
An e�etive translation of Fikle into Java

?

(extended abstrat)

D. Anona

1

, C. Anderson

2

, F. Damiani

3

,

S. Drossopoulou

2

, P. Giannini

4

, and E. Zua

1

1

DISI - Universit�a di Genova

2

Imperial College - London

3

Dipartimento di Informatia - Universit�a di Torino

4

DISTA - Universit�a del Piemonte Orientale

Abstrat. We present a translation from Fikle (a Java-like language

allowing dynami objet re-lassi�ation, that is, objets that an hange

their lass at run-time) into plain Java. The translation is proved to pre-

serve stati and dynami semantis; moreover, it is shown to be e�etive,

in the sense that the translation of a Fikle lass does not depend on the

implementation of used lasses, hene an be done in a separate way, that

is, without having their soures, exatly as it happens for Java ompi-

lation. The aim is to demonstrate that an extension of Java supporting

dynami objet re-lassi�ation ould be fully ompatible with the ex-

isting Java environment.

1 Introdution

Dynami objet re-lassi�ation is a feature whih allows an objet to hange

its lass membership at run-time while retaining its identity. Thus, the ob-

jet's behavior an hange in fundamental ways (e.g., non-empty lists beom-

ing empty, ioni�ed windows being expanded, et.) through re-lassi�ation,

rather than replaing objets of the old lass by objets of the new lass. Lak

of re-lassi�ation primitives has long been reognized as a pratial limita-

tion of objet-oriented programming. Fikle [4℄ is a Java-like language support-

ing dynami objet re-lassi�ation, aimed at illustrating features for objet

re-lassi�ation whih ould extend an imperative, typed, lass-based, objet-

oriented language.

Other approahes have been attempted [3, 6, 7℄; however,Fikle is more within

the main stream of the objet oriented approah, and moreover it is type-safe,

in the sense that any type orret program (in terms of the Fikle type system)

is guaranteed never to aess non-existing �elds or methods.

A further problem is how to onstrut, starting from the Fikle design, a

working extension with dynami objet re-lassi�ation of a real objet-oriented

language. Java is the �rst natural andidate to be onsidered, sine Fikle an be

?

Partially supported by Murst Co�n'99 - TOSCA Projet, CNR-GNSAGA, and the

EPSRC (Grant Ref: GR/L 76709).

onsidered a small subset of Java (with only non-abstrat lasses, instane �elds

and methods, integer and boolean types and a minimal set of statements and

expressions) enrihed with features for dynami objet re-lassi�ation. Thus, in

partiular, a Fikle lass whih does not use these features is a Java lass.

In this paper, we provide a �rst important step towards the solution, that

is, we show that a Java environment ould be easily and naturally extended in

suh a way to handle standard Java and Fikle lasses together.

In order to show that, we de�ne a translation from Fikle into plain Java.

The translation is proved to preserve stati and dynami semantis (that is, well-

formed Fikle programs are translated into well-formed Java programs whih

behave \in the same way"). Moreover, the translation is e�etive, in the sense

that it gives the basis for an e�etive extension of a Java ompiler. This is

ensured by the fat that the translation of a Fikle lass does not depend on the

implementation of used lasses, hene an be done in a separate way, that is,

without having their soures, exatly as it happens for Java ompilation. This

is so beause type information needed by the translation an be retrieved from

type information stored in binary �les.

Hene, an extension of Java supporting dynami objet re-lassi�ation ould

be fully ompatible with the existing Java environment.

The problems we had to solve in order to de�ne a translation that were

both manageable from the theoretial and implementative point of view were

not trivial. The main issues we had to fae were the following:

1. to �nd an appropriate enoding for re-lassi�able objets;

2. to deal with the fat that a standard Java lass an be extended by a

re-lassi�able lass, possibly after is translated (i.e., ompiled);

3. to make the translation as simple as possible, negleting eÆieny in favor

of learer proofs of orretness;

4. to make the translation e�etive, in the sense that it truly supports separate

ompilation as in Java.

Conerning point 1), the basi idea of the translation is to represent eah re-

lassi�able Fikle objet o through a pair <w; i> of Java objets. Roughly speak-

ing, w is a wrapper objet providing the (non-mutable) identity of o, whereas i is

an implementor objet providing the (mutable) behavior of o. A re-lassi�ation

of o hanges i but not w, and method invoations are resolved by i.

To solve problems 2), 3) and 4), even non-re-lassi�able objets are repre-

sented through suh a pair <o; o>, where o plays both roles. This greatly sim-

pli�es the translation, and allows the same treatment for re-lassi�able lasses

(i.e., state lasses in Fikle terminology), and non-re-lassi�able lasses.

The work presented in this paper omes out of a ollaboration among di�erent

researh groups and is based on their previous experiene in the design and

implementation of Java extensions [1, 4℄.

The paper is organized as follows: In Setion 2 we introdue Fikle informally

using an example. In Setion 3 we give an informal overview of the translation,

while in Setion 4 we give the formal desription. In Setion 5 we state the formal

properties of the translation (preservation of stati and dynami semantis) and

illustrate the ompatibility of the translation with Java separate ompilation.

In the Conlusion we summarize the relevane of this work and desribe further

researh diretions.

A prototype implementation largely based on the translation desribed in

this paper has already been developed [2℄.

2 Fikle: a brief presentation

In this setion we introdue Fikle informally using an example. However, this

setion is not intended to be a omplete presentation of Fikle. We refer to [4℄

for a omplete de�nition of the language.

For readability, in the examples we allow a slightly more liberal syntax than

that used in the formal desription of the translation (given in Setion 4).

