open terms, subtyping is
naturally extended to contexts and coercions are inserted in both directions.
We believe this is a nice and important generalization of the coercions-driven-
by-subtyping approach.

Finally, whereas the original approach is purely syntactic, that is, coer-
cions are expressed as terms of the lower-level language (e.g., λ-abstractions),
here, since our aim is to define an abstract framework where core language is
not fixed, we take an extensional approach, where coercions are modeled as
functions from terms into terms. The fact that coercions could be internalized
in the language or not will then depend on the specific instantiation of the
framework: for instance, in the following section we will present an instan-
tiation on a simple λ-calculus with records where coercions are expressed by
λ-abstractions as in the original approach.

The syntax of the typed calculus is in Fig.4. The main novelty w.r.t.
the untyped version is that mobile code is annotated with a type context Γ
(mapping variables into types) and a type T . Types are either core types

10

Ancona and Fagorzi and Zucca

` � ≤s �

` Ti ≤s T ′i , i ∈ I ′

` xi:Ti
i∈I ≤s xi:T

′
i
i∈I′

I′ ⊆ I (implicit)

` � ≤d � T
T (p) = p

` Ti ≤d T ′i Ti, i ∈ I ′

` xi:Ti
i∈I ≤d xi:T

′
i
i∈I′
 T

T (xi
i∈I7→Ei) = xi

i∈I′
7→ Ti (Ei)

Fig. 5. Typed calculus: subtyping

(core-send)

e
c−→e ′

send(Γ ` [υ]e : t).p
τ−→send(Γ ` [υ]e ′ : t).p

(send)

send(Γ ` [υ]E :T).p
!Γ` [υ]E :T−−−−−−→p

FV (E) ⊆ dom(Γ)

(core-rcv)

e
c−→e ′

receive(Γ ` x [ρ, y 7→ e] :T).p
τ−→ receive(Γ ` x [ρ, y 7→ e ′] :T).p

(rcv)

receive(Γ ` x [ρ] :T).p
?Γ′ ` [υ]E :T ′

−−−−−−−→p{x 7→T ′ (E{T (ρ)})}

` T ′ ≤d T T ′

` Γ ≤d Γ′ T

(par-left)

p1
λ−→p ′1

p1‖p2
λ−→p ′1‖p2

(par-right)

p2
λ−→p ′2

p1‖p2
λ−→p1‖p ′2

(sync)

p1
λ−→p ′1 p2

λ−→p ′2

p1‖p2
τ−→p ′1‖p ′2

Fig. 6. Typed calculus: reduction rules

or the process type �. As well-formedness condition, in send and labels we
assume υ = dom(Γ), and in receive we assume dom(ρ) = dom(Γ). Hence, υ is
redundant, but we keep it for uniformity with the untyped version.

We will use the following additional notations for mappings (e.g., type
contexts): dom(Γ) is the domain of Γ; Γ[x:T] is the mapping obtained by
updating Γ with the association from x to T .

In Fig.5, we extend subtyping relations to the process type and to type
contexts. The process type is in relation only with itself and the corresponding
coercion is the identity. Subtyping relations on type contexts are defined in the
natural pointwise way and the associated coercion transforms substitutions of
the subtype context into substitutions of the supertype context (substitutions
have contexts as types, see rule (t-subst) in Fig.7).

Reduction rules for the extended calculus are in Fig.6. They are a straight-
forward extension to annotated mobile code of those seen for the untyped
calculus, except for (rcv), which is the key rule illustrating our approach. The
side condition expresses the fact that incoming code E can be retrieved only
if its type information Γ′,T ′ is compliant with that specified by the receiver

11

Ancona and Fagorzi and Zucca

(t-subst)

Γ ` Ei :Ti, i ∈ I

Γ ` xi
i∈I7→Ei :xi:Ti

i∈I
(t-core)

Γc
c̀ e : t

Γ ` e : t
(t-var-proc)

Γ ` x :�
Γ(x) = � (t-nil)

Γ ` nil :�

(t-par)

Γ ` p1 :� Γ ` p2 :�

Γ ` p1‖p2 :�
(t-send)

