
An e�e
tive translation of Fi
kle into Java

?

(extended abstra
t)

D. An
ona

1

, C. Anderson

2

, F. Damiani

3

,

S. Drossopoulou

2

, P. Giannini

4

, and E. Zu

a

1

1

DISI - Universit�a di Genova

2

Imperial College - London

3

Dipartimento di Informati
a - Universit�a di Torino

4

DISTA - Universit�a del Piemonte Orientale

Abstra
t. We present a translation from Fi
kle (a Java-like language

allowing dynami
 obje
t re-
lassi�
ation, that is, obje
ts that
an
hange

their
lass at run-time) into plain Java. The translation is proved to pre-

serve stati
 and dynami
 semanti
s; moreover, it is shown to be e�e
tive,

in the sense that the translation of a Fi
kle
lass does not depend on the

implementation of used
lasses, hen
e
an be done in a separate way, that

is, without having their sour
es, exa
tly as it happens for Java
ompi-

lation. The aim is to demonstrate that an extension of Java supporting

dynami
 obje
t re-
lassi�
ation
ould be fully
ompatible with the ex-

isting Java environment.

1 Introdu
tion

Dynami
 obje
t re-
lassi�
ation is a feature whi
h allows an obje
t to
hange

its
lass membership at run-time while retaining its identity. Thus, the ob-

je
t's behavior
an
hange in fundamental ways (e.g., non-empty lists be
om-

ing empty, i
oni�ed windows being expanded, et
.) through re-
lassi�
ation,

rather than repla
ing obje
ts of the old
lass by obje
ts of the new
lass. La
k

of re-
lassi�
ation primitives has long been re
ognized as a pra
ti
al limita-

tion of obje
t-oriented programming. Fi
kle [4℄ is a Java-like language support-

ing dynami
 obje
t re-
lassi�
ation, aimed at illustrating features for obje
t

re-
lassi�
ation whi
h
ould extend an imperative, typed,
lass-based, obje
t-

oriented language.

Other approa
hes have been attempted [3, 6, 7℄; however,Fi
kle is more within

the main stream of the obje
t oriented approa
h, and moreover it is type-safe,

in the sense that any type
orre
t program (in terms of the Fi
kle type system)

is guaranteed never to a

ess non-existing �elds or methods.

A further problem is how to
onstru
t, starting from the Fi
kle design, a

working extension with dynami
 obje
t re-
lassi�
ation of a real obje
t-oriented

language. Java is the �rst natural
andidate to be
onsidered, sin
e Fi
kle
an be

?

Partially supported by Murst Co�n'99 - TOSCA Proje
t, CNR-GNSAGA, and the

EPSRC (Grant Ref: GR/L 76709).

onsidered a small subset of Java (with only non-abstra
t
lasses, instan
e �elds

and methods, integer and boolean types and a minimal set of statements and

expressions) enri
hed with features for dynami
 obje
t re-
lassi�
ation. Thus, in

parti
ular, a Fi
kle
lass whi
h does not use these features is a Java
lass.

In this paper, we provide a �rst important step towards the solution, that

is, we show that a Java environment
ould be easily and naturally extended in

su
h a way to handle standard Java and Fi
kle
lasses together.

In order to show that, we de�ne a translation from Fi
kle into plain Java.

The translation is proved to preserve stati
 and dynami
 semanti
s (that is, well-

formed Fi
kle programs are translated into well-formed Java programs whi
h

behave \in the same way"). Moreover, the translation is e�e
tive, in the sense

that it gives the basis for an e�e
tive extension of a Java
ompiler. This is

ensured by the fa
t that the translation of a Fi
kle
lass does not depend on the

implementation of used
lasses, hen
e
an be done in a separate way, that is,

without having their sour
es, exa
tly as it happens for Java
ompilation. This

is so be
ause type information needed by the translation
an be retrieved from

type information stored in binary �les.

Hen
e, an extension of Java supporting dynami
 obje
t re-
lassi�
ation
ould

be fully
ompatible with the existing Java environment.

The problems we had to solve in order to de�ne a translation that were

both manageable from the theoreti
al and implementative point of view were

not trivial. The main issues we had to fa
e were the following:

1. to �nd an appropriate en
oding for re-
lassi�able obje
ts;

2. to deal with the fa
t that a standard Java
lass

an be extended by a

re-
lassi�able
lass, possibly after
 is translated (i.e.,
ompiled);

3. to make the translation as simple as possible, negle
ting eÆ
ien
y in favor

of
learer proofs of
orre
tness;

4. to make the translation e�e
tive, in the sense that it truly supports separate

ompilation as in Java.

Con
erning point 1), the basi
 idea of the translation is to represent ea
h re-

lassi�able Fi
kle obje
t o through a pair <w; i> of Java obje
ts. Roughly speak-

ing, w is a wrapper obje
t providing the (non-mutable) identity of o, whereas i is

an implementor obje
t providing the (mutable) behavior of o. A re-
lassi�
ation

of o
hanges i but not w, and method invo
ations are resolved by i.

To solve problems 2), 3) and 4), even non-re-
lassi�able obje
ts are repre-

sented through su
h a pair <o; o>, where o plays both roles. This greatly sim-

pli�es the translation, and allows the same treatment for re-
lassi�able
lasses

(i.e., state
lasses in Fi
kle terminology), and non-re-
lassi�able
lasses.

The work presented in this paper
omes out of a
ollaboration among di�erent

resear
h groups and is based on their previous experien
e in the design and

implementation of Java extensions [1, 4℄.

The paper is organized as follows: In Se
tion 2 we introdu
e Fi
kle informally

using an example. In Se
tion 3 we give an informal overview of the translation,

while in Se
tion 4 we give the formal des
ription. In Se
tion 5 we state the formal

properties of the translation (preservation of stati
 and dynami
 semanti
s) and

illustrate the
ompatibility of the translation with Java separate
ompilation.

In the Con
lusion we summarize the relevan
e of this work and des
ribe further

resear
h dire
tions.

A prototype implementation largely based on the translation des
ribed in

this paper has already been developed [2℄.

2 Fi
kle: a brief presentation

In this se
tion we introdu
e Fi
kle informally using an example. However, this

se
tion is not intended to be a
omplete presentation of Fi
kle. We refer to [4℄

for a
omplete de�nition of the language.

