
Faster than C#: efficient implementation of dynamic
languages on .NET∗

Antonio Cuni
DISI, University of Genova

Italy
cuni@disi.unige.it

Davide Ancona
DISI, University of Genova

Italy
davide@disi.unige.it

Armin Rigo
arigo@tunes.org

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—code gen-
eration, incremental compilers, optimization, interpreters,
run-time environments

ABSTRACT
The Common Language Infrastructure (CLI) is a virtual ma-
chine expressly designed for implementing statically typed
languages such as C#, therefore programs written in dy-
namically typed languages are typically much slower than
C# when executed on .NET.

Recent developments show that Just In Time (JIT) com-
pilers can exploit runtime type information to generate quite
efficient code. Unfortunately, writing a JIT compiler is far
from being simple.

In this paper we report our positive experience with auto-
matic generation of JIT compilers as supported by the PyPy
infrastructure, by focusing on JIT compilation for .NET.
Following this approach, we have in fact added a second
layer of JIT compilation, by allowing dynamic generation of
more efficient .NET bytecode, which in turn can be compiled
to machine code by the .NET JIT compiler.

The main and novel contribution of this paper is to show
that this two-layers JIT technique is effective, since pro-
grams written in dynamic languages can run on .NET as
fast as (and in some cases even faster than) the equivalent
C# programs.

The practicality of the approach is demonstrated by show-
ing some promising experiments done with benchmarks writ-
ten in a simple dynamic language.

1. INTRODUCTION
Implementing a dynamic language such as Python with

∗This work has been partially supported by MIUR EOS
DUE - Extensible Object Systems for Dynamic and Unpre-
dictable Environments and by the EU-funded project: IST
004779 PyPy (PyPy: Implementing Python in Python).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICOOOLPS ’09 Genova, Italy
Copyright 2009 ACM 978-1-60558-541-3/09/07 ...$5.00.

a compiler rather than with an interpreter improves perfor-
mances at the cost of an increasing complexity. Further-
more, generating code for high level virtual machines like
CLI or JVM enhances portability and inter-operability.

Writing a compiler that targets the CLI or JVM is easier
than targeting a real CPU, but it still requires a lot of work,
as IronPython1, Jython2 and JRuby3 demonstrate. Finally,
if one really seeks for an efficent language implementation,
Just In Time (JIT) compilation needs to be considered; only
in this way the compiler can exploit runtime type informa-
tion to generate quite efficient code. Note that JIT com-
pilation has not to be confused with lazy compilation of
IronPython and Jython which is exploited to save memory,
since in these cases no runtime type information is ever used
to generate more efficient code.

Unfortunately, writing a JIT compiler is a very complex
task. To make this task simpler, the solution proposed by
PyPy [11] is automatic generation of JIT compilers with the
help of partial evaluation techniques: the user has only to
provide an interpreter manually annotated with hints spec-
ifying how interpretation and JIT compilation has to be in-
terleaved [2].

More precisely, in this paper we focus on the ability of
generating a JIT compiler able to emit code for the .NET
virtual machine. To our knowledge, this is the first experi-
ment with an interpreter with two layers of JIT compilation,
since, before being executed, the emitted code is eventually
compiled again by .NET’s own JIT compiler.

The main contribution of this paper is to demonstrate that
the idea of JIT layering can give good results, as dynamic
languages can be even faster than their static counterparts.

1.1 Overview of PyPy
The PyPy project4 [12] was initially conceived to develop

an implementation of Python which could be easily portable
and extensible without renouncing efficiency. To achieve
these aims, the PyPy implementation is based on a highly
modular design which allows high-level aspects to be sepa-
rated from lower-level implementation details. The abstract
semantics of Python is defined by an interpreter written in
a high-level language, called RPython [1], which is in fact
a subset of Python where some dynamic features have been
sacrificed to allow an efficient translation of the interpreter

1http://www.codeplex.com/IronPython
2http://www.jython.org/
3http://jruby.codehaus.org/
4http://codespeak.net/pypy/

to low-level code5.
Compilation of the interpreter is implemented as a step-

wise refinement by means of a translation toolchain which
performs type analysis, code optimizations and several trans-
formations aiming at incrementally providing implementa-
tion details such as memory management or the threading
model. The different kinds of intermediate codes which are
refined during the translation process are all represented by
a collection of control flow graphs, at several levels of ab-
stractions.

