
A Core Calculus for Java Exceptions?

(Extended Abstract)

Davide Ancona, Giovanni Lagorio, and Elena Zucca

DISI - Universit�a di Genova

Via Dodecaneso, 35, 16146 Genova (Italy)

email: fdavide,lagorio,zuccag@disi.unige.it

Abstract. In this paper we present a simple calculus (called CJE) corresponding to a

small functional fragment of Java supporting exceptions. We provide a reduction semantics

for the calculus together with two equivalent type systems; the former corresponds to the

speci�cation given in [5] and its formalization in [4], whereas the latter can be considered an

optimization of the former where only the minimal type information about classes/interfaces

and methods are collected in order to type-check a program. The two type systems are proved

to be equivalent and a subject reduction theorem is given.

1 Introduction

The aim of this paper is to deeply investigate the exception mechanism of Java (in particular

its interaction with inheritance) by means of a simple calculus, called CJE for Calculus of Java

Exceptions.

Although calculi for Java exceptions have been considered already in [3, 2], much still has to

be said about this topic; indeed, the approach taken here originates from [2] and presents several

interesting novelties in comparison with [3].

First, we have deliberately omitted from the calculus all the features which we consider orthog-

onal w.r.t. the exception mechanism in Java. Indeed here, following the approach of Featherweight

Java (abbreviated FJ) in [6], the idea is to keep the calculus as simple as possible rather than

trying to give a soundness result for the whole Java language.

Even though it is certainly useful to have a full formal description of the semantics of Java

(and [4, 3] go toward this direction), we think that, when proving speci�c properties or trying to

clarify some tricky point in the informal speci�cation, it is better to separate the concerns and to

consider an essential subset of the language. As a result, the subject reduction proof we give for

CJE is rather simple and compact.

Since in this paper we want to focus on Java exception handling, CJE clearly includes all the

linguistic mechanisms for handling exceptions (finally excluded1), but many others are omitted;

among them, �elds, method overloading (even though not completely, see the discussion below

about abstract classes), constructors, super and even assignment; indeed, like FJ, CJE has no

statements (hence is a functional language). More precisely, the calculus has only four constructs:

method invocation, object creation and the throw, try and catch expressions.

On the other hand, we have not omitted abstract classes since there are some subtle points

in the rules of the Java language speci�cation [5] for checking conicts in the throws clause and

such rules are particularly complex for abstract classes. These problems do not emerge from the

formalization given in [4, 3] where abstract classes are not considered.

Second, we are interested in another kind of simpli�cation which corresponds to minimizing

the information associated with classes and interfaces needed in order to type-check a program.

Indeed, the type information about classes and interfaces used in the type system de�ned in [4, 3]

? Partially supported by Murst - TOSCA Teoria della Concorrenza, Linguaggi di Ordine Superiore e

Strutture di Tipi and APPlied SEMantics - Esprit Working Group 26142.
1 The finally clause makes no sense in a functional setting; on the other hand, the extension of the type

system to include such mechanism does not imply any problem.

is somehow redundant. Avoiding such redundancy makes, in our opinion, the type system clearer

and helps to shed some light on the obscure points of the Java speci�cation given in [5] (which

can be easily misinterpreted, as shown in the example in Sect.2).

However, this kind of minimization, even though advocated for sake of clarity, neither necessar-

ily implies a simpli�cation of the proofs, nor aims at making type-checking of Java more eÆcient

(even though, in principle, it could be the case and this matter deserves further investigation).

In Sect.2 we give a paradigmatic and motivating example used for showing the complexity of

the rules for the compatibility checks of throws clauses and for explaining the notion of minimal

type. Sect.3 is an outline of the formal de�nition of the calculus and of the main technical results.

Finally, in Sect.4 we draw some conclusion and claim that some modi�cation to the Java language

could partly avoid the complexity of the rules.

An extended version of this paper can be found in [1].

2 A paradigmatic example in Java

Consider the following Java code fragment:

interface I {

void m1() throws E1;

void m2() throws E1;

void m3();

}

abstract class C1 {

public abstract void m1() throws E0,E2;

public void m2() throws E0{}

public void m3() throws E0{}

}

abstract class C2 extends C1 implements I {

public abstract void m3();

}

If we assume that E0, E1 and E2 are exception types s.t. E0 ��

c
E1 ��

c
E2 (where ��

c
corresponds to

the subclass relation determined by an environment � of classes/interfaces corresponding to a Java

program; see Sect.3), then the declaration of the class C2 is statically correct. Indeed, according

to [5] 8.4.6.4, methods m1 of I and m1 of C1 are both inherited by C2 and no compatibility check

for the throws clauses is required; note that if m1 were not abstract in C1 then the code would

be not correct. Indeed, in that case m1 in C1 would override, and therefore implement, m1 in I

and a compatibility check for the throws clauses (which clearly would fail since E2 6��

c
E1) would

be required.

