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Abstra
t. We present a translation from Fi
kle (a Java-like language

allowing dynami
 obje
t re-
lassi�
ation, that is, obje
ts that 
an 
hange

their 
lass at run-time) into plain Java. The translation is proved to pre-

serve stati
 and dynami
 semanti
s; moreover, it is shown to be e�e
tive,

in the sense that the translation of a Fi
kle 
lass does not depend on the

implementation of used 
lasses, hen
e 
an be done in a separate way, that

is, without having their sour
es, exa
tly as it happens for Java 
ompi-

lation. The aim is to demonstrate that an extension of Java supporting

dynami
 obje
t re-
lassi�
ation 
ould be fully 
ompatible with the ex-

isting Java environment.

1 Introdu
tion

Dynami
 obje
t re-
lassi�
ation is a feature whi
h allows an obje
t to 
hange

its 
lass membership at run-time while retaining its identity. Thus, the ob-

je
t's behavior 
an 
hange in fundamental ways (e.g., non-empty lists be
om-

ing empty, i
oni�ed windows being expanded, et
.) through re-
lassi�
ation,

rather than repla
ing obje
ts of the old 
lass by obje
ts of the new 
lass. La
k

of re-
lassi�
ation primitives has long been re
ognized as a pra
ti
al limita-

tion of obje
t-oriented programming. Fi
kle [4℄ is a Java-like language support-

ing dynami
 obje
t re-
lassi�
ation, aimed at illustrating features for obje
t

re-
lassi�
ation whi
h 
ould extend an imperative, typed, 
lass-based, obje
t-

oriented language.

Other approa
hes have been attempted [3, 6, 7℄; however,Fi
kle is more within

the main stream of the obje
t oriented approa
h, and moreover it is type-safe,

in the sense that any type 
orre
t program (in terms of the Fi
kle type system)

is guaranteed never to a

ess non-existing �elds or methods.

A further problem is how to 
onstru
t, starting from the Fi
kle design, a

working extension with dynami
 obje
t re-
lassi�
ation of a real obje
t-oriented

language. Java is the �rst natural 
andidate to be 
onsidered, sin
e Fi
kle 
an be

?
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onsidered a small subset of Java (with only non-abstra
t 
lasses, instan
e �elds

and methods, integer and boolean types and a minimal set of statements and

expressions) enri
hed with features for dynami
 obje
t re-
lassi�
ation. Thus, in

parti
ular, a Fi
kle 
lass whi
h does not use these features is a Java 
lass.

In this paper, we provide a �rst important step towards the solution, that

is, we show that a Java environment 
ould be easily and naturally extended in

su
h a way to handle standard Java and Fi
kle 
lasses together.

In order to show that, we de�ne a translation from Fi
kle into plain Java.

The translation is proved to preserve stati
 and dynami
 semanti
s (that is, well-

formed Fi
kle programs are translated into well-formed Java programs whi
h

behave \in the same way"). Moreover, the translation is e�e
tive, in the sense

that it gives the basis for an e�e
tive extension of a Java 
ompiler. This is

ensured by the fa
t that the translation of a Fi
kle 
lass does not depend on the

implementation of used 
lasses, hen
e 
an be done in a separate way, that is,

without having their sour
es, exa
tly as it happens for Java 
ompilation. This

is so be
ause type information needed by the translation 
an be retrieved from

type information stored in binary �les.

Hen
e, an extension of Java supporting dynami
 obje
t re-
lassi�
ation 
ould

be fully 
ompatible with the existing Java environment.

The problems we had to solve in order to de�ne a translation that were

both manageable from the theoreti
al and implementative point of view were

not trivial. The main issues we had to fa
e were the following:

1. to �nd an appropriate en
oding for re-
lassi�able obje
ts;

2. to deal with the fa
t that a standard Java 
lass 
 
an be extended by a

re-
lassi�able 
lass, possibly after 
 is translated (i.e., 
ompiled);

3. to make the translation as simple as possible, negle
ting eÆ
ien
y in favor

of 
learer proofs of 
orre
tness;

4. to make the translation e�e
tive, in the sense that it truly supports separate


ompilation as in Java.

Con
erning point 1), the basi
 idea of the translation is to represent ea
h re-


lassi�able Fi
kle obje
t o through a pair <w; i> of Java obje
ts. Roughly speak-

ing, w is a wrapper obje
t providing the (non-mutable) identity of o, whereas i is

an implementor obje
t providing the (mutable) behavior of o. A re-
lassi�
ation

of o 
hanges i but not w, and method invo
ations are resolved by i.

To solve problems 2), 3) and 4), even non-re-
lassi�able obje
ts are repre-

sented through su
h a pair <o; o>, where o plays both roles. This greatly sim-

pli�es the translation, and allows the same treatment for re-
lassi�able 
lasses

(i.e., state 
lasses in Fi
kle terminology), and non-re-
lassi�able 
lasses.

The work presented in this paper 
omes out of a 
ollaboration among di�erent

resear
h groups and is based on their previous experien
e in the design and

implementation of Java extensions [1, 4℄.

The paper is organized as follows: In Se
tion 2 we introdu
e Fi
kle informally

using an example. In Se
tion 3 we give an informal overview of the translation,

while in Se
tion 4 we give the formal des
ription. In Se
tion 5 we state the formal

properties of the translation (preservation of stati
 and dynami
 semanti
s) and



illustrate the 
ompatibility of the translation with Java separate 
ompilation.

In the Con
lusion we summarize the relevan
e of this work and des
ribe further

resear
h dire
tions.

A prototype implementation largely based on the translation des
ribed in

this paper has already been developed [2℄.

2 Fi
kle: a brief presentation

In this se
tion we introdu
e Fi
kle informally using an example. However, this

se
tion is not intended to be a 
omplete presentation of Fi
kle. We refer to [4℄

for a 
omplete de�nition of the language.

For readability, in the examples we allow a slightly more liberal syntax than

that used in the formal des
ription of the translation (given in Se
tion 4).

The (extended) Fi
kle program in Fig. 1 de�nes a 
lass Sta
k, with sub
lasses

EmptySta
k and NonEmptySta
k. A sta
k has a 
apa
ity (�eld int 
apa
ity)

that is, the maximum number of integers it 
an 
ontain, and the usual operators

isEmpty, top, push, and pop.

