An effective translation of Fickle into Java*
(extended abstract)

D. Ancona', C. Anderson?, F. Damiani?®,

S. Drossopoulou?, P. Giannini*, and E. Zucca!

! DISI - Universita di Genova
2 Imperial College - London
3 Dipartimento di Informatica - Universita di Torino
1 DISTA - Universita del Piemonte Orientale

Abstract. We present a translation from Fickle (a Java-like language
allowing dynamic object re-classification, that is, objects that can change
their class at run-time) into plain Java. The translation is proved to pre-
serve static and dynamic semantics; moreover, it is shown to be effective,
in the sense that the translation of a Fickle class does not depend on the
implementation of used classes, hence can be done in a separate way, that
is, without having their sources, exactly as it happens for Java compi-
lation. The aim is to demonstrate that an extension of Java supporting
dynamic object re-classification could be fully compatible with the ex-
isting Java environment.

1 Introduction

Dynamic object re-classification is a feature which allows an object to change
its class membership at run-time while retaining its identity. Thus, the ob-
ject’s behavior can change in fundamental ways (e.g., non-empty lists becom-
ing empty, iconified windows being expanded, etc.) through re-classification,
rather than replacing objects of the old class by objects of the new class. Lack
of re-classification primitives has long been recognized as a practical limita-
tion of object-oriented programming. Fickle [4] is a Java-like language support-
ing dynamic object re-classification, aimed at illustrating features for object
re-classification which could extend an imperative, typed, class-based, object-
oriented language.

Other approaches have been attempted [3, 6, 7]; however, Fickle is more within
the main stream of the object oriented approach, and moreover it is type-safe,
in the sense that any type correct program (in terms of the Fickle type system)
is guaranteed never to access non-existing fields or methods.

A further problem is how to construct, starting from the Fickle design, a
working extension with dynamic object re-classification of a real object-oriented
language. Java is the first natural candidate to be considered, since Fickle can be

* Partially supported by Murst Cofin’99 - TOSCA Project, CNR-GNSAGA, and the
EPSRC (Grant Ref: GR/L 76709).

considered a small subset of Java (with only non-abstract classes, instance fields
and methods, integer and boolean types and a minimal set of statements and
expressions) enriched with features for dynamic object re-classification. Thus, in
particular, a Fickle class which does not use these features is a Java class.

In this paper, we provide a first important step towards the solution, that
is, we show that a Java environment could be easily and naturally extended in
such a way to handle standard Java and Fickle classes together.

In order to show that, we define a translation from Fickle into plain Java.
The translation is proved to preserve static and dynamic semantics (that is, well-
formed Fickle programs are translated into well-formed Java programs which
behave “in the same way”). Moreover, the translation is effective, in the sense
that it gives the basis for an effective extension of a Java compiler. This is
ensured by the fact that the translation of a Fickle class does not depend on the
implementation of used classes, hence can be done in a separate way, that is,
without having their sources, exactly as it happens for Java compilation. This
is so because type information needed by the translation can be retrieved from
type information stored in binary files.

Hence, an extension of Java supporting dynamic object re-classification could
be fully compatible with the existing Java environment.

The problems we had to solve in order to define a translation that were
both manageable from the theoretical and implementative point of view were
not trivial. The main issues we had to face were the following:

1. to find an appropriate encoding for re-classifiable objects;

2. to deal with the fact that a standard Java class ¢ can be extended by a
re-classifiable class, possibly after ¢ is translated (i.e., compiled);

3. to make the translation as simple as possible, neglecting efficiency in favor
of clearer proofs of correctness;

4. to make the translation effective, in the sense that it truly supports separate
compilation as in Java.

Concerning point 1), the basic idea of the translation is to represent each re-
classifiable Fickle object o through a pair <w,:> of Java objects. Roughly speak-
ing, w is a wrapper object providing the (non-mutable) identity of o, whereas i is
an implementor object providing the (mutable) behavior of o. A re-classification
of o changes ¢ but not w, and method invocations are resolved by i.

To solve problems 2), 3) and 4), even non-re-classifiable objects are repre-
sented through such a pair <o, 0>, where o plays both roles. This greatly sim-
plifies the translation, and allows the same treatment for re-classifiable classes
(i.e., state classes in Fickle terminology), and non-re-classifiable classes.

The work presented in this paper comes out of a collaboration among different
research groups and is based on their previous experience in the design and
implementation of Java extensions [1,4].

The paper is organized as follows: In Section 2 we introduce Fickle informally
using an example. In Section 3 we give an informal overview of the translation,
while in Section 4 we give the formal description. In Section 5 we state the formal
properties of the translation (preservation of static and dynamic semantics) and

illustrate the compatibility of the translation with Java separate compilation.
In the Conclusion we summarize the relevance of this work and describe further
research directions.

A prototype implementation largely based on the translation described in
this paper has already been developed [2].

2 Fickle: a brief presentation

In this section we introduce Fickle informally using an example. However, this
section is not intended to be a complete presentation of Fickle. We refer to [4]
for a complete definition of the language.

