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Abstract. We propose a new type system for Java-like languages which allows compilation
of a class in isolation, that is, in a context where no information is available on other
classes. Indeed, by this type system it is possible to infer the assumptions guaranteeing
type correctness of a class c, and generate (abstract) bytecode for c, by just inspecting the
source code of c. Then, a collection of classes can be safely linked together without further
inspection of the classes’ code, provided that each class has been typechecked in isolation
(intra-checking), and that the mutual class assumptions are satisfied (inter-checking). In
other words, the type systems supports compositional analysis, as formally guaranteed by
the fact that it has principal typings. We also develop an algorithm for inter-checking, and
prove it correct.

1 Introduction

Successful global compilation of (i.e., of all) sources composing an application guarantees that the
resulting target is “sound”. Global compilation is often impractical (e.g., too many, or unavailable
sources). Mainstream object-oriented programming languages, such as Java and C], support the
following notion of separate compilation of fragments: a fragment (e.g., a single class) can be
compiled in a context containing other classes only in binary form. Java and C] do not enforce the
notion of “sound target code” in this case, instead target code is checked at run-time during loading
and verification. A link related exception (e.g., NoSuchFieldError) is thrown if an assumption in a
target fragment is not satisfied. Thus, end users may face perplexing linking errors.

Recent innovative type systems for Java-like languages [2, 1, 3], support separate compilation
in a stronger sense [5], that is, a single source fragment can be compiled in isolation (intra-checked)
in a context where only type information but no code is available on the fragments it depends on.
Then, an executable application can be constructed by linking together a collection of fragments,
provided that their types mutually satisfy the required type assumptions (inter-checking), without
any need to reinspect their code. An obvious property we expect for inter-checking is soundness,
i.e., that successful inter-checking implies successful global compilation. Ideally, we would like
to have completeness as well, i.e., that failing inter-checking implies failing global compilation.
Intuitively, this is guaranteed if we can associate with each fragment a set of type assumptions
and a type (formally, a typing, in the terminology of [9]) which represents all other possible typings
(principal typing), and hence can be used to check compatibility in all possible contexts.

In Java and C] completeness of inter-checking is hard to achieve. This is due to the tight connec-
tion between the compilation environment and the generated bytecode. For example, compilation
of the source method declaration mds:

E m(B x){ return x.f1.f2; }

in an environment ∆1 containing class B with field f1 of type C, and class C with field f2 of type
E, generates bytecode mdb

1 with annotations which reflect the classes where fields were found and
their types, that is:4

E m(B x){ return x[B.f1 C][C.f2 E]; }
4 We use a very high level presentation of bytecode.



However, compilation of mds in an environment ∆2 containing a class B with a field f1 of type D,
and a class D with a field f2 of type F, for some F subclass of E, generates a different bytecode
mdb

2:
E m(B x){ return x[B.f1 D][D.f2 F] }

Formally, we can assign to the fragment containing mds two different (incomparable) typings,
corresponding to the compilation environments ∆1 and ∆2: the former has type constraints includ-
ing5 φ(B, f1,C), φ(C, f2,E), the latter has type constraints including φ(B, f1,D), φ(D, f2,F),F ≤ E.
Hence, if for the fragment containing mds we derive the first typing (in the intra-checking phase),
and then inter-check this fragment with the classes in ∆2, inter-checking fails, even though global
compilation would succeed. In [2, 1, 3] the problem is solved by considering binary as part of the
term to be typed; thus, we get two different principal typings: One reflecting the minimal set of
assumptions leading to the generation of mdb

1, the other reflecting the minimal set of assumptions
leading to the generation of mdb

2. This corresponds to the selective recompilation view, where it
makes sense for inter-checking to fail whenever global compilation would have generated different
bytecode. It also corresponds to the execution view: indeed, execution of mdb

1 in environment ∆1

succeeds (modulo null access errors), but execution of mdb
1 in ∆2 fails (even though ∆2 essentially

does contain what is required by m, namely, the field accesses f1.f2 leading from class B to a
subclass of E).

The approach in [2, 1, 3] works well for selective recompilation, where the type constraints
can be generated the first time an application is globally compiled [7, 8], but does not support
compilation of a single source fragment in a context where no information is available on the
fragments it depends on.