In Fi
kle 
lass de�nitions may be pre
eded by the keyword state or root

with the following meaning:

{ state 
lasses are meant to des
ribe the properties of an obje
t while it satis�es

some 
onditions; when it does not satisfy these 
onditions any more, it must

be expli
itly re-
lassi�ed to another state 
lass. For example, NonEmptySta
k

des
ribes non-empty sta
ks; if these be
ome empty, then they are re-
lassi�ed

to EmptySta
k.

We require state 
lasses to extend either root 
lasses or state 
lasses.

{ root 
lasses abstra
t over state 
lasses. Obje
ts of a state 
lass C1 may

be re-
lassi�ed to a 
lass C2 only if C2 is a sub
lass of the uniquely de-

�ned root super
lass of C1. For example, Sta
k abstra
ts over EmptySta
k

and NonEmptySta
k; obje
ts of 
lass EmptySta
k may be re-
lassi�ed to

NonEmptySta
k, and vi
e versa.

We require root 
lasses to extend only non-root and non-state 
lasses.

Obje
ts of a non-state, non-root 
lass C behave like regular Java obje
ts, that is,

are never re-
lassi�ed. However, sin
e state 
lasses 
an be sub
lasses of non-state,

non-root 
lasses, obje
ts bound to a variable x of type C may be re-
lassi�ed.

Namely, if C had two state sub
lasses C1 and C2 and x referred to an obje
t o

of 
lass C1, then o may be re-
lassi�ed to C2.

Obje
ts of an either state or root 
lass C are 
reated in the usual way by the

expression new C().




lass Sta
kEx
eption extends Ex
eption{

Sta
kEx
eption (String str) {} {super(str);}}

abstra
t root 
lass Sta
k{

int 
apa
ity; // maximum number of elements

abstra
t boolean isEmpty() {};

abstra
t int top() {} throws Sta
kEx
eption;

abstra
t void push(int i) {Sta
k} throws Sta
kEx
eption;

abstra
t void pop() {Sta
k} throws Sta
kEx
eption;}

state 
lass EmptySta
k extends Sta
k{

EmptySta
k(int n){} {
apa
ity=n;}

boolean isEmpty() {} {return true;}

int top() {} throws Sta
kEx
eption {

throw new Sta
kEx
eption("Sta
kUnderflow");}

void push(int i) {Sta
k} {

this!!NonEmptySta
k; a=new int[
apa
ity℄; t=0; a[0℄=i;}

void pop() {} throws Sta
kEx
eption {

throw new Sta
kEx
eption("Sta
kUnderflow");}}

state 
lass NonEmptySta
k extends Sta
k{

int[℄ a; // array of elements

int t; // index of top element

NonEmptySta
k(int n, int i) {} {
apa
ity=n; a=new int[n℄; t=0; a[0℄=i;}

boolean isEmpty() {} {return false;}

int top() {} {return a[t℄;}

void push(int i) {} throw Sta
kEx
eption{ t++;

if (t==
apa
ity) throw new Sta
kEx
eption("Sta
kOverflow");

else a[t℄=i; }

void pop() {Sta
k} {if (t==0) this!!EmptySta
k; else t--;}}

publi
 
lass Sta
kTest{

stati
 void main(String[℄ args) {Sta
k} throws Sta
kEx
eption{

Sta
k s=new EmptySta
k(100); s.push(3); s.push(5);

System.out.println(s.isEmpty());

Sta
k s1=new NonEmptySta
k(100,3); Sta
k s2=s1; s1.pop();

System.out.println(s2.isEmpty());}}

Fig. 1. Program Sta
kTest - sta
ks with re-
lassi�
ations

Re-
lassi�
ation statement, this!!C, sets the 
lass of this to C, where C must

be a state 
lass with the same root 
lass of the stati
 type of this. The re-


lassi�
ation operation preserves the types and the values of the �elds de�ned

in the root 
lass, removes the other �elds, and adds the �elds of C that are not

de�ned in the root 
lass, initializing them in the usual way. Re-
lassi�
ations may

be 
aused by re-
lassi�
ation statements, like this!!NonEmptySta
k in body of

method push of 
lass EmptySta
k, or, indire
tly, by method 
alls, like s.push(3)

in body of main. At the start of method push of 
lass EmptySta
k the re
eiver

is an obje
t of 
lass EmptySta
k, therefore it has the �eld 
apa
ity, while it

does not have the �elds a and t. After exe
ution of this!!NonEmptySta
k the



re
eiver is of 
lass NonEmptySta
k, the �eld 
apa
ity retains its value while the

�elds a and t are now available.

Fields, parameters, and values returned by methods (for simpli
ity, Fi
kle

does not have lo
al variables) must have de
lared types whi
h are not state


lasses; we 
all these types non-state types. Thus, �elds and parameters may

denote obje
ts whi
h do 
hange 
lass, but these 
hanges do not a�e
t their type.

Instead, the type of this may be a state 
lass and may 
hange.

Annotations like fg and fSta
kg before throws 
lauses and method bodies

are 
alled e�e
ts. Similarly to what happens for ex
eptions in throws 
lauses,

e�e
ts list the root 
lasses of all obje
ts that may be re-
lassi�ed by exe
ution of

that method. Methods annotated by the empty e�e
t fg, like isEmpty, do not


ause any re-
lassi�
ation. Methods annotated by non-empty e�e
ts, like pop

and push by fSta
kg, may re-
lassify obje
ts of (a sub
lass of) a 
lass in their

e�e
t (in the example, of Sta
k).

A method annotated with e�e
ts 
an be overridden only by methods anno-

tated with the same or less e�e
ts

1

.

By relying on e�e
ts annotations, the type and e�e
t system of Fi
kle ensures

that re-
lassi�
ations will not 
ause a

esses to �elds or methods that are not

de�ned for the obje
t.

Note that e�e
ts are expli
itly de
lared by the programmer rather then in-

ferred by the 
ompiler. Even though e�e
ts inferen
e 
ould be implemented in

pra
ti
e, more 
exibility in method overriding 
an be a
hieved by allowing the

programmer to annotate methods with more e�e
ts than those that would be

inferred (similarly to what happens for ex
eptions).