For readability, in the examples we allow a slightly more liberal syntax than
that used in the formal description of the translation (given in Section 4).

The (extended) Fickle program in Fig. 1 defines a class Stack, with subclasses
EmptyStack and NonEmptyStack. A stack has a capacity (field int capacity)
that is, the maximum number of integers it can contain, and the usual operators
isEmpty, top, push, and pop.

In Fickle class definitions may be preceded by the keyword state or root
with the following meaning:

— state classes are meant to describe the properties of an object while it satisfies
some conditions; when it does not satisfy these conditions any more, it must
be explicitly re-classified to another state class. For example, NonEmptyStack
describes non-empty stacks; if these become empty, then they are re-classified
to EmptyStack.

We require state classes to extend either root classes or state classes.

— root classes abstract over state classes. Objects of a state class C1 may
be re-classified to a class C2 only if C2 is a subclass of the uniquely de-
fined root superclass of C1. For example, Stack abstracts over EmptyStack
and NonEmptyStack; objects of class EmptyStack may be re-classified to
NonEmptyStack, and vice versa.

We require root classes to extend only non-root and non-state classes.

Objects of a non-state, non-root class C behave like regular Java objects, that is,
are never re-classified. However, since state classes can be subclasses of non-state,
non-root classes, objects bound to a variable x of type C may be re-classified.
Namely, if C had two state subclasses C1 and C2 and x referred to an object o
of class C1, then o may be re-classified to C2.

Objects of an either state or root class C are created in the usual way by the
expression new C().

class StackException extends Exception{
StackException (String str) {} {super(str);}}
abstract root class Stack{
int capacity; // maximum number of elements
abstract boolean isEmpty() {};
abstract int top() {} throws StackException;
abstract void push(int i) {Stack} throws StackException;
abstract void pop() {Stack} throws StackException;}
state class EmptyStack extends Stack{
EmptyStack(int n){} {capacity=n;}
boolean isEmpty() {} {return true;}
int top() {} throws StackException {
throw new StackException("StackUnderflow");}
void push(int i) {Stack} {
this!!NonEmptyStack; a=new intl[capacityl; t=0; a[0]l=i;}
void pop() {} throws StackException {
throw new StackException("StackUnderflow");}}
state class NonEmptyStack extends Stack{
int[] a; // array of elements
int t; // index of top element
NonEmptyStack(int n, int i) {} {capacity=n; a=new int[n]; t=0; al[0]=i;}
boolean isEmpty() {} {return false;}
int top() {} {return alt];}
void push(int i) {} throw StackException{ t++;
if (t==capacity) throw new StackException("StackOverflow");
else altl=i; }
void pop() {Stack} {if (t==0) this!!EmptyStack; else t-—;}}
public class StackTestq{
static void main(String[] args) {Stack} throws StackException{
Stack s=new EmptyStack(100); s.push(3); s.push(5);
System.out.println(s.isEmpty());
Stack sl=new NonEmptyStack(100,3); Stack s2=s1l; sl.pop();
System.out.println(s2.isEmpty());}}

Fig. 1. Program StackTest - stacks with re-classifications

Re-classification statement, this!!C, sets the class of this to C, where C must
be a state class with the same root class of the static type of this. The re-
classification operation preserves the types and the values of the fields defined
in the root class, removes the other fields, and adds the fields of C that are not
defined in the root class, initializing them in the usual way. Re-classifications may
be caused by re-classification statements, like this! !NonEmptyStack in body of
method push of class EmptyStack, or, indirectly, by method calls, like s. push(3)
in body of main. At the start of method push of class EmptyStack the receiver
is an object of class EmptyStack, therefore it has the field capacity, while it
does not have the fields a and t. After execution of this!!NonEmptyStack the

receiver is of class NonEmptyStack, the field capacity retains its value while the
fields a and t are now available.

Fields, parameters, and values returned by methods (for simplicity, Fickle
does not have local variables) must have declared types which are not state
classes; we call these types non-state types. Thus, fields and parameters may
denote objects which do change class, but these changes do not affect their type.
Instead, the type of this may be a state class and may change.

Annotations like {} and {Stack} before throws clauses and method bodies
are called effects. Similarly to what happens for exceptions in throws clauses,
effects list the root classes of all objects that may be re-classified by execution of
that method. Methods annotated by the empty effect {}, like isEmpty, do not
cause any re-classification. Methods annotated by non-empty effects, like pop
and push by {Stack}, may re-classify objects of (a subclass of) a class in their
effect (in the example, of Stack).

A method annotated with effects can be overridden only by methods anno-
tated with the same or less effects!.

By relying on effects annotations, the type and effect system of Fickle ensures
that re-classifications will not cause accesses to fields or methods that are not
defined for the object.

Note that effects are explicitly declared by the programmer rather then in-
ferred by the compiler. Even though effects inference could be implemented in
practice, more flexibility in method overriding can be achieved by allowing the
programmer to annotate methods with more effects than those that would be
inferred (similarly to what happens for exceptions).