The (extended) Fikle program in Fig. 1 de�nes a lass Stak, with sublasses

EmptyStak and NonEmptyStak. A stak has a apaity (�eld int apaity)

that is, the maximum number of integers it an ontain, and the usual operators

isEmpty, top, push, and pop.

In Fikle lass de�nitions may be preeded by the keyword state or root

with the following meaning:

{ state lasses are meant to desribe the properties of an objet while it satis�es

some onditions; when it does not satisfy these onditions any more, it must

be expliitly re-lassi�ed to another state lass. For example, NonEmptyStak

desribes non-empty staks; if these beome empty, then they are re-lassi�ed

to EmptyStak.

We require state lasses to extend either root lasses or state lasses.

{ root lasses abstrat over state lasses. Objets of a state lass C1 may

be re-lassi�ed to a lass C2 only if C2 is a sublass of the uniquely de-

�ned root superlass of C1. For example, Stak abstrats over EmptyStak

and NonEmptyStak; objets of lass EmptyStak may be re-lassi�ed to

NonEmptyStak, and vie versa.

We require root lasses to extend only non-root and non-state lasses.

Objets of a non-state, non-root lass C behave like regular Java objets, that is,

are never re-lassi�ed. However, sine state lasses an be sublasses of non-state,

non-root lasses, objets bound to a variable x of type C may be re-lassi�ed.

Namely, if C had two state sublasses C1 and C2 and x referred to an objet o

of lass C1, then o may be re-lassi�ed to C2.

Objets of an either state or root lass C are reated in the usual way by the

expression new C().

lass StakExeption extends Exeption{

StakExeption (String str) {} {super(str);}}

abstrat root lass Stak{

int apaity; // maximum number of elements

abstrat boolean isEmpty() {};

abstrat int top() {} throws StakExeption;

abstrat void push(int i) {Stak} throws StakExeption;

abstrat void pop() {Stak} throws StakExeption;}

state lass EmptyStak extends Stak{

EmptyStak(int n){} {apaity=n;}

boolean isEmpty() {} {return true;}

int top() {} throws StakExeption {

throw new StakExeption("StakUnderflow");}

void push(int i) {Stak} {

this!!NonEmptyStak; a=new int[apaity℄; t=0; a[0℄=i;}

void pop() {} throws StakExeption {

throw new StakExeption("StakUnderflow");}}

state lass NonEmptyStak extends Stak{

int[℄ a; // array of elements

int t; // index of top element

NonEmptyStak(int n, int i) {} {apaity=n; a=new int[n℄; t=0; a[0℄=i;}

boolean isEmpty() {} {return false;}

int top() {} {return a[t℄;}

void push(int i) {} throw StakExeption{ t++;

if (t==apaity) throw new StakExeption("StakOverflow");

else a[t℄=i; }

void pop() {Stak} {if (t==0) this!!EmptyStak; else t--;}}

publi lass StakTest{

stati void main(String[℄ args) {Stak} throws StakExeption{

Stak s=new EmptyStak(100); s.push(3); s.push(5);

System.out.println(s.isEmpty());

Stak s1=new NonEmptyStak(100,3); Stak s2=s1; s1.pop();

System.out.println(s2.isEmpty());}}

Fig. 1. Program StakTest - staks with re-lassi�ations

Re-lassi�ation statement, this!!C, sets the lass of this to C, where C must

be a state lass with the same root lass of the stati type of this. The re-

lassi�ation operation preserves the types and the values of the �elds de�ned

in the root lass, removes the other �elds, and adds the �elds of C that are not

de�ned in the root lass, initializing them in the usual way. Re-lassi�ations may

be aused by re-lassi�ation statements, like this!!NonEmptyStak in body of

method push of lass EmptyStak, or, indiretly, by method alls, like s.push(3)

in body of main. At the start of method push of lass EmptyStak the reeiver

is an objet of lass EmptyStak, therefore it has the �eld apaity, while it

does not have the �elds a and t. After exeution of this!!NonEmptyStak the

reeiver is of lass NonEmptyStak, the �eld apaity retains its value while the

�elds a and t are now available.

Fields, parameters, and values returned by methods (for simpliity, Fikle

does not have loal variables) must have delared types whih are not state

lasses; we all these types non-state types. Thus, �elds and parameters may

denote objets whih do hange lass, but these hanges do not a�et their type.

Instead, the type of this may be a state lass and may hange.

Annotations like fg and fStakg before throws lauses and method bodies

are alled e�ets. Similarly to what happens for exeptions in throws lauses,

e�ets list the root lasses of all objets that may be re-lassi�ed by exeution of

that method. Methods annotated by the empty e�et fg, like isEmpty, do not

ause any re-lassi�ation. Methods annotated by non-empty e�ets, like pop

and push by fStakg, may re-lassify objets of (a sublass of) a lass in their

e�et (in the example, of Stak).

A method annotated with e�ets an be overridden only by methods anno-

tated with the same or less e�ets

1

.

By relying on e�ets annotations, the type and e�et system of Fikle ensures

that re-lassi�ations will not ause aesses to �elds or methods that are not

de�ned for the objet.

Note that e�ets are expliitly delared by the programmer rather then in-

ferred by the ompiler. Even though e�ets inferene ould be implemented in

pratie, more exibility in method overriding an be ahieved by allowing the

programmer to annotate methods with more e�ets than those that would be

inferred (similarly to what happens for exeptions).

3 An informal overview of the translation

3.1 Enoding Fikle objets

The translation is based on the idea that eah objet o of a state lass an be

enoded in Java by a pair <w; i> of objets; we all w the wrapper objet of i

and i the implementor objet of w. Roughly speaking, w provides the identity

and i the behavior of o, so that any re-lassi�ation of o hanges i but not w

and method invoations are resolved by i.

