
Mixin modules for dynamic rebinding

Davide Ancona a Sonia Fagorzi a Elena Zucca a

aDISI, Università di Genova, Italy

Abstract

Dynamic rebinding is the ability of changing the definitions of names at execution
time. While dynamic rebinding is clearly useful in practice, and increasingly needed
in modern systems, most programming languages provide only limited and ad-hoc
mechanisms, and no adequate semantic understanding currently exists.

Here, we provide a simple and powerful mechanism for dynamic rebinding by
means of a calculus CMS `,v of mixin modules (mutually recursive modules allowing
redefinition of components) where, differently from the traditional approach, module
operations can be performed after selecting and executing a module component: in
this way, execution can refer to virtual components, which can be rebound when
module operators are executed. In particular, in our calculus module operations are
performed on demand, when execution would otherwise get stuck.

We provide a sound type system, which ensures that execution never tries to ac-
cess module components which cannot become available, and show how the calculus
can be used to encode a variety of real-world dynamic rebinding mechanisms.

1 Introduction

In the last years considerable effort has been invested in developing kernel
module/fragment calculi [12,7,23,21,7,19] providing foundations for flexible
manipulation and combination of software components. In particular, a simple
unifying notion emerged from this research stream is that of mixin module
[11,3], that is, a module which allows late (re)definition of components. In a
mixin module components are either defined inside the module (exported) or
deferred (imported), that is, to be provided later by means of combination
with other modules (notably, in a mutually recursive way by a symmetric sum
operator). Moreover, some defined components can be virtual, that is, can be
later modified as an effect of combination with other modules (notably, by
an overriding operator), so that all their internal references are dynamically
rebound to the new definition. The possibility of defining virtual components
is a generalization to an arbitrary context of software composition of a key idea

Preprint submitted to Elsevier Science 4 July 2005

of the object-oriented approach, that is, the ability of writing code fragments
(classes in this case) where components (methods) are simultaneously ready
to be used and available to be modified (open-closed property).

Calculi supporting mixin modules, such as the Calculus of Module Systems
(shortly CMS) developed by two of the authors[7], can be used to encode and
compare on a formal basis a large variety of existing mechanisms for software
composition, including parameterized modules like ML functors, overriding,
extra-linguistic mechanisms like those provided by a linker. However, these
calculi are based on a static view of software manipulation, hence fail in many
ways to be adequate to model modern software systems, which become in-
creasingly dynamic. For instance, programming environments such as those
of Java and C# support dynamic linking, and we can expect in the future
more and more forms of reconfiguration interleaved with standard execution
steps; when values of computations are marshaled from a running program
and moved elsewhere, some of their identifiers may need to be dynamically
rebound; systems which provide uninterrupted service must be dynamically
updated.

All these situations could be hardly represented in, e.g., CMS, even though the
notion of virtual component, allowing the same name to be bound to different
definitions during successive steps of configuration of a software system, seems
to exactly correspond to rebinding. This is due to the fact that in CMS and
similar calculi all module operators must be performed before starting execu-
tion of a program, that is, evaluation of a module component. Hence, virtual
components can be usefully employed to rebind the same name to different
definitions, and thus reuse in different ways the same module in different con-
texts, but this rebinding is static in the sense that only closed modules (that
is, with no deferred or virtual components) can be actually used at execution
time.

Here, we are able to obtain a simple and powerful calculus for dynamic re-
binding from CMS by developing the following simple key ideas.

• Components of open modules can be selected and executed, keeping their
module context. In this way, execution of module operators can be inter-
leaved with program execution, that is, execution of a module component
in the context of the components offered by the module. We already intro-
duced this idea in CMS ` [6], where in particular we adopted a lazy strategy
which performs reconfiguration steps (execution of module operators) only
if necessary, that is, when program execution would otherwise gets stuck
(since a not yet available component is needed.)

• Program execution refers to not only local, but also virtual components,
that is, components which are associated with a definition which is directly
available to the executing program and can also be redefined by performing

2

module operators. This conceptually simple extension greatly enhances the
expressive power. Indeed, in CMS `, reconfiguration steps can either be per-
formed or not depending on which components program execution needs,
but when a component is bound to a definition this binding can no longer
be changed. On the contrary, in CMS `,v execution can refer to components
which can be redefined when module operators are executed.

Another important novelty w.r.t. CMS ` is that CMS `,v keeps the full expres-
sive power of higher-order features of CMS . This allows to express interaction
of execution at different levels (e.g., modules with module components, trig-
gering of a local module simplification inside program execution, and so on).

In Section 2 and Section 3 we formally define the calculus. In Section 4 we
show how the calculus can be used to model real-world dynamic rebinding
requirements. In Section 5 we provide a sound type system, which ensures that
execution will never try to access module components which cannot become
available. Section 6 collects the technical results, and finally Section 7 contains
concluding remarks and directions for further work.

2 Syntax

2.0.0.1 Notations We denote by A
fin→ B the set of partial functions f from A

into B = codf with finite domain dom(f) ⊆ A. For I set of indexes, ai ∈ A, bi ∈ B,
for i ∈ I, we denote by ai : bi

i∈I the partial function f s.t. dom(f) = {ai | i ∈ I},
f(ai) = bi for i ∈ I. We will use the following operators on partial functions: f, g is
the union of two functions with disjoint domain; f|g means that f, g are compatible,
that is, s.t. f(a) = g(a) for all a ∈ dom(f) ∩ dom(g); f ∪ g is the union of two
compatible functions; ◦ is the composition of functions; f\A is the restriction of f

to the domain dom(f) \A; we write f\a instead of f\{a} .

The syntax of CMS `,v is given in Fig.1.

We assume an infinite set Name of names X, and an infinite set Var of vari-
ables x. Names are used to refer to a module from the outside (hence they
are used by module operators), while variables are used to refer to a (basic)
module from a program executing in the context of the components offered
by this module. This distinction between names and variables is standard in
module calculi and, besides the methodological motivation explained above,
has technical motivations as well, such as allowing α-conversion for variables
while preserving external interfaces (see, e.g., [7] for an extended discussion of
this point).

As CMS and CMS `, CMS `,v is a parametric and stratified calculus, which

3

e ∈ Exp ::= expression

. . . core operators

| x variable

| [ι; o; ρ] (dom(ι)∩dom(ρ)=∅) basic module

| [ι; o; ρ | e] (dom(ι)∩dom(ρ)=∅) basic configuration

| e1 + e2 sum

| freezeXe freeze

| e\X delete

| e↓X run

| e↑ result

ι : Var
fin→ Name input assignment

o : Name
fin→ Exp output assignment

ρ : Var
fin→ Exp local assignment

Fig. 1. Syntax

can be instantiated over different core calculi. However, while in CMS [7] this
dependence on the core level is represented in a more rigorous way by using
explicit substitutions, here we adopt for simplicity a less formal approach
where we assume module expressions to be merged with expressions of the
core calculus (that is, the dots in the syntax correspond to core productions).
In the examples in the sequel we assume that core expressions include integers
with the usual operations.