3 An informal overview of the translation

3.1 En
oding Fi
kle obje
ts

The translation is based on the idea that ea
h obje
t o of a state 
lass 
 
an be

en
oded in Java by a pair <w; i> of obje
ts; we 
all w the wrapper obje
t of i

and i the implementor obje
t of w. Roughly speaking, w provides the identity

and i the behavior of o, so that any re-
lassi�
ation of o 
hanges i but not w

and method invo
ations are resolved by i.

The 
lass of w is 
alled a wrapper 
lass and is obtained by translating the root


lass of 
, whereas the 
lass of i is 
alled an implementor 
lass and is obtained

by translating 
. For any pair <w; i> en
oding an obje
t of a state 
lass, the


lass of i is always a proper sub
lass of the 
lass of w.

An obje
t o whi
h is not an instan
e of a state 
lass does not need to be

en
oded in prin
iple; however, the same kind of en
oding proposed above 
an

be adopted also in this 
ase, sin
e o 
an always be en
oded by the pair <o; o>,

where both the wrapper and the implementor are the obje
t o itself (in other

words, if 
 is not a state 
lass, then it may seen as wrapper 
lass of itself). Even

1

This means that adding a new e�e
t in a method of a 
lass 
 does not require any


hange to the sub
lasses of 
, but may require some 
hanges to its super
lasses.



though at �rst sight this may seem ineÆ
ient and unne
essary, it allows for a

simpler and more e�e
tive translation, as explained in the sequel.

The translation of 
lasses follows the following two rules:

{ ea
h Fi
kle 
lass is translated into exa
tly one Java 
lass (in
luding Obje
t);

{ the translation preserves the inheritan
e hierar
hy.

Throughout the paper we adopt the following terminology:

{ the translation of a non-state, non-root 
lass is 
alled a non-implementor,

non-wrapper 
lass ;

{ the translation of a root 
lass is 
alled a wrapper 
lass ;

{ the translation of a state 
lass is 
alled an implementor 
lass.

We illustrate the above in terms of the example in Fig.1. After the instru
tion

s=new NonEmptySta
k(100,3);

where s has stati
 type Sta
k, the obje
t stored in s is en
oded in the translation

as sket
hed in Fig.2.

to methods
of NonEmptyStack

implementor

capacity

to methods
of Stack

implementor

trueThis

capacityunused

a

t

s

trueThis

Fig. 2. En
oding of the obje
t stored in s

The variable s 
ontains an obje
t o of dynami
 type Sta
k with three �elds:


apa
ity is de
lared in Sta
k, whereas implementor and trueThis are inher-

ited from 
lass Fi
kleObje
t, have type Fi
kleObje
t and are used in the

translation for re
overing the implementor and the wrapper of a re-
lassi�able

obje
t, respe
tively. In this 
ase the �eld implementor points to an obje
t of the

implementor 
lass obtained by translating NonEmptySta
k, whereas trueThis

points to the obje
t itself. Note that here the �eld 
apa
ity is redundant, sin
e

its a
tual value is stored in implementor.
apa
ity.

The implementor obje
t 
ontains all �elds de
lared in NonEmptySta
k (a and

t), and also the �eld 
apa
ity, sin
e the implementor 
lass NonEmptySta
k is a



sub
lass of the wrapper 
lass Sta
k. The �eld implementor points to itself, even

though is never used. The �eld trueThis is inherited from 
lass Fi
kleObje
t,

has type Fi
kleObje
t and is used to re
over the wrapper obje
t of the imple-

mentor, whi
h is essential for 
orre
tly handling re-
lassi�
ation of this.

3.2 Translation of 
lasses

In this se
tion we introdu
e some examples in order to explain how 
lasses and

expressions are translated.

Example 1. Consider the following 
lass de
laration in (extended) Fi
kle :


lass C{

int x;

int m1(){}{m2(); return m2();}

int m2(){R}{x=0; return x;}

}

Our translation maps the de
laration of C in the following Java 
lass

2


lass C extends Fi
kleObje
t{

int x;

int m1(){

((C) trueThis.implementor).m2();

return ((C) trueThis.implementor).m2();}

int m2(){

((C) trueThis.implementor).x=0;

return ((C) trueThis.implementor).x;}

C(){}

C(Fi
kleObje
t oldImp){

super(oldImp);

x=((C) oldImp).x;}

}

Fi
kleObje
t is the 
ommon an
estor of the Java 
lasses obtained by translating

Fi
kle 
lasses, and, in fa
t, 
orresponds to the translation of the Fi
kle prede�ned


lass Obje
t:


lass Fi
kleObje
t extends Obje
t{

Fi
kleObje
t implementor;

Fi
kleObje
t trueThis;

Fi
kleObje
t(){

implementor=this;

trueThis=this;}

2

The translation examples in this paper do not 
ompletely agree with the formal

de�nition given in Se
t.4, sin
e some optimization has been performed in order to

keep the 
ode simpler.



Fi
kleObje
t(Fi
kleObje
t oldImp){ // re-
lassifies obje
ts

implementor=this;

trueThis=oldImp.trueThis;

trueThis.implementor=this;}

}

The �elds implementor and trueThis are de
lared in this top level 
lass for


orre
tly dealing with the en
oding of obje
ts whi
h are not instan
es of state


lasses, as already explained in 3.1; 
onstru
tor Fi
kleObje
t() initializes �elds

implementor and trueThis to the new instan
e o so that its en
oding is <o; o>.

This 
onstru
tor is invoked whenever either a new instan
e of a non-state 
lass

or a new implementor of a state 
lass is 
reated.

On the other hand, 
onstru
tor Fi
kleObje
t(Fi
kleObje
t oldImp) is

invoked whenever an obje
t is re-
lassi�ed and is pla
ed in Fi
kleObje
t just for

avoiding 
ode dupli
ation. An obje
t o whi
h needs to be re-
lassi�ed to a state


lass C (re
all that in the translation every 
lass is sub
lass of Fi
kleObje
t)

and whi
h is en
oded by the pair <w; i>, is transformed into <w; i

0

>, where

i

0

denotes the new implementor of 
lass C (provided by a proper 
onstru
tor

of C; see Example 3 below). The argument of the 
onstru
tor denotes the old

implementor i, from whi
h the wrapper w 
an be re
overed as well (re
all that

w:implementor= i:trueThis must hold), whereas i

0

is denoted by this. Fields

are initialized so that wrapper w and the new implementor i

0

point to ea
h

other. The assignment implementor=this 
ould be omitted, sin
e in prin
iple

�eld implementor of implementors should never be used.

