
Overloading and Inheritance in Java

(Extended Abstract)

Davide Ancona1, Elena Zucca1, and Sophia Drossopoulou2

1 DISI, University of Genova
2 Department of Computing, Imperial College

fzucca,davideg@disi.unige.it sd@doc.ic.ac.uk

Abstract. The combination of overloading and inheritance in Java in-
troduces questions about function selection, and makes some function
calls ambiguous. We believe that the approach taken by Java designers
is counterintuitive. We explore an alternative, and argue that it is more
intuitive and agrees with the Java rules for the cases where Java con-
siders the function calls unambiguous, but gives meaning to more calls
than Java does.

1 Overloading and Inheritance

Overloading, already present in the seventies (LIS, Ada, Hope), allows the de�-
nition of several, di�erent, functions with the same name and di�erent parame-
ter types. Thus, the programmer is freed from the burden of dreaming di�erent
identi�ers for functions which perform essentially the same operation, but on dif-
ferent types of parameters. Overloading is usually resolved statically1, namely,
the function that �ts the actual parameter types is selected. Thus, overloading
resolution corresponds to consistent renaming of the function de�nitions and the
corresponding function calls.

Inheritance, already present in the sixties (Simula), allows classes to be or-
ganized in a class hierarchy, and either to inherit functions from their superclass
or to rede�ne these functions. When a function is called for a certain object, the
function from the most speci�c superclass is called. Resolution for inheritance
can only take place at run-time, and depends on the dynamic class of the re-
ceiver. Inheritance introduces subtyping, namely an object of a subclass may be
used where an object of a superclass is expected.

The combination of subtyping and overloading is not straight-forward, since
now more than one method may �t the types of the arguments of a function call.

Java overloading resolution Assume that Oyster is a subclass of Food, and that
aPhl, pascal, aFood and anOyster are variables of type Phil, FrPhil, Food and
Oyster respectively. Consider the following example:

1 Dynamic resolution is also possible, as it actually happens in object-oriented lan-
guages for the �rst argument and for all arguments in languages with multimethods;
see [1] for a deep analysis of the di�erence. In this paper, we only consider overloading
with static resolution.

class Phil extends Object f
int eat (Food x) f return 1; g
int eat (Oyster x) f return 2 ;g

g

class FrPhil extends Phil f
int eat (Food x) f return 3; g

g

For the method call aPhl.eat (anOyster), two methods are applicable,
both declared in the class Phil: one with parameter type Food (returning 1) and
one with parameter type Oyster (returning 2).

In cases where several methods are applicable, Java (and C++ before) took
the approach of selecting the method that \�ts" best, calledmost speci�c.2 In the
call from above, it is clear that the method with parameterOyster �ts better than
the method with parameter Phil, therefore this method is selected. In general,
if many methods declared in the same class are applicable, then that with most
speci�c argument's type is selected, if any, otherwise3 the call is ambiguous.

Much less obvious is the case when we have to compare methods declared
in di�erent classes, like in the method call pascal.eat (anOyster). Here, both
the method returning 2 and that returning 3 are applicable, and in Java's view
none �ts better than the other, hence the method call is ambiguous.

In our experience, many people (even with a deep knowledge of Java) are
unaware of the implication of the Java overloading resolution in this case, and
expect on the contrary that the method returning 2 is selected. In our opinion
this is so, because the latter solution corresponds to an intuitive understanding
of inheritance semantics. This is explained in the next section.

Alternative overloading resolution In our view the method call pascal.eat (anOyster)
should not be ambiguous, and should return 2. This view is based both on
methodological and language semantics reasons.

On the methodological side, an implication of the Java rule is that program-
mers who use a class and want to be aware of how method overloading will be
resolved need to know not only which methods are inherited, but also the exact
class containing the de�nition of these inherited methods. This conicts with
a modular approach to software development where all the information needed
for the correct use of a module (class in this case) should be provided by its
speci�cation alone.

For instance, the speci�cation of class FrPhil states that this class has two
methods int eat (Food x) and int eat (Oyster x). However, with this
information only, users cannot know which will be the e�ect of the call pascal.eat
(anOyster).

2 Another solution would be to avoid the occurrence of such situations where several
methods are applicable, and forbid the de�nition of overloaded methods with param-
eter types with non-empty intersections of sets of values. This would make the class
Phil from above illegal. However, such a solution would restrict overloading only to
non-class, non-interface parameter types, since the value null belongs to all classes.

3 For instance, if there are two applicable methods with two arguments with types
Food,Oyster and Oyster,Food, respectively.

