
EPTCS ??, 20??, pp. 1–17, doi:10.4204/EPTCS.??.??

Coinductive subtyping for abstract compilation of
object-oriented languages into Horn formulas∗

Davide Ancona
DISI, University of Genova

Italy
davide@disi.unige.it

Giovanni Lagorio
DISI, University of Genova

Italy
lagorio@disi.unige.it

In recent work we have shown how it is possible to define very precise type systems for object-
oriented languages by abstractly compiling a program into a Horn formula f . Then type inference
amounts to resolving a certain goal w.r.t. the coinductive (that is, the greatest) Herbrand model of f .

Type systems defined in this way are idealized, since in the most interesting instantiations both
the terms of the coinductive Herbrand universe and goal derivations cannot be finitely represented.
However, sound and quite expressive approximations can be implemented by considering only regu-
lar terms and derivations. In doing so, it is essential to introduce a proper subtyping relation formal-
izing the notion of approximation between types.

In this paper we study a subtyping relation on coinductive terms built on union and object type
constructors. We define an interpretation of types as set of values induced by a quite intuitive relation
of membership of values to types, and prove that the definition of subtyping is sound w.r.t. subset
inclusion between type interpretations. The proof of soundness has allowed us to simplify the notion
of contractive derivation and to discover that the previously given definition of subtyping did not
cover all possible representations of the empty type.

1 Introduction

In recent work [4] we have defined a framework which allows precise type analysis of object-oriented
programs by means of abstract compilation of the program to be analyzed into a Horn formula (that is,
a conjunction of Horn clauses). Then, type inference corresponds to resolving a certain goal (or query)
w.r.t. the coinductive (that is, the greatest) Herbrand model of f .

Coinductively defined terms of the Herbrand universe (which correspond to type expressions), in
conjunction with the union type constructor, provide an abstract representation for arbitrary sets of val-
ues, whereas coinductive SLD resolution [15, 14] allows type inference of recursive method invocation.
However, type systems defined in this way are idealized, since, except for the most simple cases where
types are just constants, in the most interesting instantiations both terms and goal derivations cannot be
finitely represented.

However, sound and quite expressive approximations can be implemented by considering only regu-
lar types and derivations, that is, infinite terms and trees, respectively, which can be finitely represented.
In doing so, it is essential to introduce a proper subtyping relation [2] formalizing the notion of approxi-
mation between types, and a corresponding notion of subsumption at the level of goal derivation. In this
way, regular types, which correspond to usual recursive types, are simply considered as approximations
(that is, supertypes) of much finer infinite types which have no finite representation.

This novel approach has several advantages:

∗This work has been partially supported by MIUR DISCO - Distribution, Interaction, Specification, Composition for Object
Systems.

http://dx.doi.org/10.4204/EPTCS.??.??

2 Coinductive subtyping for abstract compilation of object-oriented languages into Horn formulas

• It offers a quite general and highly modular framework for type analysis of object-oriented pro-
grams, where quite different kinds of analysis can be defined without changing the core inference
engine based on coinductive SLD resolution empowered by the notions of subtyping and subsump-
tion. Every instantiation corresponds to a particular choice of the type constructors, the abstract
compilation schema, and the definition of the subtyping relation. Our previous papers provide
several examples corresponding to different instantiations of the same framework [2, 3]; under
this point of view, our proposal is an attempt to provide a common framework for reasoning on
type analysis of object-oriented programs. Indeed, the solutions to the problem of type analysis of
object-oriented programs which can be found in literature [13, 12, 1, 17, 16, 10] are often rather
ad hoc, cannot be easily described in an abstract way, and, for these reasons, cannot be easily
compared.

• Several static analysis techniques for compiler optimization can be easily adopted for enhancing
type analysis. For instance, we have shown [3] that a more precise type analysis can be obtained
when abstract compilation is performed on programs in Static Single Assignment intermediate
form [9].

• It promotes a nice integration between theory and practice, since type inference algorithms are just
approximations of an idealized type system where its derivable type judgments can be expressed as
the limits of chains of approximating judgments derivable by the algorithm, where their precision
depends on the space and time resources available to the implementation.

The definition of a suitable subtyping relation is of paramount importance to obtain reasonable ap-
proximations of our framework, especially in the presence of union types, which have proved to be quite
expressive when coinductive terms are considered.

For this reason, in this paper we study a subtyping relation on coinductive terms built on union and
object type constructors. Since types may be infinite, the relation is defined coinductively; however, such
a definition is far from being intuitive, because a suitable notion of contractive [6, 7] derivation has to be
introduced to avoid unsound derivations. The contributions of this paper w.r.t. our previous work are the
following:
• We define an interpretation of types as set of values induced by a quite intuitive relation of mem-

bership of values to types.

• We prove that the definition of subtyping is sound w.r.t. subset inclusion between type interpreta-
tions. The proof of soundness has allowed us to simplify the notion of contractive derivation for
subtyping.

• We have discovered that the previously given definition of subtyping did not cover all possible
representations of types with an empty interpretation. Consequently, a new subtyping rule has
been added, based on a complete characterization of empty types; such a characterization allowed
us to define an algorithm for checking empty regular types.

In Section 2 a gentle introduction to the framework is given by means of simple examples. Subtyping
and type interpretation are defined in Section 3, whereas Section 4 is devoted to the proof of soundness.
Section 5 deals with empty types, and, finally, Section 6 draws some conclusion.

2 Abstract compilation into Horn formulas

Let us consider the standard encoding of natural numbers with objects, written in Java-like code where,
however, all type annotations have been omitted.

D. Ancona, G. Lagorio 3

c l a s s Zero {
add(n) { r e t u r n n; }

}

c l a s s Succ {
pred;
Succ(n) { t h i s .pred=n; }
add(n) { r e t u r n pred.add(new Succ(n)); }

}

For simplicity, we just consider method add; class Succ represents all natural numbers greater than zero,
that is, all numbers which are successors of a given natural number, stored in the field pred.