The lass of w is alled a wrapper lass and is obtained by translating the root

lass of , whereas the lass of i is alled an implementor lass and is obtained

by translating . For any pair <w; i> enoding an objet of a state lass, the

lass of i is always a proper sublass of the lass of w.

An objet o whih is not an instane of a state lass does not need to be

enoded in priniple; however, the same kind of enoding proposed above an

be adopted also in this ase, sine o an always be enoded by the pair <o; o>,

where both the wrapper and the implementor are the objet o itself (in other

words, if is not a state lass, then it may seen as wrapper lass of itself). Even

1

This means that adding a new e�et in a method of a lass does not require any

hange to the sublasses of , but may require some hanges to its superlasses.

though at �rst sight this may seem ineÆient and unneessary, it allows for a

simpler and more e�etive translation, as explained in the sequel.

The translation of lasses follows the following two rules:

{ eah Fikle lass is translated into exatly one Java lass (inluding Objet);

{ the translation preserves the inheritane hierarhy.

Throughout the paper we adopt the following terminology:

{ the translation of a non-state, non-root lass is alled a non-implementor,

non-wrapper lass ;

{ the translation of a root lass is alled a wrapper lass ;

{ the translation of a state lass is alled an implementor lass.

We illustrate the above in terms of the example in Fig.1. After the instrution

s=new NonEmptyStak(100,3);

where s has stati type Stak, the objet stored in s is enoded in the translation

as skethed in Fig.2.

to methods
of NonEmptyStack

implementor

capacity

to methods
of Stack

implementor

trueThis

capacityunused

a

t

s

trueThis

Fig. 2. Enoding of the objet stored in s

The variable s ontains an objet o of dynami type Stak with three �elds:

apaity is delared in Stak, whereas implementor and trueThis are inher-

ited from lass FikleObjet, have type FikleObjet and are used in the

translation for reovering the implementor and the wrapper of a re-lassi�able

objet, respetively. In this ase the �eld implementor points to an objet of the

implementor lass obtained by translating NonEmptyStak, whereas trueThis

points to the objet itself. Note that here the �eld apaity is redundant, sine

its atual value is stored in implementor.apaity.

The implementor objet ontains all �elds delared in NonEmptyStak (a and

t), and also the �eld apaity, sine the implementor lass NonEmptyStak is a

sublass of the wrapper lass Stak. The �eld implementor points to itself, even

though is never used. The �eld trueThis is inherited from lass FikleObjet,

has type FikleObjet and is used to reover the wrapper objet of the imple-

mentor, whih is essential for orretly handling re-lassi�ation of this.

3.2 Translation of lasses

In this setion we introdue some examples in order to explain how lasses and

expressions are translated.

Example 1. Consider the following lass delaration in (extended) Fikle :

lass C{

int x;

int m1(){}{m2(); return m2();}

int m2(){R}{x=0; return x;}

}

Our translation maps the delaration of C in the following Java lass

2

lass C extends FikleObjet{

int x;

int m1(){

((C) trueThis.implementor).m2();

return ((C) trueThis.implementor).m2();}

int m2(){

((C) trueThis.implementor).x=0;

return ((C) trueThis.implementor).x;}

C(){}

C(FikleObjet oldImp){

super(oldImp);

x=((C) oldImp).x;}

}

FikleObjet is the ommon anestor of the Java lasses obtained by translating

Fikle lasses, and, in fat, orresponds to the translation of the Fikle prede�ned

lass Objet:

lass FikleObjet extends Objet{

FikleObjet implementor;

FikleObjet trueThis;

FikleObjet(){

implementor=this;

trueThis=this;}

2

The translation examples in this paper do not ompletely agree with the formal

de�nition given in Set.4, sine some optimization has been performed in order to

keep the ode simpler.

FikleObjet(FikleObjet oldImp){ // re-lassifies objets

implementor=this;

trueThis=oldImp.trueThis;

trueThis.implementor=this;}

}

The �elds implementor and trueThis are delared in this top level lass for

orretly dealing with the enoding of objets whih are not instanes of state

lasses, as already explained in 3.1; onstrutor FikleObjet() initializes �elds

implementor and trueThis to the new instane o so that its enoding is <o; o>.

This onstrutor is invoked whenever either a new instane of a non-state lass

or a new implementor of a state lass is reated.

On the other hand, onstrutor FikleObjet(FikleObjet oldImp) is

invoked whenever an objet is re-lassi�ed and is plaed in FikleObjet just for

avoiding ode dupliation. An objet o whih needs to be re-lassi�ed to a state

lass C (reall that in the translation every lass is sublass of FikleObjet)

and whih is enoded by the pair <w; i>, is transformed into <w; i

0

>, where

i

0

denotes the new implementor of lass C (provided by a proper onstrutor

of C; see Example 3 below). The argument of the onstrutor denotes the old

implementor i, from whih the wrapper w an be reovered as well (reall that

w:implementor= i:trueThis must hold), whereas i

0

is denoted by this. Fields

are initialized so that wrapper w and the new implementor i

0

point to eah

other. The assignment implementor=this ould be omitted, sine in priniple

�eld implementor of implementors should never be used.

Two interesting parts of C translation onern invoations of method m2 in

m1 and aess of �eld x in m2.

Method m2 must be invoked on implementor beause it ould be overridden

by some state sublass of C, whereas this must be translated in trueThis

beause method m2 ould be inherited by some sublass of C (hene, this ould

ontain a possibly wrong implementor rather than a wrapper). Downasting is

needed sine implementor has type FikleObjet.