The counterpart at the level of language semantics is that inheritance should
be explainable as a mechanism for code sharing. In other words, a natural intu-
itive understanding of inheritance is as a linguistic mechanism allowing to get
for free the same e�ect that one could obtain \by hand" by duplicating parent's
code in the heir. Thus, the subclass FrPhil should be equivalent to a copy of Phil,
where the overriden methods of Phil are replaced by the corresponding methods
from FrPhil. That is, FrPhil should be equivalent to FrPhil by Copy, de�ned as:

class FrPhil by Copy extends Phil f
int eat (Oyster x) f return 2; g
int eat (Phil x) f return 3; g

g

Then, for a variable rousseau of class FrPhil by Copy, the call rousseau eat
(anOyster), would be unambiguous, and would return 2. Therefore, by analogy,
the call pascal.eat (anOyster) should return 2 as well!

2 The alternative approach \subsumes" the Java
approach

The alternative approach corresponds to the Java approach for all cases where
Java considers the method call unambiguous. As we have seen, in some cases
where Java considers the call ambiguous the alternative gives it an unambiguous
meaning.

The rest of the paper is devoted to the proof of this claim.
For simplicity, and without restricting the applicability of our result, we

assume that all methods have one parameter.
Moreover, we start from considering only non-abstract classes. The general-

ization to interfaces and abstract classes requires more involved de�nitions and
will be considered in the full paper [2].

Both the Java approach and the alternative approach start from the same
set of applicable methods, which are all the methods of the receiver's class, either
directly declared or inherited (that is, declared in a superclass and not overidden,
cf. [3] 15.11.1) , which are type compatible with the given method call, cf. [3]
15.11.2.1), but they di�er in the way they consider methods to \�t better" than
others.

Sets of applicable methods are denoted by A, A0 etc., and contain method
types. Method types consist of the class containing the method declaration, the
argument type and the result type.

For example, the applicable methods for the call aPhl.eat (anOyster) are
A1 = f< Phil;Food; int >;< Phil;Oyster; int >g.

Also, the applicable methods for the method call pascal.eat (anOyster), are
A2 = f< Phil;Oyster; int >;< FrPhil;Food; int >g.

In Java, a method \�ts better" than another one if the former is de�ned in a
subclass of where the latter is de�ned and the argument types of the �rst widen4

to the corresponding argument types of the second, cf. [3] 15.11.2.2.

4 A type t widens to another type t0 if they are identical, or t is a subclass of t0, or t

is a subinterface of t0, or t is a subclass of a class that implements a subinterface of
t0, cf. [3] 5.1.4 .

On the other hand, for the alternative de�nition, a method \�ts better" than
another one if the argument types of the former widen to the corresponding
argument types of the latter.

So, we de�ne the following two ordering relationships on method types:

{ < t1; t2; t3 > �j < t0
1
; t0

2
; t0

3
> i� t1 subclass of t0

1
and t2 widens to t0

2

{ < t1; t2; t3 > �a < t0
1
; t0
2
; t0

3
> i� t2 widens to t0

2

Notice that, by de�nition of applicable methods, there can be at most one
applicable method with a given name and argument type, hence the ordering
relationship �a can be equivalently de�ned as follows:

< t1; t2; t3 > �a < t0
1
; t0

2
; t0
3
> i� t2 widens to t0

2
, t2 6=t0

2
, or

t2=t0
2
and t1 subclass of t0

1

The equivalence follows from the fact that if t2 = t0
2
then also t1 subclass

of t0
1
for the reason explained above. This formulation point out that the two

ordering relationships correspond to two di�erent ways of combining the ordering
relationships existing on the �rst and second component of method types, that
is, componentwise and lexicographical from right to left.

For example,< Phil;Oyster; int > �j < Phil;Food; int >, and similarly, in the
alternative approach, < Phil;Oyster; int > �a < Phil;Food; int >. This makes
the call aPhl.eat (anOyster) unambiguous in both approaches.

On the other hand, < Phil;Oyster; int > �a < FrPhil;Food; int >, but the
method types are incomparable in the sense of �j . So, pascal.eat (anOyster)
is unambiguous in the alternative approach and ambiguous in Java.

It is easy to see that both �j and �a are reexive and transitive. The
relation �j is antisymmetric if the program is well-formed (i.e., if the subclass
relationship is acyclic), whereas the relation �a is not antisymmetric: a coun-
terexample would be a method de�ned in class c1 and de�ned with the same
parameter type in whichever di�erent class c2. Also, one can immediately see
that �j is stronger than �a , i.e., that:

< t1; t2; t3 > �j < t0
1
; t0

2
; t0

3
>) < t1; t2; t3 > �a < t0

1
; t0

2
; t0

3
>

Finally, the type of a method call with applicable methods A is de�ned as
the return type of the least method type from A in the sense of the ordering
either �j (in Java) or �a (in the alternative). If this minimum does not exist,
then the method call is ambiguous.

It only remains to be shown that if a set A of applicable methods has a least
element in the sense of �j then this is also the least element in the sense of �a

. This is easy, because �j implies �a .
This completes the proof that the alternative approach is a conservative

extension of the Java approach, in the sense that it gives the same meaning to
all the method calls which are unambiguous for Java.