Γ1[Γ2] ` E :T ′ Γ1 ` p :� ` T ′ ≤s T

Γ1 ` send(Γ2 ` [υ]E :T).p :�

(t-rcv)

Γ1[x:T] ` p :� Γ1 ` ρ :Γ ` Γ ≤s Γ2

Γ1 ` receive(Γ2 ` x [ρ] :T).p :�

Fig. 7. Typed calculus: typing rules

Γ,T , as formally specified by the subtyping relation. In this case, appropriate
coercions are inserted before combining E with local code, to bridge the gap
between provided and required type information. 8

More precisely, all variables explicitly declared as free in the incoming
code are rebound to local definitions via coercion from the provided type
context Γ to the expected type context Γ′; then, the resulting (now closed
since FV (E) ⊆ υ = dom(Γ′) and dom(Γ′) ⊆ dom(Γ)) expression is substituted
in local code via coercion from the declared type T ′ to the required type T .

Typing rules, given in Fig.7, are straightforward. In rule (t-core), we denote
by Γc the subset of a context Γ which maps core variables into core types.
Rule (t-send) allows sending of code which has a static subtype of that it declares,
and conversely rule (t-rcv) allows the rebinding to have a static subtype of that
declared. Recall also that by well-formedness conditions we have dom(Γ2) = υ
in rule (t-send) and dom(Γ2) = dom(ρ) in rule (t-rcv).

We illustrate now how dynamic subtyping and coercion work by an exam-
ple, where we consider the instantiation of the framework which will be for-
mally detailed in the following sections. That is, we assume that expressions
of the core calculus include numbers and records with a sum (concatenation)
operator denoted by + and standard record types. Consider the process:

receive(y :posint ` x [y 7→ 1] :{X : int, Y : int}).send(x + {Z : 3}).nil

and assume that code ?y : int ` [y]{X : 0, Y : y, Z : 2} :
{X : int, Y : int, Z : int} is received.

We ensure type safe exchange of mobile code by a runtime check analogous
to that considered in [4] for mixin classes, to solve the classical problem of in-
terference in record/object types. That is, dynamic subtyping corresponds to
standard width subtyping on record types, together with a coercion function

8 For simplicity, here communicating something of a wrong type corresponds to no reduc-
tion at all; a more realistic model should include reduction into a distinguished error term
of either the receiver only or the communicating pair.

12

Ancona and Fagorzi and Zucca

which removes additional fields 9 . Then, the type declared by mobile code is
a subtype of the expected type, hence communication can take place. Mobile
code is adapted to the local code by the following steps. First, y is replaced
in the received code via coercion from posint to int, which is the identity, ob-
taining {X : 0, Y : 1, Z : 2}. Then, x is replaced in the local code via coercion
from {X : int, Y : int, Z : int} to {X : int, Y : int}, obtaining a safe record
extension in send({X : 0, Y : 1}+ {Z : 3}).nil.

The combination of the static type system and the dynamic checks should
ensure type safety, that is, that internal steps can never lead to ill-formed pro-
cess terms (for steps of communication with the “external world” this requires
to be confident on the fact that received code complies with its accompanying
type information, see below). 10

Definition 2.1 (Type Safety) Exchange of mobile code is type safe if the
following (SR) property holds:

If Γ ` p :� and p
τ−→p ′, then Γ ` p ′ :�.

We list now a number of assumptions the core calculus should satisfy in
order to have type safety. They are mostly standard properties, plus Assump-
tion 5, which states that, whenever the dynamic check on core mobile code
succeeds (that is, its declared type is in the dynamic subtyping relation with
the required type), this code can be safely incorporated with local code via
the corresponding coercion function.

Assumption 2 If Γ c̀ e : t , x 6∈ dom(Γ), then e{x 7→e ′} = e.

Assumption 3 (Core Weakening) If Γ c̀ e : t and ` Γ′ ≤s Γ, then Γ′ c̀ e :
t ′, with ` t ′ ≤s t . Moreover, if FV (e) ∩ dom(Γ′) = ∅, then Γ[Γ′] ` e : t .

