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The central issue of this paper is to provide an attempt at classifying inheritance

relations, by means of a new formal semantic model for classes and methods.

Admittely, there are quite di�erent ways of de�ning models for classes and

inheritance ; in the last section we will recall some of them.

The view we take here is \roughly" to consider object systems as data types

with state; more precisely, in Wegner's words: \Objects are collections of op-

erations that share a state. The operations determine the messages (calls) to

which the object can respond, while the shared state is hidden from the outside

world and is accessible only to the object's operations. Variables representing

the internal state of an object are called and its operations

are called . Its collection of methods determines its and its

" [Weg87].

Thus we model a class as a dynamic object system, called d-oid, where a

con�guration of the system is a collection of sets, the sets of values and objects

existing at that time, with operations over them (formally an algebra, called an

instant algebra); the state of an object in a con�guration is given by an element

in a set and its relation with the structure (the operations of the algebra); a call

of a method in a con�guration and with some actual parameters is modelled by a

transformation of that con�guration into another one, where the identity of the

objects is taken care by a map, that we call tracking map and which accounts for

a very abstract view of object identity.
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1.1 An introductory example

1 Modelling object systems by d-oids

stack nat bool

emptystack stack

top stack nat

Minimal regular

parent view of the

heir conservative

d-oid

STACK

D-oids can be related by a notion of structure preserving map (a morphism

of d-oids) which gives them an appropriate mathematical structure (a category).

By exploiting the d-oid structure, we can make an attempt at analyzing di�er-

ent kinds of inheritance relations, depending on di�erent levels of freedom in

rede�ning methods.

In this paper we essentially distinguish three kinds of inheritance in a hier-

archical order, but our analysis shows that, if we need, a much �ner distinction

is possible. inheritance corresponds to total freedom; to recover

from the heir a semantic structure similar to the parent (the

, with possibly di�erent behaviour of the methods); to rede�ne

methods in a way that they behave as before on the parent view.

It should be clear that our modelization concerns a non-concurrent view of

objects, corresponding to possible semantic models for, say, Ei�el, Smalltalk,

C++. By a di�erent perspective, we provide an updating to the dynamic case of

the classical static data type approach by many-sorted algebras.

The �rst section presents our view of classes as d-oids, �rst by an introduc-

tory example and then by a paradigmatic one that will be used throughout the

following sections; the second part presents our proposed classi�cation and in the

conclusion we report on some other results and related work.

In this section we present our formalization of a dynamically evolving system of

objects by means of a structure that we call . In the following we assume for

simplicity a �xed algebraic framework for static data types; actually our work can

be framed in a parameterized way on the top of any chosen algebraic framework

(e.g. total algebras, partial algebras, order-sorted algebras and so on). In the

formal de�nitions we refer to the standard total approach, whose de�nitions and

notations are listed in the appendix.

Our starting point is the sentence, that can be found in many papers about the

object oriented approach, that \an object is a data type with state". Hence we

illustrate our view of an object (object system) starting from a comparison with

the notion of (static) data type. As an example of static data type, let

denote the algebra of stacks of natural numbers, over the signature
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push stack nat nat

pop stack stack

top nat

push nat

pop

NAT

STACK

emptystack top push pop

emptystack

emptystack

the interpretation of the

operations is constant

stack

dynamic signature

stack

where � denotes the signature of the algebra of natural numbers.

For the purpose of the following discussion, we can see a static data type

(formally modelled at an abstract level by a many-sorted algebra) consisting of:

an operational interface to the outside, whose formal abstract counterpart

is the signature;

an implementation part, whose formal abstract counterpart is the interpre-

tation of operation symbols in the algebra.

From the programming point of view, an example of software module im-

plementing a static data type like is an Ada package. The package

speci�cation gives the operational interface and contains the headings of Ada

functions for evaluating , , , . The package body gives

the implementation part and contains the bodies of the above functions. This

software module can be used by another module throughout its interface (e.g. by

calling ). What we want to stress is that in this case many di�erent

calls of a function, e.g. , within the user module give the same result,

i.e. in the example an empty stack. In other words,

.