In this paper, we propose a new approach which supports a stronger form of separate compi-
lation: a single source fragment can be compiled in isolation (intra-checked) in a context where
no information is available on the fragments it depends on. We formalize the new approach by
means of a type system where bytecode is considered as part of the type. The key idea is hav-
ing both polymorphic type constraints and bytecode. In this way, it is possible to infer from
the source code the set of type constraints needed for compiling the method declaration, that
is, φ(B, f1, α), φ(α, f2, β), β ≤ E, where α, β are type variables. Correspondingly, the following
polymorphic bytecode mdb is generated:

E m(B x){ return x[B.f1 α][α.f2 β]; }

In this type system, we can assign to each typable fragment a principal typing (actually, exactly
one typing); for instance, in the (principal) typing for the fragment containing mds the set of type
constraints contains φ(B, f1, α), φ(α, f2, β), β ≤ E and the polymorphic bytecode contains mdb.

The rest of the paper is organized as follows: in Sect.2 we introduce a general notion of type
system for separate compilation and inter-checking for Java-like languages. In Sect.3 we present
two type systems, corresponding to the separate compilation approach in [2, 1, 3] and to the new
approach proposed in this paper, respectively. In Sect.4 we describe an algorithm which shows
how inter-checking in the new approach can be effectively performed and state its correctness. We
conclude by discussing some further work.

2 Type systems for separate compilation

In this section we define a schema of type system for separate compilation of Java-like languages,
by listing the basic syntactic categories and judgments such a type system should define. The
monomorphic and the polymorphic type systems from the next section are instances of this schema.

– Source class declarations (cds), binary class declarations (cdb).
– Sequences of source class declarations (S), sequences of binary class declarations (B).

5 A type constraint φ(t, f, t′) reads “t provides field f with type t′”.
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– Class type environments (∆), which are sequences of class type assignments (δ). A class type
assignment is, roughly, the type information which can be extracted from a class declaration
(hence the metavariables ∆ and δ); thus a class type environment corresponds to a program
deprived of bodies.

– Global compilation judgment ` S:∆ ; B: the program consisting of class declarations S has
type ∆ and compiles to B.

– Type constraint environments Γ, which are sequences of type constraints (γ).
– Separate compilation judgment ` cds:δ ; Γ | cdb: the source class declaration cds has type δ

and compiles to cdb under the type constraints in Γ.
– Linking judgment ∆ ` Γ|cdb ; ˆcdb: class type environment ∆ satisfies the type constraints Γ,

and in ∆ binary class declaration cdb becomes ˆcdb.

There are two different approaches to compilation which can be both modelled by the ingredi-
ents from above.

The first approach compiles all class declarations together, as formalized by the global compila-
tion judgment ` S:∆ ; B. The second approach compiles each class cds

i in isolation (intra-checking,
following the terminology in [5]), as formalized by ` cds

i :δi ; Γi | cdb
i , and then checks whether

a linkset (a successfully intra-checked collection of classes) inter-checks, that is, whether these
classes’ mutual requirements are satisfied, as formalized by δ1...δn ` Γ1...Γn|cdb

i ; ˆcdb
i. Notice

that the check does not depend on the source code.

Definition 1. Given a linkset, that is, a sequence L = ` cds
i :δi ; Γi | cdb

i

i∈1..n
of valid separate

compilation judgments, we say that L inter-checks producing binaries B̂ = ˆcdb
1... ˆcdb

n iff δ1...δn `
Γi|cdb

i ; ˆcdb
i holds for i ∈ 1..n.

A type system supports compositional analysis if successful intra-checking and inter-checking
phases produce the same result as global compilation. This is formalized below.

Definition 2. We say that inter-checking is sound w.r.t. global compilation iff, for any linkset L =
` cds

i :δi ; Γi | cdb
i

i∈1..n
, L inter-checks producing B implies ` cds

1...cd
s
n:δ1...δn ; B. We say that

inter-checking is complete w.r.t. global compilation iff, for any linkset L = ` cds
i :δi ; Γi | cdb

i

i∈1..n
,

` cds
1...cd

s
n:δ1...δn ; B implies that L inter-checks producing B.