Assumption 4 (Core SR) If Γ c̀ e : t and e
c−→ e ′, then Γ c̀ e ′ : t ′ for some

` t ′ ≤s t .

Assumption 5 (Core Coercion Substitution) If Γ[x:tx] c̀ e : t , Γ c̀ e ′ : t ′′x ,
` t ′′x ≤s t ′x , and ` t ′x ≤d tx T , then Γ c̀ e{x 7→T (e ′)} : t ′, for some ` t ′ ≤s t .

Here tx is the required type, t ′x the type declared by the mobile code and t ′′x
its actual type.

We now give some useful lemmas.

Lemma 2.2 (Weakening) If Assumption 3 holds, then if Γ ` E : T and `
Γ′ ≤s Γ, then Γ′ ` E :T ′, with ` T ′ ≤s T ; moreover, if FV (E)∩ dom(Γ′) = ∅,
then Γ[Γ′] ` E :T .

9 If objects rather than (non recursive) records are considered, additional fields must be
frozen rather than just removed, see [8] for details.
10 Note that in distributed scenarios type safety, usually expressed by subject reduction (SR)
and progress properties [9], reduces to SR (as in, e.g., [14,10]), since ensuring progress would
require a sophisticated static analysis (deadlock detection).

13

Ancona and Fagorzi and Zucca

Lemma 2.3 (Coercion Substitution) Under assumption 5, if Γ[x:Tx] `
E : T , Γ ` E ′ : T ′′x , ` T ′′x ≤s T ′x , and ` T ′x ≤d Tx T , then
Γ ` E{x 7→T (E ′)} :T ′, for some ` T ′ ≤s T .

Proof. By induction on typing rules. We show the most interesting cases.

(t-var-proc) We have that Γ[x:Tx] ` y : � and (Γ[x:Tx]) (y) = �, and thus either
x = y, hence Tx = T ′x = T ′′x = �, E ′ is a process p ′, ` � ≤d � id,
y{y 7→ id(p ′)} = p ′ and Γ ` p ′ : � holds by hypothesis, or x 6= y, and thus
y{x 7→T (E ′)} = y, Γ(y) = �, and Γ ` y : � holds by applying typing rule
(t-var-proc).

(t-nil) Trivial.

(t-send) We have that Γ[x:Tx] ` send(Γ2 ` [υ]E :T).p :� (1), and Γ[x:Tx][Γ2] `
E : T ′, (2) ` T ′ ≤s T , dom(Γ2) = υ and Γ[x:Tx] ` p : � (3). By applying
the inductive hypothesis to (3), we get Γ ` p{x 7→T (E ′)} :� (4). There are
two cases to be considered. If x ∈ dom(Γ2), we can conclude by applying the
typing rule (t-send) to (1) and (4). Otherwise, for definition of substitution,
dom(Γ2)∩FV (E ′) = ∅, hence, by applying Lemma 2.2 to the hypothesis Γ `
E ′ : T ′′x , we get Γ[Γ2] ` E ′ : T ′′x . We can now apply the inductive hypothesis
to (2) obtaining Γ[Γ2] ` E{x 7→T (E ′)} : T ′′ (5), for some ` T ′′ ≤s T ′.
Then, since ≤s is a preorder, we have ` T ′′ ≤s T and we get the thesis by
applying typing rule (t-send) to (4) and (5).

(t-core) We have that Γ[x:Tx] ` e : t . Moreover, if Tx = � then Γcore
c̀ e : t ,

hence, by Assumption 2, we have e{x 7→T (E ′)} = e and the thesis follows by
applying rule (t-core). Otherwise, Tx is a core type tx, hence Γcore[x:tx] c̀ e : t .
Then, T ′x must be a core type t ′x as well, ` t ′x ≤d tx T and E ′ a core
expression e ′, and by Assumption 5 we get Γcore

c̀ e{x 7→T (e ′)} : t ′, for
some ` t ′ ≤s t . Hence, we get the thesis by applying typing rule (t-core).