For readability, in the examples we allow a slightly more liberal syntax than

that used in the formal des
ription of the translation (given in Se
tion 4).

The (extended) Fi
kle program in Fig. 1 de�nes a
lass Sta
k, with sub
lasses

EmptySta
k and NonEmptySta
k. A sta
k has a
apa
ity (�eld int
apa
ity)

that is, the maximum number of integers it
an
ontain, and the usual operators

isEmpty, top, push, and pop.

In Fi
kle
lass de�nitions may be pre
eded by the keyword state or root

with the following meaning:

{ state
lasses are meant to des
ribe the properties of an obje
t while it satis�es

some
onditions; when it does not satisfy these
onditions any more, it must

be expli
itly re-
lassi�ed to another state
lass. For example, NonEmptySta
k

des
ribes non-empty sta
ks; if these be
ome empty, then they are re-
lassi�ed

to EmptySta
k.

We require state
lasses to extend either root
lasses or state
lasses.

{ root
lasses abstra
t over state
lasses. Obje
ts of a state
lass C1 may

be re-
lassi�ed to a
lass C2 only if C2 is a sub
lass of the uniquely de-

�ned root super
lass of C1. For example, Sta
k abstra
ts over EmptySta
k

and NonEmptySta
k; obje
ts of
lass EmptySta
k may be re-
lassi�ed to

NonEmptySta
k, and vi
e versa.

We require root
lasses to extend only non-root and non-state
lasses.

Obje
ts of a non-state, non-root
lass C behave like regular Java obje
ts, that is,

are never re-
lassi�ed. However, sin
e state
lasses
an be sub
lasses of non-state,

non-root
lasses, obje
ts bound to a variable x of type C may be re-
lassi�ed.

Namely, if C had two state sub
lasses C1 and C2 and x referred to an obje
t o

of
lass C1, then o may be re-
lassi�ed to C2.

Obje
ts of an either state or root
lass C are
reated in the usual way by the

expression new C().

lass Sta
kEx
eption extends Ex
eption{

Sta
kEx
eption (String str) {} {super(str);}}

abstra
t root
lass Sta
k{

int
apa
ity; // maximum number of elements

abstra
t boolean isEmpty() {};

abstra
t int top() {} throws Sta
kEx
eption;

abstra
t void push(int i) {Sta
k} throws Sta
kEx
eption;

abstra
t void pop() {Sta
k} throws Sta
kEx
eption;}

state
lass EmptySta
k extends Sta
k{

EmptySta
k(int n){} {
apa
ity=n;}

boolean isEmpty() {} {return true;}

int top() {} throws Sta
kEx
eption {

throw new Sta
kEx
eption("Sta
kUnderflow");}

void push(int i) {Sta
k} {

this!!NonEmptySta
k; a=new int[
apa
ity℄; t=0; a[0℄=i;}

void pop() {} throws Sta
kEx
eption {

throw new Sta
kEx
eption("Sta
kUnderflow");}}

state
lass NonEmptySta
k extends Sta
k{

int[℄ a; // array of elements

int t; // index of top element

NonEmptySta
k(int n, int i) {} {
apa
ity=n; a=new int[n℄; t=0; a[0℄=i;}

boolean isEmpty() {} {return false;}

int top() {} {return a[t℄;}

void push(int i) {} throw Sta
kEx
eption{ t++;

if (t==
apa
ity) throw new Sta
kEx
eption("Sta
kOverflow");

else a[t℄=i; }

void pop() {Sta
k} {if (t==0) this!!EmptySta
k; else t--;}}

publi

lass Sta
kTest{

stati
 void main(String[℄ args) {Sta
k} throws Sta
kEx
eption{

Sta
k s=new EmptySta
k(100); s.push(3); s.push(5);

System.out.println(s.isEmpty());

Sta
k s1=new NonEmptySta
k(100,3); Sta
k s2=s1; s1.pop();

System.out.println(s2.isEmpty());}}

Fig. 1. Program Sta
kTest - sta
ks with re-
lassi�
ations

Re-
lassi�
ation statement, this!!C, sets the
lass of this to C, where C must

be a state
lass with the same root
lass of the stati
 type of this. The re-

lassi�
ation operation preserves the types and the values of the �elds de�ned

in the root
lass, removes the other �elds, and adds the �elds of C that are not

de�ned in the root
lass, initializing them in the usual way. Re-
lassi�
ations may

be
aused by re-
lassi�
ation statements, like this!!NonEmptySta
k in body of

method push of
lass EmptySta
k, or, indire
tly, by method
alls, like s.push(3)

in body of main. At the start of method push of
lass EmptySta
k the re
eiver

is an obje
t of
lass EmptySta
k, therefore it has the �eld
apa
ity, while it

does not have the �elds a and t. After exe
ution of this!!NonEmptySta
k the

re
eiver is of
lass NonEmptySta
k, the �eld
apa
ity retains its value while the

�elds a and t are now available.

Fields, parameters, and values returned by methods (for simpli
ity, Fi
kle

does not have lo
al variables) must have de
lared types whi
h are not state

lasses; we
all these types non-state types. Thus, �elds and parameters may

denote obje
ts whi
h do
hange
lass, but these
hanges do not a�e
t their type.

Instead, the type of this may be a state
lass and may
hange.

Annotations like fg and fSta
kg before throws
lauses and method bodies

are
alled e�e
ts. Similarly to what happens for ex
eptions in throws
lauses,

e�e
ts list the root
lasses of all obje
ts that may be re-
lassi�ed by exe
ution of

that method. Methods annotated by the empty e�e
t fg, like isEmpty, do not

ause any re-
lassi�
ation. Methods annotated by non-empty e�e
ts, like pop

and push by fSta
kg, may re-
lassify obje
ts of (a sub
lass of) a
lass in their

e�e
t (in the example, of Sta
k).

A method annotated with e�e
ts
an be overridden only by methods anno-

tated with the same or less e�e
ts

1

.

By relying on e�e
ts annotations, the type and e�e
t system of Fi
kle ensures

that re-
lassi�
ations will not
ause a

esses to �elds or methods that are not

de�ned for the obje
t.

Note that e�e
ts are expli
itly de
lared by the programmer rather then in-

ferred by the
ompiler. Even though e�e
ts inferen
e
ould be implemented in

pra
ti
e, more
exibility in method overriding
an be a
hieved by allowing the

programmer to annotate methods with more e�e
ts than those that would be

inferred (similarly to what happens for ex
eptions).