3 An informal overview of the translation

3.1 Encoding Fickle objects

The translation is based on the idea that each object o of a state class ¢ can be
encoded in Java by a pair <w,i> of objects; we call w the wrapper object of i
and i the implementor object of w. Roughly speaking, w provides the identity
and ¢ the behavior of 0, so that any re-classification of o changes i but not w
and method invocations are resolved by 1.

The class of w is called a wrapper class and is obtained by translating the root
class of ¢, whereas the class of i is called an implementor class and is obtained
by translating c¢. For any pair <w,i> encoding an object of a state class, the
class of 7 is always a proper subclass of the class of w.

An object o which is not an instance of a state class does not need to be
encoded in principle; however, the same kind of encoding proposed above can
be adopted also in this case, since o can always be encoded by the pair <o, 0>,
where both the wrapper and the implementor are the object o itself (in other
words, if ¢ is not a state class, then it may seen as wrapper class of itself). Even

! This means that adding a new effect in a method of a class ¢ does not require any
change to the subclasses of ¢, but may require some changes to its superclasses.

though at first sight this may seem inefficient and unnecessary, it allows for a
simpler and more effective translation, as explained in the sequel.
The translation of classes follows the following two rules:

— each Fickle class is translated into exactly one Java class (including Object);
— the translation preserves the inheritance hierarchy.

Throughout the paper we adopt the following terminology:

— the translation of a non-state, non-root class is called a non-implementor,
non-wrapper class;

— the translation of a root class is called a wrapper class;

— the translation of a state class is called an implementor class.

We illustrate the above in terms of the example in Fig.1. After the instruction
s=new NonEmptyStack(100,3);

where s has static type Stack, the object stored in s is encoded in the translation
as sketched in Fig.2.

s o to methods
) of Stack
e implementor
L—— trueThis
unused capacity
. to methods
. of NonEmptyStack
. implementor
. trueThis
capacity
a

t

Fig. 2. Encoding of the object stored in s

The variable s contains an object o of dynamic type Stack with three fields:
capacity is declared in Stack, whereas implementor and trueThis are inher-
ited from class FickleObject, have type FickleObject and are used in the
translation for recovering the implementor and the wrapper of a re-classifiable
object, respectively. In this case the field implementor points to an object of the
implementor class obtained by translating NonEmptyStack, whereas trueThis
points to the object itself. Note that here the field capacity is redundant, since
its actual value is stored in implementor.capacity.

The implementor object contains all fields declared in NonEmptyStack (a and
t), and also the field capacity, since the implementor class NonEmptyStack is a

subclass of the wrapper class Stack. The field implementor points to itself, even
though is never used. The field trueThis is inherited from class FickleObject,
has type FickleObject and is used to recover the wrapper object of the imple-
mentor, which is essential for correctly handling re-classification of this.

3.2 Translation of classes

In this section we introduce some examples in order to explain how classes and
expressions are translated.

Ezample 1. Consider the following class declaration in (extended) Fickle:

class C{

int x;

int m1 () {Hm2(0); return m2Q);}
int m2(){R}{x=0; return x;}

}

Our translation maps the declaration of C in the following Java class?

class C extends FickleObject{
int x;
int m1(){
((C) trueThis.implementor) .m2();
return ((C) trueThis.implementor) .m2();}
int m2(){
((C) trueThis.implementor).x=0;
return ((C) trueThis.implementor).x;}

cO{}

C(FickleObject oldImp){
super (oldImp) ;
x=((C) oldImp).x;}

}

FickleObject is the common ancestor of the Java classes obtained by translating
Fickle classes, and, in fact, corresponds to the translation of the Fickle predefined
class Object:

class FickleObject extends Object{
FickleObject implementor;
FickleObject trueThis;
FickleObject (){
implementor=this;
trueThis=this;}
2 The translation examples in this paper do not completely agree with the formal

definition given in Sect.4, since some optimization has been performed in order to
keep the code simpler.

FickleObject (FickleObject oldImp){ // re-classifies objects
implementor=this;

trueThis=oldImp.trueThis;

trueThis.implementor=this;}

}

The fields implementor and trueThis are declared in this top level class for
correctly dealing with the encoding of objects which are not instances of state
classes, as already explained in 3.1; constructor FickleObject () initializes fields
implementor and trueThis to the new instance o so that its encoding is <o, 0>.
This constructor is invoked whenever either a new instance of a non-state class
or a new implementor of a state class is created.

On the other hand, constructor FickleObject (FickleObject oldImp) is
invoked whenever an object is re-classified and is placed in FickleObject just for
avoiding code duplication. An object o which needs to be re-classified to a state
class C (recall that in the translation every class is subclass of FickleObject)
and which is encoded by the pair <w,i>, is transformed into <w,i’ >, where
i' denotes the new implementor of class C (provided by a proper constructor
of C; see Example 3 below). The argument of the constructor denotes the old
implementor ¢, from which the wrapper w can be recovered as well (recall that
w.implementor = i.trueThis must hold), whereas i’ is denoted by this. Fields
are initialized so that wrapper w and the new implementor i’ point to each
other. The assignment implementor=this could be omitted, since in principle
field implementor of implementors should never be used.