Finally, the low-level control flow graphs produced by the
toolchain can be translated to executable code for a specific
platform by a corresponding backend. Currently, three fully
developed backends are available to produce executable C/-
POSIX code, Java and CLI/.NET bytecode.

Despite having been specifically developed for Python, the
PyPy infrastructure can in fact be used for implementing
other languages. Indeed, there were successful experiments
of using PyPy to implement several other languages such as
Smalltalk [4], JavaScript, Scheme and Prolog.

1.2 PyPy and JIT-Generation
One of the most important aspects that PyPy’s transla-

tion toolchain can weave in is the automatic generation of a
JIT compiler. This section will give a high-level overview of
how the JIT-generation process works. More details can be
found in [13] and [2].

The main difference between the JIT compilers generated
by PyPy and the ones found in other projects like Iron-
Python is that the latter compile code at the method gran-
ularity: they can do little to optimize most of the opera-
tions inside, because few assumptions can be made about the
types of the arguments and the global state of the program.
The PyPy JITs, on the other hand, work at a sub-method
granularity, as described next.

When using PyPy, the first step is to write an interpreter
for the chosen language. Since it must be fed to the transla-
tion toolchain, the interpreter has to be written in RPython.
Then, to guide the process, we need to add few manual an-
notations (called hints) to the interpreter, in order to teach
the JIT generator which information is important to know
at compile-time. From these annotations, PyPy will stati-
cally generate an interpreter and a JIT compiler in a single
executable (here a .NET executable).

The interesting property of the generated JIT compiler is
to delay the compilation until it knows all the information
needed to generate efficient code. In other words, at run-
time, when the interpreter notice that it is useful to compile
a given piece of code, it sends it to the JIT compiler; how-
ever, if at some point the JIT compiler does not know about
something it needs, it generates a callback into itself and
stops execution.

Later, when the generated code is executed, the callback
might be hit and the JIT compiler is restarted again. At
this point, the JIT knows exactly the state of the program
and can exploit all this extra knowledge to generate highly
efficient code. Finally, the old code is patched and linked
to the newly generated code, so that the next time the JIT
compiler will not be invoked again. As a result, runtime
and compile-time are continuously interleaved.

Potentially, the JIT compiler generates new code for each

5But note that it’s a full Python interpreter; RPython is
only the language in which this interpreter is written.

different run-time value seen in variables it is interested in.
This implies that the generated code needs to contain some
sort of updatable switch, called flexswitch, which can pick
the right code path based on the run-time value. Typically,
the value we switch on is the runtime dynamic type of a
value, so that the JIT compiler has all information needed
to produce very good code for that specific case.

Modifying the old code to link to the newly generated one
is very challenging on .NET, as the framework does not offer
any primitive to do this. Section 2 explains how it is possible
to obtain this behaviour.

2. THE CLI JIT BACKEND

2.1 JIT layering
From the implementation point of view, the JIT generator

is divided into a frontend and several backends. The goal
of the frontend is to generate a JIT compiler which works
as described in the previous sections. Internally, the JIT
represents the compiled code as flow graphs, and the role of
the backends is to translate flowgraphs into machine code.

At the moment of writing, three backends have been im-
plemented: one for Intel x86 processors, one for PowerPC
processors, and one for the CLI Virtual Machine. The latter
is special because instead of emitting code for a real CPU
it emits code for a virtual machine6: before being executed,
the generated code will be compiled again by the .NET JIT
compiler.

Thus, when using the CLI backend, we actually have two
JIT compilers at two different layers, each one specialized
in different kinds of optimization. By operating at a higher
level, our JIT can potentially do a better job in some con-
texts, as our benchmarks demonstrate (see Section 3). On
the other hand, the lower-level .NET JIT is very good at
producing machine code, much more than PyPy’s own x86
backend, for example. By combining the strengths of both
we can get highly efficient machine code.

As usual, the drawback is that programs that runs for a
very short period of time could run slower with JIT than
without, due to the time spent doing the initial (double)
compilation. Finally, it is important to underline that while
we have directed our efforts to generate a JIT compiler able
to emit very efficient code, the performance of the compiler
itself has been neglected so far, but it is certainly an issue
which will have to be considered in our future research.