Basic modules are as in CMS and consist of three parts: the input assignment
ι, which is a mapping from variables into input names, the output assignment
o, which is a mapping from output names into expressions, and the local as-
signment ρ, which is a mapping from local variables into expressions. Input
names are called virtual if they are output names as well, deferred otherwise;
variables in the domain of ι are called either virtual or deferred depending on
the associated name. A basic configuration is a pair [ι; o; ρ | e], consisting of a
basic module and an expression, called program.

Both basic modules and basic configurations are well-formed only if the sets
of deferred and virtual variables and that of local variables are disjoint.

Operators sum, freeze and delete are a simplified version of CMS module
operators, and provide primitive ways to manipulate and combine software
fragments. Modules can be constructed by applying these operators on top of
basic modules, and configurations can be constructed by applying these oper-

4

ators on top of basic modules and at least one basic configuration (actually,
exactly one in well-behaving terms, see in the sequel, hence we can correctly
talk of the program running inside a configuration). Operator ↓ allows to
obtain a basic configuration from a (basic) module, by starting the execution
of a module component. Operator ↑ extracts from a configuration the (fi-
nal result of) the program. Operators will be explained more in detail when
introducing reduction rules.

3 Semantics

In this section we give the semantics of the calculus. Reduction rules are given
in Fig. 2 and Fig. 3.

By definition, the one step reduction relation > is the relation over well-
formed terms inductively defined by the rules. For sake of clarity, we write
also some side conditions which are redundant since implied by the fact that
terms must be well-formed.

The semantics is given by using evaluation contexts (to control the evaluation
order) and redexes (reducible expressions), following the approach of Felleisen
and Friedman [18]. Rule (E) is the usual contextual closure, where evaluation
contexts E include a non specified set of core evaluation contexts, and the
metavariable r ranges over redexes, that is, the left-hand sides of the conse-
quence in (instantiations of) the other rules, called computational. We denote
by E [e] the expression obtained by replacing by e the hole in context E . Re-
configuration contexts R are special contexts used in rule (res-extract) and
(res-var), as explained below.

The evaluation context [x : X, ι; o; ρ | E [x]] + E expresses the fact that in the
sum of a configuration with a module the evaluation of the right-hand-side
argument is only triggered when the configuration is fully reduced and the
running program still needs reconfiguration steps to proceed (indeed, in this
case the module needs to be reduced in order sum to be performed.)

We assume that computational rules for the core operators are provided.

3.0.0.3 Module simplification Simplification rules for sum, freeze and
delete on modules are exactly as in CMS . We give here a brief description,
referring to [7] for more detailed comments.

5

Evaluation contexts
E ::= 2 | . . . | [ι; o; ρ | E] | E + e | E \X | freezeXE | E ↓X | E ↑

| [ι; o; ρ] + E | [ι; o; ρ | E [x]] + E (x ∈ dom(ι) ∧ ι(x) 6∈ dom(o))

Contextual closure and core execution

(E)
r > e

E [r] > E [e]
. . . (rules for core operators)

Module simplification

(m-sum)
[ι1; o1; ρ1] + [ι2; o2; ρ2] >

[ι1, ι2; o1, o2; ρ1, ρ2]

dom(ι1, ρ1) ∩ FV ([ι2; o2; ρ2]) = ∅

dom(ι2, ρ2) ∩ FV ([ι1; o1; ρ1]) = ∅

dom(ι1, ρ1) ∩ dom(ι2, ρ2) = ∅

dom(o1) ∩ dom(o2) = ∅

(m-freeze)
freezeX [ι; o; ρ] >

[
ι\F ; o; ρ, x : o(X)x∈F

] F = {x | ι(x) = X}

F 6= ∅ ⇒ X ∈ dom(o)

(m-del)
[ι; o; ρ] \X > [ι; o\X ; ρ]

X ∈ dom(o)

Variable resolution and reconfiguration

(local)
[ι; o; ρ | E [x]] > [ι; o; ρ | E{ρ(x)}]

x 6∈ HB (E)

x ∈ dom(ρ)

(virtual)
[ι; o; ρ | E [x]] > [ι; o; ρ | E{o(ι(x))}]

x 6∈ HB (E)

x ∈ dom(ι) ∧ ι(x) ∈ dom(o)

(sum)
[ι1; o1; ρ1 | E [x]] + [ι2; o2; ρ2] >

[ι1, ι2; o1, o2; ρ1, ρ2 | E [x]]

x 6∈ HB (E)

x ∈ dom(ι1) ∧ ι1(x) 6∈ dom(o1)

dom(ι1, ρ1) ∩ FV ([ι2; o2; ρ2]) = ∅

dom(ι2,ρ2)∩FV ([ι1; o1; ρ1 | E [x]])=∅

dom(ι1, ρ1) ∩ dom(ι2, ρ2) = ∅

dom(o1) ∩ dom(o2) = ∅

(freeze)
freezeX [ι; o; ρ | E [x]] >

[
ι\F ; o; ρ, x : o(X)x∈F | E [x]

]
x 6∈ HB (E)

x ∈ dom(ι) ∧ ι(x) 6∈ dom(o)

F = {x | ι(x) = X}

F 6= ∅ ⇒ X ∈ dom(o)

(del)
[ι; o; ρ | E [x]] \X > [ι; o\X ; ρ | E [x]]

x 6∈ HB (E) ∧ x ∈ dom(ι) ∧ ι(x) 6∈ dom(o)

X ∈ dom(o)

Fig. 2. Reduction rules
6

e ∈ Exp FV (e)

. . . free variables for core operators

x {x}

[ι; o; ρ] FV (o) ∪ FV (ρ) \ dom(ι, ρ)

[ι; o; ρ | e] (FV (o) ∪ FV (ρ) ∪ FV (e)) \ dom(ι, ρ)

e1 + e2 FV (e1) ∪ FV (e2)

e \X | freezeXe | e↓X | e↑ FV (e)

f : A
fin→ Exp ∪{FV (f(a)) | a ∈ dom(f)}

E HB (E)

2 ∅

[ι; o; ρ | E] dom(ι, ρ) ∪ HB (E)

E + e | E \X | freezeXE | E ↓X | E ↑ HB (E)

Table 1
Free variables and hole binders

Sum The sum operation has the effect of gluing together two modules. The
first two side conditions avoid undesired captures of free variables. Free
variables of expressions are defined in Table 1, assuming that their defini-
tions on core terms are provided. Since the reduction is defined only over
well-formed terms, the deferred and local variables of one module must be
disjoint from those of the other (second side condition). These side condi-
tions can always be satisfied by an appropriate α-conversion. For the same
reason of well-formedness, the output names of the two modules must be
disjoint (last side condition) 1 ; however, in this case the reduction gets stuck
since this conflict cannot be resolved by an α-conversion.

Freeze The freeze operator removes the name X appearing as index from the
input names. All the virtual variables mapped by ι into it are frozen, that
is, become local, and take as defining expression the current definition of X
in the output assignment. Hence, this definition must exist in case there is
at least one variable mapped into X (side-condition); otherwise, the freeze
operator has simply no effect. The name of the operator refers to the fact
that, once a component has been frozen, other components will permanently
refer to its current definition, even in case the component is updated from
outside (by delete and then sum, see below).

Delete The delete operator removes an output name (which must be present

1 Note that, since ι goes “backwards”, that is, from variables into names, the fact
that ι1, ι2 must be well-formed does not prevent to share input names, but only to
share deferred variables, what can be avoided by α-conversion.