The same explanations apply also for seletion of �eld x.

Construtor C(FikleObjet oldImp) invokes the orresponding onstru-

tor in lass FikleObjet whih is used for re-lassifying objets, as already

explained. However, during re-lassi�ation all �elds of the new implementor

i

0

whih are inherited from non-state lasses (like x in the example) must be

initialized with the values of the orresponding �elds of the old implementor i

(x=((C) oldImp).x).

Finally, note that the translation of C is totally independent of any possible

existing sublass or lient lass of C; this property, whih is satis�ed by our

translation for any kind of lass, is ruial for obtaining a translation whih truly

reets Java separate ompilation (see also the related omments in Example 3).

Example 2. Assume now to add to the delaration of Example 1 the following

lass delaration:

root lass R extends C{

}

This Fikle lass delaration is translated in the following Java lass delaration:

lass R extends C{

R(){}

R(FikleObjet oldImp){super(oldImp);}

R(R imp){

trueThis=this;

implementor=imp;

imp.trueThis=this;}

}

In the translation, root lasses delare three onstrutors.

Construtor R() is used for reating instanes of R and simply invokes the

orresponding onstrutor of the diret superlass C.

Construtor R(FikleObjet oldImp) is used for re-lassifying objets and

simply invokes the orresponding onstrutor of the diret superlass C, sine in

this ase R does not delare any �eld.

Construtor R(R imp) is used by state sublasses of R for reating new in-

stanes. The argument represents the implementor of the objet whih has been

properly reated by the onstrutor of a state sublass of R, while the wrapper

objet is reated by the onstrutor itself. Fields are initialized so that wrapper

and implementor point to eah other. The assignment trueThis=this ould be

omitted, sine �eld trueThis of wrappers will never be used.

Example 3. Consider now the following state lasses:

state lass S1 extends R{

int m2(){R}{this!!S2;x=1;return x;}

stati void main(String[℄ args)

{System.out.println(new S1().m1());}}

state lass S2 extends R{

int y;

int m2(){R}{y=1;return x+y;}

}

They are translated in Java as follows:

lass S1 extends R{

int m2(){

new S2(trueThis.implementor);

((S2) trueThis.implementor).x=1;

return ((S2) trueThis.implementor).x;}

stati void main(String[℄ args){

System.out.println(

((S1) new R(new S1()).implementor).m1());}

S1(){}

S1(FikleObjet oldImp){super(oldImp);}

}

lass S2 extends R{

int y;

int m2(){

((S2) trueThis.implementor).y=1;

return ((S2) trueThis.implementor).x+

((S2) trueThis.implementor).y;}

S2(){}

S2(FikleObjet oldImp){super(oldImp);}

}

In the translation, state lasses delare two onstrutors.

In lass S2, for instane, onstrutor S2() is used for reating the imple-

mentor omponent of a new instane of S2, while onstrutor S2(FikleObjet

oldImp) is used for re-lassifying objets; note that, di�erently to what happens

for non-state lasses, no extra-ode is added in the body for any �eld delared

in the lass (like y).

Let us now fous on the translation of objet re-lassi�ation this!!S2 (in

the body of method m2 of lass S1) and on instane reation of lass S1 (in the

body of method main of lass S1).

As already explained, for re-lassifying an objet to lass S2, the proper on-

strutor of S2must be invoked, passing as parameter the urrent (and soon obso-

lete) implementor i, denoted by trueThis.implementor; then, the onstrutor

reates a new implementor i

0

(belonging to S2), initializes and updates �elds

so that the wrapper w and the new implementor i

0

point to eah other (reall

that the wrapper an be reovered from the old implementor i) and properly

initializes all �elds inherited from non-state superlasses (like x). This last step

is performed by invoking all the orresponding onstrutors of superlasses up

to FikleObjet.

Creation of an instane of S1 is ahieved by invoking the proper onstrutor

of the root lass R of S1; a new implementor, reated by invoking the default

onstrutor of S1, is passed as parameter to the onstrutor.

We now onsider issues related to the e�etiveness of the translation. As

already pointed out in Example 1, the translation of a Fikle lass C does not

depend on any possible sublass or lient of C, as happens for Java separate

ompilation. On the other hand, the translation of lass S1, for instane, depends

on lasses R and S2 inherited and used, respetively, by S1; for instane, all type

asts in the body of S1 are determined by type-heking S1 and this proess

requires to retrieve type information about lasses R and S2 (that is, the signature

of methods and the inheritane hierarhy). However, the translation of S1 is

learly independent of the spei� bodies of methods of R and S2.

As a onsequene, dependenies omputed by our translation proess are

exatly the same as those omputed by the Java ompiler. Furthermore, the

translation of lasses depends only on the inheritane hierarhy and on method

signatures; therefore a lass depending on lasses

1

; : : : ;

n

ould be suess-

p ::= lass

�

lass ::= [root j state℄ lass extends

0

f�eld

�

meth

�

g

�eld ::= t f

meth ::= t m(t

0

x)�fsl return e; g

t ::= boolean j int j

� ::= f

�

g

sl ::= s

�

s ::= fslg j if (e) s

1

else s

2

j se; j this!!;

se ::= var = e j e

1

:m(e

2

) j new ()

e ::= sval j var j this j se

var ::= x j e:f

sval ::= true j false j null j n

Fig. 3. Syntax of Fikle

fully translated in a ontext where only the binary �les of

1

; : : : ;

n

are available,

as happens for Java.