2.2 Flexswitches
For a large part, implementing the CLI backend is easy

and straightforward, as there is a close correspondence be-
tween most of the operations used by frontend’s flowgraphs
and the CLI instructions. Thus, we will not go into details
for this part.

However the concept of flexswitch, as described in Sec-
tion 1.2, does not have any direct equivalent in the CLI
model, and it is hard to implement efficiently.

A flexswitch is a special kind of switch which can be dy-
namically extended with new cases. Intuitively, its behavior
can be described well in terms of flow graphs: a flexswitch
can be considered as a special flow graph block where links
to newly created blocks are dynamically added whenever

6By using the Reflection.Emit namespace and creating
DynamicMethods.

new cases are needed.

Figure 1: An example of a flexswitch evolution: in
the picture on the right block D has been dynami-
cally added.

In the pictures of Figure 1, block B (highlighted in grey)
corresponds to a flexswitch; initially (picture on the left)
only block C, containing the code to restart the JIT com-
pilation, is connected to the flexswitch; the picture on the
right shows the graph after the first case has been dynam-
ically added to the flexswitch, by linking block B with the
freshly created block D.

2.3 Implementing flexswitches in CLI
Implementing flexswitches for backends generating ma-

chine code is not too complex: basically, a new jump has
to be inserted in the existing code to point to the newly
generated code fragment.

Unfortunately, CLI does not allow modification of code
which has been already loaded and linked, therefore the
simplest approach taken for low level architectures does not
work.

Since in .NET methods are the basic units of compilation,
a possible solution consists in creating a new method any
time a new case has to be added to a flexswitch.

It is important to underline the difference between flow
graphs and methods: the first are the logical unit of code
as seen by the JIT compiler, each of them being concretely
implemented by one or more methods.

In this way, whereas flow graphs without flexswitches are
translated to a single method, the translation of growable
flow graphs will be scattered over several methods. Summa-
rizing, the backend behaves in the following way:

• Each flow graph is translated in a collection of methods
which can grow dynamically. Each collection contains
at least one method, called primary, which is the first
to be created. All other methods, called secondary, are
added dynamically whenever a new case is added to a
flexswitch.

• Each either primary or secondary method implements
a certain number of blocks, all belonging to the same
flow graph.

When a new case is added to a flexswitch, the backend
generates the new blocks into a new single method. The

newly created method is pointed to by a delegate7 stored in
the flexswitch, so that it can be invoked later when needed.

2.3.1 Internal and external links
A link is called internal if it connects two blocks imple-

mented by the same method, external otherwise.
Following an internal link is easy in IL bytecode: a jump to

the corresponding code fragment in the same method can be
emitted to execute the new block, whereas the appropriate
local variables can be used for passing arguments.

Following an external link whose target is an initial block
could also be easily implemented, by just invoking the cor-
responding method. What cannot be easily implemented
in CLI is following an external link whose target is not an
initial block; consider, for instance, the outgoing link from
block D to block A in Figure 1. How is it possible to jump
into the middle of a method?

To solve this problem every method contains a special
code, called dispatcher : whenever a method is invoked, its
dispatcher is executed first8 to determine which block has to
be executed. This is done by passing to the method a 32 bits
number, called block id, which uniquely identifies the next
block of the graph to be executed. The high 2 bytes of a
block id constitute the method id, which univocally identifies
a method in a graph, whereas the low 2 bytes constitute a
progressive number univocally identifying a block inside each
method.

The picture in Figure 2 shows a graph composed of three
methods (for simplicity, dispatchers are not shown); method
ids are in bold, whereas block numbers are in black. The
graph contains three external links; in particular, note the
link between blocks 0x00020001 and 0x00010001 which con-
nects two blocks implemented by different methods.

0x00000000

0x00000001

0x00010000

0x00010001

0x00020000

0x00020001

Primary Method
Method Id = 0x0000

Method Id = 0x0002

Method Id = 0x0001

Figure 2: Method and block ids.