In the abstract compilation approach a program, as the one shown above, is translated into a Horn
formula where predicates encode the constructs of the language. For instance, the predicate invoke corre-
sponds to method invocation, and has four arguments: the target object, the method name, the argument
list, and the returned result. Terms represent either types (that is, set of values) or names (of classes, meth-
ods and fields). In the instantiation we consider here, types include object types obj(c, [f1:t1, . . . , fn:tn]),
where c is the class of the object and f1, . . . , fn its fields with their corresponding types t1, . . . , tn, union
types t1 ∨ t2, and primitive types as int. In the idealized abstract compilation framework, terms can be
also infinite and non regular1; a regular term is a term which can be infinite, but can only contain a finite
number of subterms or, equivalently, can be represented as the solution of a unification problem, that is,
a finite set of syntactic equations of the form Xi = ti, where all variables Xi are distinct and terms ti may
only contain variables Xi [8, 15, 14]. For instance, the term t s.t. t = int∨ t is regular2 since it has only
two subterms, namely, int and itself.

Let us see some examples of regular types, that is, regular terms representing set of values.

zer = obj(zero, [])
nat = zer∨obj(succ, [pred:nat])
pos = obj(succ, [pred:zer])∨obj(succ, [pred:pos])
evn = zer∨obj(succ, [pred:obj(succ, [pred:evn])])
odd = obj(succ, [pred:zer])∨

obj(succ, [pred:obj(succ, [pred:odd])])

Type zer corresponds to all objects representing zero, while nat corresponds to all objects representing
natural numbers and, similarly, pos, evn and odd to all objects representing positive, even, and odd natural
numbers, respectively. An example of non regular types is given by the infinite sequence t1∨ (t2∨ (. . .∨
tn . . .)), where the term ti represents the ith prime number.

Each method declaration is compiled into a single clause, defining a different case for the predicate
has meth, that takes four arguments: the class where the method is declared, its name, the types of its
arguments, including the special argument this corresponding to the target object, and the type of the
returned value. Predicate has meth defines the usual method look-up: has meth(c,m, [this, t1, . . . , tn], t)
succeeds if look-up of m from class c succeeds and returns a method that, when invoked on target object
and arguments this, t1, . . . , tn, returns values of type t.

For instance, the method declarations of the two classes defined above are compiled as follows:

has_meth(zero ,add ,[This ,N],N).

1We refer to the author’s previous work [4, 2, 3] for more details.
2The exact meaning of such a term will be explained in the next section.

4 Coinductive subtyping for abstract compilation of object-oriented languages into Horn formulas

has_meth(succ ,add ,[This ,N],R) ←
field_acc(This ,pred ,P),
new(succ ,[N],S),
invoke(P,add ,[S],R).

Predicates field acc, new and invoke correspond to field access, constructor invocation and method invo-
cation, respectively. Similarly to what happens for methods, each constructor declaration is also compiled
into a clause. For instance, the following clause is generated from the constructor of class Succ:

new(succ ,[N],obj(succ ,[pred:N|R])) ← extends(succ ,P),new(P,[],obj(P,R)).

In this case, since we know3 that extends(succ,object) and new(object, [],obj(object, [])) hold, then we
can derive new(succ, [N],obj(succ, [pred : N])).

Other generated clauses are common to all programs and depend on the semantics of the language or
on the meaning of types.

invoke(T1∨T2 ,M,A,R1∨R2) ← invoke(T1 ,M,A,R1), invoke(T2 ,M,A,R2).
invoke(obj(C,R),M,A,Res) ← has_meth(C,M,[obj(C,R)|A],Res).

The first clause specifies the behavior of invoke with union types. The invocation must be correct for
both target types T1 and T2 and the returned type is the union of the returned types R1 and R2. When
the target is an object type obj(C,R), then invocation of M with arguments A is correct if look-up of M
with first argument obj(C,R), corresponding to this, and rest of arguments A succeeds when starting from
class C.

We show now that the goal invoke(evn,add, [odd],R) is derivable for R = t where t is the regular
type s.t. t = odd∨ t. If we take for granted that t is equivalent4 to odd, then not only we can prove that
adding an even and an odd number always returns an odd number, but we can also infer the thesis (that
is, the result is an odd number), since the query corresponds to just asking which number is returned
when adding an even and an odd number.

We recall that, when considering the coinductive Herbrand model, derivations are allowed to be in-
finite [15]. Then, since evn = zer∨obj(succ, [pred:obj(succ, [pred:evn])]), by clause 1 for invoke we must
show that invoke(zer,add, [odd],odd) and invoke(obj(succ, [pred:obj(succ, [pred:evn])]),add, [odd], t).
The first atom can be derived by applying clause 2 for invoke, and then the clause for has meth generated
from class Zero. For the second atom we apply clause 2 for invoke, and then the clause for has meth
generated from class Succ and get invoke(obj(succ, [pred:evn]),add, [obj(succ, [pred:odd])], t). Then, if
we re-apply the same clauses once again, we get invoke(evn,add, [succ2(odd)], t) (where succ2(odd) is
just an abbreviation for obj(succ, [pred:obj(succ, [pred:odd])])) which is equal to the initial goal, except
for the argument type which is succ2(odd) instead of odd. It is now clear that we can get an infi-
nite derivation containing all atoms having shape invoke(evn,add, [succ2n(odd)], t) for all n ≥ 0, hence
invoke(evn,add, [odd], t) is derivable.

There are two main problems with the example of derivation given above: it is not regular, hence it
cannot be computed, and we would like to resolve invoke(evn,add, [odd],R) for R = odd rather than for
R = t. To overcome these problems, a subtyping relation has to be introduced together with a notion of
subsumption between atoms. The definition of the subtyping relation is postponed to the next section,
however the intuition suggests that succ2(odd) ≤ odd and t ≤ odd should hold.5 Furthermore, the fol-
lowing subsumption relations are expected to hold: if succ2(odd) ≤ odd, then invoke(evn,add, [odd], t)

3The set of all clauses generated from the two class declarations is available in the Appendix.
4The equivalence between the two terms will be clarified in the next section.
5More precisely, both directions of the two disequalities hold, since both pairs of terms are equivalent, but here we are only

interested in one specific direction.

D. Ancona, G. Lagorio 5

(int)
int ≤ int

(∨R1)
t ≤ t1

t ≤ t1∨ t2
(∨R2)

t ≤ t2
t ≤ t1∨ t2

(∨L)
t1 ≤ t t2 ≤ t

t1∨ t2 ≤ t

(obj)
t1 ≤ t′1, . . . , tn ≤ t′n

obj(c, [f1:t1, . . . , fn:tn, . . .])≤ obj(c, [f1:t′1, . . . , fn:t′n])

(distr)

obj(c, [f :u1, f1:t1, . . . , fn:tn])≤ t
obj(c, [f :u2, f1:t1, . . . , fn:tn])≤ t

obj(c, [f :u1∨u2, f1:t1, . . . , fn:tn])≤ t

Figure 1: Rules defining the subtyping relation

subsumes invoke(evn,add, [succ2(odd)], t), that is, subtyping is contravariant w.r.t. method arguments, as
usual, and, therefore, if method add returns t when applied to argument odd, then it returns t when applied
to any subtype of odd (in this specific case, succ2(odd)). On the other hand, subtyping is covariant w.r.t.
the returned type, therefore if t≤ odd then invoke(evn,add, [odd], t) subsumes invoke(evn,add, [odd],odd),
that is, if method add returns t when applied to odd, then it returns all supertypes of t as well (odd in this
specific case).