Two interesting parts of C translation 
on
ern invo
ations of method m2 in

m1 and a

ess of �eld x in m2.

Method m2 must be invoked on implementor be
ause it 
ould be overridden

by some state sub
lass of C, whereas this must be translated in trueThis

be
ause method m2 
ould be inherited by some sub
lass of C (hen
e, this 
ould


ontain a possibly wrong implementor rather than a wrapper). Down
asting is

needed sin
e implementor has type Fi
kleObje
t.

The same explanations apply also for sele
tion of �eld x.

Constru
tor C(Fi
kleObje
t oldImp) invokes the 
orresponding 
onstru
-

tor in 
lass Fi
kleObje
t whi
h is used for re-
lassifying obje
ts, as already

explained. However, during re-
lassi�
ation all �elds of the new implementor

i

0

whi
h are inherited from non-state 
lasses (like x in the example) must be

initialized with the values of the 
orresponding �elds of the old implementor i

(x=((C) oldImp).x).

Finally, note that the translation of C is totally independent of any possible

existing sub
lass or 
lient 
lass of C; this property, whi
h is satis�ed by our

translation for any kind of 
lass, is 
ru
ial for obtaining a translation whi
h truly

re
e
ts Java separate 
ompilation (see also the related 
omments in Example 3).

Example 2. Assume now to add to the de
laration of Example 1 the following


lass de
laration:

root 
lass R extends C{



}

This Fi
kle 
lass de
laration is translated in the following Java 
lass de
laration:


lass R extends C{

R(){}

R(Fi
kleObje
t oldImp){super(oldImp);}

R(R imp){

trueThis=this;

implementor=imp;

imp.trueThis=this;}

}

In the translation, root 
lasses de
lare three 
onstru
tors.

Constru
tor R() is used for 
reating instan
es of R and simply invokes the


orresponding 
onstru
tor of the dire
t super
lass C.

Constru
tor R(Fi
kleObje
t oldImp) is used for re-
lassifying obje
ts and

simply invokes the 
orresponding 
onstru
tor of the dire
t super
lass C, sin
e in

this 
ase R does not de
lare any �eld.

Constru
tor R(R imp) is used by state sub
lasses of R for 
reating new in-

stan
es. The argument represents the implementor of the obje
t whi
h has been

properly 
reated by the 
onstru
tor of a state sub
lass of R, while the wrapper

obje
t is 
reated by the 
onstru
tor itself. Fields are initialized so that wrapper

and implementor point to ea
h other. The assignment trueThis=this 
ould be

omitted, sin
e �eld trueThis of wrappers will never be used.

Example 3. Consider now the following state 
lasses:

state 
lass S1 extends R{

int m2(){R}{this!!S2;x=1;return x;}

stati
 void main(String[℄ args)

{System.out.println(new S1().m1());}}

state 
lass S2 extends R{

int y;

int m2(){R}{y=1;return x+y;}

}

They are translated in Java as follows:


lass S1 extends R{

int m2(){

new S2(trueThis.implementor);

((S2) trueThis.implementor).x=1;

return ((S2) trueThis.implementor).x;}

stati
 void main(String[℄ args){

System.out.println(

((S1) new R(new S1()).implementor).m1());}

S1(){}



S1(Fi
kleObje
t oldImp){super(oldImp);}

}


lass S2 extends R{

int y;

int m2(){

((S2) trueThis.implementor).y=1;

return ((S2) trueThis.implementor).x+

((S2) trueThis.implementor).y;}

S2(){}

S2(Fi
kleObje
t oldImp){super(oldImp);}

}

In the translation, state 
lasses de
lare two 
onstru
tors.

In 
lass S2, for instan
e, 
onstru
tor S2() is used for 
reating the imple-

mentor 
omponent of a new instan
e of S2, while 
onstru
tor S2(Fi
kleObje
t

oldImp) is used for re-
lassifying obje
ts; note that, di�erently to what happens

for non-state 
lasses, no extra-
ode is added in the body for any �eld de
lared

in the 
lass (like y).

Let us now fo
us on the translation of obje
t re-
lassi�
ation this!!S2 (in

the body of method m2 of 
lass S1) and on instan
e 
reation of 
lass S1 (in the

body of method main of 
lass S1).

As already explained, for re-
lassifying an obje
t to 
lass S2, the proper 
on-

stru
tor of S2must be invoked, passing as parameter the 
urrent (and soon obso-

lete) implementor i, denoted by trueThis.implementor; then, the 
onstru
tor


reates a new implementor i

0

(belonging to S2), initializes and updates �elds

so that the wrapper w and the new implementor i

0

point to ea
h other (re
all

that the wrapper 
an be re
overed from the old implementor i) and properly

initializes all �elds inherited from non-state super
lasses (like x). This last step

is performed by invoking all the 
orresponding 
onstru
tors of super
lasses up

to Fi
kleObje
t.

Creation of an instan
e of S1 is a
hieved by invoking the proper 
onstru
tor

of the root 
lass R of S1; a new implementor, 
reated by invoking the default


onstru
tor of S1, is passed as parameter to the 
onstru
tor.

We now 
onsider issues related to the e�e
tiveness of the translation. As

already pointed out in Example 1, the translation of a Fi
kle 
lass C does not

depend on any possible sub
lass or 
lient of C, as happens for Java separate


ompilation. On the other hand, the translation of 
lass S1, for instan
e, depends

on 
lasses R and S2 inherited and used, respe
tively, by S1; for instan
e, all type


asts in the body of S1 are determined by type-
he
king S1 and this pro
ess

requires to retrieve type information about 
lasses R and S2 (that is, the signature

of methods and the inheritan
e hierar
hy). However, the translation of S1 is


learly independent of the spe
i�
 bodies of methods of R and S2.