Two interesting parts of C translation concern invocations of method m2 in
ml and access of field x in m2.

Method m2 must be invoked on implementor because it could be overridden
by some state subclass of C, whereas this must be translated in trueThis
because method m2 could be inherited by some subclass of C (hence, this could
contain a possibly wrong implementor rather than a wrapper). Downcasting is
needed since implementor has type FickleObject.

The same explanations apply also for selection of field x.

Constructor C(FickleObject oldImp) invokes the corresponding construc-
tor in class FickleObject which is used for re-classifying objects, as already
explained. However, during re-classification all fields of the new implementor
i’ which are inherited from non-state classes (like x in the example) must be
initialized with the values of the corresponding fields of the old implementor ¢
(x=((C) oldImp).x).

Finally, note that the translation of C is totally independent of any possible
existing subclass or client class of C; this property, which is satisfied by our
translation for any kind of class, is crucial for obtaining a translation which truly
reflects Java separate compilation (see also the related comments in Example 3).

Ezample 2. Assume now to add to the declaration of Example 1 the following
class declaration:

root class R extends C{

}
This Fickle class declaration is translated in the following Java class declaration:

class R extends C{
RO{}
R(FickleObject oldImp) {super(oldImp);}
R(R imp){
trueThis=this;
implementor=imp;
imp.trueThis=this;}
}

In the translation, root classes declare three constructors.

Constructor R() is used for creating instances of R and simply invokes the
corresponding constructor of the direct superclass C.

Constructor R(FickleObject oldImp) is used for re-classifying objects and
simply invokes the corresponding constructor of the direct superclass C, since in
this case R does not declare any field.

Constructor R(R imp) is used by state subclasses of R for creating new in-
stances. The argument represents the implementor of the object which has been
properly created by the constructor of a state subclass of R, while the wrapper
object is created by the constructor itself. Fields are initialized so that wrapper
and implementor point to each other. The assignment trueThis=this could be
omitted, since field trueThis of wrappers will never be used.

Exzample 3. Consider now the following state classes:

state class S1 extends R{
int m2(){R}{this!!S2;x=1;return x;}
static void main(String[] args)
{System.out.println(new S1().m1());}}
state class S2 extends R{
int y;
int m2(){R}{y=1;return x+y;}
}

They are translated in Java as follows:

class S1 extends R{

int m2(){

new S2(trueThis.implementor);

((82) trueThis.implementor) .x=1;

return ((S2) trueThis.implementor).x;}
static void main(String[] args){

System.out.println(

((S1) new R(new S1()).implementor) .mi());}

S10O{}

S1(FickleObject oldImp){super (oldImp);}
}
class S2 extends R{

int y;

int m2(){

((82) trueThis.implementor).y=1;

return ((S2) trueThis.implementor).x+

((S2) trueThis.implementor).y;}

S20{}

S2(FickleObject 0ldImp) {super(oldImp);}
}

In the translation, state classes declare two constructors.

In class S2, for instance, constructor S2() is used for creating the imple-
mentor component of a new instance of S2, while constructor S2(FickleObject
01dImp) is used for re-classifying objects; note that, differently to what happens
for non-state classes, no extra-code is added in the body for any field declared
in the class (like y).

Let us now focus on the translation of object re-classification this!!S2 (in
the body of method m2 of class S1) and on instance creation of class S1 (in the
body of method main of class S1).

As already explained, for re-classifying an object to class S2, the proper con-
structor of 82 must be invoked, passing as parameter the current (and soon obso-
lete) implementor 7, denoted by trueThis.implementor; then, the constructor
creates a new implementor i’ (belonging to S2), initializes and updates fields
so that the wrapper w and the new implementor i’ point to each other (recall
that the wrapper can be recovered from the old implementor i) and properly
initializes all fields inherited from non-state superclasses (like x). This last step
is performed by invoking all the corresponding constructors of superclasses up
to FickleObject.

Creation of an instance of S1 is achieved by invoking the proper constructor
of the root class R of S1; a new implementor, created by invoking the default
constructor of S1, is passed as parameter to the constructor.

We now consider issues related to the effectiveness of the translation. As
already pointed out in Example 1, the translation of a Fickle class C does not
depend on any possible subclass or client of C, as happens for Java separate
compilation. On the other hand, the translation of class S1, for instance, depends
on classes R and S2 inherited and used, respectively, by S1; for instance, all type
casts in the body of S1 are determined by type-checking S1 and this process
requires to retrieve type information about classes R and S2 (that is, the signature
of methods and the inheritance hierarchy). However, the translation of S1 is
clearly independent of the specific bodies of methods of R and S2.