By introducing subtyping and subsumption it is possible to build a regular derivation for invoke(evn,
add, [odd], t), by just observing that to prove invoke(evn,add, [odd], t) we need to prove invoke(evn,add,
[succ2(odd)], t) which, in turn, is subsumed by invoke(evn,add, [odd], t), hence we can conclude the proof
by coinductive hypothesis. Finally, by applying subsumption once more we can derive invoke(evn,add,
[odd],odd) from invoke(evn,add, [odd], t). More in practice, this means that coSLD resolution [15] can
be generalized by taking into account subtyping constraints between terms, besides the usual unification
constraints.

3 Subtyping and type interpretation

In this section we formally define subtyping as a syntactic relation between types; then we provide
an intuitive interpretation of types as sets of values, to define a semantic counterpart of the subtyping
relation.

3.1 Definition of subtyping

The types we consider are all infinite terms coinductively defined as follows:

t ::= int | obj(c, [f1:t1, . . . , fn:tn]) | t1∨ t2

An object type obj(c, [f1:t1, . . . , fn:tn]) specifies the class c to which the object belongs, together with
the set of available fields with their corresponding types. The class name is needed for typing method
invocations. We assume that fields in an object type are finite, distinct and that their order is immaterial.
Union types t1∨ t2 have the standard meaning [5, 11].

The subtyping relation is coinductively defined by the rules in Figure 1. Rules are conceived for a
purely functional setting [2], an extension for dealing with imperative features can be found in another
paper [3] by the same authors.

Rules (∨R1), (∨R2) and (∨L) specify subtyping between union types, and simply state that the union
type constructor is the join operator w.r.t. subtyping. Note also the strong analogy with the left and right

6 Coinductive subtyping for abstract compilation of object-oriented languages into Horn formulas

logical rules of the classical Gentzen sequent calculus for the disjunction, when the subtping relation is
replaced with the provability relation.

Rule (obj) corresponds to standard width and depth subtyping between object types: the type on the
left-hand side may have more fields (represented by the ellipsis at the end), while subtyping is covariant
w.r.t. the fields belonging to both types. Note that depth subtyping is allowed since we are considering a
purely functional setting [3]. Finally, subtyping between object types is allowed only when they refer to
the same class name.

Rule (distr) expresses distributivity of object over union types; intuitively, object types correspond
to Cartesian product which distributes over union: A× (B ∪C) = (A× B) ∪ (A×C). For instance
obj(c, [f :t1∨ t2]) ∼= obj(c, [f :t1])∨ obj(c, [f :t2]), where u1 ∼= u2 holds iff u1 ≤ u2 and u2 ≤ u1. The re-
lation obj(c, [f :t1])∨obj(c, [f :t2])≤ obj(c, [f :t1∨ t2]) can be derived by applying rules (∨L), (obj), (∨R1)
and (∨R2), and by the fact that t1 ≤ t1∨ t2 and t2 ≤ t1∨ t2 hold by reflexivity, which is ensured by rules
(int) and (obj). Rule (distr) is necessary for deriving the opposite direction of the relation, since by apply-
ing rules (∨R1), (∨R2) and (obj) we end up with t1∨ t2 ≤ t1 or t1∨ t2 ≤ t2 which in general do not hold.
Finally, note that rule (distr) is applicable only when the object type on the left-hand side has at least
a field associated with a union type; since order of fields is immaterial, in the rule such a field appears
always in the first position for readability.

A derivation is a tree where each node is a pair consisting of a judgment of the shape t1 ≤ t2, and the
label of a rule6, and where each node, together with its children, corresponds to a valid instantiation of a
rule. For instance, the following tree

(int ≤ int, int) (int ≤ int, int)
↖ ↗

(int∨ int ≤ int,∨L)

is a derivation for int∨ int ≤ int. However, in the rest of the paper we will use the following equivalent
but more intuitive representation for derivations:

(∨L)

(int)
int ≤ int

(int)
int ≤ int

int∨ int ≤ int

Since subtyping is defined over infinite types, all rules must be interpreted coinductively, therefore
derivations are allowed to be infinite. However, not all infinite derivations can be considered valid, but
only those contractive [6, 7] (see the definition below). To see why we need such a restriction, consider
the regular type u s.t. u = u∨u, and the following infinite derivation containing just applications of rules
(∨R1) and (∨R2):

...
int ≤ u
int ≤ u

We reject infinite derivations built applying only rules (∨R1) and (∨R2), since they allow unsound judg-
ments, as int≤ u derived above. As it will be shown in Section 3.2, u corresponds to the empty type, that
is, to the bottom element ⊥ w.r.t. the subtyping relation; indeed, for any type t there exists a contractive
derivation for ⊥≤ t obtained by applying rule (∨L) infinite times.

6This labeling is necessary for the proof of soundness.

D. Ancona, G. Lagorio 7

(int)
i ∈ int

(∨L)
v ∈ t1

v ∈ t1∨ t2
(∨R)

v ∈ t2
v ∈ t1∨ t2

(obj)
v1 ∈ t1, . . . ,vn ∈ tn

obj(c, [f1 7→ v1, . . . , fn 7→ vk, . . .]) ∈ obj(c, [f1:t1, . . . , fn:tn])

Figure 2: Rules defining membership

Before giving the formal definition of contractive derivation, let us consider another example: if
⊥ is again the regular type s.t. ⊥ = ⊥∨⊥, then the following infinite derivation, obtained by infinite
applications of rule (distr), proves that obj(c, [f1:⊥, f2:t])≤ u for all u:

...
obj(c, [f1:⊥, f2:t])≤ u

...
obj(c, [f1:⊥, f2:t])≤ u

obj(c, [f1:⊥, f2:t])≤ u

Apparently this seems to be an unsound use of rule (distr) as it happens for rules (∨R1) and (∨R2)
in the example above; however, this is not the case, as we formally prove in the next section. Since
obj(c, [f1:⊥, f2:t])≤ u and⊥≤ u for all types u, then⊥≤ obj(c, [f1:⊥, f2:int]) and obj(c, [f1:⊥, f2:int])≤⊥
hold, that is, the two types are equivalent and, therefore, both represent the empty type. This result is
not so surprising if we interpret the empty type as the empty set of values, and we recall the similarity
between records and Cartesian products, and the validity of the equation /0×V = /0.