The code9 generated for the dispatcher of methods is sim-
ilar to the following fragment:

// dispatch block

7Delegates are the .NET equivalent of function pointers.
8The dispatcher should not be confused with the initial block
of a method.
9For simplicity we write C# code instead of the actual IL
bytecode.

int methodid = (blockid && 0xFFFF0000) >> 16;
int blocknum = blockid && 0x0000FFFF;
i f (methodid != MY_METHOD_ID) {

// jump_to_ext
...

}
switch(blocknum) {

case 0: goto block0;
case 1: goto block1;
default: throw new Exception("Invalid block id");

}

If the next block to be executed is implemented in the same
method (methodid == MY_METHOD_ID), then the appropriate jump
to the corresponding code is executed. Otherwise, the jump_to_ext

part of the dispatcher has to be executed, which is imple-
mented differently by primary and secondary methods.

The primary method is responsible for the bookkeeping of
the secondary methods which are added to the same graph
dynamically. This can be simply implemented with an array
mapping method id of secondary methods to the correspond-
ing delegate. Therefore, the primary methods contain the
following jump_to_ext code (where FlexSwitchCase is the type of
delegates for secondary methods):

// jump_to_ext
FlexSwitchCase meth = method_map[methodid];
blockid = meth(blockid , ...); // execute the method
goto dispatch_block;

Each secondary method returns the block id of the next
block to be executed; therefore, after the secondary method
has returned, the dispatcher of the primary method will be
executed again to jump to the correct next block.

To avoid mutual recursion and an undesired growth of
the stack, the jump_to_ext code in dispatchers of secondary
methods just returns the block id of the next block; since
the primary method is always the first method of the graph
which is called, the correct jump will be eventually executed
by the dispatcher of the primary method.

Clearly this complex translation is performed only for flow
graphs having at least one flexswitch; flow graphs without
flexswitches are implemented in a more efficient and direct
way by a unique method with no dispatcher.

2.3.2 Passing arguments to external links
The main drawback of our solution is that passing ar-

guments across external links cannot be done efficiently by
using the parameters of methods for the following reasons:

• In general, the number and type of arguments is dif-
ferent for every block in a graph;

• The number of blocks of a graph can grow dynamically,
therefore it is not possible to compute in advance the
union of the arguments of all blocks in a graph;

• Since external jumps are implemented with a delegate,
all the secondary methods of a graph must have the
same signature.

Therefore, the solution we came up with is defining a class
InputArgs for passing sequences of arguments whose length
and type is variable.

public class InputArgs {
public int[] ints;
public float [] floats;
public object[] objs;
...

}

Unfortunately, with this solution passing arguments to ex-
ternal links becomes quite slow:

• When writing arguments, array re-allocation may be
needed in case the number of arguments exceeds the di-
mension of the array. Furthermore the VM will always
perform bound-checks, even when the size is explicitly
checked in advance;

• When reading arguments, a bound-check is performed
by the VM for accessing each argument; furthermore,
an appropriate downcast must be inserted anytime an
argument of type object is read.

Of course, we do not need to create a new object of class
InputArgs any time we need to perform an external jump;
instead, a unique object is created at the beginning of the
execution of the primary method.

2.3.3 Implementation of flexswitches
To implement each flexswitch, the CLI backend creates

an instance of a subclass of BaseLowLevelFlexSwitch: such an
instance stores the mapping between each value and the cor-
responding method we want to invoke. Then, the generated
code contains a call to the method execute, which selects and
invoke the right method depending on the actual value we
are switching on.

The following snippet shows the special case of integer
flexswitches:

public class IntLowLevelFlexSwitch:
BaseLowLevelFlexSwitch {

public uint default_blockid = 0xFFFFFFFF;
public int numcases = 0;
public int[] values = new int [4];
public FlexSwitchCase [] cases =

new FlexSwitchCase [4];

public void add_case(int value , FlexSwitchCase c) {
...

}

public uint execute(int value , InputArgs args) {
for(int i=0; i<numcases; i++)

i f (values[i] == value)
return cases[i](0, args);

return default_blockid;
}

}

The mapping from integers values to delegates (pointing
to secondary methods) is just implemented by the two ar-
rays values and cases. Method add_case extends the mapping
whenever a new case is added to the flexswitch.

The most interesting part is the body of method execute,
which takes a value and a set of input arguments to be passed
across the link and jumps to the right block by performing
a linear search in array values

10.
Recall that the first argument of delegate FlexSwitchCase is

the block id to jump to. By construction, the target block of
a flexswitch is always the first in a secondary method, and
we use the special value 0 to signal this.