As a consequence, dependencies computed by our translation process are
exactly the same as those computed by the Java compiler. Furthermore, the
translation of classes depends only on the inheritance hierarchy and on method
signatures; therefore a class ¢ depending on classes ¢, ..., ¢, could be success-

p = class™

class := [root | state] class c extends ¢’ {field* meth*}
field ==t f

meth =t m(t' z)¢{sl return e;}

t ::= boolean | int | ¢

6= e}

sl u=s"

s = {sl} | if (e) s1 else s2 | se;| thislle;
se = var = e | e1.m(ez2) | new ¢()

e = sval | var | this | se

var ==x|e.f

sval := true | false |null |n

Fig. 3. Syntax of Fickle

fully translated in a context where only the binary files of ¢y, . . ., ¢, are available,
as happens for Java.

4 Formal description of the translation

In this section we give a formal description of the translation. The syntax of the
source language is specified in Fig.3. We refer to [4] for the definition of the
static semantics of Fickle (the type system of Fickle can be easily adapted to
the subset of Java serving as target for the translation) and of some auxiliary
functions used in the sequel.

4.1 Programs

The translation of a Fickle program p consists of the translation of all classes
declared in p. The classes are translated w.r.t the program p, needed because
the translation of expressions depends on their types (in particular, for method
invocation and field selection) and on the names of root classes (in particular,
constructor invocation and this).

[P o0 4 [class1] o (D) - - - [classn] cas (D) where p = class; ... class,.

4.2 Classes

As already explained, each Fickle class ¢ is translated into a single Java class
containing the translation of all field and method declarations of ¢ and a number
of constructors, used for creating instances and for re-classifying objects.
The translation of fields and methods is independent of the kind of class.
However, translation of non-state non-root classes, root classes and state
classes leads to the declaration of different constructors. That is why for each
kind of class we give a different translation clause.

Class Object: This class is translated in FickleObject which is the common
superclass of all translated classes, already defined in Sect.3.2.

Non-state, non-root classes: These classes are translated by translating all their
methods, and by adding two constructors: ¢() is used for the creation of new
instances of ¢ and ¢(FickleObject oldImp) is used for the creation of new
implementors when objects of subclasses are re-classified. In this last case
all fields of the old implementor oldImp which are declared in class ¢ must
be copied into the corresponding new implementor created by the construc-
tor (see Example 1 in Sect.3.2). The additional parameter ¢ for the transla-
tion of methods is needed to determine the class of this inside the bodies.
[class c extends ¢'{t; fi;...tm fm; methy ... meth,}] .. (D) 2
class c extends name(c){[t1 f1;]paa(C) .- [tm fin;lpaa(c)

[[methl]]m.ﬁth (p; C) s [[methn]]muzh(pa C)

cO{}

¢(c 01dImp){
super(oldImp);
f1 = oldImp.fi;

fm = oldImp.fm;}

The auxiliary function name is defined as follows:
FickleObjectif ¢ = Object
name(c) = -
¢ otherwise

Root classes: The translation of this kind of classes produces three construc-
tors: ¢() creates instances of ¢, ¢(FickleObject oldImp) deals with object re-
classification, and ¢(c imp) creates wrappers of instances of state classes:

[root class c extends ¢'{t1 fi1;...tm fm; methy ... meth,}] .. (D) 2
class c extends name(c){[t1 f1;]paa(C) . [tm Fins]pea(c)
[[methl]]m.eth (p: C) s [[methn]]meth(pa C)

c(O{}

¢(c 01dImp){
super(oldImp);
f1 = 01dImp.fy;

fm = oldImp.fn;}

¢(c imp){
trueThis = this;
implementor = imp;
imp.trueThis = this; }

}

State classes: The translation of this kind of classes produces two constructors:
the former (with no arguments) for creating new implementors for new instances

of class ¢, the latter for dealing with object re-classification to c:

[state class ¢ extends c'{field, ... field,, meth; ... methy}].u.(P)

class c extends name(c'){ [field,]su(c) - . - [field,, |5 (C)
[meth1] (D, c) . .. [meth,] e (P, €)
cO{}

¢(FickleObject oldImp){super(oldImp)}

}

Note that here name(c’) = ¢/, since a state class cannot extend class Object.

4

4.3 Fields

Translation of each field f comes equipped with a static method tof used for
translating assigments of value v to field f of object tT (see the paragraph on
expressions translation below), since the implementor of the object tT can be
correctly selected only after evaluating v.

[t filpaa(c) 2
tf;

static ¢t tof(FickleObject tT,t v){return ((c) tT.implementor) = v;}

4.4 Methods

Translating methods consists of translating their bodies. Effects are omitted,
whereas the signatures remain the same. Since the translation of statements and
expressions depends on their types, the program p and the environment v must
be passed as parameters to the corresponding translation functions.

Note that the environment ' used for translating the returned expression e
may be different from -, since execution of sl could re-classify this. Furthermore,
translation of each method m comes equipped with a static method callm used
for translating invocations of m on receiver tT and with argument z (see the
paragraph on expressions translation below); indeed, the implementor of tT can
be correctly selected only after evaluating the argument x.