Def. 3.1 A derivation for t1 ≤ t2 is contractive iff it contains no sub-derivations built only with rules
(∨R1) and (∨R2). The subtyping relation t1 ≤ t2 holds iff there is a contractive derivation for it.

In the following we use the term derivation for contractive ones, unless explicitly specified.

3.2 Interpretation of types

We interpret types in a quite intuitive way, that is, as sets of values. Values are all infinite terms coinduc-
tively defined by the following syntactic rules (where i ∈ Z).

v ::= i | obj(c, [f1 7→ v1, . . . , fn 7→ vn])

As happens for object types, fields in object values are finite and distinct, and their order is immaterial.
Regular values correspond to finite, but cyclic, objects.

Membership of values to (the interpretation of) types is coinductively defined by the rules of Figure 2.
All rules are intuitive. Note that an object value is allowed to belong to an object type having less fields;
this is expressed by the ellipsis at the end of the values in the membership rule (obj).

An analogous notion of contractive derivation has to be enforced also for membership derivations.

Def. 3.2 A derivation for v∈ t is contractive iff it contains no sub-derivations built only with membership
rules (∨R), and (∨L). The membership relation v ∈ t holds iff there is a contractive derivation for it.

The interpretation of type t is denoted by JtK and defined by {v | v ∈ t holds}.
Before proving the main soundness theorem we show some examples of interpretations.

Example 1 If ⊥ is the regular type s.t. ⊥=⊥∨⊥, then J⊥K = /0. Indeed, the only applicable rules are
(∨L) and (∨R), hence only non contractive derivations can be built.

8 Coinductive subtyping for abstract compilation of object-oriented languages into Horn formulas

Example 2 If t is the regular type s.t. t = int∨ t, then JtK = JintK = Z, that is, t and int have the same
interpretation. Indeed, all the contractive derivations are obtained by applying n times (n≥ 0) rule (∨R)
(which is useless in this case), then rule (∨L) followed by (int):

i ∈ int
i ∈ int∨ t

...
i ∈ int∨ t

Example 3 Let us consider the infinite (but not regular) type t1 defined by the following infinite set of
equations (where t1 corresponds to X0):

X0 = Y0∨X1

. . .

Xn = Yn∨Xn+1

. . .

Y0 = obj(zero, [])
Y1 = obj(succ, [pred:Y0])

. . .

Yn+1 = obj(succ, [pred:Yn])
. . .

Let t2 be the term s.t. t2 = obj(zero, [])∨ obj(succ, [pred:t2]). Then Jt1K (Jt2K; indeed, it is easy
to show that Jt1K is the set of all objects representing natural numbers, and that such values belong
to Jt2K as well (all derivations are finite, hence trivially contractive), whereas the value v∞ s.t. v∞ =
obj(succ, [pred 7→ v∞]) belongs to t2, but not to t1. Indeed, the following contractive and regular deriva-
tion can be built by alternatively applying rules (∨R) and (obj) infinite times.

...
v∞ ∈ t2

v∞ ∈ obj(succ, [pred:t2])
v∞ ∈ t2

Finally, it is not difficult to prove that the only derivation for v∞ ∈ t1 is not contractive, since it can be
obtained by infinitely applying rule (∨R); therefore v∞ 6∈ t1.

4 Soundness

We now prove that the definition of ≤ is sound w.r.t. containment between type interpretations. The
proof of soundness is based on the following lemma.

Lemma 4.1 If t is an object type s.t. t ≤ u and v ∈ t, then there exists an object type t′ (not necessarily
equal to t) s.t. v ∈ t′, and s.t. there exists a derivation for t′ ≤ u whose first applied rule is (∨R1), (∨R2)
or (obj).

D. Ancona, G. Lagorio 9

Proof: The proposed proof is constructive, since it shows that the derivation for t′ ≤ u is just a sub-
derivation of the derivation for t ≤ u, and that the derivation for v ∈ t′ can be easily built from the
derivation for v ∈ t.

Let t = obj(c, [f1:t1, . . . , fn:tn]), by membership rule (obj) v = obj(c, [f1 7→ v1, . . . , fn 7→ vn, . . .]); fur-
thermore, the corresponding derivation has the following shape:

...
v1 ∈ t′1

.

. k1.

v1 ∈ t1
. . .

...
vn ∈ t′n

.

. kn.

vn ∈ tn
v ∈ obj(c, [f1:t1, . . . , fn:tn])

where t′1, . . . , t
′
n are not union types, and are obtained after repeatedly applying rules (∨L) or (∨R)

k1, . . . ,kn times respectively. We know that all ki are finite, otherwise the derivation would not be con-
tractive. The proof proceeds by induction on m = ∑i∈1...n ki.

If m = 0, then all t1, . . . , tn are not union types. If u = int, then there are no applicable subtyping
rules and the claim trivially holds since the hypothesis is not satisfied; if u is either a union or an object
type, then the only applicable subtyping rules are (∨R1), (∨R2) or (obj), therefore we easily conclude
with t′ = t. If m > 0 and the derivation is obtained by applying rule7 (distr), then t1 = ta ∨ tb, that is,
t = obj(c, [f1:ta∨ tb, . . . , fn:tn]). Furthermore, in the derivation for v ∈ t, the first applied rule of the sub-
derivation for v1 ∈ ta∨ tb is either (∨L) or (∨R). If (∨L) has been applied (the other case is completely
symmetric), then a derivation for v ∈ obj(c, [f1:ta, . . . , fn:tn]) can be obtained from that of v ∈ t, by simply
removing the application of rule (∨L) for v1 ∈ ta∨ tb, as depicted in Figure 3. Therefore in such derivation
∑i∈1...n ki = m−1. Finally, since rule (distr) has been applied, we know that obj(c, [f1:ta, . . . , fn:tn]) ≤ u,
hence we can conclude by inductive hypothesis.