The value returned by method execute is the next block
id to be executed; in case no association is found for value,
default_blockid is returned. The value of default_blockid is
initially set by the JIT compiler and usually corresponds

10Our microbenchmarks indicate that a linear search is the
fastest way to find the right method to call, since typically
each flexswitch contains only a very small number of cases.

to a block containing code to restart the JIT compiler for
creating a new secondary method with the new code for the
missing case, and updating the flexswitch by calling method
add_case.

3. BENCHMARKS
To measure the performances of the CLI JIT backend, we

wrote a simple virtual machine for a dynamic toy language,
called TLC.

The design goal of the language is to be very simple (the
interpreter of the full language consists of about 600 lines
of RPython code) but to still have the typical properties of
dynamic languages that make them hard to compile. TLC
is implemented with a small interpreter that interprets a
custom bytecode instruction set. Since our main interest is
in the runtime performance of the interpreter, we did not
implement the whole language, but just its virtual machine.

Despite being very simple and minimalistic, TLC is a good
candidate as a language to test our JIT generator, as it has
some of the properties that makes most of current dynamic
languages (e.g. Python) so slow:

• Stack based interpreter: this kind of interpreter re-
quires all the operands to be on top of the evaluation
stack. As a consequence programs spend a lot of time
pushing and popping values to/from the stack, or do-
ing other stack related operations. However, thanks
to its simplicity this is still the most common and pre-
ferred way to implement interpreters.

• Boxed integers: integer objects are internally rep-
resented as an instance of the IntObj class, whose field
value contains the real value. By having boxed integers,
common arithmetic operations are made very slow, be-
cause each time we want to load/store their value we
need to go through an extra level of indirection. More-
over, in case of a complex expression, it is necessary to
create many temporary objects to hold intermediate
results.

• Dynamic lookup: attributes and methods are looked
up at runtime, because there is no way to know in ad-
vance if and where an object has that particular at-
tribute or method.

In the following sections, we present some benchmarks
that show how our generated JIT can handle all these fea-
tures very well.

To measure the speedup we get with the JIT, we run each
program three times:

1. By plain interpretation, without any jitting (Interp).

2. With the JIT enabled: this run includes the time spent
by doing the compilation itself, plus the time spent by
running the produced code (JIT).

3. Again with the JIT enabled, but this time the compi-
lation has already been done, so we are actually mea-
suring how good is the code we produced (JIT 2).

The columns Interp/JIT2 and JIT2/C# measure the speedup
of the generated code compared to plain interpretation and
of the equivalent C# program compared to the generated
code, respectively.

Moreover, for each benchmark we also show the time taken
by running the equivalent program written in C#.11

The benchmarks have been run on a machine with an
Intel Pentium 4 CPU running at 3.20 GHz and 2 GB of
RAM, running Microsoft Windows XP and Microsoft .NET
Framework 2.0.

3.1 Arithmetic operations
To benchmark arithmetic operations between integers, we

wrote a simple program that computes the factorial of a
given number. The algorithm is straightforward, thus we
are not showing the source code. The loop contains only
three operations: one multiplication, one subtraction, and
one comparison to check if we have finished the job.

When doing plain interpretation, we need to create and
destroy three temporary objects (the results of each oper-
ation) at each iteration. By contrast, the code generated
by the JIT does much better. At the first iteration, the
classes of the two operands of the multiplication go through
a flexswitch; then, the JIT compiler knows that both are
integers, so it can inline the code to compute the result.
Moreover, thanks to escape analysis, it can remove the al-
location of all the temporary objects, because they never
escape from the inner loop. The same remarks apply to the
other two operations inside the loop.

As a result, the code executed after the first iteration is
close to optimal: the intermediate values are stored as int

local variables, and the multiplication, subtraction and less-
than comparison are mapped to a single CLI opcode (mul,
sub and clt, respectively).

Similarly, we wrote a program to calculate the nth Fi-
bonacci number, for which we can do the same reasoning as
above.