The judgment p,v F sl : void | ¢ || ¢' is valid (see [4] for the typing
rules) whenever sl has type void w.r.t. program p and environment 7; ¢’ denotes
the type of this after evaluating sl, whereas ¢ conservatively estimates the
re-classification effect of the evaluation of sl on objects (this last information
is never used by our translation). The environment 7 defines the type of the

[t m(t' x)${sl return e; }],..a(p,c) 2
parameters and Of this' t m(tl X){IISl]]St'"-iS (p7 ’-Y) return [[e]] ElPT‘(p7 FYI);}
static ¢t callm(FickleObject tT,t x){
return ((c) tT.implementor).m(x); }
where v = ¢’ x,cthis, 7' =t x,¢ this, and p,yF sl:void|c | ¢

4.5 Statements

Except for object re-classification, all statements are translated by translating
their constituent statements or subexpressions. The notation «[c this] denotes
the environment obtained by updating ~ so that it maps this to c.

A
IIS Sl]]simts(p7 7) = [[S]Lmt(pa 7) [[Sl]]stmis(p7 7’)
where p,y F s:void | ¢ | ¢ and ' = v[c this]

{80 om0, 7) 2 {0 ons (0, 7)}
[if () 51 else s]...(p,7) =

if ([e].an (P, 7)) [s1]0n:(p,7') else [s2].0i(p,)
where p,yF e:boolean| ¢ || ¢1, 7' =[c1 this]

[5€:0.0e(p,7) = [5€].r (9,75

The translation of re-classification to class ¢ consists of the call to the appro-
priate constructor of class ¢. The current implementor (trueThis.implementor)
is passed as parameter to the constructor in order to correctly initialize the fields
of the new implementor.

[this!e;]m: (P, Y) 2 new c(trueThis.implementor);

4.6 Expressions

Types of expressions are preserved under the translation, up to state classes:
more precisely, if a Fickle expression e has type t and ¢ is not a state class,
then its type is preserved; otherwise, the type of the translation of e is the root
superclass of ¢. This is formalized and proven in Sect.5.

Simple cases: Values, variables and variables assignment: The translation is
straightforward.

[sval]..,.(p,) 2 sval
[].(p7) S 0 |
[x = €] (P,) = x =[] (P, 7)

Field selection: as already explained in Sect.3.1, in the encoding <w,i> of an
object o of class ¢, the fields of o are stored in the implementor object i (be-
longing to the class obtained by translating c¢). Therefore, fields can be accessed
only through w.implementor on object® w. Downcasting is needed because field

implementor has type FickleObject.
A .
[e-f1ec (P 7) = () [€].wr (P, 7)-implementor). f
where p,yFe:c|c | ¢

3 Note that this is necessary only when c is a state class, while in the other cases
selection could be performed directly on the object o itself, since w = i = o holds.
However, to keep the mapping simpler, we do not make this distinction.

Field assignment: Field f of the wrapper object w denoted by the translation
of e; is accessed through the implementor of w; however, es could re-classify w,
therefore selection w.implementor is correct only after evaluating the translation
of e;. This is achieved by invoking the auxiliary static method tof.

A
[er-f = e2].. (s 7) = ctof([er].n,. (p,7), [e2].nn (P, 7))
where p,vF e :c| | ¢, and v' = [¢' this]

Method invocation: The same considerations as for field assignment apply in this
case: method call is performed by calling the auxiliary static method callm,
so that implementor field of the receiver is selected only after evaluating the
translation of es.

A
[er-m(e2)]ecr (P, 7) = c.callm([en]..,. (P, 7), [€2] e (P, 7))
where p,vF e :c| | ¢, and o' = [’ this]

Object creation: Creation of instances of a non-state class ¢ only requires invo-
cation of the default constructor of c. If ¢ is a state class, then two objects must
be created: the implementor ¢ (created by invoking the default constructor of c),
and the wrapper w (created by invoking the proper constructor of class R(p, c),
that is, the wrapper class of ¢). The implementor is passed as parameter to the
constructor of the wrapper so that fields of w and ¢ can be properly initialized to
satisfy the equations w.implementor = i and i.trueThis = w. The term R(p, ¢)
denotes the least superclass of ¢ which is not a state class: If ¢ is a state class,
then R(p,c) is its unique root superclass, otherwise R(p,c) = c.

[new c()]....(p,7) 2 {Ezz Z%)(p, Afnew <) i)ftﬁel;vsi:es

This: The expression this is translated into trueThis because this could
denote the implementor object 7, rather than the wrapper w. Furthermore, the
actual implementor of w may have changed because of re-classification, therefore
this may denote an obsolete implementor. Because trueThis has static type
FickleObject, in order to preserve types, the translation also needs to downcast
to the root superclass of the type of this*. Note that since a state class ¢ cannot
be used as a type, the translation is statically correct also when this is passed
as a parameter or assigned to a field.

[this]....(p,7) 4 (R(p,~(this))) trueThis

5 Properties of the translation

In this section we formalize the properties of the translation previously men-
tioned. For lack of space we only sketch some proofs which will be detailed in a
future extended version of this paper.

* Note that this downcasting is only necessary when this is used for parameter passing
or assignments, and is unnecessary when this is used in method calls or field selec-
tion. This is so because in the latter cases field implementor of the object denoted
by trueThis must be selected and implementor is declared in the type of trueThis.
But, as already stated, we do not consider such optimization issues.