7

in the module) with the associated definition.

Note that these three operators provide complementary capabilities for chang-
ing the status of a variable x in a basic module, as follows:

• A deferred variable can become virtual as an effect of the sum operator (if
x is mapped by ι into an input name X, and X is an output name in the
other argument of the sum).

• A virtual variable can become local as an effect of the freeze operator (if x
is mapped into the name X appearing as index).

• A virtual variable can become deferred as an effect of the delete operator
(if x is mapped into the name X appearing as index).

Local variables are not visible from outside a basic module (or basic configu-
ration), hence cannot change their status.

3.0.0.4 Variable resolution and reconfiguration Rules (local) and
(virtual) model the situation where program execution needs a variable which
is either local or virtual, hence has a corresponding definition, in the enclosing
basic configuration.

In both cases, program execution can proceed by replacing the variable by its
defining expression.

Here and in the following rules, the side condition x 6∈ HB (E) expresses the
fact that the occurrence of the variable x in the position denoted by the hole
of the context E is free (that is, not captured by any binder around the hole).
Hole binders are defined in Table 1 (we assume their definitions on core terms
are provided). Finally, we denote by E{e} the capture avoiding substitution,
with the expression e, of the hole 2 in context E .

These two rules, together with rules for core operators and contextual closure,
model standard program execution (that is, execution which does not trigger
reconfiguration steps), as illustrated by the following example. 2

[x : X;X : 1; y : 2 | x + y]
(virtual)

> [x : X;X : 1; y : 2 | 1 + y]
(local)

>

[x : X;X : 1; y : 2 | 1 + 2]
(core)

> [x : X;X : 1; y : 2 | 3]

Note that, since a program can be in turn a configuration, variable resolution
can take place at an outer configuration level:

2 In examples we label reduction steps with the applied computational rule. We
label with (core) reduction steps where we apply core computational rules.

8

[x : X;X : 1; y : 2 | [; ; | x + y]]
(virtual)

> [x : X;X : 1; y : 2 | [; ; | 1 + y]]
(local)

>

[x : X;X : 1; y : 2 | [; ; | 1 + 2]]
(core)

> [x : X;X : 1; y : 2 | [; ; | 3]]

The side condition x 6∈ HB (E) ensures that a variable which is bound at an
inner configuration level cannot be resolved at an outer level:

[x : X;X : 1; y : 2 | [x : Z;Z : 5; | x + y]]
(virtual)

>
[x : X;X : 1; y : 2 | [x : X;X : 5; | 5 + y]]

[x : X;X : 1; y : 2 | [x : X;X : 5; | x + y]] 6 >
[x : X;X : 1; y : 2 | [x : X;X : 5; | 1 + y]]

where 6 > denotes a not allowed reduction step.

The fact that substitution is capture avoiding prevents variables from outer
levels to be captured at an inner level:

[x : X;X : y + 1; y : 2 | [; ; y : 3 | x]]
(virtual)

> [x : X;X : z + 1; z : 2 | [; ; y : 3 | z + 1]]
[x : X;X : y + 1; y : 2 | [; ; y : 3 | x]] 6 > [x : X;X : y + 1; y : 2 | [; ; y : 3 | y + 1]]

A different choice, allowing variables to “migrate” into inner levels, would
correspond to a form of dynamic binding for variables.

The following three rules model the situation where program execution needs a
variable which is deferred, that is, is bound in the current basic module but has
no corresponding definition. In this case, a reconfiguration step is triggered:
more precisely, the innermost enclosing module operator is performed.

As combined effect of the rules illustrated until now, execution proceeds by
standard execution steps until a deferred variable is encountered; in this case,
reconfiguration steps are performed (from the innermost to the outermost
module operator) until the variable becomes virtual and rule (virtual) can be
applied, as illustrated below.

[x : X; ; y : 2 | x + y] + [;X : 1;]
(sum)

> [x : X;X : 1; y : 2 | x + y]
(virtual)

>

[x : X;X : 1; y : 2 | 1 + 2]
(core)

> [x : X;X : 1; y : 2 | 3]

Analogously to what happens for variable resolution, also reconfiguration steps
can take place at an outer configuration level if the needed variable is not
bound yet.

Note that, whereas sum of two modules and sum of a configuration with a
module (conventionally taken in this order) are handled by rule (m-sum) and

9

Values and reconfiguration contexts

v ∈ Val ::= . . . | [ι; o; ρ] | R[ι; o; ρ | v]

R ::= 2 | R+ e | R \X | freezeXR

Run and result

(run)
[ι; o; ρ]↓X > [ι; o; ρ | o(X)]

X ∈ dom(o)

(res-extract)
(R[ι; o; ρ | v])↑ > v

FV (v) ∩ (dom(ι, ρ)) = ∅

(res-var)
R[ι; o; ρ | x] > R′[ι′; o′; ρ′ | e]

(R[ι; o; ρ | v[x]])↑ > (R′[ι′; o′; ρ′ | v{e}])↑
x ∈ dom(ι, ρ)

Fig. 3. Reduction rules (cont)

(sum), respectively, there is no rule for sum of two configurations which, hence,
gets stuck (and will be rejected by the type system). This corresponds to the
fact that we are considering a sequential calculus, in which there is only one
executing program at a given configuration level.

3.0.0.5 Run and result Rules in Fig.3 deal with introduction and elim-
ination of a configuration level, respectively. In rule (run), the operator ↓
constructs an initial configuration by taking as program an output compo-
nent of a basic module.

[x : X;X : 1, Z : x + y; y : 2]↓Z

(run)
> [x : X;X : 1, Z : x + y; y : 2 | x + y]

(virtual)
> . . .

The following two rules deal with the operator ↑ , which extracts the program
from a configuration level. Formally, a configuration level for a program e
is modeled by an expression of the form R[ι; o; ρ | e] where R is a context
consisting only of reconfiguration operators.

Rule (res-extract) allows to extract the program from a configuration level if it
is a value which contains no variables bound at this level. Note that remaining
reconfiguration operators are simply ignored, since they can no longer have
any effect on the result of the computation. This is illustrated by the following
example, where we assume to have lambda-abstractions in the core calculus.

[; ; y : 2 | ([; ; x : 1 | λz.1 + y] + [;Z : 0;])↑]
(res-extract)

>
[; ; y : 2 | λz.1 + y]

10

If the program is a value still containing some variables bound at the cur-
rent configuration level, these variables must be resolved before extracting the
value. This is handled by rule (res-var), where we write v[x] to denote a value
which contains a free occurrence of x, and, analogously to the notation used
for evaluation contexts, v{e} to denote the expression obtained by replacing
this occurrence by e. The effect we want to obtain is that the action needed
to solve variable x is triggered (x is replaced by its definition if it is either
local or virtual, and the innermost module operator in R is performed if x
is deferred). For sake of brevity, we write just one compact rule instead of
five rules analogous to those which handle resolution of a variable x in a pro-
gram which is not a value (hence can be decomposed as E [x]), that is, (local),
(virtual), (sum), (freeze) and (del). In order to have a deterministic reduction
strategy, we assume some arbitrary rule for selecting one among all the oc-
curences of variables in dom(ι, ρ) 3 , that is, for decomposing a value containing
free variables in dom(ι, ρ) as v[x].