Factorial

n 10 107 108 109

Interp 0.031 30.984 N/A N/A
JIT 0.422 0.453 0.859 4.844
JIT 2 0.000 0.047 0.453 4.641
C# 0.000 0.031 0.359 3.438
Interp/JIT 2 N/A 661.000 N/A N/A
JIT 2/C# N/A 1.500 1.261 1.350

Fibonacci

n 10 107 108 109

Interp 0.031 29.359 0.000 0.000
JIT 0.453 0.469 0.688 2.953
JIT 2 0.000 0.016 0.250 2.500
C# 0.000 0.016 0.234 2.453
Interp/JIT 2 N/A 1879.962 N/A N/A
JIT 2/C# N/A 0.999 1.067 1.019

Table 1: Factorial and Fibonacci benchmarks

Table 1 shows the seconds spent to calculate the factorial
and Fibonacci for various n. As we can see, for small values
of n the time spent running the JIT compiler is much higher
than the time spent to simply interpret the program. This
is an expected result which, however, can be improved, since

11The sources for both TLC and C# programs are available
at: http://codespeak.net/∼antocuni/tlc-benchmarks/

so far no effort has been direct to enhance the performance
of the compiler itself.

On the other, for reasonably high values of n we obtain
very good results, which are valid despite the obvious over-
flow, since the same operations are performed for all ex-
periments. For n greater than 107, we did not run the in-
terpreted program as it would have taken too much time,
without adding anything to the discussion.

As we can see, the code generated by the JIT can be up to
about 1800 times faster than the non-jitted case. Moreover,
it often runs at the same speed as the equivalent program
written in C#, being only 1.5 slower in the worst case.

The difference in speed is probably due to both the fact
that the current CLI backend emits slightly non-optimal
code and that the underyling .NET JIT compiler is highly
optimized to handle bytecode generated by C# compilers.

As we saw in Section 2.3, the implementation of flexswitches
on top of CLI is hard and inefficient. However, our bench-
marks show that this inefficiency does not affect the overall
performances of the generated code. This is because in most
programs the vast majority of the time is spent in the inner
loop: the graphs are built in such a way that all the blocks
that are part of the inner loop reside in the same method,
so that all links inside are internal (and fast).

3.2 Object-oriented features
To measure how the JIT handles object-oriented features,

we wrote a very simple benchmark that involves attribute
lookups and polymorphic method calls. Since the TLC as-
sembler source is long and hard to read, figure 3 shows the
equivalent program written in an invented Python-like syn-
tax.

def main(n):
i f n < 0:

n = -n
obj = new(value , accumulate=count)

else:
obj = new(value , accumulate=add)

obj.value = 0
while n > 0:

n = n - 1
obj.accumulate(n)

return obj.value

def count(x):
this.value = this.value + 1

def add(x):
this.value = this.value + x

Figure 3: The accumulator example, written in a
invented Python-like syntax

The two new operations create an object with exactly one
field value and one method accumulate, whose implementation
is found in the functions count and add, respectively. When
calling a method, the receiver is implicity passed and can be
accessed through the special name this.

The computation per se is trivial, as it calculates either
−n or 1 + 2... + n − 1, depending on the sign of n. The
interesting part is the polymorphic call to accumulate inside
the loop, because the interpreter has no way to know in
advance which method to call (unless it does flow analysis,
which could be feasible in this case but not in general). The

equivalent C# code we wrote uses two classes and a virtual

method call to implement this behaviour.
As already discussed, our generated JIT does not compile

the whole function at once. Instead, it compiles and exe-
cutes code chunk by chunk, waiting until it knows enough
information to generate highly efficient code. In particular,
at the time it emits the code for the inner loop it exactly
knows the type of obj, thus it can remove the overhead of dy-
namic dispatch and inline the method call. Moreover, since
obj never escapes the function, the allocation is avoided and
its field value is stored as a local variable. As a result, the
generated code turns out to be a simple loop doing additions
in-place.

Accumulator

n 10 107 108 109

Interp 0.031 43.063 N/A N/A
JIT 0.453 0.516 0.875 4.188
JIT 2 0.000 0.047 0.453 3.672
C# 0.000 0.063 0.563 5.953
Interp/JIT 2 N/A 918.765 N/A N/A
JIT 2/C# N/A 0.750 0.806 0.617

Table 2: Accumulator benchmark

Table 2 show the results for the benchmark. Again, we
can see that the speedup of the JIT over the interpreter
is comparable to the other two benchmarks. However, the
really interesting part is the comparison with the equivalent
C# code, as the code generated by the JIT is up to 1.62
times faster.