(t-rcv) We have that Γ[x:Tx] ` receive(Γ2 ` y [ρ] : T).p : � (1), and
Γ[x:Tx][y:T] ` p :� (2), Γ[x:Tx] ` ρ :Γ, and ` Γ ≤s Γ2 (3). We apply the in-
ductive hypothesis to all y ∈ dom(ρ) in (3) obtaining Γ ` ρ{x 7→T (E ′)} :Γ′

(4) for some ` Γ′ ≤s Γ. Hence, since ≤s is a preorder, ` Γ′ ≤s Γ2. There
are two cases to be considered. If x = y, then the thesis follows by applying
typing rule (t-rcv) to (2) and (4). Otherwise, for definition of substitution
we know that y 6∈ FV (E ′), hence, by applying Lemma 2.2 to the hypothesis
Γ ` E ′ : T ′′x , we get Γ[y:T] ` E ′ : T ′′x (5). We can now apply the induc-
tive hypothesis to (2) and (5) obtaining Γ[y:T] ` p{x 7→T (E ′)} :� (6), and
conclude by applying typing rule (t-rcv) to (4) and (6).

(t-par) Trivially by inductive hypothesis.

2

Theorem 2.4 If assumption 5 holds, then exchange of mobile code is type
safe.

14

Ancona and Fagorzi and Zucca

We prove type safety as a case of the following generalized type safety which
takes into account communication steps with the outside world. Intuitively,
when receiving code E , safety is guaranteed only if E actually complies its
accompanying type information Γ, T . We assume here to trust this type
information to be correct: a more sophisticated approach would require a
proof, as in [12]. Conversely, we can prove that code sent to the external
world always complies the declared type information (this is inductively used
to prove safety of internal steps).

Proposition 2.5 Under assumption 5:

• If Γ ` p :� and p
τ−→p ′, then Γ ` p ′ :�.

• If Γ1 ` p : � and p
!Γ2 ` [υ]E :T−−−−−−−→ p ′, then Γ1 ` p ′ : �, Γ1[Γ2] ` E : T ′, for some

` T ′ ≤s T .

• If Γ1 ` p : �, p
?Γ2 ` [υ]E :T−−−−−−−→ p ′, and Γ1[Γ2] ` E : T ′, with ` T ′ ≤s T , then

Γ1 ` p ′ :�.

Proof. By induction on reduction rules. We show the most interesting cases.

(core) We have that send(Γ2 ` [υ]e : t).p
τ−→ send(Γ2 ` [υ]e ′ : t).p, e

c−→e ′, and,

since we must have applied typing rules (t-send) and (t-core), Γ1 ` send(Γ2 `
[υ]e : t).p :�, (Γ1[Γ2])core

c̀ e : t ′, ` t ′ ≤s t , dom(Γ2) = υ and Γ1 ` p :�. Since
SR holds for the core calculus (Assumption 4), we get that (Γ1[Γ2])core

c̀ e ′ :
t ′′, with ` t ′′ ≤s t ′, and, since ≤s is a preorder, ` t ′′ ≤s t . Hence by applying
typing rules (t-core) and (t-send) the thesis follows.

(send) We have that send(Γ2 ` [υ]E : T).p
!Γ2 ` [υ]E :T−−−−−−−→ p, with FV (E) ⊆

dom(Γ2); moreover, we have Γ1 ` send(Γ2 ` [υ]E : T).p : �. To derive
this last judgment, we must have applied typing rule (t-send), hence Γ1 ` p :�
and Γ1[Γ2] ` E :T ′, with ` T ′ ≤s T .