The effect of rule (res-var) is illustrated by the following example.

[; ; y : 2 | ([; ; x : 1 | λz.x + y] + [;Z : 0;])↑]↑
(res-var)

>

[; ; y : 2 | ([; ; x : 1 | λz.1 + y] + [;Z : 0;])↑]↑
(res-extract)

>

[; ; y : 2 | λz.1 + y]↑
(res-var)

>

[; ; y : 2 | λz.1 + 2]↑
(res-extract)

>
λz.1 + 2

3.0.0.6 Relation with CMS and CMS ` Apart from the selection oper-
ator, CMS corresponds to the subset of the calculus obtained by only taking
basic modules, module operators (sum, reduct and freeze) and corresponding
rules (m-sum), (m-reduct) and (m-freeze). Selection can be simulated by using
the run and result operator (see Section 4.1). CMS `corresponds to the subset
obtained by taking basic modules and module operators, basic configurations
and the run operator in a non higher-order setting (that is, components of
modules and configurations can only be core terms), hence there is no result
operator. Moreover, no access to virtual variables is supported (formally, there
is no rule (virtual)). This leads to a confluent calculus under the hypothesis
that the core calculus is confluent as well; in the calculus presented in this pa-
per, instead, since definition of components may change by performing module
operators, there are potentially different results depending on the time when
module operators is performed. Hence, it is important to fix (and to assume
at the core level as well) a deterministic strategy.

3 For instance, the leftmost innermost occurrence.

11

4 Expressive Power of the Calculus

In this section we show that CMS `,v is much more expressive than CMS and
CMS `, and illustrate how it could serve as a formal basis for modeling some
interesting mechanisms like marshaling/unmarshaling and dynamic software
update.

4.1 Module Selection

Module selection [13,23,21,7] allows the users to execute module components
from the outside. Conventionally, this operation is permitted only for closed
modules in order to avoid scope extrusion of variables which would lead to
dynamic errors. For instance, in the ML-like module systems, selection is al-
lowed for structures but not for functors. In CMS selection takes the usual
syntactic form e.X, where e is a module expression and X is a component
name. The corresponding reduction rule can be applied only when e is a basic
mixin module [ι; o; ρ] where ι is empty (hence, the module is closed), and X
is in the domain of o. If so, the corresponding expression o(X) is extracted
out of the module, and all variables in the domain of ρ possibly occurring free
in o(X) are replaced, following the usual unfolding semantics for mutually
recursive declarations.

CMS selection can be encoded as a derived operation in CMS `,v by means of
the ↓X and ↑ operators.

Consider for instance, the CMS expression [; X : x; x : 1].X, where we select
an output component from a basic module. This expression can be encoded
in CMS `,v as [; X : x; x : 1]↓X ↑, which in one step reduces to the basic config-
uration [; X : x; x : 1 | x]↑. In this way, the defining expression of the selected
component can be executed within the context offered by other definitions in-
side the module and extracted only when it does no longer depends on them.
In contrast to CMS, this semantics definition, besides being more perspicuous
(no unfolding is needed), allows selection of open modules. For example, the
expression [y : Y ; Z : y, X : x; x : 1].X is stuck in CMS, while here reduces to
the expected value 1.

4.2 Static and Dynamic Rebinding of Virtual Components

The CMS calculus supports redefinition of virtual components, a feature anal-
ogous to method overriding in object-oriented languages. To see this, let us

12

consider a simple example written in a hypothetical module language with vir-
tual components, whose semantics can be easily expressed in terms of CMS `,v.

M1 = module {

virtual X=1;

virtual Y=X+1;

}

Here X and Y are the names of the two externally visible components of M1.
The semantics of M1 is given by translation into the following basic module:

M1 = [x : X, y : Y ; X : 1, Y : x + 1;]

As already explained in the previous section, the two components X and Y
cannot be selected in CMS as they are, but in order to do that, they first need
to be frozen with the freeze operator which permanently binds their values
to the corresponding variables x and y (which become local).

freezeX freezeY [x : X, y : Y ; X : 1, Y : x + 1;] > [; X : 1, Y : x + 1; x : 1, y : x + 1]

Then, X and Y can be selected obtaining respectively 1 and 2, as expected.

However, before being frozen, virtual components can be redefined by means
of the overriding operator, which can be expressed as a combination of the
delete and sum operators at the lower level. For instance, the expression

M2 = M1 <- module {virtual X=2;}

translates into the lower level expression

M2 = M1 \X + [x : X; X : 2;]

which reduces to [x : X, x′ : X, y : Y ; X : 2, Y : x + 1;].

After freezing, if we select Y , then we get 3 rather than 2; hence, the modi-
fication of the virtual component X has affected Y as well, whose definition
depends on X. In other words, the variable x associated with X has been
rebound . However, in CMS such a rebinding is always static rather than dy-
namic, in the sense that it can never happen that a variable of a module is
rebound during the execution of a component of the same module.

In fact, in CMS the module operators model static configuration of software
fragments (as the conventional static linking), whereas selection corresponds to
execution, and there is no way to interleave configuration and execution phases
for a given module. In CMS ` linking can take place at execution time, but the
program cannot use virtual components. Hence a needed component must be

13

linked in order to be available, and then there is no way to change its definition.
In contrast, CMS `,v supports dynamic rebinding of virtual components. This
is possible because execution and configuration phases can be interleaved, and
the program can use virtual components.

For instance, consider the following expression (in the higher level language):

result(module { E=X+Y+X; virtual X=1; } with main E <-

module { virtual X=2; virtual Y=X+1; })

where the left hand side of the overriding operator <- is a configuration whose
program is the non virtual (that is, frozen) component E, the right hand side
lazily overrides the configuration, and result is the higher level syntax for
the operator ↑. By considering the corresponding translation at the lower
level, the reader may verify that the first occurrence of X in the definition of E
reduces to 1, whereas the second to 2, and that the overall expression reduces
to 6.

[x : X, y : Y ; X : 1, E : x + y + x;]↓E \X + [x : X, y : Y ; X : 2, Y : x + 1;]↑

4.3 Dynamic Rebinding for Marshaling and Update

Since CMS `,v supports dynamic rebinding, it provides a natural formal basis
for modeling marshaling and update.

Consider again an example in our hypothetical higher level language:

M3 = module {

virtual X=1;

Y=2;

Z=3;

}

with main marshal X+Y+X+Z rebind Y;

In the definition of the main expression of M3, the expression to be marshaled
depends on three different components, already defined in the scope of the
main; however, when marshaling an expression e, the user may specify a list of
components which have to be rebound when e will be eventually unmarshaled.
In this specific case, for correctly unmarshaling the value returned by the
execution of M3, a new definition for Y must be provided, whereas for X, Z this
is left to choice, as in the following example:

M2=unmarshal result(M3) bind Y:4,X:5,Z:6;

We can now show how the marshal and unmarshal expressions above could be

14

translated into the lower level calculus CMS `,v. For marshaling we have:

e3 = marshal([x : X, y : Y ; X : 1, Z : z; z : 3 | x + y + x + z])

The translation is based on the following basic idea: the expression e to be
marshaled is packaged with a basic module into a configuration [ι; o; ρ | e′],
where e′ is a suitable translation of e, and [ι; o; ρ] is obtained from the current
context by making deferred all components which have to be rebound. Then,
the marshal constructor can be applied to the resulting configuration. 4

In the running example, the module corresponding to the current context of
the main expression is

[x : X; X : 1, Y : y, Z : z; y : 2, z : 3]

However, since Y must be rebound, its definition is removed and its variable
becomes deferred.