As a 
onsequen
e, dependen
ies 
omputed by our translation pro
ess are

exa
tly the same as those 
omputed by the Java 
ompiler. Furthermore, the

translation of 
lasses depends only on the inheritan
e hierar
hy and on method

signatures; therefore a 
lass 
 depending on 
lasses 


1

; : : : ; 


n


ould be su

ess-



p ::= 
lass

�


lass ::= [root j state℄ 
lass 
 extends 


0

f�eld

�

meth

�

g

�eld ::= t f

meth ::= t m(t

0

x)�fsl return e; g

t ::= boolean j int j 


� ::= f


�

g

sl ::= s

�

s ::= fslg j if (e) s

1

else s

2

j se; j this!!
;

se ::= var = e j e

1

:m(e

2

) j new 
()

e ::= sval j var j this j se

var ::= x j e:f

sval ::= true j false j null j n

Fig. 3. Syntax of Fi
kle

fully translated in a 
ontext where only the binary �les of 


1

; : : : ; 


n

are available,

as happens for Java.

4 Formal des
ription of the translation

In this se
tion we give a formal des
ription of the translation. The syntax of the

sour
e language is spe
i�ed in Fig.3. We refer to [4℄ for the de�nition of the

stati
 semanti
s of Fi
kle (the type system of Fi
kle 
an be easily adapted to

the subset of Java serving as target for the translation) and of some auxiliary

fun
tions used in the sequel.

4.1 Programs

The translation of a Fi
kle program p 
onsists of the translation of all 
lasses

de
lared in p. The 
lasses are translated w.r.t the program p, needed be
ause

the translation of expressions depends on their types (in parti
ular, for method

invo
ation and �eld sele
tion) and on the names of root 
lasses (in parti
ular,


onstru
tor invo
ation and this).

[[p℄℄

prog

�

= [[
lass

1

℄℄


lass

(p) : : : [[
lass

n

℄℄


lass

(p) where p = 
lass

1

: : : 
lass

n

.

4.2 Classes

As already explained, ea
h Fi
kle 
lass 
 is translated into a single Java 
lass


ontaining the translation of all �eld and method de
larations of 
 and a number

of 
onstru
tors, used for 
reating instan
es and for re-
lassifying obje
ts.

The translation of �elds and methods is independent of the kind of 
lass.

However, translation of non-state non-root 
lasses, root 
lasses and state


lasses leads to the de
laration of di�erent 
onstru
tors. That is why for ea
h

kind of 
lass we give a di�erent translation 
lause.



Class Obje
t: This 
lass is translated in Fi
kleObje
t whi
h is the 
ommon

super
lass of all translated 
lasses, already de�ned in Se
t.3.2.

Non-state, non-root 
lasses: These 
lasses are translated by translating all their

methods, and by adding two 
onstru
tors: 
() is used for the 
reation of new

instan
es of 
 and 
(Fi
kleObje
t oldImp) is used for the 
reation of new

implementors when obje
ts of sub
lasses are re-
lassi�ed. In this last 
ase

all �elds of the old implementor oldImp whi
h are de
lared in 
lass 
 must

be 
opied into the 
orresponding new implementor 
reated by the 
onstru
-

tor (see Example 1 in Se
t.3.2). The additional parameter 
 for the transla-

tion of methods is needed to determine the 
lass of this inside the bodies.

[[
lass 
 extends 


0

ft

1

f

1

; : : : t

m

f

m

; meth

1

: : :meth

n

g℄℄


lass

(p)

�

=


lass 
 extends name(


0

)f [[t

1

f

1

;℄℄

�eld

(
) : : : [[t

m

f

m

;℄℄

�eld

(
)

[[meth

1

℄℄

meth

(p; 
) : : : [[meth

n

℄℄

meth

(p; 
)


()fg


(
 oldImp)f

super(oldImp);

f

1

= oldImp:f

1

;

: : :

f

m

= oldImp:f

m

; g

g

The auxiliary fun
tion name is de�ned as follows:

name(
) =

�

Fi
kleObje
t if 
 = Obje
t


 otherwise

Root 
lasses: The translation of this kind of 
lasses produ
es three 
onstru
-

tors: 
() 
reates instan
es of 
, 
(Fi
kleObje
t oldImp) deals with obje
t re-


lassi�
ation, and 
(
 imp) 
reates wrappers of instan
es of state 
lasses:

[[root 
lass 
 extends 


0

ft

1

f

1

; : : : t

m

f

m

; meth

1

: : :meth

n

g℄℄


lass

(p)

�

=


lass 
 extends name(


0

)f [[t

1

f

1

;℄℄

�eld

(
) : : : [[t

m

f

m

;℄℄

�eld

(
)

[[meth

1

℄℄

meth

(p; 
) : : : [[meth

n

℄℄

meth

(p; 
)


()fg


(
 oldImp)f

super(oldImp);

f

1

= oldImp:f

1

;

: : :

f

m

= oldImp:f

m

; g


(
 imp)f

trueThis = this;

implementor= imp;

imp:trueThis = this; g

g

State 
lasses: The translation of this kind of 
lasses produ
es two 
onstru
tors:

the former (with no arguments) for 
reating new implementors for new instan
es



of 
lass 
, the latter for dealing with obje
t re-
lassi�
ation to 
:

[[state 
lass 
 extends 


0

f�eld

1

: : :�eld

m

meth

1

: : :meth

n

g℄℄


lass

(p)

�

=


lass 
 extends name(


0

)f [[�eld

1

℄℄

�eld

(
) : : : [[�eld

m

℄℄

�eld

(
)

[[meth

1

℄℄

meth

(p; 
) : : : [[meth

n

℄℄

meth

(p; 
)


()fg


(Fi
kleObje
t oldImp)fsuper(oldImp)g

g

Note that here name(


0

) = 


0

, sin
e a state 
lass 
annot extend 
lass Obje
t.

4.3 Fields

Translation of ea
h �eld f 
omes equipped with a stati
 method tof used for

translating assigments of value v to �eld f of obje
t tT (see the paragraph on

expressions translation below), sin
e the implementor of the obje
t tT 
an be


orre
tly sele
ted only after evaluating v.

[[t f ;℄℄

�eld

(
)

�

=

t f ;

stati
 t tof(Fi
kleObje
t tT; t v)freturn ((
) tT:implementor) = v; g

4.4 Methods

Translating methods 
onsists of translating their bodies. E�e
ts are omitted,

whereas the signatures remain the same. Sin
e the translation of statements and

expressions depends on their types, the program p and the environment 
 must

be passed as parameters to the 
orresponding translation fun
tions.