(rcv) We have that

receive(Γ2 ` x [ρ] :T).p
?Γ′

2 ` [υ]E :T ′

−−−−−−−→p{x 7→T (E{T ′(ρ)})}

with ` T ′ ≤d T T and ` Γ2 ≤d Γ′2 T ′ (1); moreover, we have Γ1 `
receive(Γ2 ` x [ρ] :T).p :� (2) and Γ1[Γ′2] ` E :T ′′ (3), with ` T ′′ ≤s T ′ (4).
To derive (2), we must have applied typing rule (t-rcv), hence Γ1[x:T] ` p :�
(5), Γ1 ` ρ : Γ, ` Γ ≤s Γ2 (6) and dom(ρ) = dom(Γ2) (7). We can
apply Lemma 2.3 to (3) and all y in (6) (note that dom(ρ) = dom(Γ2) ⊆
dom(Γ′2) from (1) and (7)), with ` Γ2(y) ≤d Γ′2(y) (from (1)), obtaining
Γ1 ` E{T ′(ρ)} :T ′′′ (8), with ` T ′′′ ≤s T ′′ (9). Since ≤s is a preorder, from
(9) and (4) we get ` T ′′′ ≤s T ′ (10). We can now conclude by applying
Lemma 2.3 to (5) and (8), with (1) and (10).

2

15

Ancona and Fagorzi and Zucca

3 A case study: lambda calculus with records

A case-study in exchange of mobile code which has been extensively studied
[4,3,2,8] is when code to be exchanged has a record-based structure (records,
objects, classes, mixins), and type safety is made problematic by conflicts due
to components which were not explicitly required. For instance, in MoMi [4,3,2]
mobile code consists in mixin classes, and conflicts are avoided by a renaming
mechanism which, essentially, hides unexpected components to receiver’s code.
In [8], we have formalized this kind of solution (on mixin modules rather
than classes) as one instantiation of our parametric framework for type safe
exchange of mobile code.

However, in this previous work only top-level conflicts were detected and
avoided, whereas at nested levels width subtyping was simply not allowed. For
instance, given as expected type {X:{Y : int}}, the type {X:{Y : int} ,Z : int}
was accepted (and Z removed), while {X:{Y : int,Z : int}} was rejected.

In this section, we show that a runtime check based on the Penn translation
found in the literature allows for simple and nice detection and elimination of
conflicts due to arbitrarily nested components. For simplicity, we illustrate the
approach on the more foundational example of records, but the same technique
could be easily adapted to objects, classes or mixins: in these cases, to take
into account mutual recursion, additional fields must be hidden rather than
just removed, see [8] for details.

Formally, we present an instantiation of the framework introduced in the
previous sections which takes as core calculus a simple λ-calculus with records,
as static subtyping depth subtyping, and as dynamic subtyping depth/width
subtyping with a coercion function which removes additional fields. We call
the instantiation MoRecdel (for “MObile RECords where unexpected fields are
DELeted”).

The syntax of the core calculus is given in Fig.8. We assume, besides
variables, an infinite set Field of field names. Terms of the calculus are built by
(unspecified) operators of basic types, standard operators of lambda calculus,
and records with three operators: sum, delete and selection. A record is a
map from field names to expressions.

The reduction relation is given in Fig.9, where we omit standard contextual
closure.

Reduction rules are straightforward: rule (app) is standard application (we
are not interested in fixing an evaluation strategy here), rule (sel) allows selec-
tion of an existing field, rule (sum) performs the union of two records if their sets
of field names are disjoint, rule (del) removes a field from a record (if present).

The λ-calculus with records, with all required ingredients (variables, ex-
pressions, substitution application and reduction relation) can be used as a
core calculus for the untyped parametric coordination calculus illustrated in
Sect.1, since it satisfies the required assumption.

Theorem 3.1 Assumption 1 of Sect.1 is satisfied, that is:

16

Ancona and Fagorzi and Zucca

X, Y, Z, . . . ∈ Field field name

x , y, z, . . . ∈ Var variable

e ∈ Expc ::= expression

. . . basic operators

| x | λx . e | e1e2 lambda calculus operators

| {fs} record

| e1 + e2 sum

| e \X delete

| e.X selection

fs := Xi
i∈I7→ ei fields

Fig. 8. MoRecdel: syntax

(app)

(λx . e1)e2
c−→e1{x 7→e2}

(sel)

{fs} .X c−→ fs(X)

(sum)

{fs1}+ {fs2}
c−→{fs1,fs2}

dom(fs1) ∩ dom(fs2) = ∅ (del)

{fs} \X c−→{fs\X}
Fig. 9. MoRecdel: reduction rules

If e
c−→e ′, then FV (e ′) ⊆ FV (e).