The monomorphic and the polymorphic type systems define global compilation compositionally,
by the following metarule, which appears both in the monomorphic and polymorphic flavour:

(program)

` cds
i :δi ; Γi | cdb

i ∀i ∈ 1..n

δ1...δn ` Γ1...Γn|cdb
i ; ˆcdb

i ∀i ∈ 1..n

` cds
1...cd

s
n:δ1...δn ; ˆcdb

1... ˆcdb
n

With the rule from above, inter-checking is trivially sound. However, it is not necessarily
complete. Indeed, assume that the program cds

1...cd
s
n successfully compiles to B. In general, we

can derive many separate compilation judgments for a class, therefore, if we chose a “wrong”
type constraint Γj for some class in the linkset L = ` cds

i :δi ; Γi | cdb
i

i∈1..n
(formally, s.t. δ1...δn 6`

Γ1...Γn|cdb
j ; ˆcdb

j), inter-checking L would fail. In the following section, we show that inter-
checking is not complete for the monomorphic type system, but it is complete for the polymorphic
type system, since for each class we derive exactly one separate compilation judgment.

3 Two type systems for separate compilation

In this section, we present two type systems formalizing separate compilation of a small Java-like
language, that is, the one considered in [3] where, for simplicity, we do not allow field hiding and
method overloading. The system in Fig.4 is the same as that defined in [3] (modulo the differences
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S ::= cds
1 . . . cds

n

cds ::= class c extends c′ { fds mdss }
fds ::= fd1 . . . fdn

fd ::= c f;
mdss ::= mds

1 . . . mds
n

mds ::= mh {return es;}
mh ::= c0 m(c1 x1, . . . , cn xn)
es ::= x | es.f | es

0.m(es
1, . . . , e

s
n) | new c(es

1...e
s
n) | (c)es

B ::= cdb
1 . . . cdb

n

cdb ::= class c extends c′ { fds mdsb }
mdsb ::= mdb

1 . . . mdb
n

mdb ::= mh {return eb;}
eb ::= x | eb[t.f t′] | eb

0[t.m(t̄)t′](eb
1, . . . , e

b
n) | new [c t̄](eb

1...e
b
n) | (c)eb | �c, α� eb

t ::= c | α
t̄ ::= t1...tn

Fig. 1. Syntax

in the language and in the notation). It is monomorphic and supports separate compilation of a
class in a context where (only) type information on the classes it depends on is available. The
system in Fig.5 is polymorphic and supports separate compilation of a class in a context where
no information on the classes it depends on is available.

The syntax of the language is defined in Fig.1. It is basically Featherweight Java [6], except for
the minor difference that here class constructors are implicitly declared. Every class can contain
instance field and method declarations and has only one constructor whose parameters correspond
to all class fields (both inherited and declared) in the order of declaration. Method overloading and
field hiding are not supported. Expressions are variables, field access, method invocation, instance
creation and casting; the keyword this is considered a special variable. Finally, in order to allow
simpler typing rules, we assume field names in fds, method names in mdss, parameter names in
mh to be distinct.

As already mentioned, our notion of bytecode is abstract, since the only differences between
source code and bytecode of interest here are the annotations needed by the JVM verifier — recall
that in Java bytecode, a field access is annotated with the static type of the receiver and the type
of the field, a method invocation is annotated with the static type of the receiver, the type of the
parameters and the return type, and an instance creation with the type of the parameters.

In the polymorphic type system, classes are separately compiled into bytecode annotated with
type variables (that is, a meta-variable t denotes either a type variable or a class name), whereas in
the monomorphic system bytecode can be only annotated with class names (that is, a meta-variable
t denotes a class name). Note that polymorphic and monomorphic casting have a different form:
�c, α� eb can be instantiated either into eb, if α is substituted with c′ s.t. c′ ≤ c (casting-up),
or into (c)eb, if α is substituted with c′ s.t. c ≤ c′ (casting-down). For the casting annotation we
use a different notation (double angle brackets rather than square brackets), since this annotation
is only allowed at the polymorphic level.

Class type assignments and type constraints are defined in Fig.2. Type constraints are defined
as in [3] (where they were called local type assumptions), except for c ∼ t, introduced to deal
with casting. As for bytecode, the meta-variable t will be instantiated with type variables in the
polymorphic system, and with class names in the monomorphic system.