Note that the environment 


0

used for translating the returned expression e

may be di�erent from 
, sin
e exe
ution of sl 
ould re-
lassify this. Furthermore,

translation of ea
h method m 
omes equipped with a stati
 method 
allm used

for translating invo
ations of m on re
eiver tT and with argument x (see the

paragraph on expressions translation below); indeed, the implementor of tT 
an

be 
orre
tly sele
ted only after evaluating the argument x.

The judgment p; 
 ` sl : void jj 


0

jj �

0

is valid (see [4℄ for the typing

rules) whenever sl has type void w.r.t. program p and environment 
; 


0

denotes

the type of this after evaluating sl, whereas � 
onservatively estimates the

re-
lassi�
ation e�e
t of the evaluation of sl on obje
ts (this last information

is never used by our translation). The environment 
 de�nes the type of the

parameters and of this.

[[t m(t

0

x)�fsl return e; g℄℄

meth

(p; 
)

�

=

t m(t

0

x)f[[sl℄℄

stmts

(p; 
) return [[e℄℄

expr

(p; 


0

); g

stati
 t 
allm(Fi
kleObje
t tT; t

0

x)f

return ((
) tT:implementor):m(x); g

where 
 = t

0

x; 
 this; 


0

= t

0

x; 


0

this; and p; 
 ` sl : void jj 


0

jj �

0



4.5 Statements

Ex
ept for obje
t re-
lassi�
ation, all statements are translated by translating

their 
onstituent statements or subexpressions. The notation 
[
 this℄ denotes

the environment obtained by updating 
 so that it maps this to 
.

[[s sl℄℄

stmts

(p; 
)

�

= [[s℄℄

stmt

(p; 
) [[sl℄℄

stmts

(p; 


0

)

where p; 
 ` s : void jj 
 jj � and 


0

= 
[
 this℄

[[fslg℄℄

stmt

(p; 
)

�

= f[[sl℄℄

stmts

(p; 
)g

[[if (e) s

1

else s

2

℄℄

stmt

(p; 
)

�

=

if ([[e℄℄

expr

(p; 
)) [[s

1

℄℄

stmt

(p; 


0

) else [[s

2

℄℄

stmt

(p; 


0

)

where p; 
 ` e : boolean jj 


1

jj �

1

; 


0

= 
[


1

this℄

[[se;℄℄

stmt

(p; 
)

�

= [[se℄℄

expr

(p; 
);

The translation of re-
lassi�
ation to 
lass 
 
onsists of the 
all to the appro-

priate 
onstru
tor of 
lass 
. The 
urrent implementor (trueThis.implementor)

is passed as parameter to the 
onstru
tor in order to 
orre
tly initialize the �elds

of the new implementor.

[[this!!
;℄℄

stmt

(p; 
)

�

= new 
(trueThis:implementor);

4.6 Expressions

Types of expressions are preserved under the translation, up to state 
lasses:

more pre
isely, if a Fi
kle expression e has type t and t is not a state 
lass,

then its type is preserved; otherwise, the type of the translation of e is the root

super
lass of t. This is formalized and proven in Se
t.5.

Simple 
ases: Values, variables and variables assignment: The translation is

straightforward.

[[sval ℄℄

expr

(p; 
)

�

= sval

[[x℄℄

expr

(p; 
)

�

= x

[[x = e℄℄

expr

(p; 
)

�

= x = [[e℄℄

expr

(p; 
)

Field sele
tion: as already explained in Se
t.3.1, in the en
oding <w; i> of an

obje
t o of 
lass 
, the �elds of o are stored in the implementor obje
t i (be-

longing to the 
lass obtained by translating 
). Therefore, �elds 
an be a

essed

only through w.implementor on obje
t

3

w. Down
asting is needed be
ause �eld

implementor has type Fi
kleObje
t.

[[e:f ℄℄

expr

(p; 
)

�

= ((
) [[e℄℄

expr

(p; 
):implementor):f

where p; 
 ` e : 
 jj 


0

jj �

3

Note that this is ne
essary only when 
 is a state 
lass, while in the other 
ases

sele
tion 
ould be performed dire
tly on the obje
t o itself, sin
e w = i = o holds.

However, to keep the mapping simpler, we do not make this distin
tion.



Field assignment: Field f of the wrapper obje
t w denoted by the translation

of e

1

is a

essed through the implementor of w; however, e

2


ould re-
lassify w,

therefore sele
tion w:implementor is 
orre
t only after evaluating the translation

of e

2

. This is a
hieved by invoking the auxiliary stati
 method tof.

[[e

1

:f = e

2

℄℄

expr

(p; 
)

�

= 
:tof([[e

1

℄℄

expr

(p; 
); [[e

2

℄℄

expr

(p; 


0

))

where p; 
 ` e

1

: 
 jj 


0

jj �; and 


0

= 
[


0

this℄

Method invo
ation: The same 
onsiderations as for �eld assignment apply in this


ase: method 
all is performed by 
alling the auxiliary stati
 method 
allm,

so that implementor �eld of the re
eiver is sele
ted only after evaluating the

translation of e

2

.

[[e

1

:m(e

2

)℄℄

expr

(p; 
)

�

= 
:
allm([[e

1

℄℄

expr

(p; 
); [[e

2

℄℄

expr

(p; 


0

))

where p; 
 ` e

1

: 
 jj 


0

jj �; and 


0

= 
[


0

this℄

Obje
t 
reation: Creation of instan
es of a non-state 
lass 
 only requires invo-


ation of the default 
onstru
tor of 
. If 
 is a state 
lass, then two obje
ts must

be 
reated: the implementor i (
reated by invoking the default 
onstru
tor of 
),

and the wrapper w (
reated by invoking the proper 
onstru
tor of 
lass R(p; 
),

that is, the wrapper 
lass of 
). The implementor is passed as parameter to the


onstru
tor of the wrapper so that �elds of w and i 
an be properly initialized to

satisfy the equations w:implementor= i and i:trueThis= w. The term R(p; 
)

denotes the least super
lass of 
 whi
h is not a state 
lass: If 
 is a state 
lass,

then R(p; 
) is its unique root super
lass, otherwise R(p; 
) = 
.