Proof. By induction on reduction rules. 2

We give now the static type system and the runtime check for MoRecdel.
We assume that the syntax of Fig.8 is enriched with a type annotation for the
lambda abstraction binder, as usual in the typed λ-calculus.

Typing rules are in Fig.10. Types include (unspecified) basic types and
functional and record types. A record type consists of a signature Σ which is
a map from field names into types.

In Fig.11 we define the subtyping relations. It is worth to note that,
analogously to what happens in [13], in MoRecdel coercion can be internalized,
hence we consider dynamic subtyping judgments having form ` t ′ ≤d t f,
with f ∈ Expc (we use a different metavariable to stress that f will be an
expression of a functional type). Both static and dynamic subtyping are the
usual subtyping on functional types (that is, contravariant in the input and
covariant in the output) and both allow depth subtyping on record types.
Moreover, dynamic subtyping also allows width subtyping on record types.
For instance, assuming ` posint ≤d int λz : posint. z , if the expected
type is {X:{Y : int}}, then {X:{Y :posint,Z : int} ,W: int} is accepted and the
corresponding coercion is represented by the expression

17

Ancona and Fagorzi and Zucca

t ∈ Typec ::= type

. . . basic types

| t1 → t2 functional type

| {Σ} record type

Σ := Xi : ti
i∈I signature

(t-var)

Γ c̀ x :Γ(x)
(t-lambda)

Γ[x:t1] c̀ e : t2

Γ c̀ λx :t1. e : t1 → t2

(t-app)

Γ c̀ e1 : t2 → t

Γ c̀ e2 : t ′2

Γ c̀ e1e2 : t
` t ′2 ≤s t2

(t-record)

Γ c̀ ei : ti, i ∈ I

Γ c̀

{
Xi

i∈I7→ ei

}
:
{
Xi : ti

i∈I}
(t-sum)

Γ c̀ ei :{Σi} , i ∈ 1, 2

Γ c̀ e1 + e2 :{Σ1,Σ2}
dom(Σ1) ∩ dom(Σ2) = ∅

(t-del)

Γ c̀ e :{Σ}

Γ c̀ e \X :{Σ \X}
(t-sel)

Γ c̀ e :{Σ}

Γ c̀ e.X :Σ(X)

Fig. 10. MoRecdel: type system

basic

subtyping rules

. . .

` t ′1 ≤s t1 ` t2 ≤s t ′2

` t1 → t2 ≤s t ′1 → t ′2

` ti ≤s t ′i , i ∈ I

`
{
Xi : ti

i∈I} ≤s

{
Xi : t ′i

i∈I}
` t ′1 ≤d t1 f1 ` t2 ≤d t ′2 f2

` t1 → t2 ≤d t ′1 → t ′2 λy :t1 → t2. λx :t ′1. f2(y(f1x))

` ti ≤d t ′i fi, i ∈ I ′

`
{
Xi : ti

i∈I} ≤d

{
Xi : t ′i

i∈I′}
 λy :

{
Xi : ti

i∈I} . {Xi
i∈I′
7→ fi(y .Xi)

}
Fig. 11. MoRecdel: subtyping relations

18

Ancona and Fagorzi and Zucca

λx :{X:{Y :posint,Z : int} ,W : int} . {X 7→(λy :{Y :posint,Z: int} . {Y 7→(λz :posint. z) (y.Y)}) (x .X)} .

Note that, as already mentioned, coercion hierarchically deletes all unexpected
fields.

We can now show that MoRecdel, with all required ingredients (types, type
judgment, static and dynamic subtyping relations), can be used as a parameter
for the typed parametric coordination framework illustrated in Sect.2, since
it satisfies all required assumptions.

We first give some useful lemmas.

Lemma 3.2 (Subst) If Γ[x:t2] c̀ e1 : t1, Γ c̀ e2 : t2, then Γ c̀ e1{x 7→e2} : t1.
Moreover, if Γ[x:t2] c̀ e1 : t1, Γ ` e2 : t ′2, with t ′2 ≤s t2, then Γ ` e1{x 7→e2} : t ′1,
with t ′1 ≤s t1.