On the other hand, m2 in C1 overrides m2 in I, therefore the compatibility check has to be

performed and in this case it is passed since E0 ��

c
E1.

Finally, m3 in C2 overrides m3 in I and C1, hence the two corresponding checks have to be

performed, whereas no check is needed between m3 in I and m3 in C1; note that this last check

would be performed and would fail if m3 were not in C2.

From this example it should be clear that a type system modeling compatibility checks for

exceptions in presence of an inheritance hierarchy including interfaces and abstract classes is

really needed. Indeed, such a type system would provide a formal basis for understanding what

is going on and whether these complex rules are really necessary or, rather, it is better to take a

simpler approach by somehow restricting the language, as briey discussed in Sect.4.

Let us now show what we mean by simpli�cation of types. According to [5] and its formalization

in [4, 3], the type information associated with the class C2 can be expressed as follows:

{void m1() throws E1; void m1() throws E0,E2;

void m2() throws E0; void m3()}

First, we can notice that the clause throws E0,E2 contains some redundancy, since it is equivalent

to throws E2, by virtue of the hypothesis E0 ��

c
E2; hence, we can apply a simpli�cation step to

the type above obtaining a new type where all the throws clauses are minimal.

The other redundacy is that the method void m1() is repeated twice, whereas for type-checking

classes/interfaces it is enough to have a unique occurence where the throws clause is obtained by

means of a sort of \intersection" operator (which formally corresponds to take the greatest lower

bound w.r.t. the natural order for exception sets); therefore, applying this second simpli�cation

step we obtain the minimal type

{void m1() throws E1; void m2() throws E0; void m3()}.

3 Formal de�nitions and results

The abstract syntax and the reduction semantics of CJE are given in Fig.1 and 2, respectively.

In the syntax we use the notation A
� to indicate a sequence of zero or more occurrences of A

and A
~ (resp. A�) to indicate a set (resp. non empty set) of occurrences of A, that is, a sequence

in which there are no repetitions and the order is immaterial. The terminals iname and cname

indicate interface and class names respectively. A generic name is indicated by name.

Note that since CJE is a functional language, the throw and the try and catch constructs are

not statements, as happens in Java, but expressions; furthermore, for sake of simplicity, the throw

expression is built on top of class names (corresponding to exception names) rather than generic

expressions.

The metavariable E ranges over expr , C over class names and m over method names.

There are two kinds of normal forms: those having form new C, corresponding to normal

program terminations evaluating into an object of class C, and those of the form throw C, corre-

sponding to abnormal program terminations throwing the exception C.

The reduction relation !�, the auxiliary function Body� and the subclass relation ��

c
are all

indexed by � which is the environment of classes/interfaces w.r.t. which the reduction is performed;

more precisely, � represents a Java program P and associates with any class/interface name the

corresponding declaration in P .

The auxiliary function Body�, whose de�nition has been omitted for lack of space, performs

method look-up in the environment �: Body�(C ;m) returns the tuple hE; x1 : : : xni corresponding

to the body and the formal parameters, respectively, of the method named m found when starting

look-up at the class C in the environment �; if the method is not found, then Body�(C ;m) is

unde�ned.

Two di�erent type systems are considered. The former, which we call full , corresponds to

the speci�cation given in [5] and formalized in [4, 3], whereas the latter, which we call mini-

mal, uses minimal types. For lack of space Fig.3 contains only the rules for type assignment to

classes/interfaces (see [1] for the complete set of rules).

The type of a class/interface is a pair consisting of a �elds type and a methods type. A �elds

type is a set of �elds, that is, pairs consisting of a �eld name and a �eld type; a methods type is a

set of methods, that is, pairs consisting of a method name quali�ed by the types of the arguments

(what is usually called a signature) and a triple consisting of the kind (abstract or not abstract),

the return type and the set of declared exceptions.

The rules in Fig.3 have the same structure for both the full and the minimal type systems.

What changes is the de�nition of the auxiliary sum functions
�

� used for de�ning the rules (see

below).

The �rst rule de�nes the type of an interface I , which consists of an empty �elds type and a

methods type which is the sum of the methods types of the direct superinterfaces (I 0 s.t. I <1
i
I
0

in �), updated by the methods MST declared in I .