4 Formal desription of the translation

In this setion we give a formal desription of the translation. The syntax of the

soure language is spei�ed in Fig.3. We refer to [4℄ for the de�nition of the

stati semantis of Fikle (the type system of Fikle an be easily adapted to

the subset of Java serving as target for the translation) and of some auxiliary

funtions used in the sequel.

4.1 Programs

The translation of a Fikle program p onsists of the translation of all lasses

delared in p. The lasses are translated w.r.t the program p, needed beause

the translation of expressions depends on their types (in partiular, for method

invoation and �eld seletion) and on the names of root lasses (in partiular,

onstrutor invoation and this).

[[p℄℄

prog

�

= [[lass

1

℄℄

lass

(p) : : : [[lass

n

℄℄

lass

(p) where p = lass

1

: : : lass

n

.

4.2 Classes

As already explained, eah Fikle lass is translated into a single Java lass

ontaining the translation of all �eld and method delarations of and a number

of onstrutors, used for reating instanes and for re-lassifying objets.

The translation of �elds and methods is independent of the kind of lass.

However, translation of non-state non-root lasses, root lasses and state

lasses leads to the delaration of di�erent onstrutors. That is why for eah

kind of lass we give a di�erent translation lause.

Class Objet: This lass is translated in FikleObjet whih is the ommon

superlass of all translated lasses, already de�ned in Set.3.2.

Non-state, non-root lasses: These lasses are translated by translating all their

methods, and by adding two onstrutors: () is used for the reation of new

instanes of and (FikleObjet oldImp) is used for the reation of new

implementors when objets of sublasses are re-lassi�ed. In this last ase

all �elds of the old implementor oldImp whih are delared in lass must

be opied into the orresponding new implementor reated by the onstru-

tor (see Example 1 in Set.3.2). The additional parameter for the transla-

tion of methods is needed to determine the lass of this inside the bodies.

[[lass extends

0

ft

1

f

1

; : : : t

m

f

m

; meth

1

: : :meth

n

g℄℄

lass

(p)

�

=

lass extends name(

0

)f [[t

1

f

1

;℄℄

�eld

() : : : [[t

m

f

m

;℄℄

�eld

()

[[meth

1

℄℄

meth

(p;) : : : [[meth

n

℄℄

meth

(p;)

()fg

(oldImp)f

super(oldImp);

f

1

= oldImp:f

1

;

: : :

f

m

= oldImp:f

m

; g

g

The auxiliary funtion name is de�ned as follows:

name() =

�

FikleObjet if = Objet

 otherwise

Root lasses: The translation of this kind of lasses produes three onstru-

tors: () reates instanes of , (FikleObjet oldImp) deals with objet re-

lassi�ation, and (imp) reates wrappers of instanes of state lasses:

[[root lass extends

0

ft

1

f

1

; : : : t

m

f

m

; meth

1

: : :meth

n

g℄℄

lass

(p)

�

=

lass extends name(

0

)f [[t

1

f

1

;℄℄

�eld

() : : : [[t

m

f

m

;℄℄

�eld

()

[[meth

1

℄℄

meth

(p;) : : : [[meth

n

℄℄

meth

(p;)

()fg

(oldImp)f

super(oldImp);

f

1

= oldImp:f

1

;

: : :

f

m

= oldImp:f

m

; g

(imp)f

trueThis = this;

implementor= imp;

imp:trueThis = this; g

g

State lasses: The translation of this kind of lasses produes two onstrutors:

the former (with no arguments) for reating new implementors for new instanes

of lass , the latter for dealing with objet re-lassi�ation to :

[[state lass extends

0

f�eld

1

: : :�eld

m

meth

1

: : :meth

n

g℄℄

lass

(p)

�

=

lass extends name(

0

)f [[�eld

1

℄℄

�eld

() : : : [[�eld

m

℄℄

�eld

()

[[meth

1

℄℄

meth

(p;) : : : [[meth

n

℄℄

meth

(p;)

()fg

(FikleObjet oldImp)fsuper(oldImp)g

g

Note that here name(

0

) =

0

, sine a state lass annot extend lass Objet.

4.3 Fields

Translation of eah �eld f omes equipped with a stati method tof used for

translating assigments of value v to �eld f of objet tT (see the paragraph on

expressions translation below), sine the implementor of the objet tT an be

orretly seleted only after evaluating v.

[[t f ;℄℄

�eld

()

�

=

t f ;

stati t tof(FikleObjet tT; t v)freturn (() tT:implementor) = v; g

4.4 Methods

Translating methods onsists of translating their bodies. E�ets are omitted,

whereas the signatures remain the same. Sine the translation of statements and

expressions depends on their types, the program p and the environment must

be passed as parameters to the orresponding translation funtions.

Note that the environment

0

used for translating the returned expression e

may be di�erent from , sine exeution of sl ould re-lassify this. Furthermore,

translation of eah method m omes equipped with a stati method allm used

for translating invoations of m on reeiver tT and with argument x (see the

paragraph on expressions translation below); indeed, the implementor of tT an

be orretly seleted only after evaluating the argument x.

The judgment p; ` sl : void jj

0

jj �

0

is valid (see [4℄ for the typing

rules) whenever sl has type void w.r.t. program p and environment ;

0

denotes

the type of this after evaluating sl, whereas � onservatively estimates the

re-lassi�ation e�et of the evaluation of sl on objets (this last information

is never used by our translation). The environment de�nes the type of the

parameters and of this.