Proof. The first part of the lemma is proved by induction on the structure of
e1. For the moreover part, we observe that if Γ[x:t2] c̀ e1 : t1, Γ ` e2 : t ′2, with
t ′2 ≤s t2, then, for the weakening property (see point A3 below), Γ[x:t ′2] c̀ e1 : t ′1,
with t ′1 ≤s t1, and, for the first part of this lemma, we get Γ ` e1{x 7→e2} : t ′1.2

Lemma 3.3 (Coercion type) If ` t ′ ≤d t f, then c̀ e : t ′ → t ′′ with
` t ′′ ≤s t .

Proof. Induction on dynamic subtyping rules. 2

Theorem 3.4 All assumptions of Sect.2 are satisfied. In particular:

A2. If Γ c̀ e : t , x 6∈ dom(Γ), then e{x 7→e ′} = e.

A3. If Γ c̀ e : t and Γ′ ≤s Γ, then Γ′ c̀ e : t ′, with t ′ ≤s t . Moreover, if
FV (e) ∩ dom(Γ′) = ∅, then Γ[Γ′] ` e : t .

A4. If Γ c̀ e : t and e
c−→e ′, then Γ c̀ e ′ : t ′ for some ` t ′ ≤s t .

A5. If Γ[x:tx] c̀ e : t , Γ c̀ e ′ : t ′′x , ` t ′′x ≤s t ′x , and ` t ′x ≤d tx f, then
Γ c̀ e{x 7→ f e ′} : t ′, for some t ′ ≤s t .

Proof.

A2. Induction on the structure of e.

A3. The first part is proved by induction on typing rules. In the case (t-var),
we have e = x , t = Γ(x) and from Γ′ ≤s Γ, we get Γ′(x) ≤s Γ(x). In cases
(t-lambda), (t-del) and (t-sel), we apply the inductive hypothesis to the premise
of the rule. In cases (t-app) and (t-sum), we apply the inductive hypothesis
to both the premises of the rule; moreover, in the case (t-app), we exploit
the transitivity property of ≤s. In the case (t-record), we apply the inductive
hypothesis to all premises of the rules (that is, for all i ∈ I). The moreover
part is proved by induction on typing rules.

A4. Induction on reduction rules. In the case (app), we have (λx :t2. e1)e2
c−→

e1{x 7→e2}, with Γ c̀ (λx :t2. e1)e2 : t . To derive this last judgment, we must
have applied typing rule (t-app) and (t-lambda), hence, it must be Γ[x:t2] c̀ e1 : t ,
Γ c̀ e2 : t ′2, with t ′2 ≤s t2. Thus, we can conclude by using Lemma 3.2.

19

Ancona and Fagorzi and Zucca

A5. By applying Lemma 3.3 to the premise Γ c̀ e ′ : t ′′x , with ` t ′′x ≤s t ′x , and
` t ′x ≤d tx f, we get Γ ` e ′′e ′ : tx , for some ` tx ≤s tx . Hence, we
can apply Lemma 3.2 to this last judgment and the premise Γ[x:tx] c̀ e : t ,
obtaining Γ c̀ e{x 7→e ′′e ′} : t ′, for some ` t ′ ≤s t .

2

4 Conclusion

The contribution of the paper can be summarized as follows. First, we have
extended previous work introducing an abstract framework for type-safe ex-
change of mobile code to the (non trivial) case of open code. The outcome is a
parameterized process calculus which allows to express in a simple and clean
way rebinding of code in a distributed environment. In this respect, some work
which has directly influenced our approach is that on dynamic software updat-
ing in, e.g., [5,6,15]. However, here we consider arbitrary core calculi rather
than lambda-calculi, and an explicit language for the process layer, whereas
in [5,6,15] the basic primitive is an update primitive which when performed
changes local code in a less controlled way.

Moreover, we have adapted to a different context and to different aims the
coercion semantics of subtyping, also called Penn translation [7], showing that
it can be used for dynamic retrieval of code and smoothly combined with a
classical subset semantics for static subtyping; our work also illustrates how
this approach can be generalized to open code.