This modelization of stacks using the data type notion is very well-known and

useful in many respects. However, what seems missing in that view is a formal

counterpart of the \dynamic nature" of a stack. In other words, the carrier of

sort in the data type above looks in some sense as the set of all the possible

con�gurations of stacks, but there is no notion of a stack as a dynamically evolving

entity which can have di�erent con�gurations at di�erent times, while remaining

the same. A classical way of modelling this dynamic view of a stack is to treat

it as a process; here we remain closer to the data type view (see the conclusion).

A single stack of naturals can be seen as an object on which what we can do is

observing which is the top element, adding a new element on the top (push) and

removing the top element (pop). As a �rst try, we can formalize that by what

we call a , as follows.

Note that the functionality of the operations has changed: indeed, since we

are now considering a single stack object, we do not need any more a sort .
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1.2 Object identity and sharing

d-oid

top

dynamic operations

top push

pop

top

top

the interpretation of the operations is not constant

top

top

horizontal

vertical structure

stack

push stack nat

stack

In our approach an object (data type with state), which will be formally

modelled by what we call a , consists of:

an operational interface to the outside, whose formal counterpart is a dy-

namic signature. In this operational interface we have now usual operations

as before, which do not have side-e�ects on the object, like , but also

what we call , whose e�ect is to change the con�guration

of the object;

an implementation part, whose formal abstract counterpart will be the in-

terpretation of operation symbols in the d-oid.

From the programming point of view, an example of software module imple-

menting an object like a stack is again an Ada package. Indeed Ada is consid-

ered an object based language in the Wegner's classi�cation in [Weg87], since

it supports the object notion (by means of the package construct). The pack-

age speci�cation gives the operational interface and contains the headings of an

Ada function for evaluating , and two Ada procedures for performing ,

. The package body gives the implementation part and contains the bodies

of the above subprograms. This software module can be used by another mod-

ule throughout its interface (e.g. by calling ). However what is di�erent in

this case is that now many di�erent calls of a function, e.g. , within the user

module give di�erent result, i.e. in the example the current top of the stack. In

other words, : in a situation

in which the stack contains, e.g. , the sequence 1, 2, 3, the interpretation of

is 1; after performing e.g. a pop operation, the interpretation of becomes 2.

Thus we are looking for a natural extension of the algebraic approach to the

formalization of data types, basically adding a new dimension, which is dynamics.

That means that in our view an object (object system) has both an

and a , that we are going to illustrate in the following. But, in

order to prevent misunderstandings, note already that in the case of many stack

objects, we should indicate to which stack the operations are referred, hence we

would need to introduce a sort and correspondingly we would have, say,

: .)

The sort in the arguments is to indicate the stack on which we perform

the operation, while note that there is still no corresponding target sort (contrary

to the static data type case), since the result is just a change of state and no value

is returned (the distinction the one between procedures and functions).

In this subsection we illustrate our approach, by means of some examples of

systems in which many objects exist. That allows us also to show how object

identity and sharing are handled in a very natural way.
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rect

length rect nat

width rect nat

d-oid horizontal vertical

rect

NAT

IA instant

algebras

rect

As a �rst example of system with many objects, let us consider a universe

in which at each instant of time a �nite number of \rectangles" exist, where

rectangles are instances of the following class de�nition.

We now show how we build a semantic model of as a structure,

called , consisting of a (instant) and a (dynamic) part.

In each intermediate con�guration in the life of the

system, there is a �nite number of existing rectangles, each one with a given

length and width (two natural numbers). However, many di�erent rectangles

with the same couple of dimensions may exist in the system. In order to express

that, we model a con�guration of the system as an algebra over the following

instant signature, where we have an explicit sort for rectangles: ( denotes

the d-oid structure that we are going to de�ne)

We have various possibilities in de�ning the con�gurations; our �rst choice

is a very abstract one: possible con�gurations of the system are � -algebras

such that:

(*) = , �nite.

We denote in the following by a class of such algebras, called

.

Note that we do not �x which is the carrier of sort in an instant algebra,

since we do not want to de�ne a particular representation of rectangles; the only

requirement is that we can observe which is the length and which is the width of

a rectangle; moreover we require that is a �nite set since we want that only

a �nite number of rectangles exist in each con�guration.
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setWidth rect nat

double rect

new rect

setLength

new

rect

setLength

setLength

IA

instant tuple in IA of arity rect nat

IA

setLength

setLength

setLength setLength

For example, a con�guration in which two rectangles exist, say with length

2, width 1 and with length 3, width 1, is modelled by a � -algebra in

de�ned by (*) and = , ( ) = 2, ( ) = 1, ( ) = 3,

( ) = 1. Note that it does not matter what are.