3 An informal overview of the translation

3.1 En
oding Fi
kle obje
ts

The translation is based on the idea that ea
h obje
t o of a state
lass

an be

en
oded in Java by a pair <w; i> of obje
ts; we
all w the wrapper obje
t of i

and i the implementor obje
t of w. Roughly speaking, w provides the identity

and i the behavior of o, so that any re-
lassi�
ation of o
hanges i but not w

and method invo
ations are resolved by i.

The
lass of w is
alled a wrapper
lass and is obtained by translating the root

lass of
, whereas the
lass of i is
alled an implementor
lass and is obtained

by translating
. For any pair <w; i> en
oding an obje
t of a state
lass, the

lass of i is always a proper sub
lass of the
lass of w.

An obje
t o whi
h is not an instan
e of a state
lass does not need to be

en
oded in prin
iple; however, the same kind of en
oding proposed above
an

be adopted also in this
ase, sin
e o
an always be en
oded by the pair <o; o>,

where both the wrapper and the implementor are the obje
t o itself (in other

words, if
 is not a state
lass, then it may seen as wrapper
lass of itself). Even

1

This means that adding a new e�e
t in a method of a
lass
 does not require any

hange to the sub
lasses of
, but may require some
hanges to its super
lasses.

though at �rst sight this may seem ineÆ
ient and unne
essary, it allows for a

simpler and more e�e
tive translation, as explained in the sequel.

The translation of
lasses follows the following two rules:

{ ea
h Fi
kle
lass is translated into exa
tly one Java
lass (in
luding Obje
t);

{ the translation preserves the inheritan
e hierar
hy.

Throughout the paper we adopt the following terminology:

{ the translation of a non-state, non-root
lass is
alled a non-implementor,

non-wrapper
lass ;

{ the translation of a root
lass is
alled a wrapper
lass ;

{ the translation of a state
lass is
alled an implementor
lass.

We illustrate the above in terms of the example in Fig.1. After the instru
tion

s=new NonEmptySta
k(100,3);

where s has stati
 type Sta
k, the obje
t stored in s is en
oded in the translation

as sket
hed in Fig.2.

to methods
of NonEmptyStack

implementor

capacity

to methods
of Stack

implementor

trueThis

capacityunused

a

t

s

trueThis

Fig. 2. En
oding of the obje
t stored in s

The variable s
ontains an obje
t o of dynami
 type Sta
k with three �elds:

apa
ity is de
lared in Sta
k, whereas implementor and trueThis are inher-

ited from
lass Fi
kleObje
t, have type Fi
kleObje
t and are used in the

translation for re
overing the implementor and the wrapper of a re-
lassi�able

obje
t, respe
tively. In this
ase the �eld implementor points to an obje
t of the

implementor
lass obtained by translating NonEmptySta
k, whereas trueThis

points to the obje
t itself. Note that here the �eld
apa
ity is redundant, sin
e

its a
tual value is stored in implementor.
apa
ity.

The implementor obje
t
ontains all �elds de
lared in NonEmptySta
k (a and

t), and also the �eld
apa
ity, sin
e the implementor
lass NonEmptySta
k is a

sub
lass of the wrapper
lass Sta
k. The �eld implementor points to itself, even

though is never used. The �eld trueThis is inherited from
lass Fi
kleObje
t,

has type Fi
kleObje
t and is used to re
over the wrapper obje
t of the imple-

mentor, whi
h is essential for
orre
tly handling re-
lassi�
ation of this.

3.2 Translation of
lasses

In this se
tion we introdu
e some examples in order to explain how
lasses and

expressions are translated.

Example 1. Consider the following
lass de
laration in (extended) Fi
kle :

lass C{

int x;

int m1(){}{m2(); return m2();}

int m2(){R}{x=0; return x;}

}

Our translation maps the de
laration of C in the following Java
lass

2

lass C extends Fi
kleObje
t{

int x;

int m1(){

((C) trueThis.implementor).m2();

return ((C) trueThis.implementor).m2();}

int m2(){

((C) trueThis.implementor).x=0;

return ((C) trueThis.implementor).x;}

C(){}

C(Fi
kleObje
t oldImp){

super(oldImp);

x=((C) oldImp).x;}

}

Fi
kleObje
t is the
ommon an
estor of the Java
lasses obtained by translating

Fi
kle
lasses, and, in fa
t,
orresponds to the translation of the Fi
kle prede�ned

lass Obje
t:

lass Fi
kleObje
t extends Obje
t{

Fi
kleObje
t implementor;

Fi
kleObje
t trueThis;

Fi
kleObje
t(){

implementor=this;

trueThis=this;}

2

The translation examples in this paper do not
ompletely agree with the formal

de�nition given in Se
t.4, sin
e some optimization has been performed in order to

keep the
ode simpler.

Fi
kleObje
t(Fi
kleObje
t oldImp){ // re-
lassifies obje
ts

implementor=this;

trueThis=oldImp.trueThis;

trueThis.implementor=this;}

}

The �elds implementor and trueThis are de
lared in this top level
lass for

orre
tly dealing with the en
oding of obje
ts whi
h are not instan
es of state

lasses, as already explained in 3.1;
onstru
tor Fi
kleObje
t() initializes �elds

implementor and trueThis to the new instan
e o so that its en
oding is <o; o>.

This
onstru
tor is invoked whenever either a new instan
e of a non-state
lass

or a new implementor of a state
lass is
reated.

On the other hand,
onstru
tor Fi
kleObje
t(Fi
kleObje
t oldImp) is

invoked whenever an obje
t is re-
lassi�ed and is pla
ed in Fi
kleObje
t just for

avoiding
ode dupli
ation. An obje
t o whi
h needs to be re-
lassi�ed to a state

lass C (re
all that in the translation every
lass is sub
lass of Fi
kleObje
t)

and whi
h is en
oded by the pair <w; i>, is transformed into <w; i

0

>, where

i

0

denotes the new implementor of
lass C (provided by a proper
onstru
tor

of C; see Example 3 below). The argument of the
onstru
tor denotes the old

implementor i, from whi
h the wrapper w
an be re
overed as well (re
all that

w:implementor= i:trueThis must hold), whereas i

0

is denoted by this. Fields

are initialized so that wrapper w and the new implementor i

0

point to ea
h

other. The assignment implementor=this
ould be omitted, sin
e in prin
iple

�eld implementor of implementors should never be used.