Another alternative As stated above, the two ordering relationships correspond
to two di�erent ways of combining the ordering relationships existing on the �rst
and second component of method types. It is natural therefore to also consider
a third possibility, which corresponds to lexicographical order from left to right,
that is:

< t1; t2; t3 > �a2 < t0
1
; t0

2
; t0

3
> i� t1 subclass of t0

1
, or

t1=t0
1
and t2 widens to t0

2

Such a rule resolves overloading by selecting the method that �ts �rst. It
searches from the most speci�c subclass following the superclass hierarchy up-
wards, and only takes those overloaded methods into account which were de-
clared in the �rst superclass that contains applicable methods. With this rule
the method call pascal.eat (anOyster) would select the method returning 3.
However, this does not inuence of course the Java rule for overriding; so, for
instance, in the call aPhil.eat(anOyster) the method declared in Phil with
argument type Oyster is selected (and kept at run time) even in the case aPhl
has dynamic type FrPhil.

It is easy to see that this alternative too is conservative (and less restrictive)
w.r.t. Java rule; indeed, also �a2 is implied by �j . We will further investigate
the methodological implications of this third possibility.

3 Outline of the full paper

We have argued that the Java approach to overloading resolution considers am-
biguous some method calls which would have a meaning if we had taken a more
intuitive view of inheritance, based on copying. We have given an alternative rule
for overloading resolution which gives meaning to more calls than Java does and
gives the same meaning as Java when Java considers a method call unambiguous,
and have proven this result.

We briey illustrate now which are the further topics which will be developed
in the full paper [2].

Methodological aspects We will include a survey of the design space of the se-
mantics of method overloading in the presence of subtyping. In particular we will
discuss more extensively advantages and disadvantages of the di�erent possible
choices and analyze what happens in other object-oriented languages, notably
in C++.

Extension to abstract classes and interfaces The main di�erence w.r.t what has
been previously presented is that when considering also abstract classes and
interfaces more than one method with the same signature an be inherited, as
explicitly stated in [3] 8.4.6.4.

Hence, now in applicable methods there can be two methods with the same
name and argument type.

For instance in the following example

interface I1 f
void m () ;

g

interface I2 f
void m () ;

g

interface I extends I1; I2 f
g

the applicable methods for a call i:m() with i of type I are

f< I1; void; void >;< I2; void; void >g:

Hence this call should be ambiguous following the Java rule in [3] (even
though di�erent Java compilers have di�erent, and sometimes obscure, behaviour
on this and similar examples), while the alternative approach corresponds to
assume that the interface I has just one method void m(), regardless of how
many copies have been inherited, hence the call is not ambiguous.

We will show that it is possible to generalize the previous formalization of
the two rules and that the result that �a is a conservative extension of �j still
holds.

An interesting remark is that the above situation shows that there is a con-
tradiction in [3] between the de�nition of overloading given in 8.4.7 and the rule
for overloading resolution, and that this contradiction disappears if one considers
the alternative rule.

Copy semantics of inheritance We have repeatedly stated that the alternative
approach corresponds to an intuitive interpretation of inheritance as a mecha-
nism achieving the same e�ect one would have by copying parent's code in the
heir. In some more detail, that means that a simple way for expressing inheri-
tance semantics is to translate a Java program in an intermediate representation
(which we call Flat Java) consisting, roughly speaking, of a subtype-hierarchy
part and a collection of \at" classes (that is, without any extends or implements
clause). Methods of one of these classes are all the methods (either directly
declared or inherited) of the original Java class.

In Flat Java there is no longer notion of inheritance, hence in method calls
there is no need for method look-up. Of course, the information about the sub-
typing relation is still needed, but only for type-checking bodies of methods,
while no information about that is needed at run time.

This model corresponds to a natural intuitive understanding of the basic
inheritance mechanism in object-oriented languages; some more sophisticated
features of Java, like the super mechanism and the possibility of hiding �elds, do
not have a direct copy semantics but can be easily simulated.

In [2] we will provide a formal de�nition of copy semantics by means of a
translation from Java into Flat Java and show that, for what concerns overload-
ing, copy semantics leads to the alternative approach we proposed, while the
Java rule is not directly expressible.

References

1. G. Castagna. Object-Oriented Programming: A Uni�ed Foundation. Progress in
Theoretical Computer Science. Birkh�auser, 1997.

2. D. Ancona, E. Zucca, and S. Drossopoulou. Overloading and inheritance in Java.
Technical Report, Dipartimento di Informatica e Scienze dell'Informazione, Univer-
sit�a di Genova, 2000. In preparation.

3. J. Gosling, B. Joy, and G. Steele. The Java
TM

Language Speci�cation. Addison-
Wesley, 1996.