It is of primary importance to note that the state of a single object in a

con�guration (e.g. of a rectangle) is modelled not just by an element in a carrier

of the corresponding instant algebra (e.g. ) but also by the current interpretation

of the operations, giving the relationship with other objects (e.g. , ).

Note moreover that in this approach usual values (e.g. natural numbers) can be

viewed as \constant" objects, i.e. objects which always exist and never change.

We consider now the dynamic (vertical) dimension of

the system. Accordingly with the method de�nitions given above, the dynamic

evolution of the system of rectangles consists in four possible transformations

from a con�guration to another: changing the length of some existing rectangle,

changing the width of some existing rectangle, doubling the dimensions of some

existing rectangle, creating a new rectangle in the system (which is initialized to

the \pointwise" rectangle with both dimensions equal to zero).

We formalize that by the following dynamic operations:

:

:

:

:

Note that for example has no target sort, since the result is a

change of con�guration and not a value; while gives, together with a new

con�guration, also a new element of sort ; the distinction corresponds to the

usual one between procedures and functions, say in Pascal.

Let us de�ne the interpretation of, e.g. , in the d-oid modelling

the system of rectangles. This interpretation will be denoted by , and

associates with each triple where , , (we call

such a triple an ):

a new instant algebra in , say , modelling the con�guration of the

system resulting by performing the dynamic operation ;

a tracking map : showing how the elements of are transformed

when becomes .

Formally, we write

= :

where denotes the application of the dynamic operation

interpreted in to the instant tuple .
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For example, assume that we want to model the e�ect of applying the dynamic

operation to the instant tuple 3 , i.e. we change to 3 the length

of the rectangle in . We have:

a new instant algebra ;

a tracking map :

such that

=

injective

= ( )

( ( )) = 3, ( ( )) = ( ), , =

( ( )) = ( ), .

Note that in this way object identity is modelled in a very abstract way by

means of the tracking map ( there is no need of an explicit notion of \name").

In the sequel we will show some particular case of the above model in which we

use explicit names. The tracking map keeps trace of object identity, allowing to

recognize di�erent states of a single object during the evolution of the system.

Di�erent informal assumptions on the notion of object identity correspond to dif-

ferent formal assumptions on the tracking map. For example, allowing creation,

deletion and equation (\the murderer is the butler") of objects corresponds to

non-surjective, partial and non-injective tracking maps, respectively. As an ex-

ample of non-surjective tracking map, let us show the interpretation of in

. For each instant algebra in ,

= :

where:

;

= ( ) ;

( ) = ( ) = 0;

( ( )) = ( ), = ;

analogously.

Finally, let us introduce , which intuitively cor-

respond to initial con�gurations of the system. A constant dynamic operation

symbol has an optional sort: we write :[ ] and its interpretation is a cou-

ple [ ] . For example let us assume in the dynamic signature � of our

running example also a constant dynamic operation symbol, : . Its interpre-

tation in the d-oid can be the de�ned as the � -algebra s.t. = .

Summarizing our model of a system of rectangles, what we have de�ned is:
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a dynamic signature � which is a couple (� ) where � is the

instant signature and is the family of the dynamic operation symbols

( , , , , ).

a d-oid, which is a couple = ( ) where is the

class of the instant algebras and, for each dynamic operation symbol

in , is the interpretation of in .

We recall that in the d-oid described until now may be any class of

� -algebras satisfying (*) and closed w.r.t. dynamic operations. We show now

two choices of leading to two more concrete models particularly interesting

from the intuitive point of view.

In the �rst model, we de�ne , the

class of the instant algebras, as the class of all the � -algebras such that (*)

holds and moreover

( IN IN),

, ( ) = , ( ) = ,

(**) if , then = , =

where is some in�nite denumerable set of names. This model cor-

responds to the intuitive view of a rectangle as a triple consisting of the two

dimensions and of a name which must be unique in the system (as guaranteed

by the assumption (**) above). It is easy to adapt the above de�nitions to

this particular case; for example, in the interpretation of the dynamic operation

applied to 3 , with = 2 1 , the tracking map becomes

as follows:

maps = 2 1 into 3 1 ,

is the identity elsewhere.