Two interesting parts of C translation
on
ern invo
ations of method m2 in

m1 and a

ess of �eld x in m2.

Method m2 must be invoked on implementor be
ause it
ould be overridden

by some state sub
lass of C, whereas this must be translated in trueThis

be
ause method m2
ould be inherited by some sub
lass of C (hen
e, this
ould

ontain a possibly wrong implementor rather than a wrapper). Down
asting is

needed sin
e implementor has type Fi
kleObje
t.

The same explanations apply also for sele
tion of �eld x.

Constru
tor C(Fi
kleObje
t oldImp) invokes the
orresponding
onstru
-

tor in
lass Fi
kleObje
t whi
h is used for re-
lassifying obje
ts, as already

explained. However, during re-
lassi�
ation all �elds of the new implementor

i

0

whi
h are inherited from non-state
lasses (like x in the example) must be

initialized with the values of the
orresponding �elds of the old implementor i

(x=((C) oldImp).x).

Finally, note that the translation of C is totally independent of any possible

existing sub
lass or
lient
lass of C; this property, whi
h is satis�ed by our

translation for any kind of
lass, is
ru
ial for obtaining a translation whi
h truly

re
e
ts Java separate
ompilation (see also the related
omments in Example 3).

Example 2. Assume now to add to the de
laration of Example 1 the following

lass de
laration:

root
lass R extends C{

}

This Fi
kle
lass de
laration is translated in the following Java
lass de
laration:

lass R extends C{

R(){}

R(Fi
kleObje
t oldImp){super(oldImp);}

R(R imp){

trueThis=this;

implementor=imp;

imp.trueThis=this;}

}

In the translation, root
lasses de
lare three
onstru
tors.

Constru
tor R() is used for
reating instan
es of R and simply invokes the

orresponding
onstru
tor of the dire
t super
lass C.

Constru
tor R(Fi
kleObje
t oldImp) is used for re-
lassifying obje
ts and

simply invokes the
orresponding
onstru
tor of the dire
t super
lass C, sin
e in

this
ase R does not de
lare any �eld.

Constru
tor R(R imp) is used by state sub
lasses of R for
reating new in-

stan
es. The argument represents the implementor of the obje
t whi
h has been

properly
reated by the
onstru
tor of a state sub
lass of R, while the wrapper

obje
t is
reated by the
onstru
tor itself. Fields are initialized so that wrapper

and implementor point to ea
h other. The assignment trueThis=this
ould be

omitted, sin
e �eld trueThis of wrappers will never be used.

Example 3. Consider now the following state
lasses:

state
lass S1 extends R{

int m2(){R}{this!!S2;x=1;return x;}

stati
 void main(String[℄ args)

{System.out.println(new S1().m1());}}

state
lass S2 extends R{

int y;

int m2(){R}{y=1;return x+y;}

}

They are translated in Java as follows:

lass S1 extends R{

int m2(){

new S2(trueThis.implementor);

((S2) trueThis.implementor).x=1;

return ((S2) trueThis.implementor).x;}

stati
 void main(String[℄ args){

System.out.println(

((S1) new R(new S1()).implementor).m1());}

S1(){}

S1(Fi
kleObje
t oldImp){super(oldImp);}

}

lass S2 extends R{

int y;

int m2(){

((S2) trueThis.implementor).y=1;

return ((S2) trueThis.implementor).x+

((S2) trueThis.implementor).y;}

S2(){}

S2(Fi
kleObje
t oldImp){super(oldImp);}

}

In the translation, state
lasses de
lare two
onstru
tors.

In
lass S2, for instan
e,
onstru
tor S2() is used for
reating the imple-

mentor
omponent of a new instan
e of S2, while
onstru
tor S2(Fi
kleObje
t

oldImp) is used for re-
lassifying obje
ts; note that, di�erently to what happens

for non-state
lasses, no extra-
ode is added in the body for any �eld de
lared

in the
lass (like y).

Let us now fo
us on the translation of obje
t re-
lassi�
ation this!!S2 (in

the body of method m2 of
lass S1) and on instan
e
reation of
lass S1 (in the

body of method main of
lass S1).

As already explained, for re-
lassifying an obje
t to
lass S2, the proper
on-

stru
tor of S2must be invoked, passing as parameter the
urrent (and soon obso-

lete) implementor i, denoted by trueThis.implementor; then, the
onstru
tor

reates a new implementor i

0

(belonging to S2), initializes and updates �elds

so that the wrapper w and the new implementor i

0

point to ea
h other (re
all

that the wrapper
an be re
overed from the old implementor i) and properly

initializes all �elds inherited from non-state super
lasses (like x). This last step

is performed by invoking all the
orresponding
onstru
tors of super
lasses up

to Fi
kleObje
t.

Creation of an instan
e of S1 is a
hieved by invoking the proper
onstru
tor

of the root
lass R of S1; a new implementor,
reated by invoking the default

onstru
tor of S1, is passed as parameter to the
onstru
tor.

We now
onsider issues related to the e�e
tiveness of the translation. As

already pointed out in Example 1, the translation of a Fi
kle
lass C does not

depend on any possible sub
lass or
lient of C, as happens for Java separate

ompilation. On the other hand, the translation of
lass S1, for instan
e, depends

on
lasses R and S2 inherited and used, respe
tively, by S1; for instan
e, all type

asts in the body of S1 are determined by type-
he
king S1 and this pro
ess

requires to retrieve type information about
lasses R and S2 (that is, the signature

of methods and the inheritan
e hierar
hy). However, the translation of S1 is

learly independent of the spe
i�
 bodies of methods of R and S2.

As a
onsequen
e, dependen
ies
omputed by our translation pro
ess are

exa
tly the same as those
omputed by the Java
ompiler. Furthermore, the

translation of
lasses depends only on the inheritan
e hierar
hy and on method

signatures; therefore a
lass
 depending on
lasses

1

; : : : ;

n

ould be su

ess-

p ::=
lass

�

lass ::= [root j state℄
lass
 extends

0

f�eld

�

meth

�

g

�eld ::= t f

meth ::= t m(t

0

x)�fsl return e; g

t ::= boolean j int j

� ::= f

�

g

sl ::= s

�

s ::= fslg j if (e) s

1

else s

2

j se; j this!!
;

se ::= var = e j e

1

:m(e

2

) j new
()

e ::= sval j var j this j se

var ::= x j e:f

sval ::= true j false j null j n

Fig. 3. Syntax of Fi
kle

fully translated in a
ontext where only the binary �les of

1

; : : : ;

n

are available,

as happens for Java.