[[t m(t

0

x)�fsl return e; g℄℄

meth

(p;)

�

=

t m(t

0

x)f[[sl℄℄

stmts

(p;) return [[e℄℄

expr

(p;

0

); g

stati t allm(FikleObjet tT; t

0

x)f

return (() tT:implementor):m(x); g

where = t

0

x; this;

0

= t

0

x;

0

this; and p; ` sl : void jj

0

jj �

0

4.5 Statements

Exept for objet re-lassi�ation, all statements are translated by translating

their onstituent statements or subexpressions. The notation [this℄ denotes

the environment obtained by updating so that it maps this to .

[[s sl℄℄

stmts

(p;)

�

= [[s℄℄

stmt

(p;) [[sl℄℄

stmts

(p;

0

)

where p; ` s : void jj jj � and

0

= [this℄

[[fslg℄℄

stmt

(p;)

�

= f[[sl℄℄

stmts

(p;)g

[[if (e) s

1

else s

2

℄℄

stmt

(p;)

�

=

if ([[e℄℄

expr

(p;)) [[s

1

℄℄

stmt

(p;

0

) else [[s

2

℄℄

stmt

(p;

0

)

where p; ` e : boolean jj

1

jj �

1

;

0

= [

1

this℄

[[se;℄℄

stmt

(p;)

�

= [[se℄℄

expr

(p;);

The translation of re-lassi�ation to lass onsists of the all to the appro-

priate onstrutor of lass . The urrent implementor (trueThis.implementor)

is passed as parameter to the onstrutor in order to orretly initialize the �elds

of the new implementor.

[[this!!;℄℄

stmt

(p;)

�

= new (trueThis:implementor);

4.6 Expressions

Types of expressions are preserved under the translation, up to state lasses:

more preisely, if a Fikle expression e has type t and t is not a state lass,

then its type is preserved; otherwise, the type of the translation of e is the root

superlass of t. This is formalized and proven in Set.5.

Simple ases: Values, variables and variables assignment: The translation is

straightforward.

[[sval ℄℄

expr

(p;)

�

= sval

[[x℄℄

expr

(p;)

�

= x

[[x = e℄℄

expr

(p;)

�

= x = [[e℄℄

expr

(p;)

Field seletion: as already explained in Set.3.1, in the enoding <w; i> of an

objet o of lass , the �elds of o are stored in the implementor objet i (be-

longing to the lass obtained by translating). Therefore, �elds an be aessed

only through w.implementor on objet

3

w. Downasting is needed beause �eld

implementor has type FikleObjet.

[[e:f ℄℄

expr

(p;)

�

= (() [[e℄℄

expr

(p;):implementor):f

where p; ` e : jj

0

jj �

3

Note that this is neessary only when is a state lass, while in the other ases

seletion ould be performed diretly on the objet o itself, sine w = i = o holds.

However, to keep the mapping simpler, we do not make this distintion.

Field assignment: Field f of the wrapper objet w denoted by the translation

of e

1

is aessed through the implementor of w; however, e

2

ould re-lassify w,

therefore seletion w:implementor is orret only after evaluating the translation

of e

2

. This is ahieved by invoking the auxiliary stati method tof.

[[e

1

:f = e

2

℄℄

expr

(p;)

�

= :tof([[e

1

℄℄

expr

(p;); [[e

2

℄℄

expr

(p;

0

))

where p; ` e

1

: jj

0

jj �; and

0

= [

0

this℄

Method invoation: The same onsiderations as for �eld assignment apply in this

ase: method all is performed by alling the auxiliary stati method allm,

so that implementor �eld of the reeiver is seleted only after evaluating the

translation of e

2

.

[[e

1

:m(e

2

)℄℄

expr

(p;)

�

= :allm([[e

1

℄℄

expr

(p;); [[e

2

℄℄

expr

(p;

0

))

where p; ` e

1

: jj

0

jj �; and

0

= [

0

this℄

Objet reation: Creation of instanes of a non-state lass only requires invo-

ation of the default onstrutor of . If is a state lass, then two objets must

be reated: the implementor i (reated by invoking the default onstrutor of),

and the wrapper w (reated by invoking the proper onstrutor of lass R(p;),

that is, the wrapper lass of). The implementor is passed as parameter to the

onstrutor of the wrapper so that �elds of w and i an be properly initialized to

satisfy the equations w:implementor= i and i:trueThis= w. The term R(p;)

denotes the least superlass of whih is not a state lass: If is a state lass,

then R(p;) is its unique root superlass, otherwise R(p;) = .

[[new ()℄℄

expr

(p;)

�

=

�

new R(p;)(new ()) if p ` �

s

new () otherwise

This: The expression this is translated into trueThis beause this ould

denote the implementor objet i, rather than the wrapper w. Furthermore, the

atual implementor of w may have hanged beause of re-lassi�ation, therefore

this may denote an obsolete implementor. Beause trueThis has stati type

FikleObjet, in order to preserve types, the translation also needs to downast

to the root superlass of the type of this

4

. Note that sine a state lass annot

be used as a type, the translation is statially orret also when this is passed

as a parameter or assigned to a �eld.

[[this℄℄

expr

(p;)

�

= (R(p; (this))) trueThis

5 Properties of the translation

In this setion we formalize the properties of the translation previously men-

tioned. For lak of spae we only sketh some proofs whih will be detailed in a

future extended version of this paper.

4

Note that this downasting is only neessary when this is used for parameter passing

or assignments, and is unneessary when this is used in method alls or �eld sele-

tion. This is so beause in the latter ases �eld implementor of the objet denoted

by trueThis must be seleted and implementor is delared in the type of trueThis.

But, as already stated, we do not onsider suh optimization issues.

Preservation of stati orretness

Theorem 1. For any Fikle program p, if p is well-typed (in Fikle), then [[p℄℄

prog

is well-typed (in Java).