Probably, the C# code is slower because:

• The object is still allocated on the heap, and thus there
is an extra level of indirection to access the value field.

• The method call is optimized through a polymorphic
inline cache [8], that requires a guard check at each
iteration.

Despite being only a microbenchmark, this result is very
important as it proves that our strategy of intermixing com-
pile time and runtime can yield to better performances than
current techniques. The result is even more impressive if we
take in account that dynamically typed languages as TLC
are usually considered much slower than the statically typed
ones.

4. RELATED WORK
Flexswitches are closely related to the concept of promo-

tion, as described by [13], [2]. Psyco is a run-time spe-
cialiser for Python that uses promotion (called “unlift” in
[10]). However, Psyco is a manually written JIT, is not ap-
plicable to other languages and cannot be retargetted. Psyco
is a good example of how to implement flexswitches for tar-
gets that don’t have the limitations of the CLI.

The idea of promotion is a generalization of Polymorphic
Inline Caches [8], as well as the idea of using runtime feed-
back to produce more efficient code [9]. The main difference
between the two is that PICs only works on types, whereas
promotion can work on every kind of value.

PyPy-style JIT compilers are hard to write manually, thus
we chose to write a JIT generator. Tracing JIT compilers [7]

also give good results but are much easier to write, making
the need for an automatic generator less urgent. However
so far tracing JITs have less general allocation removal tech-
niques, which makes them get less speedup in a dynamic lan-
guage with boxing. Another difference is that tracing JITs
concentrate on loops, which makes them produce a lot less
code. This issue is being addressed by current research in
PyPy [3].

The code generated by tracing JITs code typically con-
tains guards; in recent research [6] on Java, these guards’ be-
haviour is extended to be similar to our promotion. This has
been used twice to implement a dynamic language (JavaScript),
by Tamarin12 and in [5].

IronPython and Jython are two popular implementations
of Python for, respectively, the CLI and the JVM, whose ap-
proach differs fundamentally from PyPy. The source code of
PyPy contains a Python interpreter, which the JIT compiler
is automatically generated from: the resulting executable
contains both the interpreter and the compiler, so that it is
possible to compile only the desired parts of the program.
On the other hand, both IronPython and Jython implements
only the compiler: both compile code lazily (when a Python
module is loaded), but since they do not exploit the extra
information potentially available at runtime, it is more a de-
layed static compilation than a true JIT one. As a result,
they run Python programs much slower than their equiva-
lent written in C#13 or Java14.

The Dynamic Language Runtime15 (DLR) is a library
designed to ease the implementation of dynamic languages
for .NET: the DLR is closely related to IronPython16 and
employs the techniques described above; thus, the remarks
about the differences between PyPy and IronPython apply
to all DLR based languages.

5. CONCLUSION AND FUTURE WORK
In this paper we gave an overview of PyPy’s JIT compiler

generator, which can automatically turn an interpreter into
a JIT compiler, requiring the language developers to only
add few hints to guide the generation process.

Then, we presented the CLI backend for PyPy’s JIT com-
piler generator, whose goal is to produce .NET bytecode
at runtime. We showed how it is possible to circumvent
intrinsic limitations of the virtual machine to implement
flexswitches. As a result, we proved that the idea of JIT
layering is worth of further exploration, as it makes possible
for dynamically typed languages to be even faster than their
statically typed counterpart in some cases.

As a future work, we want to explore different strategies to
make the frontend producing less code, maintaining compa-
rable or better performances. In particular, we are working
on a way to automatically detect loops in the user code, as
tracing JITs do [7]. By compiling whole loops at once, the
backends should be able to produce better code.

12http://www.mozilla.org/projects/tamarin/
13http://shootout.alioth.debian.org/gp4/
benchmark.php?test=all&lang=iron&lang2=csharp

14http://blog.dhananjaynene.com/2008/07/performance-

comparison-c-java-python-ruby-jython-jruby-groovy/
15http://www.codeplex.com/dlr
16In fact, the DLR started as a spin-off of IronPython, and
nowadays the latter is based on the former.