4 Formal des
ription of the translation

In this se
tion we give a formal des
ription of the translation. The syntax of the

sour
e language is spe
i�ed in Fig.3. We refer to [4℄ for the de�nition of the

stati
 semanti
s of Fi
kle (the type system of Fi
kle
an be easily adapted to

the subset of Java serving as target for the translation) and of some auxiliary

fun
tions used in the sequel.

4.1 Programs

The translation of a Fi
kle program p
onsists of the translation of all
lasses

de
lared in p. The
lasses are translated w.r.t the program p, needed be
ause

the translation of expressions depends on their types (in parti
ular, for method

invo
ation and �eld sele
tion) and on the names of root
lasses (in parti
ular,

onstru
tor invo
ation and this).

[[p℄℄

prog

�

= [[
lass

1

℄℄

lass

(p) : : : [[
lass

n

℄℄

lass

(p) where p =
lass

1

: : :
lass

n

.

4.2 Classes

As already explained, ea
h Fi
kle
lass
 is translated into a single Java
lass

ontaining the translation of all �eld and method de
larations of
 and a number

of
onstru
tors, used for
reating instan
es and for re-
lassifying obje
ts.

The translation of �elds and methods is independent of the kind of
lass.

However, translation of non-state non-root
lasses, root
lasses and state

lasses leads to the de
laration of di�erent
onstru
tors. That is why for ea
h

kind of
lass we give a di�erent translation
lause.

Class Obje
t: This
lass is translated in Fi
kleObje
t whi
h is the
ommon

super
lass of all translated
lasses, already de�ned in Se
t.3.2.

Non-state, non-root
lasses: These
lasses are translated by translating all their

methods, and by adding two
onstru
tors:
() is used for the
reation of new

instan
es of
 and
(Fi
kleObje
t oldImp) is used for the
reation of new

implementors when obje
ts of sub
lasses are re-
lassi�ed. In this last
ase

all �elds of the old implementor oldImp whi
h are de
lared in
lass
 must

be
opied into the
orresponding new implementor
reated by the
onstru
-

tor (see Example 1 in Se
t.3.2). The additional parameter
 for the transla-

tion of methods is needed to determine the
lass of this inside the bodies.

[[
lass
 extends

0

ft

1

f

1

; : : : t

m

f

m

; meth

1

: : :meth

n

g℄℄

lass

(p)

�

=

lass
 extends name(

0

)f [[t

1

f

1

;℄℄

�eld

(
) : : : [[t

m

f

m

;℄℄

�eld

(
)

[[meth

1

℄℄

meth

(p;
) : : : [[meth

n

℄℄

meth

(p;
)

()fg

(
 oldImp)f

super(oldImp);

f

1

= oldImp:f

1

;

: : :

f

m

= oldImp:f

m

; g

g

The auxiliary fun
tion name is de�ned as follows:

name(
) =

�

Fi
kleObje
t if
 = Obje
t

 otherwise

Root
lasses: The translation of this kind of
lasses produ
es three
onstru
-

tors:
()
reates instan
es of
,
(Fi
kleObje
t oldImp) deals with obje
t re-

lassi�
ation, and
(
 imp)
reates wrappers of instan
es of state
lasses:

[[root
lass
 extends

0

ft

1

f

1

; : : : t

m

f

m

; meth

1

: : :meth

n

g℄℄

lass

(p)

�

=

lass
 extends name(

0

)f [[t

1

f

1

;℄℄

�eld

(
) : : : [[t

m

f

m

;℄℄

�eld

(
)

[[meth

1

℄℄

meth

(p;
) : : : [[meth

n

℄℄

meth

(p;
)

()fg

(
 oldImp)f

super(oldImp);

f

1

= oldImp:f

1

;

: : :

f

m

= oldImp:f

m

; g

(
 imp)f

trueThis = this;

implementor= imp;

imp:trueThis = this; g

g

State
lasses: The translation of this kind of
lasses produ
es two
onstru
tors:

the former (with no arguments) for
reating new implementors for new instan
es

of
lass
, the latter for dealing with obje
t re-
lassi�
ation to
:

[[state
lass
 extends

0

f�eld

1

: : :�eld

m

meth

1

: : :meth

n

g℄℄

lass

(p)

�

=

lass
 extends name(

0

)f [[�eld

1

℄℄

�eld

(
) : : : [[�eld

m

℄℄

�eld

(
)

[[meth

1

℄℄

meth

(p;
) : : : [[meth

n

℄℄

meth

(p;
)

()fg

(Fi
kleObje
t oldImp)fsuper(oldImp)g

g

Note that here name(

0

) =

0

, sin
e a state
lass
annot extend
lass Obje
t.

4.3 Fields

Translation of ea
h �eld f
omes equipped with a stati
 method tof used for

translating assigments of value v to �eld f of obje
t tT (see the paragraph on

expressions translation below), sin
e the implementor of the obje
t tT
an be

orre
tly sele
ted only after evaluating v.

[[t f ;℄℄

�eld

(
)

�

=

t f ;

stati
 t tof(Fi
kleObje
t tT; t v)freturn ((
) tT:implementor) = v; g

4.4 Methods

Translating methods
onsists of translating their bodies. E�e
ts are omitted,

whereas the signatures remain the same. Sin
e the translation of statements and

expressions depends on their types, the program p and the environment
 must

be passed as parameters to the
orresponding translation fun
tions.

Note that the environment

0

used for translating the returned expression e

may be di�erent from
, sin
e exe
ution of sl
ould re-
lassify this. Furthermore,

translation of ea
h method m
omes equipped with a stati
 method
allm used

for translating invo
ations of m on re
eiver tT and with argument x (see the

paragraph on expressions translation below); indeed, the implementor of tT
an

be
orre
tly sele
ted only after evaluating the argument x.

The judgment p;
 ` sl : void jj

0

jj �

0

is valid (see [4℄ for the typing

rules) whenever sl has type void w.r.t. program p and environment
;

0

denotes

the type of this after evaluating sl, whereas �
onservatively estimates the

re-
lassi�
ation e�e
t of the evaluation of sl on obje
ts (this last information

is never used by our translation). The environment
 de�nes the type of the

parameters and of this.