With this choice, all the states of the same rectangle in di�erent con�gurations

of the system keep the same name.

Note that in the preceding model the infor-

mation modelled by and in the triple is \redundant" since the fact

that the rectangle whose name is has length and width is already modelled

by the current interpretation of the operations in . Hence a di�erent model can

be de�ned �xing as the class of all the � -algebras such that (*) holds

and moreover ( ).

This model correspond to the intuitive view of a rectangle just as a \name",

while the information about the two dimensions is \stored" in the structure.

Other de�nitions must change consistently; for example, in the interpretation of

the dynamic operation , the tracking map becomes the identity.
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These two models (and all the other particular cases obtained by �xing the

choice of and the tracking maps) look equivalent, and indeed they can be

shown to be w.r.t. to a morphism notion which will be given in the

following.

Before summarizing the formal de�nitions, we present one more

example, whose aim is to illustrate how objects with object subcomponents and

object sharing can be handled in this framework in a very natural way.

Let us turn again to the stack example of the beginning, but allowing existence

of many stacks in the system, as for rectangles. In other words, we consider the

following class de�nition:

. . .

. . .

. . .

In this case, an object in the system (a stack) has an object subcomponent

(its rest, which is in turn a stack). We can model the system of stacks by a d-oid

de�ned analogously to for rectangles. A con�guration in which, for example,

two stacks and have top 1, 2 respectively and share the same stack which

contains 3, 4 as rest can be modelled by an instant algebra as follows

= ;

( ) = 1, ( ) = 2, ( ) = 3, ( ) = 4;

( ) = , ( ) = , ( ) = , ( ) is unde�ned.

The e�ect of applying, e.g. , to the instant tuple 0 , is the

transformation:

:

where:

= ( ) ( ) ( ) ( ) ;

( ( )) = 0, ( ( )) = 2, ( ( )) = 1, ( ( )) = 3,

( ) = 4;

( ( )) = ( ), ( ( )) = ( ), ( ( )) = ( ),

( ( )) = , ( ) is unde�ned.

Note that, informally speaking, changing the stack has the side e�ect of

changing also the stack .
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In this subsection we give the formal de�nitions of dynamic signature and d-oid,

informally presented above, together with a de�nition of d-oid morphism which

allows to give a category structure to d-oids and will be used in the following

section for modelling inheritance.

If is a set, then [ ] denotes , for some , which is called .

A is a couple � = (� ) where

� is a signature (called ), with sorts in ;

is a ( [ ]) [ ]-family of symbols called ;

if , then , are called and of , respectively,

and for = . . . , we write

: . . . , if is non-null

: . . . if is null;

if , then is called a dynamic operation symbol,

and is called of ; we write : , if is non-null, and : , if

is null.

Let in what follows � = (� ) be a dynamic signature with sorts in .

Assume (�), and, for every = . . . , set

= . . . = 1 . . .

We also assume, for simplifying the notation, that dynamic signatures have no

overloading, i.e. , for every dynamic signature � = (� ), if ,

and , then = and =

For every (�) and for every , a

is a triple where , : , denoted by

: . The map : is called .

For every (�), = . . . , and [ ], a

. . . , written

: (we write simply for ), is a function which associates

with every . . . a transformation of , say : , and,

if is non-null, a value . The result of applying to . . . is

denoted by , and we write = : [ ] .

For every (�), [ ], a (or

) over , of sort , written : (we write simply for ),

consists of an algebra , and, if is non-null, a value ; we write

= [ ] .
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IA IA

dop
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A � = (� ) is a couple = ( )

where:

(�) (the algebras in are called );

: , for : . . . [ ];

: , for : [ ].

The de�nition of morphism from a d-oid into a d-oid is rather straight-

forward (though spelling out the details seems lengthy): consists of a family

of usual morphisms between �-algebras : , for every (called an

), which is moreover compatible with dynamic operations; the

compatibility consists as usual in the invariance of the order of applying dynamic

operations and morphisms (roughly we could write = ) and is

expressed by the commutativity of a diagram.

Given two classes , of instant algebras over �, an

: , is a function which associates with

each instant algebra , a �-homomorphism : , with .