For unmarshaling, the corresponding lower level expression is:

e2 = (unmarshal(e3)\X \Z + [; Y : 4, X : 5, Z : 6;])↑

where [; Y : 4, X : 5, Z : 6;] is obtained from the binding specified by the un-
marshal operator. Since e3 is closed, unmarshal(e3) reduces to
[x : X, y : Y ; X : 1, Z : z; z : 3 | x + y + x + z]. Therefore e2 reduces to

([x : X, y : Y ; X : 1, Z : z; z : 3 | x + y + x + z]\X \Z + [; Y : 4, X : 5, Z : 6;])↑

Now, in the expression x + y + x + z, the first occurrence of x is bound to 1;
then, since y is needed, the delete and sum operators are performed, hence y
is bound to 4, and the value of X is overriden, hence the second occurrence of
x is bound to 5. Finally, z is bound to 3 (the overriding of Z has no effect).

The example illustrates that the representation of marshaled values as CMS `,v

configurations allows to code in a natural way different requirements for un-
marshaling. If there is an explicit rebind directive in marshaling, as for Y, then
Y must be provided since it is undefined (deferred) in the marshaled expres-
sion. If there is no rebind directive, as for X and Z, then the latest available
versions of X and Z can be provided in order to update the marshaled code in
case it contains obsolete versions. However, while the update of X (which is
virtual) might be reflected into a rebinding of some occurrence of X inside the
unmarshaled expression, the update of Z (which is frozen) has no effects on

4 The constructor marshal and the corresponding destructor unmarshal must be
introduced in the lower level calculus for distinguishing between marshaled and
ordinary values.

15

the evaluation of the inner expression; this is an import feature which provides
a protection mechanism against unwanted software update. Finally, note that
the update of X is lazy (only the second occurrence of x is updated).

We have shown above just some simple examples; the definition of a worked
out higher-level language based on CMS `,v with marshaling and unmarshaling
operators, including more convenient and practical mechanisms for obtaining
the configuration to be packaged with the marshaled expression, as the mark
operator in [10], remains an important subject of further work. However, we
believe the examples above are enough to give the flavour of how marshal-
ing mechanisms (where the expression to be marshaled needs to be packaged
together with some of the currently available bindings, and needs to be ab-
stracted w.r.t. the components that have to be rebound) could be expressed in
a natural way by the notions of basic module (abstractions plus bindings) and
configuration (expression packaged with a basic module) provided by CMS `,v.

5 Type System

In this section we present a type system for CMS `,v which prevents reduction
from getting stuck.

Types have the following form:

τ ∈ Type ::= cτ | [πι; πo; τ •]

τ • ∈ Type• ::= τ | •

They include core types, ranged over by cτ , module types and configuration
types.

Module types are as in CMS, that is, pairs [πι; πo; •] where πι, πo : Name
fin→

Type are the input and output signature, respectively.

Configuration types have the form [πι; πo; τ]: the first two components have
the same meaning as for module types, whereas τ is the type of the program
running in the configuration.

Fig.4 gives the typing rules for deriving judgments of the form Γ ` e : τ ,
meaning “e is a well-formed expression of type τ in the environment Γ”, where

Γ : Var
fin→ Type.

The definition of the type system is parametric in the typing rules for the core
level.

16

. . . (rules for core operators)

(m-basic)

{Γ[Γι,Γρ] ` o(X) : πo(X) | X ∈ dom(o)}

{Γ[Γι,Γρ] ` ρ(x) : Γρ(x) | x ∈ dom(ρ)}

Γ ` [ι; o; ρ] : [πι; πo; •]

dom(πι) = img(ι)

dom(πo) = dom(o)

Γι = πι ◦ ι

dom(Γρ) = dom(ρ)

πι|πo

(basic)

{Γ[Γι,Γρ] ` o(X) : πo(X) | X ∈ dom(o)}

{Γ[Γι,Γρ] ` ρ(x) : Γρ(x) | x ∈ dom(ρ)} Γ[Γι,Γρ] ` e : τ

Γ ` [ι; o; ρ | e] : [πι; πo; τ]

dom(πι) = img(ι)

dom(πo) = dom(o)

Γι = πι ◦ ι

dom(Γρ) = dom(ρ)

πι|πo and ` τ �

(sum)

Γ ` e1 : [πι
1; πo

1; τ•]

Γ ` e2 : [πι
2; πo

2; •]

Γ ` e1 + e2 : [πι
1 ∪ πι

2; πo
1, π

o
2; τ•]

πι
1 ∪ πι

2|πo
1, π

o
2

(del)
Γ ` e : [πι; πo; τ•]

Γ ` e\X : [πι; πo\X ; τ•]
X ∈ dom(πo)

(freeze)
Γ ` e : [πι; πo; τ•]

Γ ` freezeXe : [πι
2\X ; πo; τ•]

X ∈ dom(πι) ⇒ X ∈ dom(πo)

(run)
Γ ` e : [πι; πo; •]

Γ ` e↓X : [πι; πo; πo(X)]
` πo(X) �

(res)
Γ ` e : [πι; πo; τ]

Γ ` e↑: τ
` [πι; πo; τ] �

Fig. 4. Typing rules

In rule (m-basic) and (basic), [] denotes environment updating. In the side-
condition of these rules, we check that virtual names have the same types in
the input and the output signatures (recall that the notation f|g means that
f and g agree on the common domain).

The (sum) typing rules allow sharing of input components having the same
name and type, while preventing output components from being shared (recall
that f1∪f2 denotes the union of two compatible partial functions, while f1, f2

denotes the union of two maps with disjoint domain). Moreover, we check that

17

` cτ � ` [πι; πo; •] � ` [πι; πo; τ] �
πι ⊆ πo

Fig. 5. Closed types

names that will become virtual performing the sum will have the same types
in both the (resulting) input and the output signatures.

In rule (basic) and (res) the judgment ` τ � means “τ is a closed type”. A
closed type is either a core or module type, or a configuration type with no
deferred components, as formally defined in Fig.5.

Intuitively, (ground) terms of closed types are those which can be safely used
in isolation, since they do not depend on any missing variable or component.
Formally, we state the progress property only on these terms. The reason
for requiring that the program in a basic configuration and the argument of a
result operator are of closed type is that in both cases the term is inserted in a
context where no more reconfiguration operators are applied, hence, in case it
is a configuration term whose program needs a deferred variable, this will never
be provided. For instance, the term [y : Y ; ; | y] is a well-typed term of (non-
closed) type, which can be for instance inserted in the context 2 + [; Y : 0;]
giving a safe term which reduces to the value [y : Y ; Y : 0; | 0]. However, the
terms of the form [ι; o; ρ | [y : Y ; ; | y]] and the term [y : Y ; ; | y]↑ are ill-formed
since they give a stuck computation in whichever context they are inserted,
since there is no way to provide component Y to the program.