Preservation of static correctness

Theorem 1. For any Fickle program p, if p is well-typed (in Fickle), then [p],..,
is well-typed (in Java).

In order to be proved, the claim of the theorem must be extended to all
subterms of p and, hence, to all typing judgments. The strengthened claim can
be proved by induction on the typing rules. The claim concerning judgment for
expressions is the most interesting, hence is stated below.

The translation preserves types up to state classes, in the following sense: if
a Fickle expression e has type t w.r.t. a program p and an environment -y, and
e is translated into a Java expression e’ that has type ¢’ w.r.t. [p] and ~, then
t = t', when ¢ is not a state class, and ¢’ is the root superclass of ¢, when ¢ is a
state class. For the Java fragment obtained from the translation we can use the
Fickle type system, so that for any well-typed Java expression e we can derive
judgments of the form p,v F e : t | y(this) | @, where t is the type of e.
The fact that the type of this remains the same, and the set of effects is empty
indicates that e contains no re-classifications.

The claim for expressions can be formalized as follows:

Lemma 1. For any Fickle expression e, program p, environment -y, if

7]),7"6275"0"@5, and
B [[6]] ﬁwpr(p7 7) = 6’, and
= [Pl = 7',

then

~piybe s Ript) | y(this) | 0.

Preservation of dynamic semantics We now show that the semantics of ex-
pressions is preserved by the translation. The semantics of the language Fickle
we consider is the one introduced in [4]. Such semantics rewrites pairs of expres-
sions and stores into pairs of values (or the exception nullPntrExc, indicating a
reference to a null object), and stores. Values, denoted by v, are either booleans,
or integers, or addresses, denoted by ¢. Stores map the unique parameter® x and
the receiver this to values and addresses to objects. Objects are mappings be-
tween fields and values tagged by the class they belong to: [f1 : vi,..., £ : v,]]1°.
We use o as a metavariable for objects, and if f is a field of o, o(£) is the value
associated to f in o.

The rewriting, defined in the context of a given program p that provides
the definition for the classes used in the expression, is defined by the judgment
e,0 ~» v,0'. The syntax of Fickle and the one of the Java fragment consid-
ered here are slightly different from the language of [4]. In particular there is a
distinction between statements and expressions and classes have constructors.

% Recall that, for simplicity, we assume that in Fickle syntax each method definition
has a unique parameter denoted by x.

However, the definition of the semantics in [4] can be easily adapted to deal with
these features. Note that the Java fragment contains also casting. However, we
do not need rules for casting, since well-typing will insure that casting is applied
to objects that already have the target type.

To state the semantic correctness result we introduce a relation between
stores p F o ~ o' that expresses the fact that store ¢’ is the ”translation” of
store o. That is, an object o of class ¢ in ¢ corresponds univocally to an object
o' in ¢’ that is an instance of the translation of the class ¢. Both the store o and
the store o’ are assumed to agree with the relative environments and programs.
That is, they contain values which agree, w.r.t. typing, with their definitions (see
[4] for the formal definition of p,y F o <).

Definition 1. Let p,vF o <& and [p],y F o' . We say that v' in o' corresponds
to v ino w.r.t. p, and write p,o,c’ v = V', if either of the following conditions
hold:

v/ = true, or v =V = false, or v =V = n (for some integer n), or
v/ = null, or

=, vV =1,0(0) =1 :vy,..., £ v 106,
o'(t') = [[f1: vy, .., £q: Vg, impl : o', trueThis : SR (g <r)and
o' (") = [[fy: vy, ..., fr:v],impl : /" trueThis : /11, and
foralli,1<i<r,p,o,0 Fvizv, and

if ¢ is not a state class, then o/ = 1".

-V
\'

Note that if ¢ is not a state class, then R(p,c) = ¢, and so ¢ = r. With this
notion of correspondence between values we can define a correspondence between
stores.

Definition 2. Let p,v F 0< and [p],y F o' ¢. We say that store o' corre-
sponds to o w.r.t. p, and write p - o = o', if

1. p,o,0' Fo(x) =o'(x),
2. p,o,0' F o(this) = (o/(this))(trueThis), and
3. for all v if o(1) is defined there is a unique ' such that p,o,0' -1, and
4. for all V' if 0'(1") is defined there is a unique ¢ such that
p,0,0 F i (o'(d))(trueThis).

The last two conditions of the previous definition assert that there is an injection
between the set of addresses defined in o and the set of addresses defined in ¢'.

Theorem 2. For a well-typed expression e, stores op and o, such that p,y
00C, [pl,7yFo1 O andp ko m oy,

€,00 v V,00 if and only if lel. o1 v v, oy

where p - o, = o] and p,o,0' Fv =V

The proof is by induction on the derivation of e,0 ~+ v,o’. The proof that,
in case of field selection and method call, the right method is selected relies on
the following fact. If p F o &~ o', then: for all + and ¢, o(¢) = [[---11° implies
o'(o'(")(impl)) = [[---11°, where p,o,0' F v (/.