As a final remark, note that the construction of t′ and of the derivations for t′ ≤ u and v ∈ t′ are
uniquely determined by the derivations for t≤ u and v ∈ t. Therefore, the proof of the lemma shows that
there exists a function FL s.t. if d1 and d2 are derivations for t ≤ u and v ∈ t, respectively, with t object
type, then FL(d1,d2) returns (d3,d4) s.t. d3 and d4 are derivations for t′ ≤ u and v ∈ t′, respectively,
where t′ is an object type, d3 is a sub-derivation of d1 where the first applied rule is (∨R1), (∨R2) or
(obj), and d4 is obtained by d2 by replacing some node and removing some applications of rules (∨L)
and (∨R). �

Theorem 4.1 (Soundness) For all t1, t2, if t1 ≤ t2, then Jt1K⊆ Jt2K.

Proof: The claim can be put in the following equivalent form: for all t1, t2,v if t1 ≤ t2, v∈ t1 then v∈ t2.
The proof is constructive, since it coinductively defines a function F from derivations for t1 ≤ t2 and

v ∈ t1 to derivations for v ∈ t2. The definition of F is given by cases on the first applied subtyping rule
of the derivation for t1 ≤ t2.

Rule (int) F

(
(int)

int ≤ int
, (int)

i ∈ int

)
= (int) i∈int .

7If one between (∨R1), (∨R2), and (obj) has been applied, then the conclusion is straightforward as for m = 0.

10 Coinductive subtyping for abstract compilation of object-oriented languages into Horn formulas

(∨L)

...
v1 ∈ t′1
.
. k1−1
.

v1 ∈ ta
v1 ∈ ta∨ tb

. . .

...
vn ∈ t′n

.

. kn.

vn ∈ tn
v ∈ obj(c, [f1:ta∨ tb, . . . , fn:tn])

=⇒

...
v1 ∈ t′1
.
. k1−1
.

v1 ∈ ta
. . .

...
vn ∈ t′n

.

. kn.

vn ∈ tn
v ∈ obj(c, [f1:ta, . . . , fn:tn])

Figure 3: Transformation of derivations in proof of lemma 4.1

Rule (∨R1) F

(
(∨R1)

d1

t1 ≤ u1∨u2
,d2

)
= (∨L)

F (d1,d2)
v ∈ u1∨u2

, where d1 is a derivation for t1 ≤ u1, and d2

is a derivation for v ∈ t1.

Rule (∨R2) F

(
(∨R2)

d1

t1 ≤ u1∨u2
,d2

)
= (∨R)

F (d1,d2)
v ∈ u1∨u2

, where d1 is a derivation for t1 ≤ u2, and d2

is a derivation for v ∈ t1.

Rule (∨L) There are two sub-cases, depending on the shape of the derivation for v ∈ t2:

F

(
(∨L)

d1 d2

u1∨u2 ≤ t2
, (∨L)

d3

v ∈ u1∨u2

)
= F (d1,d3)

F

(
(∨L)

d1 d2

u1∨u2 ≤ t2
, (∨R)

d4

v ∈ u1∨u2

)
= F (d2,d4)

In this case d1 and d2 are derivations for u1 ≤ t2 and u2 ≤ t2, respectively, whereas d3 and d4 are deriva-
tions for v ∈ u1 and v ∈ u2, respectively.

Rule (obj)

F

(obj)

d1, . . . ,dn

obj(c, [f1:u1, . . . , fn:un, . . .])≤ obj(c, [f1:u′1, . . . , fn:u′n])
,

(obj)
d′1, . . . ,d

′
n, . . .

obj(c, [f1 7→ v1, . . . , fn 7→ vn, . . .]) ∈ obj(c, [f1:u1, . . . , fn:un, . . .])

=

(obj)
F (d1,d′1), . . . ,F (dn,d′n)

obj(c, [f1 7→ v1, . . . , fn 7→ vn, . . .]) ∈ obj(c, [f ′1:u1, . . . , f ′n:un])

where d1, . . . ,dn are derivations for u1 ≤ u′1, . . . ,un ≤ u′n, respectively, whereas d′1, . . . ,d
′
n are derivations

for v1 ∈ u1, . . . ,vn ∈ un, respectively.
The derivation for obj(c, [f1 7→ v1, . . . , fn 7→ vn, . . .]) ∈ obj(c, [f1:u1, . . . , fn:un, . . .]) contains ellipses in

the right hand side of the sub-derivations d′1, . . . ,d
′
n and of the fields of both the value and the type. Their

meaning is that there may be other entities in the derivation which, however, can be omitted, since the
definition of F does not depend on them.

D. Ancona, G. Lagorio 11

Rule (distr) In this case the hypotheses of lemma 4.1 are verified, therefore we can use the function
FL defined in the proof of the lemma:

F (d1,d2) = F (FL(d1,d2))

where d1 is a derivation for t1 ≤ t2 whose first applied rule is (distr), hence t1 is an object type, and d2
is a derivation for v ∈ t1. According to the proof of the lemma, FL(d1,d2) returns (d3,d4) s.t. d3 and d4
are derivations for t ≤ t2 and v ∈ t, t is an object type, and the first applied rule of d3 is (∨R1), (∨R2), or
(obj). Therefore case (distr) is delegated to one of the three cases (∨R1), (∨R2), (obj) specified above.

Now the remaining part of the proof is showing that F is well-defined. Since F is defined coin-
ductively, we need to prove that F is a function, that is, it cannot return two different derivations when
applied to the same arguments. To show this, we first prove the following property.

Property (*) If d1 and d2 are derivations for t1 ≤ t2 and v ∈ t1, respectively, and (d1,d2) matches cases
(∨L) or (distr) of the definition of F , then there always exist d3 and d4 s.t. for any derivation d returned
by F (d1,d2), the following facts hold: d = F (d3,d4), there exists t s.t. d3 and d4 are derivations for
t ≤ t2 and v ∈ t, respectively, and (d3,d4) matches one between (int), (∨R1), (∨R2), and (obj) cases.

Proof of (*): It is immediate to prove that if d1 and d2 are derivations for t1≤ t2 and v∈ t1, respectively,
then there always exists one and only one case matching (d1,d2) in the definition of F . If (d1,d2)
matches case (distr), then by lemma 4.1 we know that FL is defined on (d1,d2), and returns (d3,d4) s.t.
d3 and d4 are derivations for t ≤ t2 and v ∈ t, where t is an object type, and the first applied rule of d3
is (∨R1), (∨R2) or (obj). Now, since (d1,d2) cannot match any other case, by definition of F we can
conclude that for any d returned by F (d1,d2), the equality d = F (FL(d1,d2)) = F (d3,d4) must hold.