As usually happens, the type system rejects many terms which can be safely
reduced. In particular, it does not detect which input components are actually
required by the program. For instance, the term [y : Y ; ; x : 1 | x + y] is con-
sidered unsafe (and indeed is stuck), but also [y : Y ; ; x : 1 | x] is considered
unsafe, even though it reduces to a value:

[y : Y ; ; x : 1 | x]
(local)

> [y : Y ; ; x : 1 | 1]

A more refined type system, which does not reject terms like that above, could
be obtained by introducing a dependency relation, as in [19,4], and defining
configuration types to be closed when the program does not depend on any
deferred component (see [16]).

18

6 Results

In this section we illustrate the properties of CMS `,v. In general, all the results
we state hold under the assumption that (roughly speaking) they are verified
at the core level as well. This assumption is formally detailed for each case.

We first show that the reduction relation is deterministic. This follows as a
corollary from the following theorem.

Theorem 6.1 (Unique decomposition) Given e ∈ Exp, at most one of
the following cases holds:

(1) there exists a unique evaluation context E, and a unique instantiation of
a reduction rule with redex r such that e = E [r].

(2) there exists a unique evaluation context E, and a unique variable x such
that E [x] = e and x 6∈ HB (E).

under the assumption that, for each core n-ary operator op, if the property
holds for e1, . . . , en, then it holds for op(e1, . . . , en), and that a variable is
neither a redex nor a value at the core level.

Proof By induction on the structure of e. We sketch some cases.

core By the assumption on core operators.
variable A variable can only be decomposed as itself, hence only (2) holds

(we use the assumption that a variable is not a redex at the core level as
well).

basic module A basic module can only be decomposed as itself, and is not a
redex, hence neither (1) nor (2) holds.

basic configuration In a basic configuration [ι; o; ρ | e], by inductive hypoth-
esis on e only the following cases are possible:
• Neither (1) nor (2) holds for e; in this case, the same holds for [ι; o; ρ | e],

since it can only be decomposed as itself and it cannot be the redex in an
instantiation of rule (local) or (virtual), since this requires e = E [x] with
x 6∈ HB (E), against the inductive hypothesis.

• e can only be decomposed in a unique way as E [r]; in this case, analogously
to the case above, [ι; o; ρ | e] can only be decomposed in a unique way as
[ι; o; ρ | E [r]].

• e can only be decomposed in a unique way as E [x], with x 6∈ HB (E); in
this case, there are three mutually exclusive cases. That is: if x ∈ dom(ρ),
then [ι; o; ρ | e] can only be decomposed as itself, and can be a redex only
in a unique instantiation of rule (local); if x ∈ dom(ι), then [ι; o; ρ | e] can
only be decomposed as itself, and is a redex only in a unique instantiation
of rule (virtual); if x 6∈ dom(ι, ρ), then [ι; o; ρ | e] can be decomposed in a
unique way as [ι; o; ρ | E [x]] with x 6∈ HB ([ι; o; ρ | E]), and if decomposed

19

as itself cannot be a redex.
sum In a sum e1 + e2, by inductive hypothesis on e1, e2 only the following

cases are possible:
• Neither (1) nor (2) holds for both e1 and e2; in this case, e1 + e2 can only

be decomposed as itself, and can only be a redex in a unique instantiation
of rule (m-sum).

• e1 can only be decomposed in a unique way as E1[r]. We can distinguish
the following subcases:

· E1[r] = [ι; o; ρ | E [r]]. In this case, e1 + e2 can only be decomposed
as [ι; o; ρ | E [r]] + e2. Indeed, since the decomposition of E [r] must be
unique as well, the case e + e2 = [ι; o; ρ | E [x]] + e2 is not possible,
and for the same reason e1 + e2 cannot be decomposed as a redex in
an instantiation of rule (sum).

· E1[r1] has a different form. In this case, it is clear that e1 + e2 can
only be decomposed as E1[r] + e2.

• e1 can only be decomposed in a unique way as E1[x]. We can distinguish
the following subcases:

· E1[x] = [ι; o; ρ | E [x]]. In this case, if e2 is a basic module, then e1 +
e2 can only be decomposed as itself, and can only be a redex in a
unique instantiation of in rule (sum). Otherwise, e1 + e2 can only be
decomposed as E1[x] + e2.

· E1[x] has a different form. In this case, it is clear that e1 + e2 can
only be decomposed as E1[x] + e2.

• Neither (1) nor (2) holds for both e1, but e2 can only be decomposed in
a unique way as E2[r]. In this case, e1 + e2 can only be decomposed as
e1 + E2[r].

2

Determinacy follows from this theorem as a corollary.

Corollary 6.2 (Determinacy) Given e, there exists at most one e′ such
that e > e′.

Proof By Theorem 6.1 (1). 2

The type system guarantees that the reduction relation does not get stuck on
ground terms of closed type (progress property) and preserves types (subject
reduction property).

In order to prove these results, we need the following lemmas, which can be
proved by induction on the typing rules under the assumption that, for each
core typing rule, if the property holds for the premises, then it holds for the
consequence as well.

Lemma 6.3 (Weakening) If Γ ` e : τ , then Γ′ ` e : τ for any context Γ′

20

s.t. Γ ⊆ Γ′.

Lemma 6.4 (Strengthening) If Γ ` e : τ , then Γ′ ` e : τ for any context
Γ′ s.t. Γ′ ⊆ Γ and FV (e) ⊆ dom(Γ′).

Lemma 6.5 (Substitution) If Γ ` E [x] : τ , Γ(x) = τx and Γ ` e : τx, then
Γ ` E{e} : τ .

Lemma 6.6 (Canonical Forms) Given v ∈ Val,

• if Γ ` v : cτ , then v is a core value;
• if Γ ` v : [πι; πo; •], then v has the form [ι; o; ρ];
• if Γ ` v : [πι; πo; τ], then v has the form R[ι; o; ρ | v′], and Γ[Γι][Γρ] ` v′ : τ ,

with dom(Γι) = dom(ι) and dom(Γρ) = dom(ρ).

Proof Easy check. 2

In the standard formulation, soundness of a type system is shown by separately
proving subject reduction and progress property. Subject reduction (preserva-
tion of type under reduction) holds for all well-typed terms, whereas progress
only holds for terms which can be seen as “executable”, that is, can be safely
reduced in isolation. Usually, executable terms correspond to ground terms,
that is, terms without free variables. Terms with free variables represent open
code fragments, which cannot be safely reduced, but are still well-typed since
they can be safely used as subterms of an executable program.

In CMS `,v, the progress property holds on terms that are not only ground, but
also of a closed type, that is, a type with no deferred components. However,
terms of non-closed types are still well typed, since they can be inserted inside
contexts providing all needed components.

Theorem 6.7 (Subject Reduction) If Γ ` e : τ and e > e′, then Γ `
e′ : τ under the assumption that, for each core reduction rule, if the property
holds for the premises, then it holds for the consequence as well.

Proof By induction on reduction rules. 2

The progress property follows as a corollary of a generalized progress property,
which states that a well-typed term can get stuck for two reasons: either it
contains some free variable (in which case, intuitively, execution could proceed
by replacing this variable) or it is a basic configuration whose program needs a
deferred component which is not available (in which case, intuitively, execution
could proceed by providing this component.)