[[new 
()℄℄

expr

(p; 
)

�

=

�

new R(p; 
)(new 
()) if p ` 
 �

s

new 
() otherwise

This: The expression this is translated into trueThis be
ause this 
ould

denote the implementor obje
t i, rather than the wrapper w. Furthermore, the

a
tual implementor of w may have 
hanged be
ause of re-
lassi�
ation, therefore

this may denote an obsolete implementor. Be
ause trueThis has stati
 type

Fi
kleObje
t, in order to preserve types, the translation also needs to down
ast

to the root super
lass of the type of this

4

. Note that sin
e a state 
lass 
 
annot

be used as a type, the translation is stati
ally 
orre
t also when this is passed

as a parameter or assigned to a �eld.

[[this℄℄

expr

(p; 
)

�

= (R(p; 
(this))) trueThis

5 Properties of the translation

In this se
tion we formalize the properties of the translation previously men-

tioned. For la
k of spa
e we only sket
h some proofs whi
h will be detailed in a

future extended version of this paper.

4

Note that this down
asting is only ne
essary when this is used for parameter passing

or assignments, and is unne
essary when this is used in method 
alls or �eld sele
-

tion. This is so be
ause in the latter 
ases �eld implementor of the obje
t denoted

by trueThis must be sele
ted and implementor is de
lared in the type of trueThis.

But, as already stated, we do not 
onsider su
h optimization issues.



Preservation of stati
 
orre
tness

Theorem 1. For any Fi
kle program p, if p is well-typed (in Fi
kle), then [[p℄℄

prog

is well-typed (in Java).

In order to be proved, the 
laim of the theorem must be extended to all

subterms of p and, hen
e, to all typing judgments. The strengthened 
laim 
an

be proved by indu
tion on the typing rules. The 
laim 
on
erning judgment for

expressions is the most interesting, hen
e is stated below.

The translation preserves types up to state 
lasses, in the following sense: if

a Fi
kle expression e has type t w.r.t. a program p and an environment 
, and

e is translated into a Java expression e

0

that has type t

0

w.r.t. [[p℄℄ and 
, then

t = t

0

, when t is not a state 
lass, and t

0

is the root super
lass of t, when t is a

state 
lass. For the Java fragment obtained from the translation we 
an use the

Fi
kle type system, so that for any well-typed Java expression e we 
an derive

judgments of the form p; 
 ` e : t jj 
(this) jj ;, where t is the type of e.

The fa
t that the type of this remains the same, and the set of e�e
ts is empty

indi
ates that e 
ontains no re-
lassi�
ations.

The 
laim for expressions 
an be formalized as follows:

Lemma 1. For any Fi
kle expression e, program p, environment 
, if

{ p; 
 ` e : t jj 
 jj �, and

{ [[e℄℄

expr

(p; 
) = e

0

, and

{ [[p℄℄

prog

= p

0

,

then

{ p

0

; 
 ` e

0

: R(p; t) jj 
(this) jj ;.

Preservation of dynami
 semanti
s We now show that the semanti
s of ex-

pressions is preserved by the translation. The semanti
s of the language Fi
kle

we 
onsider is the one introdu
ed in [4℄. Su
h semanti
s rewrites pairs of expres-

sions and stores into pairs of values (or the ex
eption nullPntrEx
, indi
ating a

referen
e to a null obje
t), and stores. Values, denoted by v, are either booleans,

or integers, or addresses, denoted by �. Stores map the unique parameter

5

x and

the re
eiver this to values and addresses to obje
ts. Obje
ts are mappings be-

tween �elds and values tagged by the 
lass they belong to:[[f

1

: v

1

; : : : ; f

r

: v

r

℄℄




.

We use o as a metavariable for obje
ts, and if f is a �eld of o, o(f) is the value

asso
iated to f in o.

The rewriting, de�ned in the 
ontext of a given program p that provides

the de�nition for the 
lasses used in the expression, is de�ned by the judgment

e; � ;

p

v; �

0

. The syntax of Fi
kle and the one of the Java fragment 
onsid-

ered here are slightly di�erent from the language of [4℄. In parti
ular there is a

distin
tion between statements and expressions and 
lasses have 
onstru
tors.

5

Re
all that, for simpli
ity, we assume that in Fi
kle syntax ea
h method de�nition

has a unique parameter denoted by x.



However, the de�nition of the semanti
s in [4℄ 
an be easily adapted to deal with

these features. Note that the Java fragment 
ontains also 
asting. However, we

do not need rules for 
asting, sin
e well-typing will insure that 
asting is applied

to obje
ts that already have the target type.

To state the semanti
 
orre
tness result we introdu
e a relation between

stores p ` � � �

0

that expresses the fa
t that store �

0

is the "translation" of

store �. That is, an obje
t o of 
lass 
 in � 
orresponds univo
ally to an obje
t

o

0

in �

0

that is an instan
e of the translation of the 
lass 
. Both the store � and

the store �

0

are assumed to agree with the relative environments and programs.

That is, they 
ontain values whi
h agree, w.r.t. typing, with their de�nitions (see

[4℄ for the formal de�nition of p; 
 ` �3).

De�nition 1. Let p; 
 ` �3 and [[p℄℄; 
 ` �

0

3. We say that v

0

in �

0


orresponds

to v in � w.r.t. p, and write p; �; �

0

` v � v

0

, if either of the following 
onditions

hold:

{ v = v

0

= true, or v = v

0

= false, or v = v

0

= n (for some integer n), or

v = v

0

= null, or

{ v = �, v

0

= �

0

, �(�) = [[f

1

: v

1

; : : : ; f

r

: v

r

℄℄




,

�

0

(�

0

) = [[f

1

: v

0

1

; : : : ; f

q

: v

0

q

; impl : �

00

; trueThis : �

0

℄℄

R(p;
)

, (q � r) and

�

0

(�

00

) = [[f

1

: v

00

1

; : : : ; f

r

: v

00

r

; impl : �

00

; trueThis : �

0

℄℄




, and

for all i, 1 � i � r, p; �; �

0

` v

i

� v

00

i

, and

if 
 is not a state 
lass, then �

0

= �

00

.

Note that if 
 is not a state 
lass, then R(p; 
) = 
, and so q = r. With this

notion of 
orresponden
e between values we 
an de�ne a 
orresponden
e between

stores.