In order to be proved, the laim of the theorem must be extended to all

subterms of p and, hene, to all typing judgments. The strengthened laim an

be proved by indution on the typing rules. The laim onerning judgment for

expressions is the most interesting, hene is stated below.

The translation preserves types up to state lasses, in the following sense: if

a Fikle expression e has type t w.r.t. a program p and an environment , and

e is translated into a Java expression e

0

that has type t

0

w.r.t. [[p℄℄ and , then

t = t

0

, when t is not a state lass, and t

0

is the root superlass of t, when t is a

state lass. For the Java fragment obtained from the translation we an use the

Fikle type system, so that for any well-typed Java expression e we an derive

judgments of the form p; ` e : t jj (this) jj ;, where t is the type of e.

The fat that the type of this remains the same, and the set of e�ets is empty

indiates that e ontains no re-lassi�ations.

The laim for expressions an be formalized as follows:

Lemma 1. For any Fikle expression e, program p, environment , if

{ p; ` e : t jj jj �, and

{ [[e℄℄

expr

(p;) = e

0

, and

{ [[p℄℄

prog

= p

0

,

then

{ p

0

; ` e

0

: R(p; t) jj (this) jj ;.

Preservation of dynami semantis We now show that the semantis of ex-

pressions is preserved by the translation. The semantis of the language Fikle

we onsider is the one introdued in [4℄. Suh semantis rewrites pairs of expres-

sions and stores into pairs of values (or the exeption nullPntrEx, indiating a

referene to a null objet), and stores. Values, denoted by v, are either booleans,

or integers, or addresses, denoted by �. Stores map the unique parameter

5

x and

the reeiver this to values and addresses to objets. Objets are mappings be-

tween �elds and values tagged by the lass they belong to:[[f

1

: v

1

; : : : ; f

r

: v

r

℄℄

.

We use o as a metavariable for objets, and if f is a �eld of o, o(f) is the value

assoiated to f in o.

The rewriting, de�ned in the ontext of a given program p that provides

the de�nition for the lasses used in the expression, is de�ned by the judgment

e; � ;

p

v; �

0

. The syntax of Fikle and the one of the Java fragment onsid-

ered here are slightly di�erent from the language of [4℄. In partiular there is a

distintion between statements and expressions and lasses have onstrutors.

5

Reall that, for simpliity, we assume that in Fikle syntax eah method de�nition

has a unique parameter denoted by x.

However, the de�nition of the semantis in [4℄ an be easily adapted to deal with

these features. Note that the Java fragment ontains also asting. However, we

do not need rules for asting, sine well-typing will insure that asting is applied

to objets that already have the target type.

To state the semanti orretness result we introdue a relation between

stores p ` � � �

0

that expresses the fat that store �

0

is the "translation" of

store �. That is, an objet o of lass in � orresponds univoally to an objet

o

0

in �

0

that is an instane of the translation of the lass . Both the store � and

the store �

0

are assumed to agree with the relative environments and programs.

That is, they ontain values whih agree, w.r.t. typing, with their de�nitions (see

[4℄ for the formal de�nition of p; ` �3).

De�nition 1. Let p; ` �3 and [[p℄℄; ` �

0

3. We say that v

0

in �

0

orresponds

to v in � w.r.t. p, and write p; �; �

0

` v � v

0

, if either of the following onditions

hold:

{ v = v

0

= true, or v = v

0

= false, or v = v

0

= n (for some integer n), or

v = v

0

= null, or

{ v = �, v

0

= �

0

, �(�) = [[f

1

: v

1

; : : : ; f

r

: v

r

℄℄

,

�

0

(�

0

) = [[f

1

: v

0

1

; : : : ; f

q

: v

0

q

; impl : �

00

; trueThis : �

0

℄℄

R(p;)

, (q � r) and

�

0

(�

00

) = [[f

1

: v

00

1

; : : : ; f

r

: v

00

r

; impl : �

00

; trueThis : �

0

℄℄

, and

for all i, 1 � i � r, p; �; �

0

` v

i

� v

00

i

, and

if is not a state lass, then �

0

= �

00

.

Note that if is not a state lass, then R(p;) = , and so q = r. With this

notion of orrespondene between values we an de�ne a orrespondene between

stores.

De�nition 2. Let p; ` �3 and [[p℄℄; ` �

0

3. We say that store �

0

orre-

sponds to � w.r.t. p, and write p ` � � �

0

, if

1. p; �; �

0

` �(x) � �

0

(x),

2. p; �; �

0

` �(this) � (�

0

(this))(trueThis), and

3. for all � if �(�) is de�ned there is a unique �

0

suh that p; �; �

0

` � � �

0

, and

4. for all �

0

if �

0

(�

0

) is de�ned there is a unique � suh that

p; �; �

0

` � � (�

0

(�

0

))(trueThis).

The last two onditions of the previous de�nition assert that there is an injetion

between the set of addresses de�ned in � and the set of addresses de�ned in �

0

.

Theorem 2. For a well-typed expression e, stores �

0

and �

1

suh that p; `

�

0

3, [[p℄℄; ` �

1

3 and p ` �

0

� �

1

,

e; �

0

;

p

v; �

0

0

if and only if [[e ℄℄; �

1

;

[[p℄℄

v

0

; �

0

1

where p ` �

0

0

� �

0

1

and p; �; �

0

` v � v

0

The proof is by indution on the derivation of e; � ;

p

v; �

0

. The proof that,

in ase of �eld seletion and method all, the right method is seleted relies on

the following fat. If p ` � � �

0

, then: for all � and , �(�) = [[� � � ℄℄

implies

�

0

(�

0

(�

0

)(impl)) = [[� � � ℄℄

, where p; �; �

0

` � � �

0

.