If (d1,d2) matches case (∨L), then we proceed by induction on the number n of contiguous applica-
tions of membership rules (∨L) and (∨R) with which derivation d2 starts. We know that such n is finite,
otherwise d2 would not be contractive. The basis if for n = 1, since for n = 0 the pair (d1,d2) would not
match case (∨L); for simplicity, let us assume that d2 starts with the application of rule (∨L), that is, the
first sub-case applies (the other sub-case is symmetric). Then we know that d1 and d2 have the following
shape:

d1 = (∨L)
d3 d′3

t∨ t′ ≤ t2
d2 = (∨L)

d4

v ∈ t∨ t′

where d3 and d4 are derivations for t ≤ t2 and v ∈ t, respectively. Since (d1,d2) cannot match any other
case, by definition of F we have that for any d returned by F (d1,d2), the equality d = F (d3,d4) must
hold. Finally, (d3,d4) must match some case of the definition of F , but such case cannot be (∨L); indeed,
n = 1 and, therefore, t cannot be a union type. In case (d3,d4) matches case (distr), we can apply8 the
result already proved for that case. The inductive step is a direct consequence of the inductive hypothesis
and of the fact that if d2 starts with n+1 consecutive applications of rules (∨L) and (∨R), then d4 starts
with n consecutive applications of rules (∨L) and (∨R).

We can now prove the following property.

F is deterministic: For all d1,d2,d,d′, if F (d1,d2) = d and F (d1,d2) = d′, then d = d′.
We prove that d = d′ by induction on the height of the finite trees approximating d and d′, that is,

we show that all paths of d starting from its root are equal to the paths of d′ starting from its root, for all

8This is possible because proof of case (distr) does not depend on proof of case (∨L).

12 Coinductive subtyping for abstract compilation of object-oriented languages into Horn formulas

the lengths9 of the paths. The basis consists in proving that d and d′ have the same root and start with
the same rule application (that is, the path length is 0). This comes directly from the definition of F for
the cases (int), (∨R1), (∨R2), and (obj), from the fact that all cases are disjoint, and from property (*)
(which deals with the two remaining cases). The inductive step is derived from these same facts, from
the inductive hypothesis, and from the standard definition of path length.

F returns contractive derivations: If d1 and d2 are derivations for t1 ≤ t2, v ∈ t1, respectively, then
F (d1,d2) is defined and is a derivation for v ∈ t2.

First, we recall that the definition of F covers all possible cases, then F is always defined on
(d1,d2). Then we show that the tree returned by F is always a derivation, and finally we prove that all
returned derivations are contractive. To prove that all returned trees are derivations, we first observe that
F always returns a tree having shape d

v∈t2
. Again, this comes directly from the definition of F for the

cases (int), (∨R1), (∨R2), and from property (*) (which deals with the two remaining cases). Then the
proof proceeds by induction on the height of the finite derivations approximating F (d1,d2). That is, we
prove that every node whose distance10 from the root has length less or equal than n is obtained with
a correct rule instantiation, for all n. The basis (for n = 0) comes directly from the definition of F for
the cases (int), (∨R1), (∨R2), and from property (*). Let us see case (∨R1) as an example. In this case
we know that F (d1,d2) = (∨L)

F (d3,d4)
v∈u1∨u2

, where d3 is a derivation for t1 ≤ u1, and d3 is a derivation for
v ∈ t1, therefore the root of F (d3,d4) is v ∈ u1, hence u1∨u2 is obtained with a correct instantiation of
rule (∨L). The inductive step is derived from the definition of F for the cases (int), (∨R1), (∨R2), from
property (*), from the inductive hypothesis, and from the standard definition of path length.

We conclude the proof by showing that if d1 and d2 are contractive, then F (d1,d2) is contractive as
well. By contradiction, let us assume that the returned derivation is not contractive, that is, there exists a
sub-derivation containing just applications of memberships rules (∨L) and (∨R). Since (∨R1) and (∨R2)
are the only two cases where an application of membership rule (∨L) or (∨R) is added to the returned
derivation, and cases (∨L) and (distr) may be defined in terms of cases (∨R1) and (∨R2), then such a
sub-derivation can be built by applying only cases (∨R1), (∨R2), (∨L) and (distr) of the definition of
F . Now we observe that if case (distr) occurs, then, by definition of FL given in lemma 4.1, and by
definition of cases (∨R1) and (∨R2), only cases (∨R1) and (∨R2) may occur afterwards; but this means
that d1 contains a sub-derivation built only with rules (∨R1) and (∨R2), that is, d1 is not contractive,
which is in contradiction with the hypothesis. If case (distr) does not occur, and case (∨L) occurs infinite
times, then by definition of cases (∨R1), (∨R2), and (∨L), we deduce that d2 is not contractive, against
the hypothesis. The last possibility is when case (distr) does not occur, and case (∨L) occurs only a finite
numbers of time; but this necessarily means that at a certain point only cases (∨R1) and (∨R2) may
occur, that is, d1 is not contractive, which is in contradiction with the hypothesis. �

5 A complete characterization of the empty type

We have already shown in Section 3 that obj(c, [f1:⊥, f2:t]) ≤ ⊥, where ⊥ is the empty type, that is, the
type s.t. ⊥=⊥∨⊥; therefore, ⊥ and obj(c, [f1:⊥, f2:t]) are equivalent. In fact, besides obj(c, [f1:⊥, . . .]),
there are infinitely many other types equivalent to ⊥, namely, all object types “containing” ⊥.

For instance, the type t = obj(c1, [f :obj(c2, [g:⊥])]) is s.t. JtK = /0. Unfortunately, t ≤⊥ is not deriv-
able from the rules in Figure 1. Indeed, all possible derivations can be built by only applying rules (∨R1)

9Recall that the path from the root to a given node is always finite, even when the tree is infinite.
10Where the distance is the length of the path from the node to the root.

D. Ancona, G. Lagorio 13

and (∨R2), and are, therefore, not contractive. To overcome this problem, we introduce a rule explicitly
dealing with all types equivalent to the empty type. In order to do that, we would need a predicate t ↓⊥
defining all types t equivalent to ⊥. However, the complementary predicate t ↑⊥ turns out to be more
convenient, because of its strong similarity with the membership relation; indeed, a type t is not equiv-
alent to the empty type iff there exists a value v s.t. v ∈ t holds. In this way, it is quite straightforward
to prove that the predicate t ↑⊥ is sound and complete w.r.t. our type interpretation. Hence, our new
subtyping rule is defined as follows.