The second rule de�nes the type of a class C. The �eld types consists in the �elds type FST
0

of the direct superclass updated by the �elds FST declared in C. The methods type consists of

the sum of the methods types of the implemented interfaces (I s.t. C �1
i
I in �) and the abstract

prog ::= decl
~

decl ::= idecl j cdecl
type ::= iname j cname

exc-type ::= cname
~

cdecl ::= [abstract] class cname extends cname

implements iname
~ f meth

~ g
idecl ::= interface iname extends iname

~ f imeth
~ g

params ::= (h type name i�)
imeth ::= abstract type name params throws exc-type

meth ::= instance type name params throws exc-type f expr g j
imeth

expr ::= name j
new cname j
throw cname j
expr :name(expr~) j
try expr hcatch cname expri�

Fig. 1. Syntax

methods of the superclass C 0, updated by the non abstract methods of C 0 updated in turn by the

methods MST declared in C. The last side condition expresses the constraint that a class with

abstract methods must be declared abstract (see [5] 8.4.3.1).

The auxiliary update operations on �elds and methods types, written [], return a new �elds

(resp. methods) type obtained updating the �rst argument with new �elds (resp. methods), if this

is possible, accordingly with Java rules on hiding, overloading and overriding (see [5] 8.4.6 and

8.4.7). For instance, updating a methods type is unde�ned if we try to override a method with

another which has the same signature and incompatible throws clause.

The sum operation
�

� is just set union in the full type system, whereas in the minimal type

system it is a modi�ed union that can merge method types as illustrated in Sect.2. More precisely,

merging two method types having ES and ES
0 as sets of declared exceptions, respectively, produces

just one method type whose set of declared exceptions is the \intersection" of ES and ES
0 de�ned

by

C 2 ES
�

 ES
0 i� either C 2 ES and 9C 0 2 ES

0
s :t : � ` C � C

0 or conversely.

When trying to sum two methods with the same signature, the operation is de�ned (in both

versions) only if such methods have the same return type.

The two auxiliary functions Abstract and NonAbstract return the set containing only the

abstract and non abstract methods, respectively.

For the formal de�nition of update and sum operations see [1].

In order to state that the full and minimal type systems are equivalent, for each type envi-

ronment � (containing all the type information about the classes and interfaces in a program) we

de�ne a function simp
�
: FullTypes ! MinTypes which, given a full type � , returns its simpli�ed

version simp
�
(�), that is, a minimal type. This function is indexed by � since the simpli�cation

depends on the subclass and subinterface relations which holds for a given program, as explained

in Sect.2.

Actually, the function simp
�
is a logical relation��� FullTypes�MinTypes de�ned by � �� �

0

i� simp
�
(�) = �

0. This relation is used in the following theorem stating the equivalence of the full

and minimal type systems.

Theorem 1 (Equivalence of the Type Systems). For any type environment � , CJE expres-

sion E and type � , if � `f E:� then there exists �
0
s.t. � `m E:� 0 and � �� �

0
. Conversely, if

� `m E:� then there exists �
0
s.t. � `f E:�

0
and �

0 �� � .

E !� E
0

E:m(E1; : : : ; En)!� E
0
:m(E1; : : : ; En)

(throw C):m(E1; : : : ; En)!� throw C

Ei !� E
0

i

new C:m(new C1; : : : ; new Ci�1; Ei; : : : ; En)!�

new C:m(new C1; : : : ; new Ci�1; E
0

i; : : : ; En)

new C:m(new C1; : : : ; new Ci�1; throw Ci; : : : ; En)!� throw Ci

new C:m(new C1; : : : ; new Cn)!�

Efx1 7! new C1; : : : ; xn 7! new Cn; this 7! new Cg

hE; x1 : : : xni = Body�(C ;m)

E !� E
0

try E catch C1 E1 : : : catch Cn En !�

try E
0
catch C1 E1 : : : catch Cn En

try new C catch C1 E1 : : : catch Cn En !� new C

try throw C catch C1 E1 : : : catch Cn En !� Ei

8 i; j = 1 : : : n

C ��
c Ci ^

(j < i) C 6��
c Cj)

try throw C catch C1 E1 : : : catch Cn En !� throw C

8 i = 1 : : : n

C 6��
c Ci

Fig. 2. Reduction rules

Here � `f E:� and � `m E:� 0 are the usual typing judgments for expressions in the full and

the minimal type system, respectively.