Type constraints have the following informal meaning:

– ∃ c means “c must be defined”;
– t ≤ t′ means “t must be a subtype of t′”;
– φ(t, f, t′) means “t provides field f with type t′”;
– µ(t,m, t̄, (t′, t̄′)) means “t provides method m applicable to arguments of type t̄, with pa-

rameters of type t̄′ and return type t′.
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δ ::= (c, c′, fss, mss)
γ ::= ∃ c | t ≤ t′ | φ(t, f, t′) | µ(t, m, t̄, (t′, t̄′)) | κ(c, t̄, t̄′) | c,ms | c,f | t 6< t′ | c ∼ t

fss ::= {fs1, . . . , fsn}
fs ::= c f

mss ::= {ms1, . . . , msn}
ms ::= c m(c̄)

Fig. 2. Class type assignments and type constraints

– κ(c, t̄, t̄′) means “c provides constructor applicable to arguments of type t̄, with parameters
of type t̄′”;

– c,f and c,ms means “c must be extensible with a subclass declaring f and ms, respectively”;
– c 6< c′ means “c must not be a proper subtype of c′”;
– c ∼ t means “c and t must be comparable”.

In Fig.3 we define the two entailment relations `m and `p . The former is used by the rule
defining the linking judgment for the monomorphic system, whereas the latter is used for the same
purpose in the polymorphic system. The only difference between the two, is that `p also deals
with the constraint c ∼ c′.

Intuitively, if ∆`Γ is derivable (either with m, or p subscript), then it means that, under the
assumption that ∆ is well-formed, all type constraints in Γ are satisfied by ∆. Note that entailments
work only on ground type constraints. Type variables are managed by the rule defining the linking
judgment in the polymorphic system.

The rules are intuitive and almost self-explanatory, however more comments can be found in
other papers [3, 1].

In rules (φ-2) and (,-3), the side condition f 6∈ fss means that f is not declared in fss; analo-
gously, in rules (µ-2) and (,-4), m 6∈ mss means that m is not declared in mss.

Rules for intra-checking a class declaration are defined in Fig.4 (monomorphic system) and
Fig.5 (polymorphic system). The straightforward definition of the auxiliary function type, extract-
ing type information from source fragments, is omitted (see [3]). The intuition behind the rules is
the same in the two systems: they just extract all type constraints Γ necessary to compile a given
source fragment into a certain binary fragment. For instance, if Π ` es:c ; Γ | eb is derivable, then,
whenever the type constraints in Γ are satisfied, the expression es with variables described in Π
has type c and can be compiled into eb.

As already explained in the Introduction, the main difference between the two systems is
that the polymorphic system has principal typings, since a unique judgment can be derived for
any class declaration (the proof is immediate); therefore, we can easily define a type inference
algorithm, that is, an effective way for deducing just from the single declaration of c the type and
the (polymorphic) bytecode of c, and the required type constraints. This is not possible for the
monomorphic system, where one needs to know the environment where c is compiled [3, 1].

Both systems use the rule (program) defined in Sect.2 (which is repeated for completeness);
however, the linking judgment needs to be defined.

For the monomorphic system, the linking judgment simply coincides with the entailment rela-
tion `m (see [3]), whereas in the polymorphic system, in order to obtain monomorphic bytecode,
we need to find σ, the right substitution mapping all the type variables into class names.

(m-linking)
∆ `m Γ

∆ `m Γ|cdb ; cdb
(p-linking)

∆ `p σ(Γ)
∆ `p Γ|cdb ; (∆, σ)(cdb)

Instantiation of Γ w. r. t. substitution σ is denoted by σ(Γ); we have omitted the trivial inductive
definition which coincides with conventional variable substitution. Instantiation of cdb w. r. t. ∆
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(ε)
∆ `m ε

(and)
∆ `m Γ ∆ `m γ

∆ `m Γ, γ
(∃)

∆, (c, c′, fss, mss) `m ∃ c (Obj)
∆ `m ∃ Object

(refl)
∆ `m c ≤ c

(trans)
∆, (c1, c2, fss, mss) `m c2 ≤ c3

∆ `m c1 ≤ c3

(φ-1)
∆, (c, c′, fss, mss) `m φ(c, f, c′′)

c
′′ f ∈ fss (φ-2)

∆, (c, c′, fss, mss) `m φ(c′, f, c′′)

∆, (c, c′, fss, mss) `m φ(c, f, c′′)
f 6∈ fss

(µ-1)
∆, (c, c′, fss, mss) `m ci ≤ c′′i ∀ i ∈ 1..n

∆, (c, c′, fss, mss) `m µ(c, m, (c1, . . . , cn), (c′′, (c′′1 , . . . , c′′n)))
c
′′ m(c′′1 , . . . , c′′n) ∈ mss