Finally, we have defined an instantiation of the framework which shows
how to use Penn translation to solve the classical problem of interference of
names when mobile code has a record structure [3,4,2].

Besides the already mentioned work, an important source of inspirationfor
the idea of coercion driven by a subtyping relation has been [11].

We plan to investigate other properties besides type safety. For instance,
we would like to formalize notions like how often code is rejected and whether
the original language semantics is preserved.

References

[1] Ancona, D., F. Damiani, S. Drossopoulou and E. Zucca, Polymorphic
bytecode: Compositional compilation for Java-like languages, in: ACM Symp.
on Principles of Programming Languages 2005 (2005).

[2] Bettini, L., V. Bono and S. Likavec, Safe and flexible objects with subtyping,
Journ. of Object Technology 10 (2005), pp. 5–29, special Issue: OOPS Track
at SAC 2005.

[3] Bettini, L., V. Bono and B. Venneri, Subtyping-inheritance conflicts: The mobile
mixin case, in: J.-J. Lévy, E. W. Mayr and J. C. Mitchell, editors, TCS’04 - 3rd
IFIP Int. Conf. on Theoretical Computer Science 2004 (2004), pp. 451–464.

20

Ancona and Fagorzi and Zucca

[4] Bettini, L., B. Venneri and V. Bono, MOMI: a calculus for mobile mixins, Acta
Informatica 42 (2005), pp. 143–190.

[5] Bierman, G., M. W. Hicks, P. Sewell and G. Stoyle, Formalizing dynamic
software updating (extended abstract), in: USE’03 - the Second International
Workshop on Unanticipated Software Evolution, 2003.

[6] Bierman, G., M. W. Hicks, P. Sewell, G. Stoyle and K. Wansbrough, Dynamic
rebinding for marshalling and update, with destruct-time λ, in: C. Runciman
and O. Shivers, editors, Intl. Conf. on Functional Programming 2003 (2003),
pp. 99–110.

[7] Breazu-Tannen, V., T. Coquand, C. A. Gunter and A. Scedrov, Inheritance as
implicit coercion, Information and Computation (1991), pp. 172–221.

[8] Fagorzi, S. and E. Zucca, A framework for type safe exchange of mobile code, in:
TGC 2006 - 2nd International Symposium on Trustworthy Global Computing
2006, Lecture Notes in Computer Science (2007), to appear.
URL http://www.disi.unige.it/person/FagorziS/Papers/Papers.html#
TGC06

[9] Felleisen, M. and D. P. Friedman, Control operators, the SECD-machine, and
the lambda-calculus, in: 3rd Working Conference on the Formal Description of
Programming Concepts, Ebberup, Denmark, 1986, pp. 193–219.

[10] Kobayashi, N., B. C. Pierce and D. N. Turner, Linearity and the pi-calculus, in:
ACM Symp. on Principles of Programming Languages 1996 (1996), pp. 358–
371.

[11] Meijer, E. and P. Drayton, Static typing where possible, dynamic typing
when needed: The end of the cold war between programming languages, in:
OOPSLA’04 Workshop on Revival of Dynamic Languages, 2004.

[12] Necula, G. C., Proof-carrying code., in: ACM Symp. on Principles of
Programming Languages 1997 (1997), pp. 106–119.

[13] Pierce, B. C., “Types and Programming Languages,” The MIT Press, 2002.

[14] Pierce, B. C. and D. Sangiorgi, Typing and subtyping for mobile processes, in:
Proceedings 8th IEEE Logics in Computer Science, Montreal, Canada, 1993,
pp. 376–385.

[15] Stoyle, G., M. W. Hicks, G. Bierman, P. Sewell and I. Neamtiu, Mutatis
mutandis: safe and predictable dynamic software updating, in: ACM Symp. on
Principles of Programming Languages 2005 (2005), pp. 183–194.

21

http://www.disi.unige.it/person/FagorziS/Papers/Papers.html#TGC06
http://www.disi.unige.it/person/FagorziS/Papers/Papers.html#TGC06

	The Untyped Calculus
	The Typed Calculus
	A case study: lambda calculus with records
	Conclusion
	References