Theorem 6.8 If Γ ` e : τ , then one of the following cases holds

• e ∈ Val

21

• e > e′, for some e′ ∈ Exp,
• e = E [x], x 6∈ HB (E), x ∈ dom(Γ),
• e = [ι; o; ρ | E [x]], with x 6∈ HB (E) , x ∈ dom(ι) and ι(x) 6∈ dom(o)

under the assumption that, for each core typing rule, if the property holds
for the premises, then it holds for the consequence as well.

Proof By induction on the typing rules.

(m-basic) We have Γ ` [ι; o; ρ] : [πι; πo; •] holds, and [ι; o; ρ] is a value.
(basic) We have Γ ` [ι; o; ρ | e] : [πι; πo; τ]. By inductive hypothesis on the

premise Γ[Γι, Γρ] ` e : τ , we get that one of the following cases holds
• e is a value and so [ι; o; ρ | e] is a value as well;
• e > e′, for some e′ ∈ Exp and so [ι; o; ρ | e] reduces by rule (E);
• e = E [x] with x 6∈ HB (E), x ∈ dom(Γ[Γι, Γρ]). We have to consider the

following subcases:
· x ∈ dom(Γρ), then we can conclude by reduction rule (local);
· x ∈ dom(Γι) and ι(x) 6∈ dom(o), then we are in the fourth case of

this theorem;
· x ∈ dom(Γι) and ι(x) ∈ dom(o), then we can conclude by reduction

rule (virtual);
· x ∈ dom(Γ), then we are in the third case of this theorem.

• the fourth case is impossible since for hypothesis we have ` τ �.
(sum) We have Γ ` e1 + e2 : [πι

1 ∪ πι
2; πo

1, π
o
2; τ •].

We first suppose τ • = τ . By inductive hypothesis on the premise Γ ` e1 :
[πι

1; πo
1; τ •], we get that one of the following cases holds

• e1 is a value and so e1 + e2 is a value as well;
• e1 > e′, for some e′ ∈ Exp and so e1 + e2 reduces by rule (E);
• e1 = E [x] with x 6∈ HB (E), x ∈ dom(Γ), then we are in the third case;
• e1 = [ι; o; ρ | E [x]], with x 6∈ HB (E) , x ∈ dom(ι) and ι(x) 6∈ dom(o). We

apply the inductive hypothesis to the second premise of the typing rule
(sum), that is, Γ ` e2 : [πι

2; πo
2; •], obtaining that one of the following

cases holds
· e2 is a value, then we can conclude by reduction rule (sum);
· e2 > e′, for some e′ ∈ Exp and so e1 + e2 reduces by rule (E);
· e2 = E [x] with x 6∈ HB (E), x ∈ dom(Γ), then we are in the third case;
· The fourth case is impossible since e2 has a module type.

We now consider the case τ • = void. By inductive hypothesis on the first
premise of the typing rule (sum) we get that one of the following cases holds
• e1 is a value. In this case, by apply the inductive hypothesis to the second

premise of the typing rule, we obtain that one of the following cases holds
· e2 is a value, then we can conclude by reduction rule (sum);
· e2 > e′, for some e′ ∈ Exp and so e1 + e2 reduces by rule (E);
· e2 = E [x] with x 6∈ HB (E), x ∈ dom(Γ), then we are in the third case;
· The fourth case is impossible since e2 has a module type;

• e1 > e′, for some e′ ∈ Exp and so e1 + e2 reduces by rule (E);

22

• e1 = E [x] with x 6∈ HB (E), x ∈ dom(Γ), then we are in the third case;
• The fourth case is impossible since e2 has a module type.

(del) and (freeze) These cases are analogous to the previous one.
(run) We derive Γ ` e ↓X : [πι; πo; πo(X)]. By inductive hypothesis on the

premise Γ ` e : [πι; πo; •], we get that one of the following cases holds
• e is a value, then by using Lemma 6.6 we can conclude by reduction rule

(run);
• e > e′, for some e′ ∈ Exp and so e↓X reduces by rule (E);
• e = E [x] with x 6∈ HB (E), x ∈ dom(Γ), then we are in the third case;
• The fourth case is impossible since e has module type.

(res) We derive Γ ` e ↑: τ . By nductive hypothesis on the premise Γ ` e :
[πι; πo; τ], we get that one of the following cases holds
• e is a value, then by using Lemma 6.6 we get that e = R[ι; o; ρ | v′]. We

have to consider the following two cases:
(1) if FV (v′) ∩ (dom(ι, ρ)) = ∅, then we can conclude by reduction rule

(res-extract);
(2) otherwise, we consider the (unique) decomposition v′ = v[x], with

dom(ι, ρ), and we can conclude by reduction rule (res-var). Note that,
the premise of this reduction rule is surely satisfied since in the case
x ∈ dom(ι), we surely have ι(x) ∈ dom(o) (for the side-condition of
the typing rule (res) we have ` [πι; πo; τ] �) and so we apply rule
(virtual); otherwise, that is, if x ∈ dom(ρ), we apply rule (local).

• e > e′, for some e′ ∈ Exp and so e↓X reduces by rule (E);
• e = E [x] with x 6∈ HB (E), x ∈ dom(Γ), then we are in the third case;
• The fourth case is impossible since for the side-condition of the typing rule

(res) we have ` [πι; πo; τ] �.

2

Corollary 6.9 (Progress) If ∅ ` e : τ and ` τ �, then either e ∈ Val or
e > e′, for some e′ ∈ Exp.

7 Conclusion

We have presented a module calculus CMS `,v which allows to express in a
natural way rebinding through the notion of virtual component, and to make
this rebinding dynamic by allowing standard program execution to be inter-
leaved with reconfiguration steps. We have illustrated the expressive power of
the calculus and provided a sound type system.

This work is part a stream of research [4,6,5,16] whose aim is the development
of foundational calculi providing an abstract framework for dynamic software
reconfiguration. In particular, the possibility of extending module calculi with

23

selection on open modules, interleaving of component evaluation with recon-
figuration steps and a lazy strategy has been firstly explored in [6]. As already
explained, the calculus presented in this paper contains two key novelties.

First, CMS `,v allows the executing program to use virtual variables; this pro-
vides a natural mechanism for rebinding, which greatly enhances the expres-
sive power. Indeed, execution can refer to components whose definition may
change by performing module operators, leading potentially to different results
depending on the time when module operators is performed, that is, before
or after accessing a virtual variable. This is avoided here by taking a deter-
ministic strategy which performs substitution of local/virtual variables and
resolution (by reconfiguration steps) of deferred variables only on demand.

Then, higher-order configurations, together with the run and result operators,
allow to express interaction of execution at different levels (e.g., modules with
module or configuration components, starting a local configuration level inside
program execution, a scoping mechanism for nested variable resolution and
triggering of reconfiguration steps).

In [5] we have investigated how to increase flexibility in a different direction,
that is, by allowing a limited form of swapping between module operators. Fi-
nally, Fagorzi’s thesis [16] provides a comprehensive presentation of most part
of this work, and, moreover, the definition of a pure 5 reconfiguration calculus
called R, in two versions which either allow or not to use virtual variables. This
calculus is confluent in the non-virtual version, and a comparative discussion
on different possible type systems is also given.