(µ-2)
∆, (c, c′, fss, mss) `m µ(c′, m, c̄, (c′′, c̄′′))

∆, (c, c′, fss, mss) `m µ(c, m, c̄, (c′′, c̄′′))
m 6∈ mss (κ-1)

∆ `m κ(Object, ε, ε)

(κ-2)

∆, (c, c′, fss, mss) `m κ(c′, (c′1, . . . , c
′
k), (c1, . . . , ck))

∆, (c, c′, fss, mss) `m c′i ≤ ci ∀ i ∈ k + 1..n

∆, (c, c′, fss, mss) `m κ(c, (c′1, . . . , c
′
n), (c1, . . . , cn))

fss = ck+1 fk+1, . . . , cn fn

(,-1)
∆ `m Object,f

(,-2)
∆ `m Object,ms

(,-3)
∆, (c, c′, fss, mss) `m c′,f

∆, (c, c′, fss, mss) `m c,f
f 6∈ fss

(,-4)
∆, (c, c′, fss, mss) `m c′,c′′ m(c̄)

∆, (c, c′, fss, mss) `m c,c′′ m(c̄)
m 6∈ mss ∨ c

′′ m(c̄) ∈ mss (not-sub-1)
∆ `m Object 6< c

(not-sub-2)
∆, (c, c′, fss, mss) `m c′ 6< c′′

∆, (c, c′, fss, mss) `m c 6< c′′
c
′ 6= c

′′
(emb)

∆ `m γ

∆ `p γ
(∼-1)

∆ `p c ≤ c′

∆ `p c ∼ c′
(∼-2)

∆ `p c ∼ c′

∆ `p c′ ∼ c

Fig. 3. Rules for the entailment `m and `p

and σ is denoted by (∆, σ)(cdb); ∆ is needed for dealing with the case �c, α� eb:

(∆, σ)(�c, α� eb) =


(∆, σ)(eb) if σ(α) = c′ and ∆ `p c′ ≤ c
(c)(∆, σ)(eb) if σ(α) = c′ and ∆ `p c ≤ c′

�c, α� (∆, σ)(eb) if α is not substituted by σ
undefined otherwise

In all other cases, instantiation of polymorphic bytecode corresponds to variable substitution.

4 Implementation of the polymorphic type system

In this section we outline the algorithm for implementing the polymorphic type system defined
in the previous section. Except for rule (p-linking), all other rules in Fig.5 can be directly turned
into an algorithm which, given a class declaration, returns its type, its polymorphic bytecode and
the minimal type constraints needed for compiling it.

Implementing the linking judgment is not as straightforward, since the (p-linking) rule does
not describe how to find a substitution σ s.t. ∆ `p σ(Γ).6 An algorithm for finding such a
substitution is described by the pseudo-code in Fig. 6, with the function entails, which processes
type constraints from Γ.

The function entails can process only determined type constraints. Intuitively, a type constraint
γ is determined iff for all ∆ there exists at most one substitution σ s.t. ∆ `p σ(γ). Ground type
constraints (that is, constraints without type variables) are trivially determined, and constraints
of the form φ(c, f, t), κ(c, c̄, t̄), µ(c,m, c̄, (t, t̄)) are also determined. Consider, for instance, a type

6 On the contrary, the entailment ∆ `p Γ can be implemented almost directly [1].
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(m-program)

`m cds
i :δi ; Γi | cdb

i ∀i ∈ 1..n

δ1...δn `m Γ1...Γn|cdb
i ; ˆcdb

i ∀i ∈ 1..n

`m cds
1...cd

s
n:δ1...δn ; ˆcdb

1... ˆcdb
n

(m-class)
`m mdss ; Γ | mdsb

`m class c extends c′ {fds mdss} : (c, c′, fss, mss) ;
Γ′ | class c extends c′ {fds mdsb}

type(mdss) = mss = {ms1, . . . , msn}
type(fds) = fss = {c1 f1, . . . , cm fm}
Γ′ = Γ, c′,msi

i∈1..n, c′,fi
i∈1..m, c′ 6< c

(m-methods)
`m mds

i ; Γi | mdb
i ∀i ∈ 1..n

`m mds
1 . . . mds

n ; Γ1, . . . , Γn | mdb
1 . . . mdb

n

(m-method)
x1:c1...xn:cn `m es:c ; Γ | eb

`m c0 m(c1 x1...cn xn) {return es;} ; Γ, c ≤ c0,∃ ci
i∈1..n | c0 m(c1 x1...cn xn) {return eb;}