[[t m(t

0

x)�fsl return e; g℄℄

meth

(p;
)

�

=

t m(t

0

x)f[[sl℄℄

stmts

(p;
) return [[e℄℄

expr

(p;

0

); g

stati
 t
allm(Fi
kleObje
t tT; t

0

x)f

return ((
) tT:implementor):m(x); g

where
 = t

0

x;
 this;

0

= t

0

x;

0

this; and p;
 ` sl : void jj

0

jj �

0

4.5 Statements

Ex
ept for obje
t re-
lassi�
ation, all statements are translated by translating

their
onstituent statements or subexpressions. The notation
[
 this℄ denotes

the environment obtained by updating
 so that it maps this to
.

[[s sl℄℄

stmts

(p;
)

�

= [[s℄℄

stmt

(p;
) [[sl℄℄

stmts

(p;

0

)

where p;
 ` s : void jj
 jj � and

0

=
[
 this℄

[[fslg℄℄

stmt

(p;
)

�

= f[[sl℄℄

stmts

(p;
)g

[[if (e) s

1

else s

2

℄℄

stmt

(p;
)

�

=

if ([[e℄℄

expr

(p;
)) [[s

1

℄℄

stmt

(p;

0

) else [[s

2

℄℄

stmt

(p;

0

)

where p;
 ` e : boolean jj

1

jj �

1

;

0

=
[

1

this℄

[[se;℄℄

stmt

(p;
)

�

= [[se℄℄

expr

(p;
);

The translation of re-
lassi�
ation to
lass

onsists of the
all to the appro-

priate
onstru
tor of
lass
. The
urrent implementor (trueThis.implementor)

is passed as parameter to the
onstru
tor in order to
orre
tly initialize the �elds

of the new implementor.

[[this!!
;℄℄

stmt

(p;
)

�

= new
(trueThis:implementor);

4.6 Expressions

Types of expressions are preserved under the translation, up to state
lasses:

more pre
isely, if a Fi
kle expression e has type t and t is not a state
lass,

then its type is preserved; otherwise, the type of the translation of e is the root

super
lass of t. This is formalized and proven in Se
t.5.

Simple
ases: Values, variables and variables assignment: The translation is

straightforward.

[[sval ℄℄

expr

(p;
)

�

= sval

[[x℄℄

expr

(p;
)

�

= x

[[x = e℄℄

expr

(p;
)

�

= x = [[e℄℄

expr

(p;
)

Field sele
tion: as already explained in Se
t.3.1, in the en
oding <w; i> of an

obje
t o of
lass
, the �elds of o are stored in the implementor obje
t i (be-

longing to the
lass obtained by translating
). Therefore, �elds
an be a

essed

only through w.implementor on obje
t

3

w. Down
asting is needed be
ause �eld

implementor has type Fi
kleObje
t.

[[e:f ℄℄

expr

(p;
)

�

= ((
) [[e℄℄

expr

(p;
):implementor):f

where p;
 ` e :
 jj

0

jj �

3

Note that this is ne
essary only when
 is a state
lass, while in the other
ases

sele
tion
ould be performed dire
tly on the obje
t o itself, sin
e w = i = o holds.

However, to keep the mapping simpler, we do not make this distin
tion.

Field assignment: Field f of the wrapper obje
t w denoted by the translation

of e

1

is a

essed through the implementor of w; however, e

2

ould re-
lassify w,

therefore sele
tion w:implementor is
orre
t only after evaluating the translation

of e

2

. This is a
hieved by invoking the auxiliary stati
 method tof.

[[e

1

:f = e

2

℄℄

expr

(p;
)

�

=
:tof([[e

1

℄℄

expr

(p;
); [[e

2

℄℄

expr

(p;

0

))

where p;
 ` e

1

:
 jj

0

jj �; and

0

=
[

0

this℄

Method invo
ation: The same
onsiderations as for �eld assignment apply in this

ase: method
all is performed by
alling the auxiliary stati
 method
allm,

so that implementor �eld of the re
eiver is sele
ted only after evaluating the

translation of e

2

.

[[e

1

:m(e

2

)℄℄

expr

(p;
)

�

=
:
allm([[e

1

℄℄

expr

(p;
); [[e

2

℄℄

expr

(p;

0

))

where p;
 ` e

1

:
 jj

0

jj �; and

0

=
[

0

this℄

Obje
t
reation: Creation of instan
es of a non-state
lass
 only requires invo-

ation of the default
onstru
tor of
. If
 is a state
lass, then two obje
ts must

be
reated: the implementor i (
reated by invoking the default
onstru
tor of
),

and the wrapper w (
reated by invoking the proper
onstru
tor of
lass R(p;
),

that is, the wrapper
lass of
). The implementor is passed as parameter to the

onstru
tor of the wrapper so that �elds of w and i
an be properly initialized to

satisfy the equations w:implementor= i and i:trueThis= w. The term R(p;
)

denotes the least super
lass of
 whi
h is not a state
lass: If
 is a state
lass,

then R(p;
) is its unique root super
lass, otherwise R(p;
) =
.

[[new
()℄℄

expr

(p;
)

�

=

�

new R(p;
)(new
()) if p `
 �

s

new
() otherwise

This: The expression this is translated into trueThis be
ause this
ould

denote the implementor obje
t i, rather than the wrapper w. Furthermore, the

a
tual implementor of w may have
hanged be
ause of re-
lassi�
ation, therefore

this may denote an obsolete implementor. Be
ause trueThis has stati
 type

Fi
kleObje
t, in order to preserve types, the translation also needs to down
ast

to the root super
lass of the type of this

4

. Note that sin
e a state
lass

annot

be used as a type, the translation is stati
ally
orre
t also when this is passed

as a parameter or assigned to a �eld.

[[this℄℄

expr

(p;
)

�

= (R(p;
(this))) trueThis

5 Properties of the translation

In this se
tion we formalize the properties of the translation previously men-

tioned. For la
k of spa
e we only sket
h some proofs whi
h will be detailed in a

future extended version of this paper.

4

Note that this down
asting is only ne
essary when this is used for parameter passing

or assignments, and is unne
essary when this is used in method
alls or �eld sele
-

tion. This is so be
ause in the latter
ases �eld implementor of the obje
t denoted

by trueThis must be sele
ted and implementor is de
lared in the type of trueThis.