On the theoretical side, the ideas presented in this paper look similar to those
at the basis of literature on laziness in functional calculi (see, e.g., [8]) and
dynamic binding. In particular, some recent work on dynamic rebinding [10]
presents a call-by-value λ-calculus which delays instantiation of identifiers, in
such a way that computations can use the most recent versions of rebound def-
initions. It is well-known that record-based calculi can provide an alternative
computational paradigm where λ-calculus can be encoded [1,7]. In our work,
we are firstly exploring laziness (obtained by delaying record composition after
selection) in this alternative paradigm. The advantages offered by the record-
based paradigm are a natural syntactic representation of a scope (a record, or
basic module in the terminology of this paper) and a built-in mechanism for
rebinding (by deleting and then adding record component) without any need
of introducing imperative features at the core level.

Hence, a very interesting subject of further work is a formal comparison with
laziness obtained by delaying application in functional calculi. A preliminary
attempt in this direction is in [17], where we outline a call-by-need strategy

5 That is, with no fixed strategy.

24

for R(in the non-virtual version) which smoothly generalizes the approach in
[8] where an expression is evaluated the first time it is needed and only once.

On a more applicative side, though the area of unanticipated software evolu-
tion continues attracting large interest, with its foundations studied in, e.g.,
[22], there is a little amount of work going toward the development of abstract
models for dynamic linking and updating. Apart from the wide literature con-
cerning concrete dynamic linking mechanisms in existing programming envi-
ronments [14,15], we mention [9], which presents a simple calculus modeling
dynamic software updating, where modules are just records, many versions of
the same module may coexist and update is modeled by an external transi-
tion which can be enforced by an update primitive in code, [2], where dynamic
linking is studied as the programming language counterpart of the axiom of
choice, and the module system defined in [20], where static linking, dynamic
linking and cross-computation communication are all defined in a uniform
framework.

Further work includes, as already mentioned, a deeper investigation of the
relation with lazy lambda-calculi, and the further development of the tech-
niques for encoding dynamic rebinding, marshaling and update outlined in
Sect.4. The expressive power of lazy module calculi should also be analyzed
by showing which kind of real-world reconfiguration mechanisms can be mod-
eled and which kind require a richer model. Finally, an important issue is the
integration with mobility aspects, that is, the design of calculi for reconfigu-
ration where, roughly speaking, code to be used for reconfiguring the running
program can migrate from a different process.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer
Science. Springer, 1996.

[2] Martin Abadi, Goerges Gonthier, and Benjamin Werner. Choice in dynamic
linking. In FOSSACS’04 - Foundations of Software Science and Computation
Structures 2004, Lecture Notes in Computer Science, pages 12–26. Springer,
2004.

[3] D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, and
E. Zucca. A type preserving translation of Fickle into Java. Electonical Notes
in Theoretical Computer Science, 62, 2002.

[4] D. Ancona, S. Fagorzi, and E. Zucca. A calculus for dynamic linking. In
C. Blundo and C. Laneve, editors, Italian Conf. on Theoretical Computer
Science 2003, number 2841 in Lecture Notes in Computer Science, pages 284–
301, 2003.

25

[5] D. Ancona, S. Fagorzi, and E. Zucca. A calculus for dynamic reconfiguration
with low priority linking. Electonical Notes in Theoretical Computer Science,
2004. In WOOD’04: Workshop on Object-Oriented Developments. To appear.

[6] D. Ancona, S. Fagorzi, and E. Zucca. A calculus with lazy module operators. In
Jean-Jacques Levy, Ernst W. Mayr, and John C. Mitchell, editors, TCS 2004
(IFIP Int. Conf. on Theoretical Computer Science), pages 423–436. Kluwer
Academic Publishers, 2004.

[7] D. Ancona and E. Zucca. A calculus of module systems. Journ. of Functional
Programming, 12(2):91–132, 2002.

[8] Z. M. Ariola and M. Felleisen. The call-by-need lambda calculus. Journ. of
Functional Programming, 7(3):265–301, 1997.

[9] G. Bierman, M. Hicks, P. Sewell, and G. Stoyle. Formalizing dynamic software
updating (Extended Abstract). In USE’03 - the Second International Workshop
on Unanticipated Software Evolution, 2003.

[10] G. Bierman, M. Hicks, P. Sewell, G. Stoyle, and K. Wansbrough. Dynamic
rebinding for marshalling and update, with destruct-time λ. In C. Runciman
and O. Shivers, editors, Intl. Conf. on Functional Programming 2003, pages
99–110. ACM Press, 2004.

[11] G. Bracha. The Programming Language JIGSAW: Mixins, Modularity and
Multiple Inheritance. PhD thesis, Department of Comp. Sci., Univ. of Utah,
1992.

[12] L. Cardelli. Program fragments, linking, and modularization. In ACM Symp. on
Principles of Programming Languages 1997, pages 266–277. ACM Press, 1997.

[13] L. Cardelli and X. Leroy. Abstract types and the dot notation. Technical
Report 56, DEC SRC, 1990.

[14] S. Drossopoulou. Towards an abstract model of Java dynamic linking and
verfication. In R. Harper, editor, TIC’00 - Third Workshop on Types in
Compilation (Selected Papers), number 2071 in Lecture Notes in Computer
Science, pages 53–84. Springer, 2001.

[15] S. Drossopoulou, G. Lagorio, and S. Eisenbach. Flexible models for dynamic
linking. In Pierpaolo Degano, editor, ESOP 2003 - European Symposium on
Programming 2003, pages 38–53, April 2003.

[16] S. Fagorzi. Module Calculi for Dynamic Reconfiguration. PhD thesis,
Dipartimento di Informatica e Scienze dell’Informazione, Università di Genova,
2005.

[17] S. Fagorzi and E. Zucca. A calculus for reconfiguration. In DCM 2005 -
International Workshop on Developments in Computational Models, July 2005.
To appear.

26

[18] Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD-
machine, and the lambda-calculus. In 3rd Working Conference on the Formal
Description of Programming Concepts, pages 193–219, Ebberup, Denmark,
August 1986.

[19] T. Hirschowitz and X. Leroy. Mixin modules in a call-by-value setting. In
D. Le Métayer, editor, ESOP 2002 - European Symposium on Programming
2002, number 2305 in Lecture Notes in Computer Science, pages 6–20. Springer,
2002.

[20] Y. D. Liu and S. F. Smith. Modules with interfaces for dynamic linking
and communication. In M. Odersky, editor, ECOOP’04 - Object-Oriented
Programming, number 3086 in Lecture Notes in Computer Science, pages 414–
439. Springer, 2004.

[21] E. Machkasova and F. A. Turbak. A calculus for link-time compilation. In
ESOP 2000 - European Symposium on Programming 2000, number 1782 in
Lecture Notes in Computer Science, pages 260–274. Springer, 2000.

[22] Tom Mens and Guenther Kniesel. Workshop on foundations of unanticipated
software evolution. ETAPS 2004, http://joint.org/fuse2004/, 2004.

[23] J. B. Wells and R. Vestergaard. Confluent equational reasoning for linking
with first-class primitive modules. In ESOP 2000 - European Symposium on
Programming 2000, number 1782 in Lecture Notes in Computer Science, pages
412–428. Springer, 2000.

27