(m-parameter)
Π `m x :c

Π `m x:c ; ε | x
(m-field access)

Π `m es:c ; Γ | eb

Π `m es.f:c′ ; Γ, φ(c, f, c′) | eb[c.f c′]

(m-meth call)

Π `m es
0:c0 ; Γ0 | eb

0

Π `m es
i :ci ; Γi | eb

i ∀i ∈ 1..n

Π `m es
0.m(es

1...e
s
n):c ; Γ0, Γ1, . . . , Γn, µ(c0, m, c1...cn, (c, c̄′)) | eb

0[c0.m(c̄′)c](eb
1...e

b
n)

(m-new)
Π `m es

i :c
′
i ; Γi | eb

i ∀i ∈ 1..n

Π `m new c(es
1...e

s
n):c ; Γ1, . . . , Γn, κ(c, c′1...c

′
n, c̄) | new [c c̄](eb

1...e
b
n)

(m-down cast)
Π `m es:c′ ; Γ | eb

Π `m (c)es:c ; Γ, c ≤ c′ | (c)eb
c 6= c

′
(m-up cast)

Π `m es:c′ ; Γ | eb

Π `m (c)es:c ; Γ, c′ ≤ c,∃ c | eb

Fig. 4. Monomorphic separate compilation

constraint µ(c,m, c̄, (t, t̄)). Since the receiver and argument types are determined (indeed, they
are class names and not variables), it is possible to directly check whether the method call specified
by the constraint is correct w.r.t. ∆. If so, we need to match t and t̄ against the return type and
the type of the parameters, respectively, of the method m found in ∆; clearly, such a matching can
be satisfied by one substitution at most (see the straightforward definition of match in Fig. 7). The
function meth performs standard method look-up, and checks whether the types of the arguments
are compatible with the method found; therefore, the function can fail either if the method could
not be found,7 or if the types of the arguments are not compatible with the found method. Similar
considerations apply to the other two forms of type constraints, i.e., φ(c, f, t) and κ(c, c̄, t̄).

When entails successfully processes a type constraint in Γ′, it applies the corresponding com-
puted substitution σ′ to the rest of Γ′, and merges it with the global substitution σ computed so
far. Note that the domains of σ and σ′ are disjoint, therefore σ∪σ′ is always well defined. Indeed,
the domain of σ and the set of type variables occurring in Γ′ are always disjoint. When entails
has successfully processed all constraints, then it succeeds and returns the computed substitution
σ. The algorithm can fail in two cases: either there exists a determined type constraint γ s.t.
process(γ, ∆) fails, or Γ′ is not empty, and contains only undetermined constraints.8

The correctness of entails is formalized by the following claim.

7 This can happen either if meth reaches the Object class, or (in case ∆ is not well-formed) if it reaches
an undefined class, or an already visited class.

8 Note, that the latter case would not happen if entails were only “called” by rule (program), since in
this case, entails would only be applied to environments of the form Γ1, . . . , Γn, where each Γi has been
inferred by compiling a certain class declaration.

7



(p-program)

`p cds
i :δi ; Γi | cdb

i ∀i ∈ 1..n

δ1...δn `p Γ1...Γn|cdb
i ; ˆcdb

i ∀i ∈ 1..n

`p cds
1...cd

s
n:δ1...δn ; ˆcdb

1... ˆcdb
n

(p-class)
`p mdss ; Γ | mdsb

`p class c extends c′ {fds mdss} : (c, c′, fss, mss) ;
Γ′ | class c extends c′ {fds mdsb}

type(mdss) = mss = {ms1, . . . , msn}
type(fds) = fss = {c1 f1, . . . , cm fm}
Γ′ = Γ, c′,msi

i∈1..n, c′,fi
i∈1..m, c′ 6< c

(p-methods)
`p mds

i ; Γi | mdb
i ∀i ∈ 1..n

`p mds
1 . . . mds

n ; Γ1, . . . , Γn | mdb
1 . . . mdb

n

(p-method)
x1:c1...xn:cn `p es:c ; Γ | eb

`p c0 m(c1 x1...cn xn) {return es;} ; Γ, c ≤ c0,∃ ci
i∈1..n | c0 m(c1 x1...cn xn) {return eb;}