But, as already stated, we do not
onsider su
h optimization issues.

Preservation of stati

orre
tness

Theorem 1. For any Fi
kle program p, if p is well-typed (in Fi
kle), then [[p℄℄

prog

is well-typed (in Java).

In order to be proved, the
laim of the theorem must be extended to all

subterms of p and, hen
e, to all typing judgments. The strengthened
laim
an

be proved by indu
tion on the typing rules. The
laim
on
erning judgment for

expressions is the most interesting, hen
e is stated below.

The translation preserves types up to state
lasses, in the following sense: if

a Fi
kle expression e has type t w.r.t. a program p and an environment
, and

e is translated into a Java expression e

0

that has type t

0

w.r.t. [[p℄℄ and
, then

t = t

0

, when t is not a state
lass, and t

0

is the root super
lass of t, when t is a

state
lass. For the Java fragment obtained from the translation we
an use the

Fi
kle type system, so that for any well-typed Java expression e we
an derive

judgments of the form p;
 ` e : t jj
(this) jj ;, where t is the type of e.

The fa
t that the type of this remains the same, and the set of e�e
ts is empty

indi
ates that e
ontains no re-
lassi�
ations.

The
laim for expressions
an be formalized as follows:

Lemma 1. For any Fi
kle expression e, program p, environment
, if

{ p;
 ` e : t jj
 jj �, and

{ [[e℄℄

expr

(p;
) = e

0

, and

{ [[p℄℄

prog

= p

0

,

then

{ p

0

;
 ` e

0

: R(p; t) jj
(this) jj ;.

Preservation of dynami
 semanti
s We now show that the semanti
s of ex-

pressions is preserved by the translation. The semanti
s of the language Fi
kle

we
onsider is the one introdu
ed in [4℄. Su
h semanti
s rewrites pairs of expres-

sions and stores into pairs of values (or the ex
eption nullPntrEx
, indi
ating a

referen
e to a null obje
t), and stores. Values, denoted by v, are either booleans,

or integers, or addresses, denoted by �. Stores map the unique parameter

5

x and

the re
eiver this to values and addresses to obje
ts. Obje
ts are mappings be-

tween �elds and values tagged by the
lass they belong to:[[f

1

: v

1

; : : : ; f

r

: v

r

℄℄

.

We use o as a metavariable for obje
ts, and if f is a �eld of o, o(f) is the value

asso
iated to f in o.

The rewriting, de�ned in the
ontext of a given program p that provides

the de�nition for the
lasses used in the expression, is de�ned by the judgment

e; � ;

p

v; �

0

. The syntax of Fi
kle and the one of the Java fragment
onsid-

ered here are slightly di�erent from the language of [4℄. In parti
ular there is a

distin
tion between statements and expressions and
lasses have
onstru
tors.

5

Re
all that, for simpli
ity, we assume that in Fi
kle syntax ea
h method de�nition

has a unique parameter denoted by x.

However, the de�nition of the semanti
s in [4℄
an be easily adapted to deal with

these features. Note that the Java fragment
ontains also
asting. However, we

do not need rules for
asting, sin
e well-typing will insure that
asting is applied

to obje
ts that already have the target type.

To state the semanti

orre
tness result we introdu
e a relation between

stores p ` � � �

0

that expresses the fa
t that store �

0

is the "translation" of

store �. That is, an obje
t o of
lass
 in �
orresponds univo
ally to an obje
t

o

0

in �

0

that is an instan
e of the translation of the
lass
. Both the store � and

the store �

0

are assumed to agree with the relative environments and programs.

That is, they
ontain values whi
h agree, w.r.t. typing, with their de�nitions (see

[4℄ for the formal de�nition of p;
 ` �3).

De�nition 1. Let p;
 ` �3 and [[p℄℄;
 ` �

0

3. We say that v

0

in �

0

orresponds

to v in � w.r.t. p, and write p; �; �

0

` v � v

0

, if either of the following
onditions

hold:

{ v = v

0

= true, or v = v

0

= false, or v = v

0

= n (for some integer n), or

v = v

0

= null, or

{ v = �, v

0

= �

0

, �(�) = [[f

1

: v

1

; : : : ; f

r

: v

r

℄℄

,

�

0

(�

0

) = [[f

1

: v

0

1

; : : : ; f

q

: v

0

q

; impl : �

00

; trueThis : �

0

℄℄

R(p;
)

, (q � r) and

�

0

(�

00

) = [[f

1

: v

00

1

; : : : ; f

r

: v

00

r

; impl : �

00

; trueThis : �

0

℄℄

, and

for all i, 1 � i � r, p; �; �

0

` v

i

� v

00

i

, and

if
 is not a state
lass, then �

0

= �

00

.

Note that if
 is not a state
lass, then R(p;
) =
, and so q = r. With this

notion of
orresponden
e between values we
an de�ne a
orresponden
e between

stores.

De�nition 2. Let p;
 ` �3 and [[p℄℄;
 ` �

0

3. We say that store �

0

orre-

sponds to � w.r.t. p, and write p ` � � �

0

, if

1. p; �; �

0

` �(x) � �

0

(x),

2. p; �; �

0

` �(this) � (�

0

(this))(trueThis), and

3. for all � if �(�) is de�ned there is a unique �

0

su
h that p; �; �

0

` � � �

0

, and

4. for all �

0

if �

0

(�

0

) is de�ned there is a unique � su
h that

p; �; �

0

` � � (�

0

(�

0

))(trueThis).

The last two
onditions of the previous de�nition assert that there is an inje
tion

between the set of addresses de�ned in � and the set of addresses de�ned in �

0

.

Theorem 2. For a well-typed expression e, stores �

0

and �

1

su
h that p;
 `

�

0

3, [[p℄℄;
 ` �

1

3 and p ` �

0

� �

1

,

e; �

0

;

p

v; �

0

0

if and only if [[e ℄℄; �

1

;

[[p℄℄

v

0

; �

0

1

where p ` �

0

0

� �

0

1

and p; �; �

0

` v � v

0

The proof is by indu
tion on the derivation of e; � ;

p

v; �

0

. The proof that,

in
ase of �eld sele
tion and method
all, the right method is sele
ted relies on

the following fa
t. If p ` � � �

0

, then: for all � and
, �(�) = [[� � � ℄℄

implies

�

0

(�

0

(�

0

)(impl)) = [[� � � ℄℄

, where p; �; �

0

` � � �

0

.