Given two d-oids and over �,

= ( )

= ( )

a � , written : , is an instant morphism

from into such that the following conditions hold:

for every : [ ],

if = [ ] , = [ ]

then : , [ ( ) = ];

for every : . . . [ ], . . . ,

if

= : [ ] ,

: ,

( ) = , . . . , ( ) = ,

= : [ ]

then

: ,

( ( )) = ( ( )), for every ;

[ ( ) = ].



1

0

-

?
?

-

!

!

�

�

1

1

1 1

1

n

n

n n

n

0 0 0

D D

0 0

0 0

Fact. 1.6

Doid

2.1 Minimal inheritance

n

A

s s

n

B

s

A

s s

s s s s

A

s s

n A A n A

1

1

...

1

[ ]

...

... ...

...

1 1

2 An analysis of inheritance relations

This diagram has been produced using Paul Taylor's package.

<A; a ; ; a >

�

<A ; a ; ; a >

<B ; b >

�

<B ; b >

�

� <A; a ; ; a > <A ;� a ; ; � a > � A A

D

D

dop dop

IA IA

D-oids over and their morphisms form a category, that we call

.

interface inheritance interface hierarchy

implementation inheritance

The second condition can be expressed by the commutativity of a diagram :

. . . . . .

[ ] [ ]

where : is de�ned by:

( . . . ) = ( ) . . . ( ) for : .

�

( �)

Inheritance is essentially a mechanism for incremental programming and sharing

behaviors [Coo89]; in general, in object oriented programming, inheritance allows

modi�cation of existing modules (classes) in order to de�ne a new module which

shares some characteristics with parent modules. What changes among object

oriented languages is the liberty degree in modifying classes.

Our goal is to study several possible kinds of inheritance relations that may

exist between two d-oids modelling, respectively, a parent and a heir class.

In our analysis we start with a very general notion of inheritance and we

re�ne it step by step, in order to get more specialized form of inheritance until

obtaining a very strict inheritance relation.

A distinction between two primary meanings of inheritance has been recom-

mended by many authors (see for example [JWB90] from the design point of

view):

(or ) denotes a classi�cation of ob-

jects based on common external interfaces: an object provides a superset

of the services provided by another object;

denotes a mechanism by which object imple-

mentations can be organized to share descriptions.
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rect

cub length width

double

cub

length cub nat

width cub nat

height cub nat

setLength cub

setWidth cub

double cub

new cub

setHeight cub

From the formal point of view, interface inheritance corresponds to the mini-

mal requirement satis�ed by any inheritance relation, i.e. a syntactic constraint:

the syntactic structure of the heir must include the one of the parent. We call

the modelization of this relation in our approach .

Consider the following class de�nition:

With respect to the class de�ned in the preceding section, this class

adds a new attribute ( ) and a new method ( ), and rede�nes two

of the old methods ( , ).

A dynamic signature corresponding to this class de�nition is as follows:

Comparing this dynamic signature with the dynamic signature � of the

d-oid modelling rectangles de�ned in the preceding section, we can see that in

this case the syntactic constraint is satis�ed: the old signature is still present in

the new one, the only di�erence is that the sort has been replaced by the

sort . Note that the arity of the static operations and has been

changed consistently, otherwise our syntactic requirement should not hold.

From the programming point of view, that means that the services o�ered

to the external users by a rectangle (e.g. the operation) are still o�ered
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morphism of dynamic signatures

DOP DOP

dynamic signature morphism from into

DOP DOP

dop

dop

rect cub

double

double

IA dop

DOP

IA NAT Name

length

width

height

by a cuboid, no matter which is the actual implementation of the service inside

the two classes. Formally, we can say that in every inheritance relation there

is a which is a functionality preserving family

of maps (possibly partial) sending sorts into sorts, and (static and dynamic)

operation symbols into symbols of the corresponding functionality.

Let � = (� ) � = (� ) be two dynamic signatures; a

� � , written : � � , is a

couple = ( ) where:

: � � is a signature morphism; stands for \instant";

: is a family of maps ( stands for \dynamic") such that

( : . . . [ ]): ( ) . . . ( ) [ ( )],

( : [ ]):[ ( )].

Considering the two dynamic signatures � and � , we can

de�ne a dynamic signature morphism : � � in this way:

( ) = , the identity elsewhere;

the identity.