Support for separate compilation For any Fickle program p, let classes(p)
denote the set of all classes defined in p, and, for each class cin classes(p), dep,(c)
the set of all superclasses of ¢ and of all classes (either directly or indirectly)
used by ¢ (for reasons of space we omit the formal definitions). The following
claim states that a Fickle class declaration can be successfully translated in a
Fickle program p whenever the set of dependencies of ¢ is contained in p, exactly
as happens for Java compilation.

Theorem 3. For any well-formed Fickle program p and class declaration cld in
p, if dep,(class(cld)) C classes(p), then [cld]..(p) is well-defined.

Let strip be the function on Fickle programs defined as follows:

strip(cldy ... cld,,) = strip(cld,) ... strip(cld,,)
strip([root | state| class ¢ extends ¢'{field" meth*}) =
[root | state] class ¢ extends c'{field" strip(meth™)}
strip(methy . .. methy,) = strip(methy) . .. strip(meth,,)
strip(t m(t' x)p{sl return e;}) =t m(t' x)p{return v(t);}
falseif £ = boolean
v(t) =< 0 if t = int
null otherwise

The following theorem states that translation of a Fickle class ¢ depends only on
the body of ¢ and the type information of all other classes, namely, class kind,
parent class, method headers and field declarations. This information is stored
in a regular Java class fileS, therefore the translation of ¢ can be successfully
carried out also when only the binary files of the other classes are available”.

Theorem 4. For any Fickle program p and Fickle class declaration cldy, if
[eld1]..(p) = cldz, then [cldy]..(strip(p)) = clds.

6 Conclusion

We have defined a translation from Fickle (a Java-like language supporting dy-
namic object re-classification) into plain Java, and proved that this translation
well-behaves in the sense that it preserves static and dynamic semantics. This is
a nice theoretical result, strengthened by the fact that, in order to ensure these
properties, we were able to identify some invariants which turned out to be a
very useful guide to the translation.

Our concerns are not only theoretical, but we are interested in investigating
the possibility of implementing an extension of Java with re-classification. From
this point of view, our translation is a good basis since it exhibits the following
additional properties:

6 Except for the kinds root and state, but class files format can be easily extended
for storing this new piece of information.
" Note that this property does not depend on Java support for reflection.

— it is fully compatible with Java separate compilation, since each Fickle class
can be translated without having other class bodies, hence in principle only
having other classes in binary form,;

— dependencies among classes are exactly those of standard Java compilation,
in the sense that a Fickle class can be translated only if type information on
all the ancestor and used classes is available.

Our translation is similar both in the structure of classes and in their behavior
to the state pattern, see [5]. The wrapper class corresponds to the context class
(of the pattern) and the implementation to the state class. Access to members
require a level of indirection, as in the state pattern. So from the point of view
of efficiency our implementation of reclassification performs as well as the state
pattern. On the other side our translation maintains the structure of the original
hierarchy, whereas the state pattern does not.

A prototype implementation largely based on the translation described in
this paper has already been developed [2].® However, the work presented here
is only a first step towards a working extension of Java with dynamic object
re-classification. On one side, an extension of full Java should take into ac-
count other Java features (like constructors, access modifiers, abstract classes,
interfaces, overloading and casting) which, though in principle orthogonal to
re-classification, should be carefully analyzed in order to be sure that the inter-
action behaves correctly. On the other side, as mentioned above, an extended
compiler should be able to work even in a context where only binary files are
available, while our prototype implementation works on source files.

Finally, an alternative direction for the implementation of Fickle (or, more
generally, of an object-oriented language supporting dynamic re-classification of
objects) could be in a direct way, through manipulation of the object layout or
the object look-up tables.

References

1. D. Ancona, G. Lagorio, and E. Zucca. Jam - a smooth extension of Java with
mixins. In ECOOP’00, volume 1850 of LNCS, pages 154-178. Springer, 2000.

2. Christopher Anderson. Implementing Fickle, Imperial College, final year thesis - to
appear, June 2001.

3. C. Chambers. Predicate Classes. In ECOOP’93, volume 707 of LNCS, pages 268—
296. Springer, 1993.

4. S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. Fickle: Dy-
namic object re-classification. In J. L. Knudsen, editor, ECOOP’01, number 2072
in LNCS, pages 130-149. Springer, 2001. Also available in: Electronic proceedings
of FOOLS8 (http://www.cs.williams.edu/ kim/FOOL/).

5. R. Johnson E.Gamma, R. Elm and J. Vlissides. Design Patterns. Addison-Wesley,
1994.

® The prototype is written in Java. Future releases might be written in (extended)
Fickle.

6. M. D. Ernst, C. Kaplan, and C. Chambers. Predicate Dispatching: A Unified Theory
of Dispatch. In ECOOP’98, volume 1445 of LNCS, pages 186-211. Springer, 1998.

7. M. Serrano. Wide Classes. In ECOOP’99, volume 1628 of LNCS, pages 391-415.
Springer, 1999.