At the moment, some bugs and minor missing features
prevent the CLI JIT backend to handle more complex lan-
guages such as Python and Smalltalk. We are confident that
once these problems will be fixed, we will get performance
results comparable to TLC, as the other backends already
demonstrate [13]. However, if the current implementation of
flexswitches will turn out to be too slow for some purposes,
alternative implementation strategies could be explored by
considering the novel features offered the new generation of
virtual machines.

In particular, the Da Vinci Machine Project 17 is explor-
ing and implementing new features to ease the implemen-
tation of dynamic languages on top of the JVM: some of
these features, such as the new invokedynamic18 instruction
and the tail call optimization can probably be exploited by a
potential JVM backend to generate even more efficient code.

Acknowledgements
The authors would like to thank Carl Friedrich Bolz, Maciej
Fijalkowski and the referees of ICOOOLPS’09 for helpful
comments on earlier versions of this paper.

6. REFERENCES
[1] D. Ancona, M. Ancona, A. Cuni, and N. Matsakis.

RPython: a Step Towards Reconciling Dynamically
and Statically Typed OO Languages. In OOPSLA
2007 Proceedings and Companion, DLS’07:
Proceedings of the 2007 Symposium on Dynamic
Languages, pages 53–64. ACM, 2007.

[2] D. Ancona, C. F. Bolz, A. Cuni, and A. Rigo.
Automatic generation of JIT compilers for dynamic
languages in .NET. Technical report, DISI, University
of Genova and Institut für Informatik,
Heinrich-Heine-Universität Düsseldorf, 2008.

[3] C. F. Bolz, A. Cuni, A. Rigo, and M. Fijalkowski.
Tracing the meta-level: Pypy’s tracing jit compiler.
Submitted to ICOOOLPS’09.

[4] C. F. Bolz, A. Kuhn, A. Lienhard, N. D. Matsakis,
O. Nierstrasz, L. Renggli, A. Rigo, and T. Verwaest.
Back to the future in one week - implementing a
smalltalk vm in PyPy. In Self-Sustaining Systems,
First Workshop, S3 2008, Potsdam, Revised Selected
Papers, volume 5146 of Lecture Notes in Computer
Science, pages 123–139, 2008.

[5] M. Chang, M. Bebenita, A. Yermolovich, A. Gal, and
M. Franz. Efficient just-in-time execution of
dynamically typed languages via code specialization
using precise runtime type inference. Technical report,
Donald Bren School of Information and Computer
Science, University of California, Irvine, 2007.

[6] A. Gal and M. Franz. Incremental dynamic code
generation with trace trees. Technical report, Donald
Bren School of Information and Computer Science,
University of California, Irvine, Nov. 2006.

[7] A. Gal, C. W. Probst, and M. Franz. HotpathVM: an
effective JIT compiler for resource-constrained devices.
In Proceedings of the 2nd international conference on
Virtual execution environments, pages 144–153,
Ottawa, Ontario, Canada, 2006. ACM.

17http://openjdk.java.net/projects/mlvm/
18http://jcp.org/en/jsr/detail?id=292

[8] U. Hölzle, C. Chambers, and D. Ungar. Optimizing
dynamically-typed object-oriented languages with
polymorphic inline caches. In Proceedings of the
European Conference on Object-Oriented
Programming, pages 21–38. Springer-Verlag, 1991.

[9] U. Hölzle and D. Ungar. Optimizing
dynamically-dispatched calls with run-time type
feedback. In PLDI ’94: Proceedings of the ACM
SIGPLAN 1994 conference on Programming language
design and implementation, pages 326–336, New York,
NY, USA, 1994. ACM.

[10] A. Rigo. Representation-based just-in-time
specialization and the psyco prototype for python. In
PEPM, pages 15–26, 2004.

[11] A. Rigo and C. F. Bolz. How to not write Virtual
Machines for Dynamic Languages . In Proceeding of
Dyla 2007 (to appear), pages –, 2007.

[12] A. Rigo and S. Pedroni. PyPy’s approach to virtual
machine construction. In OOPSLA Companion, pages
944–953, 2006.

[13] A. Rigo and S. Pedroni. JIT compiler architecture.
Technical Report D08.2, PyPy Consortium, 2007.
http://codespeak.net/pypy/dist/pypy/doc/index-
report.html.