(empty)
t1 ≤ t2

t1 6 ↑⊥

The definition of t ↑⊥ is quite straightforward.

(↑ ∨L)
t1 ↑⊥

t1∨ t2 ↑⊥
(↑ ∨R)

t2 ↑⊥
t1∨ t2 ↑⊥

(↑ int)
int ↑⊥

(↑ obj)
t1 ↑⊥, . . . , tn ↑⊥

obj(c, [f1:t1, . . . , fn:tn]) ↑⊥

As usual, all derivations have to be contractive, hence they cannot contain sub-derivations obtained by
only applying rules (↑ ∨L) and (↑ ∨R).

Note that if we restrict ourselves to regular types, then the definition of ↑⊥ can be turned into the
following algorithm specified in pseudo-Java code.

b o o l e a n not_empty(type t,stack path) {
i f (t.is_visited ())

r e t u r n path.is_contractive(t);
e l s e {

t.set_visited ();
s w i t c h (t) {

c a s e int: r e t u r n t r u e ;
c a s e t1∨ t2:

path.push(t);
i f (not_empty(t1,path)) {

path.pop ();
r e t u r n t r u e ;

}
res=not_empty(t2,path);
path.pop ();
r e t u r n res;

c a s e obj(c, [f1:t1, . . . , fn:tn]):
path.push(t);
f o r i ∈ 1, . . . ,n {

i f (! not_empty(ti,path)) {
path.pop ();
r e t u r n f a l s e ;

}
}
path.pop ();
r e t u r n t r u e ;

}
}

}

The argument t is the type to be inspected, whereas path contains the stack of visited nodes, which must
be initially empty. Such a stack is used for checking that the found derivation is contractive. Methods

14 Coinductive subtyping for abstract compilation of object-oriented languages into Horn formulas

is_visited and set_visited are used to keep track of visited terms, which correspond to nodes in a
graph. If we end up with an already visited type, then we have an infinite regular path that, however, has
to be contractive, otherwise the corresponding derivation is not valid: method is_contractive checks
whether there is an object type in the sub-path of path from t to the top of the stack. The time complexity
of the algorithm is linear in the number of edges of the graph representing the term, providing that
is_contractive has a constant time11 complexity.

We can now prove that the definition of ↑⊥ is sound and complete w.r.t. the interpretation of types.

Theorem 5.1 (Soundness of t ↑⊥) If t ↑⊥, then JtK 6= /0.

Proof: Similarly to the proof of Theorem 4.1, we coinductively define a function F mapping deriva-
tions for t ↑⊥ to derivations for v ∈ t, for a fixed value v:

F

(
(int)

int ↑⊥

)
= (int)

0 ∈ int
F

(
(∨L)

d
t1∨ t2 ↑⊥

)
= (∨L)

F (d)
v ∈ t1∨ t2

F

(
(∨R)

d
t1∨ t2 ↑⊥

)
= (∨R)

F (d)
v ∈ t1∨ t2

F

(
(obj)

d1, . . . ,dn

obj(c, [f1:t1, . . . , fn:tn]) ↑⊥

)
= (obj)

F (d1), . . . ,F (dn)
obj(c, [f1 7→ v1, . . . , fn 7→ vn]) ∈ obj(c, [f1:t1, . . . , fn:tn])

Not that F fully preserves the shape of derivations, in the sense that only the derived judgments change.
Using a similar, but simpler, proof scheme as adopted for Theorem 4.1, it is possible to prove that the
above definition corresponds to a function F s.t. for all derivations d for t ↑⊥, F (d) is a derivation for
v ∈ t, for a certain v. �

Theorem 5.2 (Completeness of t ↑⊥) If JtK 6= /0, then t ↑⊥.

Proof: The proof is similar to that for soundness, except that here the function definition is even sim-
pler, since it basically forgets the value v in the membership judgment.

F
(

(int)
v ∈ int

)
= (int)

int ↑⊥
F

(
(∨L)

d
v ∈ t1∨ t2

)
= (∨L)

F (d)
t1∨ t2 ↑⊥

F

(
(∨R)

d
v ∈ t1∨ t2

)
= (∨R)

F (d)
t1∨ t2 ↑⊥

F

(
(obj)

d1, . . . ,dn

obj(c, [f1 7→ v1, . . . , fn 7→ vn]) ∈ obj(c, [f1:t1, . . . , fn:tn])

)
= (obj)

F (d1), . . . ,F (dn)
obj(c, [f1:t1, . . . , fn:tn]) ↑⊥

�
This final result allows us to fully reuse the proof of Theorem 4.1 to show that subtyping remains

sound w.r.t. containment between type interpretations, if rule (empty) is added.

Corollary 5.1 The subtyping relation coinductively defined by rules in Figure 1, and by rule (empty) is
sound w.r.t. containment between type interpretations.

11This can be achieved by associating a position with each node in the path, and by recording the minimum position p s.t.
all paths starting from a node whose position is greater than p are non contractive.

D. Ancona, G. Lagorio 15

Proof: It suffices considering the same function F defined in proof of Theorem 4.1, since the new case
(empty) cannot occur; indeed, there exist no derivations d1 and d2 for t1 ≤ t2 and v ∈ t2, respectively, s.t.
the first applied rule of d1 is (empty), because, by the side condition of rule (empty), t1 6 ↑⊥, and, hence,
by Theorem 5.2, Jt1K = /0. �

6 Conclusion

We have studied a subtyping relation on coinductive terms built on object and union types constructors,
by providing a quite natural interpretation based on a membership relation of values to types, and proved
that such a relation is sound w.r.t. containment between type interpretations.

This study has allowed us to improve the original definition of subtyping [2] in two different direc-
tions:

• Contractiveness was too restrictive, since no derivations built only with (∨R1), (∨R2), and (distr)
rules were allowed, whereas the type interpretation and the corresponding proof of soundness given
here have shown that no restrictions on rule (distr) is ever needed. Consequently, the subtyping
relation can be implemented more directly, since, rules (∨R1) and (∨R2) have only one premise,
in contrast with (distr), and, therefore, checking contractiveness of derivations is simpler.

• The definition did not consider all possible representations of the empty type. Consequently a cor-
responding new rule has been added, and a sound and complete characterization of all representa-
tions of the empty type has been provided; when restricted to regular types, such a characterization
directly provides an algorithm for checking whether the interpretation of a type is empty. The time
complexity of the algorithm is linear in the number of edges of the graph representing the term.