As usual, the theorem can be proved by induction on the typing rules and by proving analogous

properties for all the other judgments of the system. For instance we expect also the following

property to hold: for any type environment � , � `f � i� � `m �, where � `f � and � `m �

are the judgments for well-formed type environments in the full and the minimal type system,

respectively.

Another important property that we prove is subject reduction.

Theorem 2 (Subject Reduction). For any type environment � , class/interface environment

�, CJE expressions E, E
0
and type � , if � `f E:� , � `f � � and E !� E

0
, then there exists a

type �
0
s.t. � `f E

0:� 0 and � `f �
0 � � .

Here � `f � � is the judgment for well-formed class/interface environments � w.r.t. a given

type environment � .

The subject reduction property for the simpli�ed system follows by virtue of the equivalence

stated in Theorem 1 and by the following two properties:

{ � `m � � implies � `f � �;
{ � `f �

0

f
� �f , �f �� �m, �

0

f
�� �

0

m
implies � `m �

0

m
� �m.

4 Conclusion

We have presented a core calculus for Java exceptions, de�ned its reduction semantics and two

provably equivalent type systems, and proved subject reduction for it.

� ` I isi MST � `MST�InterfaceType
� ` I1 : ; MST1 : : : � ` In : ; MSTn

� ` I : ; (MST1

�

� : : :

�

�MSTn)[MST]�

n � 0

fI1; : : : ; Ing = fI 0jI <1

i I
0 2 �g

Set MSTc = (MST1

�

� : : :

�

�MSTn

�

� Abstract (MST

0))[NonAbstract (MST

0)[MST]�]� ;

� ` C isc K FST MST

� ` CT�ClassType
� ` C <

1

c C
0

� ` C0 : FST 0 MST

0

� ` I1 : ; MST1 : : : � ` In : ; MSTn

� ` C : FST 0[FST] MSTc

n � 0

fI1; : : : ; Ing = fIjC �1

i I 2 �g
K = concrete) Kind(MSTc) = concrete

Fig. 3. Type assignments to classes/interfaces for both systems

The �rst important contribution of this paper is the full formalization of the complex rules

given in [5] for compatibility checks of throws clauses; such rules have to be performed whenever

a class/interface is extended (by inheritance) and are particularly nasty when abstract classes and

implementation of interfaces are involved.

The second contribution is the de�nition of a minimal type system which is proved to be

equivalent to that given in [4] and has the advantage of avoiding redundancies in favor of a better

understanding of exception handling in Java.

Furthermore, our analysis has pointed out that in some cases the rules de�ning the static

correctness of Java programs can be very tricky. Our feeling is that this could be avoided at the

cost of a minimal loss of exibility, by adding some restriction to the language, as sketched below.

In Java if a class C is declared to implement an interface I , then all methods in I that are

neither de�ned in C nor inherited from the superclasses of C are implicitly inherited by C. This

rule implies that a class can inherit more methods with the same signature, a rather strange

situation in a language where classes cannot have more than one parent.

A more coherent choice would consist in requiring C to have all methods (either de�ned or

inherited from its superclasses) contained in I , with the consequence that C cannot inherit methods

from I but only implement them (as properly suggested by the keyword implement). Following

this approach, we would also avoid the counter-intuitive Java rule stating that an abstract method

m in C implements a method m in I only if m is directly de�ned in C (see [5] 8.4.6.1 and 8.4.6.4).

References

1. D. Ancona, G. Lagorio, and E. Zucca. A core calculus for Java exceptions. Technical report, DISI,

University of Genova, 2000. In preparation.

2. D. Ancona, G. Lagorio, and E. Zucca. Jam - a smooth extension of Java with mixins. In E. Bertino,

editor, ECOOP 2000 - European Conference for Object-Oriented Programming, Lecture Notes in Com-

puter Science. Springer Verlag, 2000. To appear.

3. S. Drossopoulou and T. Valkevych. Java exceptions throw no surprises. Technical report, Dept. of

Computing - Imperial College of Science, Technology and Medicine, March 2000.

4. S. Drossopoulou, T. Valkevych, and S. Eisenbach. Java type soundness revisited. Technical report,

Dept. of Computing - Imperial College of Science, Technology and Medicine, October 1999.

5. James Gosling, Bill Joy, and Guy Steele. The Java Language Speci�cation. Addison-Wesley, 1996.

6. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java and GJ.

In ACM Symp. on Object-Oriented Programming: Systems, Languages and Applications 1999, pages

132{146, November 1999.