(p-parameter)
Π `p x :c

Π `p x:c ; ε | x
(p-field access)

Π `p es:t ; Γ | eb

Π `p es.f:α ; Γ, φ(t, f, α) | eb[t.f α]
α fresh

(p-meth call)

Π `p es
0:t0 ; Γ0 | eb

0

Π `p es
i :ti ; Γi | eb

i ∀i ∈ 1..n

Π `p es
0.m(es

1...e
s
n):β ; Γ0, Γ1, . . . , Γn, µ(t0, m, t1...tn, (β, ᾱ)) | eb

0[t0.m(ᾱ)β](eb
1, . . . , e

b
n)

β,ᾱ fresh

(p-new)
Π `p es

i :ti ; Γi | eb
i ∀i ∈ 1..n

Π `p new c(es
1...e

s
n):c ; Γ1, . . . , Γn, κ(c, t1...tn, ᾱ) | new [c ᾱ](eb

1...e
b
n)

ᾱ fresh

(p-cast)
Π `p es:t ; Γ | eb

Π `p (c)es:c ; Γ, c ∼ t | �c, t� eb

Fig. 5. Polymorphic separate compilation

Claim. Let ` cds
i :δi ; Γi | cdb

i be a valid judgment, for all i ∈ 1..n and let ∆ = δ1, . . . , δn, and
Γ = Γ1, . . . , Γn. Then,

1. the selection order of determined constraints in Γ does not affect the outcome of entails(∆, Γ);
2. if entails(∆, Γ) = σ, then ∆ `p σ(Γ) holds;
3. if entails(∆, Γ) fails, then there exists no σ s. t. ∆ `p σ(Γ) holds.

5 Conclusion

The main contribution of this paper is a type inference algorithm, that derives exact type require-
ments for inter-checking in a Java-like language. To our knowledge, ours is the first such algorithm.
For simplicity, we have illustrated our approach on a simple language; however, the basic idea can
be generalized with no substantial difficulty to other features, such as field shadowing and method
overloading.

This result can be exploited in several, different ways. Firstly, it can be directly applied to the
development of alternative compilation mechanisms for Java-like languages based on intra-checking
and inter-checking phases. Such compilation mechanisms would support separate compilation in
the absence of any information on the imported classes, whereas in the previous approach in [2, 3]
type constraints had to be provided by the programmer. Secondly, it can be applied in selective
recompilation mechanisms, in the same spirit of [7, 8], but with the difference that recompilation
only amounts to bytecode instantiation. Finally, execution of bytecode containing type variables
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Input: ∆ class type environment, Γ type constraint environment

Output: either succeeds by finding a unique substitution σ s.t. ∆ `p σ(Γ) holds, or fails

Pseudo-code:

entails(∆, Γ){
Γ′ := Γ; σ := ε
while Γ′ 6= ε {

if ∃ γ ∈ Γ′ s. t. γ is determined {
σ′ := process(γ, ∆)
Γ′ := σ′(Γ′ \ {γ})
σ := σ ∪ σ′

}
else fail

}
return σ

}

process(γ, ∆){
if γ is ground and ∆ `p γ holds

return ε
else if γ = φ(c, f, t) {
c′ := field(∆, c, f); return match(c′, t)

}
else if γ = κ(c, c̄, t̄) {
c̄′ := cons(∆, c, c̄); return match(c̄′, t̄)

}
else if γ = µ(c, m, c̄, (t, t̄)) {

(c, c̄′) := meth(∆, c, m, c̄)
return match((c′, c̄′), (t, t̄))

}
}

Fig. 6. Linking algorithm

match(c̄, t̄){
c̄′ := c̄; t̄′ := t̄; σ := ε
while c̄′ = c, c̄′′ and t̄′ = t, t̄′′ {

if t is a variable α { t̄′ := {α 7→ c}(t̄′′); σ := σ ∪ {α 7→ c} }
else if t = c {t̄′ := t̄′′}
else fail
c̄′ := c̄′′

}
if c̄′ = ε and t̄′ = ε return σ else fail

}

Fig. 7. Definition of the match function

could either replace all type variables first, in a step corresponding to inter-checking, or could sub-
stitute type variables lazily, during dynamic linking and loading; some initial exploration appears
in the companion paper [4].

Further work also includes the obvious extensions of our polymorphic model, e.g., to encompass
field hiding and overloading, and also, the extension of the source language so that it may contain
type variables as well.
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