Usually we expect to be injective but not to be surjective and the (main)

sort of the heir d-oid to be mapped into the one of the parent. Besides, does

not need to be a total function: if there exists the possibility of hiding methods,

for instance, then dynamic signature morphisms may also be partial. Assume to

hide the method in the d-oid class . Hence we have a dynamic

signature morphism equal to except that ( ) is not de�ned. Note

that in this case the informal assumption of having common external interfaces

holds in a restricted way. However in the rest of the paper we deal with total

morphisms, which are the usual case.

Consider now what happens at the semantic level, in the case of minimal

inheritance. We start by giving an example of a possible reasonable model for

the class .

Let 1 = ( ) be the d-oid over

� = (� ) de�ned as follows:

= = ( IN IN IN)

( ) =

( ) =

( ) =

= = = ;
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the reduct via of
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IA
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The minimal inheritance relationship is transitive.

IA

IA

= :

where = except that ( ) = ( ) ( )

( ) = ( ) ( )

is the identity.

Note that the representation chosen for cuboids is the analogous of the one given

in the previous section for rectangles (rectangles as triples). From now on we will

refer to that d-oid by . We have omitted the de�nitions of the other dynamic

operations of 1, because of their similarity with the ones of .

At this point we can associate with every instant algebra over the

instant signature � , an instant algebra over the instant signature � , called

(see the appendix for a formal de�nition), whose carriers

are the carriers of of the corresponding sorts and whose operations are derived

by those in ; hence

( ) = ( ) =

and the operations of are as in .

We can summarize now the above discussion by the following formal de�nition.

Given two d-oids = ( ) = ( )

over � and � respectively, a morphism of dynamic signatures : � � ,

we say that , and that there is a

.

We denote by the induced reduct mapping s.t.

( ) = for

and by = ( ) the class of reducts via .

Notice that, as seen in the example, the usual syntactic construct of inheri-

tance canonically de�nes a morphism of dynamic signatures mapping the main

sort of the parent into the main sort of the heir.

What is missing until now is an association from into the class of instant

algebras of the parent d-oid, which will be discussed in the following subsec-

tion.
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2.2 Regular inheritance

double

double

height height

double

double

In the previous example we have seen that a minimal inheritance relation exists

between and 1 regardless the semantic structure of 1, provided that there

exists a signature morphism which permits to recover the old syntactic structure

of the parent in the new one of the heir 1. But what about the semantics of

? In the general case inheritance is a mechanism which does not preserve the

semantics of modules, since, by using rede�nition, the behavior of the rede�ned

methods may be di�erent from the behavior of the corresponding old methods.

But what does it mean comparing the behavior of two methods which act on

objects of di�erent classes? In the following we try to formalize this, showing

that there are also situations in which the comparison does not even make sense.

In the next examples the symbol will denote the d-oid of rectangles as

triples de�ned in the previous section.

Consider the following class de�nition:

This class de�nition can be modelled by a d-oid 2 de�ned analogously to 1

above, except that the interpretation of is as follows.

= : , where

= except that ( ) = 2 ( ),

is the identity.

In this case it is clear from the intuitive point of view that the behavior of the

de�ned method is di�erent from the behavior of the corresponding old

method. More precisely, what allows us to do the comparison is that:

(i) it is possible to associate with each cuboid its \rectangle part";

(ii) it is possible to associate with the new method (which act on

cuboids) its \rectangle version" (which acts on rectagles): it is a method

which has no e�ect at all and leaves unchanged the dimensions of the rect-

angle upon which was invoked.
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IA
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At this point we are able to compare the dynamic operation with the

rectangle version of and to conclude that the behavior of on

rectangles is di�erent from the behavior of .

We formalize now the above requirements.

The minimal inheritance relation always guarantees the existence of the

map : , saying that we can recover from the heir an instant

structure over the parent signature. What we need now is to map

into the parent instant structure. This is done, as usual, admitting the exis-

tence of a family of structure preserving maps (formally, �-homomorphisms,

see the appendix), i.e. what we call an instant morphism:

:

(we recall that associates with each instant algebra in a homomor-

phic mapping into an instant algebra in ).

Note that in this case there exists a function

:

de�ned by = , where denotes, by abuse of notation, the function

:

de�ned by ( ) = if : .