Support for separate
ompilation For any Fi
kle program p, let
lasses(p)

denote the set of all
lasses de�ned in p, and, for ea
h
lass
 in
lasses(p), dep

p

(
)

the set of all super
lasses of
 and of all
lasses (either dire
tly or indire
tly)

used by
 (for reasons of spa
e we omit the formal de�nitions). The following

laim states that a Fi
kle
lass de
laration
an be su

essfully translated in a

Fi
kle program p whenever the set of dependen
ies of
 is
ontained in p, exa
tly

as happens for Java
ompilation.

Theorem 3. For any well-formed Fi
kle program p and
lass de
laration
ld in

p, if dep

p

(
lass(
ld)) �
lasses(p), then [[
ld ℄℄

ld

(p) is well-de�ned.

Let strip be the fun
tion on Fi
kle programs de�ned as follows:

strip(
ld

1

: : :
ld

n

) = strip(
ld

1

) : : : strip(
ld

n

)

strip([root j state℄
lass
 extends

0

f�eld

�

meth

�

g) =

[root j state℄
lass
 extends

0

f�eld

�

strip(meth

�

)g

strip(meth

1

: : :meth

n

) = strip(meth

1

) : : : strip(meth

n

)

strip(t m(t

0

x)�fsl return e; g) = t m(t

0

x)�freturn v(t); g

v(t) =

8

<

:

false if t = boolean

0 if t = int

null otherwise

The following theorem states that translation of a Fi
kle
lass
 depends only on

the body of
 and the type information of all other
lasses, namely,
lass kind,

parent
lass, method headers and �eld de
larations. This information is stored

in a regular Java
lass �le

6

, therefore the translation of

an be su

essfully

arried out also when only the binary �les of the other
lasses are available

7

.

Theorem 4. For any Fi
kle program p and Fi
kle
lass de
laration
ld

1

, if

[[
ld

1

℄℄

ld

(p) =
ld

2

, then [[
ld

1

℄℄

ld

(strip(p)) =
ld

2

.

6 Con
lusion

We have de�ned a translation from Fi
kle (a Java-like language supporting dy-

nami
 obje
t re-
lassi�
ation) into plain Java, and proved that this translation

well-behaves in the sense that it preserves stati
 and dynami
 semanti
s. This is

a ni
e theoreti
al result, strengthened by the fa
t that, in order to ensure these

properties, we were able to identify some invariants whi
h turned out to be a

very useful guide to the translation.

Our
on
erns are not only theoreti
al, but we are interested in investigating

the possibility of implementing an extension of Java with re-
lassi�
ation. From

this point of view, our translation is a good basis sin
e it exhibits the following

additional properties:

6

Ex
ept for the kinds root and state, but
lass �les format
an be easily extended

for storing this new pie
e of information.

7

Note that this property does not depend on Java support for re
e
tion.

{ it is fully
ompatible with Java separate
ompilation, sin
e ea
h Fi
kle
lass

an be translated without having other
lass bodies, hen
e in prin
iple only

having other
lasses in binary form;

{ dependen
ies among
lasses are exa
tly those of standard Java
ompilation,

in the sense that a Fi
kle
lass
an be translated only if type information on

all the an
estor and used
lasses is available.

Our translation is similar both in the stru
ture of
lasses and in their behavior

to the state pattern, see [5℄. The wrapper
lass
orresponds to the
ontext
lass

(of the pattern) and the implementation to the state
lass. A

ess to members

require a level of indire
tion, as in the state pattern. So from the point of view

of eÆ
ien
y our implementation of re
lassi�
ation performs as well as the state

pattern. On the other side our translation maintains the stru
ture of the original

hierar
hy, whereas the state pattern does not.

A prototype implementation largely based on the translation des
ribed in

this paper has already been developed [2℄.

8

However, the work presented here

is only a �rst step towards a working extension of Java with dynami
 obje
t

re-
lassi�
ation. On one side, an extension of full Java should take into a
-

ount other Java features (like
onstru
tors, a

ess modi�ers, abstra
t
lasses,

interfa
es, overloading and
asting) whi
h, though in prin
iple orthogonal to

re-
lassi�
ation, should be
arefully analyzed in order to be sure that the inter-

a
tion behaves
orre
tly. On the other side, as mentioned above, an extended

ompiler should be able to work even in a
ontext where only binary �les are

available, while our prototype implementation works on sour
e �les.

Finally, an alternative dire
tion for the implementation of Fi
kle (or, more

generally, of an obje
t-oriented language supporting dynami
 re-
lassi�
ation of

obje
ts)
ould be in a dire
t way, through manipulation of the obje
t layout or

the obje
t look-up tables.

Referen
es

1. D. An
ona, G. Lagorio, and E. Zu

a. Jam - a smooth extension of Java with

mixins. In ECOOP'00, volume 1850 of LNCS, pages 154{178. Springer, 2000.

2. Christopher Anderson. Implementing Fi
kle, Imperial College, �nal year thesis - to

appear, June 2001.

3. C. Chambers. Predi
ate Classes. In ECOOP'93, volume 707 of LNCS, pages 268{

296. Springer, 1993.

4. S. Drossopoulou, F. Damiani, M. Dezani-Cian
aglini, and P. Giannini. Fi
kle: Dy-

nami
 obje
t re-
lassi�
ation. In J. L. Knudsen, editor, ECOOP'01, number 2072

in LNCS, pages 130{149. Springer, 2001. Also available in: Ele
troni
 pro
eedings

of FOOL8 (http://www.
s.williams.edu/ kim/FOOL/).

5. R. Johnson E.Gamma, R. Elm and J. Vlissides. Design Patterns. Addison-Wesley,

1994.

8

The prototype is written in Java. Future releases might be written in (extended)

Fi
kle.

6. M. D. Ernst, C. Kaplan, and C. Chambers. Predi
ate Dispat
hing: A Uni�ed Theory

of Dispat
h. In ECOOP'98, volume 1445 of LNCS, pages 186{211. Springer, 1998.

7. M. Serrano. Wide Classes. In ECOOP'99, volume 1628 of LNCS, pages 391{415.

Springer, 1999.