Support for separate ompilation For any Fikle program p, let lasses(p)

denote the set of all lasses de�ned in p, and, for eah lass in lasses(p), dep

p

()

the set of all superlasses of and of all lasses (either diretly or indiretly)

used by (for reasons of spae we omit the formal de�nitions). The following

laim states that a Fikle lass delaration an be suessfully translated in a

Fikle program p whenever the set of dependenies of is ontained in p, exatly

as happens for Java ompilation.

Theorem 3. For any well-formed Fikle program p and lass delaration ld in

p, if dep

p

(lass(ld)) � lasses(p), then [[ld ℄℄

ld

(p) is well-de�ned.

Let strip be the funtion on Fikle programs de�ned as follows:

strip(ld

1

: : : ld

n

) = strip(ld

1

) : : : strip(ld

n

)

strip([root j state℄ lass extends

0

f�eld

�

meth

�

g) =

[root j state℄ lass extends

0

f�eld

�

strip(meth

�

)g

strip(meth

1

: : :meth

n

) = strip(meth

1

) : : : strip(meth

n

)

strip(t m(t

0

x)�fsl return e; g) = t m(t

0

x)�freturn v(t); g

v(t) =

8

<

:

false if t = boolean

0 if t = int

null otherwise

The following theorem states that translation of a Fikle lass depends only on

the body of and the type information of all other lasses, namely, lass kind,

parent lass, method headers and �eld delarations. This information is stored

in a regular Java lass �le

6

, therefore the translation of an be suessfully

arried out also when only the binary �les of the other lasses are available

7

.

Theorem 4. For any Fikle program p and Fikle lass delaration ld

1

, if

[[ld

1

℄℄

ld

(p) = ld

2

, then [[ld

1

℄℄

ld

(strip(p)) = ld

2

.

6 Conlusion

We have de�ned a translation from Fikle (a Java-like language supporting dy-

nami objet re-lassi�ation) into plain Java, and proved that this translation

well-behaves in the sense that it preserves stati and dynami semantis. This is

a nie theoretial result, strengthened by the fat that, in order to ensure these

properties, we were able to identify some invariants whih turned out to be a

very useful guide to the translation.

Our onerns are not only theoretial, but we are interested in investigating

the possibility of implementing an extension of Java with re-lassi�ation. From

this point of view, our translation is a good basis sine it exhibits the following

additional properties:

6

Exept for the kinds root and state, but lass �les format an be easily extended

for storing this new piee of information.

7

Note that this property does not depend on Java support for reetion.

{ it is fully ompatible with Java separate ompilation, sine eah Fikle lass

an be translated without having other lass bodies, hene in priniple only

having other lasses in binary form;

{ dependenies among lasses are exatly those of standard Java ompilation,

in the sense that a Fikle lass an be translated only if type information on

all the anestor and used lasses is available.

Our translation is similar both in the struture of lasses and in their behavior

to the state pattern, see [5℄. The wrapper lass orresponds to the ontext lass

(of the pattern) and the implementation to the state lass. Aess to members

require a level of indiretion, as in the state pattern. So from the point of view

of eÆieny our implementation of relassi�ation performs as well as the state

pattern. On the other side our translation maintains the struture of the original

hierarhy, whereas the state pattern does not.

A prototype implementation largely based on the translation desribed in

this paper has already been developed [2℄.

8

However, the work presented here

is only a �rst step towards a working extension of Java with dynami objet

re-lassi�ation. On one side, an extension of full Java should take into a-

ount other Java features (like onstrutors, aess modi�ers, abstrat lasses,

interfaes, overloading and asting) whih, though in priniple orthogonal to

re-lassi�ation, should be arefully analyzed in order to be sure that the inter-

ation behaves orretly. On the other side, as mentioned above, an extended

ompiler should be able to work even in a ontext where only binary �les are

available, while our prototype implementation works on soure �les.

Finally, an alternative diretion for the implementation of Fikle (or, more

generally, of an objet-oriented language supporting dynami re-lassi�ation of

objets) ould be in a diret way, through manipulation of the objet layout or

the objet look-up tables.

Referenes

1. D. Anona, G. Lagorio, and E. Zua. Jam - a smooth extension of Java with

mixins. In ECOOP'00, volume 1850 of LNCS, pages 154{178. Springer, 2000.

2. Christopher Anderson. Implementing Fikle, Imperial College, �nal year thesis - to

appear, June 2001.

3. C. Chambers. Prediate Classes. In ECOOP'93, volume 707 of LNCS, pages 268{

296. Springer, 1993.

4. S. Drossopoulou, F. Damiani, M. Dezani-Cianaglini, and P. Giannini. Fikle: Dy-

nami objet re-lassi�ation. In J. L. Knudsen, editor, ECOOP'01, number 2072

in LNCS, pages 130{149. Springer, 2001. Also available in: Eletroni proeedings

of FOOL8 (http://www.s.williams.edu/ kim/FOOL/).

5. R. Johnson E.Gamma, R. Elm and J. Vlissides. Design Patterns. Addison-Wesley,

1994.

8

The prototype is written in Java. Future releases might be written in (extended)

Fikle.

6. M. D. Ernst, C. Kaplan, and C. Chambers. Prediate Dispathing: A Uni�ed Theory

of Dispath. In ECOOP'98, volume 1445 of LNCS, pages 186{211. Springer, 1998.

7. M. Serrano. Wide Classes. In ECOOP'99, volume 1628 of LNCS, pages 391{415.

Springer, 1999.