References

[1] O. Agesen (1995): The Cartesian Product Algorithm. In: W. Olthoff, editor: ECOOP’05 - Object-Oriented
Programming, Lecture Notes in Computer Science 952, Springer, pp. 2–26.

[2] D. Ancona & G. Lagorio (2009): Coinductive type systems for object-oriented languages. In: S.
Drossopoulou, editor: ECOOP 2009 - Object-Oriented Programming, Lecture Notes in Computer Science
5653, Springer, pp. 2–26.

[3] D. Ancona & G. Lagorio (2010): Idealized coinductive type systems for imperative object-oriented programs.
Technical Report, DISI. Submitted for journal publication.

[4] D. Ancona, G. Lagorio & E. Zucca (2009): Type Inference by Coinductive Logic Programming. In: Post-
Proceedings of TYPES’08, number 5497 in Lecture Notes in Computer Science, Springer.

[5] F. Barbanera, M. Dezani-Cincaglini & U. de’Liguoro (1995): Intersection and union types: Syntax and
semantics. Information and Computation 119(2), pp. 202–230.

[6] Michael Brandt & Fritz Henglein (1997): Coinductive Axiomatization of Recursive Type Equality and Sub-
typing. In: TLCA ’97 - Typed Lambda Calculi and Applications, pp. 63–81.

[7] Michael Brandt & Fritz Henglein (1998): Coinductive Axiomatization of Recursive Type Equality and Sub-
typing. Fundam. Inform. 33(4), pp. 309–338.

[8] B. Courcelle (1983): Fundamental properties of infinite trees. Theoretical Computer Science 25, pp. 95–169.

[9] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman & F. K. Zadeck (1991): Efficiently computing static
single assignment form and the control dependence graph. ACM Transactions on Programming Languages
and Systems 13, pp. 451–490.

16 Coinductive subtyping for abstract compilation of object-oriented languages into Horn formulas

[10] M. Furr, J. An, J. S. Foster & M. Hicks (2009): Static Type Inference for Ruby. In: SAC ’09: Proceedings of
the 2009 ACM symposium on Applied computing, ACM Press.

[11] A. Igarashi & H. Nagira (2007): Union types for object-oriented programming. Journ. of Object Technology
6(2), pp. 47–68.

[12] N.Oxhøj, J. Palsberg & M. I. Schwartzbach (1992): Making Type Inference Practical. In: ECOOP’92 -
European Conference on Object-Oriented Programming, pp. 329–349.

[13] J. Palsberg & M. I. Schwartzbach (1991): Object-Oriented Type Inference. In: ACM Symp. on Object-
Oriented Programming: Systems, Languages and Applications 1991, pp. 146–161.

[14] L. Simon, A. Bansal, A. Mallya & G. Gupta (2007): Co-Logic Programming: Extending Logic Programming
with Coinduction. In: Automata, Languages and Programming, 34th International Colloquium, ICALP 2007,
pp. 472–483.

[15] L. Simon, A. Mallya, A. Bansal & G. Gupta (2006): Coinductive Logic Programming. In: Logic Program-
ming, 22nd International Conference, ICLP 2006, pp. 330–345.

[16] T. Wang & S. Smith (2008): Polymorphic Constraint-Based Type Inference for Objects. Technical Report,
The Johns Hopkins University. Submitted for publication.

[17] Tiejun Wang & Scott F. Smith (2001): Precise Constraint-Based Type Inference for Java. In: ECOOP’01 -
European Conference on Object-Oriented Programming, 2072, Springer, pp. 99–117.

A Appendix: Horn clauses generated by the code examples in Section 2

The last clauses of has_field and has_meth are essential for correctly dealing with inherited fields and
methods, respectively, even though they could be safely omitted here, since classes Zero and Succ do not
inherit any field or method. Note that we have used negation just for brevity, but it can always be omitted
by defining the trivial predicates not_dec_field and not_dec_meth, since dec_field and dec_meth are
simply defined by a collection of ground facts.

Finally, note that the definition of predicate field_acc (for field access) depends on the predicate
rec_acc (for record access) which is defined by a single clause containing just a singleton record;
this is correct thanks to subsumption and subtyping on record types. For instance, since the goal
rec_acc([f1:int],f1,int) is derivable, and [f1:int,f2:obj(c,[])] is a subtype of [f1:int], then
rec_acc([f1:int,f2:obj(c,[])],f1,int) is derivable as well, by subsumption.

class(object).
class(zero).
class(succ).
extends(zero ,object).
extends(succ ,object).
subclass(X,X) ← class(X).
subclass(X,object) ← class(X).
subclass(X,Y) ← extends(X,Z),subclass(Z,Y).
field_acc(obj(C,R),F,T) ← has_field(C,F),rec_acc(R,F,T).
field_acc(T1∨T2 ,F,FT1∨FT2) ← field_acc(T1,F,FT1),field_acc(T1,F,FT1).
rec_acc ([F:T],F,T).
invoke(obj(C,R),M,A,RT) ← has_meth(C,M,[obj(C,R)|A],RT).
invoke(T1∨T2 ,M,A,RT1∨RT2) ← invoke(T1 ,M,A,RT1),invoke(T2 ,M,A,RT2).
new(object ,[],obj(object ,[])).
new(zero ,[],obj(zero ,R)) ← extends(zero ,P),new(P,[],obj(P,R)).
new(succ ,[N],obj(succ ,[pred:N|R])) ← extends(succ ,P),new(P,[],obj(P,R)).
dec_field(succ ,pred).

D. Ancona, G. Lagorio 17

has_field(C,F) ← dec_field(C,F).
has_field(C,F) ← extends(C,P),has_field(P,F),¬dec_field(C,F).
dec_meth(zero ,add).
dec_meth(succ ,add).
has_meth(zero ,add ,[This ,N],N).
has_meth(succ ,add ,[This ,N],R) ← field_acc(This ,pred ,P),new(succ ,[N],S),

invoke(P,add ,[S],R).
has_meth(C,M,A,R) ← extends(C,P),has_meth(P,M,A,R),¬dec_meth(C,M).

	Introduction
	Abstract compilation into Horn formulas
	Subtyping and type interpretation
	Definition of subtyping
	Interpretation of types

	Soundness
	A complete characterization of the empty type
	Conclusion
	Appendix: Horn clauses generated by the code examples in Section 2