In the last example, the function can be de�ned in a straightforward way.

Let : IN IN IN IN IN be the function de�ned by

( ) =

then, for each

:

where = ( )

( ( )) = ( )

( ( )) = ( )

Intuitively, transforms every con�guration in 2 in a con�guration in

mapping each existing cuboid in a rectangle having the same length and

width. It can be easily shown that in this case is bijective, but in general

we will not expect this. (Note also that turns to be a total function; this

is not always the case.)
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We are now able to express in a more precise way the requirement (ii)

informally stated above.

Essentially what we ask is that, if is an heir of , then every method

in satis�es the following : if we apply to two

instant tuples in which have the same correspondent (formally, the same

image via ), then we get two instant couples in which still have the

same correspondent in

For example, in the case of the de�nition of , the regularity con-

dition is satis�ed. Indeed if two instant couples have

the same image via , then and have the same � -part and the

carriers consists of elements which are the same as for what

concerns the rectangle part; moreover, and must have the same rect-

angle part. Thus, since the e�ect of is local, i.e. a change of the

argument cuboid, then the results in the two cases are two con�gurations

still with the same rectangle view, and the two changed cuboids have still

the same rectangle part.

Notice, on the contrary, that 1 clearly does not meet this regularity con-

dition.

In this case, then we say that there is a

, as formally de�ned below.

Let = ( ) be a d-oid over � = (� ), =

( ) be a d-oid over � = (� ), and assume that there

exist : � � dynamic signature morphism s.t. the following conditions

hold:

: � � is a minimal inheritance relation from into ;

: is an instant morphism;

for every and for every

if

( ) = : [ ]

( ) = : [ ]

( ) = ( )

(� ) = (

�

)

then

* ( ) = ( )

** , ( ) = ( ) ( ( )) = ( ( ))
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conservative

height

*** ( ) = ( )

then we say that and that there is a

.

If = ( ) regularly inherits via and , then

we can de�ne a d-oid

�

= ( ) over �, called the

, in this way:

= = ( )

if ( ) = : [ ]

then = : ( ) ( )[ ( )]

where is de�ned as follow:

( ( )) = ( ( ))

Note that the view of the heir d-oid in the parent d-oid is di�erent from the

parent d-oid since the interpretation of methods are di�erent. Referring to the

preceding example of and 2, in the view of 2 the interpretation of

is a method which leaves a rectangle unchanged, while in it is a method that

doubles the two dimensions.

In other words, it does not happen that methods in the parent view of the

heir and methods in the parent have \analogous" e�ects; from the formal point of

view, that corresponds to the fact that the instant morphism does not respect

methods, i.e. is not required to be a morphism of d-oids.

We will illustrate in next subsection the case in which this further condition

is required, which corresponds to what we call .

In the preceding subsection we have shown an example of regular inheritance

relation which was not , in the sense that the behavior of a rede�ned

method over the parent view of the heir was di�erent from the old one.

We show now an example of conservative inheritance.

Consider the following class declaration

. . .
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Let us �x our attention on the usual method : this dynamic operation

has the e�ect of doubling all the three dimensions of the cuboid upon which is

invoked. It is quite evident that the methods is regular: the attributes

inherited from the class of rectangles and do not depend on the

new attribute , so we can forget the new attribute and obtain a method

on the class which is, exactly, the same method de�ned in .

It is easy to check that also the other rede�ned methods of are regular

and, when reduced to the class , they coincide with the old ones.

From the formal point of view we have that, if 3 = ( )

is a possible model of the class where = , then the view of

3 is exactly , because of the particular correspondence between and ;

in general, what we expect in the case of a conservative inheritance relation, is

something less strict: for example, there may exists some form of restriction on

the class of instant algebras of 3 s.t. not all the instant algebras of have a

counterpart in 3 and not all the rectangles of an instant algebra of are the

image of a cuboid in the corresponding instant algebra.

Formally what we ask is that the view of 3 be a sub-d-oid of (formally,

in the category sense of sub-object, i.e. there is an injective morphism from the

sub-d-oid into ).

Let = ( ) be a d-oid over � = (� ), =

( ) be a d-oid over � = (� ); if regularly inherits

via and and the view of via and is a sub-d-oid of , then we say

that and that there is a

.