De�nition 2. Let p; 
 ` �3 and [[p℄℄; 
 ` �

0

3. We say that store �

0


orre-

sponds to � w.r.t. p, and write p ` � � �

0

, if

1. p; �; �

0

` �(x) � �

0

(x),

2. p; �; �

0

` �(this) � (�

0

(this))(trueThis), and

3. for all � if �(�) is de�ned there is a unique �

0

su
h that p; �; �

0

` � � �

0

, and

4. for all �

0

if �

0

(�

0

) is de�ned there is a unique � su
h that

p; �; �

0

` � � (�

0

(�

0

))(trueThis).

The last two 
onditions of the previous de�nition assert that there is an inje
tion

between the set of addresses de�ned in � and the set of addresses de�ned in �

0

.

Theorem 2. For a well-typed expression e, stores �

0

and �

1

su
h that p; 
 `

�

0

3, [[p℄℄; 
 ` �

1

3 and p ` �

0

� �

1

,

e; �

0

;

p

v; �

0

0

if and only if [[e ℄℄; �

1

;

[[p℄℄

v

0

; �

0

1

where p ` �

0

0

� �

0

1

and p; �; �

0

` v � v

0

The proof is by indu
tion on the derivation of e; � ;

p

v; �

0

. The proof that,

in 
ase of �eld sele
tion and method 
all, the right method is sele
ted relies on

the following fa
t. If p ` � � �

0

, then: for all � and 
, �(�) = [[ � � � ℄℄




implies

�

0

(�

0

(�

0

)(impl)) = [[ � � � ℄℄




, where p; �; �

0

` � � �

0

.



Support for separate 
ompilation For any Fi
kle program p, let 
lasses(p)

denote the set of all 
lasses de�ned in p, and, for ea
h 
lass 
 in 
lasses(p), dep

p

(
)

the set of all super
lasses of 
 and of all 
lasses (either dire
tly or indire
tly)

used by 
 (for reasons of spa
e we omit the formal de�nitions). The following


laim states that a Fi
kle 
lass de
laration 
an be su

essfully translated in a

Fi
kle program p whenever the set of dependen
ies of 
 is 
ontained in p, exa
tly

as happens for Java 
ompilation.

Theorem 3. For any well-formed Fi
kle program p and 
lass de
laration 
ld in

p, if dep

p

(
lass(
ld )) � 
lasses(p), then [[
ld ℄℄


ld

(p) is well-de�ned.

Let strip be the fun
tion on Fi
kle programs de�ned as follows:

strip(
ld

1

: : : 
ld

n

) = strip(
ld

1

) : : : strip(
ld

n

)

strip([root j state℄ 
lass 
 extends 


0

f�eld

�

meth

�

g) =

[root j state℄ 
lass 
 extends 


0

f�eld

�

strip(meth

�

)g

strip(meth

1

: : :meth

n

) = strip(meth

1

) : : : strip(meth

n

)

strip(t m(t

0

x)�fsl return e; g) = t m(t

0

x)�freturn v(t); g

v(t) =

8

<

:

false if t = boolean

0 if t = int

null otherwise

The following theorem states that translation of a Fi
kle 
lass 
 depends only on

the body of 
 and the type information of all other 
lasses, namely, 
lass kind,

parent 
lass, method headers and �eld de
larations. This information is stored

in a regular Java 
lass �le

6

, therefore the translation of 
 
an be su

essfully


arried out also when only the binary �les of the other 
lasses are available

7

.

Theorem 4. For any Fi
kle program p and Fi
kle 
lass de
laration 
ld

1

, if

[[
ld

1

℄℄


ld

(p) = 
ld

2

, then [[
ld

1

℄℄


ld

(strip(p)) = 
ld

2

.

6 Con
lusion

We have de�ned a translation from Fi
kle (a Java-like language supporting dy-

nami
 obje
t re-
lassi�
ation) into plain Java, and proved that this translation

well-behaves in the sense that it preserves stati
 and dynami
 semanti
s. This is

a ni
e theoreti
al result, strengthened by the fa
t that, in order to ensure these

properties, we were able to identify some invariants whi
h turned out to be a

very useful guide to the translation.

Our 
on
erns are not only theoreti
al, but we are interested in investigating

the possibility of implementing an extension of Java with re-
lassi�
ation. From

this point of view, our translation is a good basis sin
e it exhibits the following

additional properties:

6

Ex
ept for the kinds root and state, but 
lass �les format 
an be easily extended

for storing this new pie
e of information.

7

Note that this property does not depend on Java support for re
e
tion.



{ it is fully 
ompatible with Java separate 
ompilation, sin
e ea
h Fi
kle 
lass


an be translated without having other 
lass bodies, hen
e in prin
iple only

having other 
lasses in binary form;

{ dependen
ies among 
lasses are exa
tly those of standard Java 
ompilation,

in the sense that a Fi
kle 
lass 
an be translated only if type information on

all the an
estor and used 
lasses is available.

Our translation is similar both in the stru
ture of 
lasses and in their behavior

to the state pattern, see [5℄. The wrapper 
lass 
orresponds to the 
ontext 
lass

(of the pattern) and the implementation to the state 
lass. A

ess to members

require a level of indire
tion, as in the state pattern. So from the point of view

of eÆ
ien
y our implementation of re
lassi�
ation performs as well as the state

pattern. On the other side our translation maintains the stru
ture of the original

hierar
hy, whereas the state pattern does not.

A prototype implementation largely based on the translation des
ribed in

this paper has already been developed [2℄.

8

However, the work presented here

is only a �rst step towards a working extension of Java with dynami
 obje
t

re-
lassi�
ation. On one side, an extension of full Java should take into a
-


ount other Java features (like 
onstru
tors, a

ess modi�ers, abstra
t 
lasses,

interfa
es, overloading and 
asting) whi
h, though in prin
iple orthogonal to

re-
lassi�
ation, should be 
arefully analyzed in order to be sure that the inter-

a
tion behaves 
orre
tly. On the other side, as mentioned above, an extended


ompiler should be able to work even in a 
ontext where only binary �les are

available, while our prototype implementation works on sour
e �les.

Finally, an alternative dire
tion for the implementation of Fi
kle (or, more

generally, of an obje
t-oriented language supporting dynami
 re-
lassi�
ation of

obje
ts) 
ould be in a dire
t way, through manipulation of the obje
t layout or

the obje
t look-up tables.
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