First of all we say cleraly and loudly, in all modesty, that we do not pretend by this

approach to present an ideal and comprehensive model of classes and inheritance.

The aim is much narrower: to upgrade the classical static data type approach

to a rather natural treatment of dynamic entities, in the case that dynamics

is performed by method invokation and not by interaction among the objects,

say by communication and synchronization mechanisms. For example, it is well

known that we could model a stack object as a process; this is the approach taken

in the Edinburgh CCS and -calculus school, in the dutch process algebra school



and, in the context of algebraic speci�cation of concurrency, by the dynamic

speci�cation/SMoLCS approach (see [AGRZ89] and [EGS92], also for references

to other work).

The d-oid formalism has been introduced by two of the authors in [AZ92a],

where it is shown that d-oids can provide a semantic model for a kernel language

for de�ning methods. The mathematical foundations of the theory of d-oids, as

dynamic data types, is presented in [AZ92b].

The idea of modelling each con�guration as an algebra is not new: it has been

used in the COLD language (see [WB87], part II), for long time within the struc-

tural inductive semantics (see [Ast90]) and also much emphasized in the evolving

algebra approach (see e.g. [Gur91]). The novelty of the proposed approach is

twofold. First we embody the dynamics (the evolution) into the structure: a

d-oid is an overall structure which covers both static and dynamic aspects in a

uniform way, extending the usual data type concept. The second novelty lies in

the way we formalize method calls as transformations with the notion of tracking

map, which plays a fundamental role in the de�nition of semantics.

What we do here is in the spirit of the \languages for data directed design",

discussed in [Wag91]; from this viewpoint classes are a way of de�ning data and

inheritance is a tool for building classes incrementally.

Semantics of incremental de�nition of classes is ouside of the scope of this

paper and will be the subject of a forthcoming one. Then the problem of method

rede�nition and its link with the semantics of \self" is handled by assigning a

class a (compositional) semantics, consisting of a family of d-oids parameterized

over the semantics of the parent classand of the methods that can be rede�ned.

This parameterization is, in a very di�erent and purely applicative setting, also

at the root of the Cook's approach (see [Coo89], [Weg87]). Clearly our model

departs dramatically from the applicative approach, since we want to deal with

states and we feel that without this it is di�cult to capture the essence of objecst

and methods as they are understood in most real life settings.

Some very interesting work in the line of the abstract data type approach

has been presented in [GM87] and more recently in [Bre91]. The di�erence is

that we have an abstract notion of state and the dynamics, via the notion of

methods, is incorporated in the structure; while in those approaches everything

was modelled by a reduction to a classical static data type view. In the �eld of

the object oriented data bases, the work of Beeri (see [Bee91]) presents a very

interesting abstract data type approach to model query languages; we feel that

d-oids could provide a key for extending his work to treat also update languages

and related issues.

The fact that we are not treating objects as processes does not mean that we

underestimate the important issue of concurrency (see indeed the work by some of

us, e.g. in [AGRZ89]); simply the d-oid model has di�erent target, the case with-

out communication and explicit parallelism (as in Ei�el, C++ and Smalltalk).

One of the topics for future work will be to relate d-oids to the process view taken
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If is a set, then denotes the identity of .

A is a couple � = ( ), where is a set of and

is a -indexed family of . If , = . . . ,

then we write

: . . .

We assume, for simplifying the notation, that signatures have no overloading,

i.e. , for every signature � = ( ), if , , then =

and = .
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A � � :� � , is a couple

where:

: ;

: is a family of functions s.t.

( : . . . ): ( ) . . . ( ) ( )

.

We will often write simply instead of , .

An � = ( ), also called � , is a couple = ( )

where:

is a -indexed family of sets; for each , is called the

and denoted also by ;

for each : . . . , : is called

(�) denotes the class of the algebras over �.

A � �

: , is a -indexed family of functions s.t. :

for each , : ,

for each : . . . , , . . . , ,

( ( . . . )) = ( ( ) . . . ( ))

If : � � is a signature morphism, an algebra over � , then the

w.r.t. , is the algebra over � de�ned as follows:

for each , = ;

for each : . . . in �, , . . . , ,

( . . . ) = ( ) ( . . . )

In particular, if : � � is the embedding, then we write also instead

of


