
April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

1

A formal framework for compositional compilation

Davide Ancona∗ and Elena Zucca

DISI, Università di Genova,
Italy

∗E-mail: davide@disi.unige.it
www.disi.unige.it

We define a general framework for compositional compilation, meant as the
ability of building an executable application by separate compilation and link-
ing of single fragments, opposed to global compilation of the complete source
application code. More precisely, compilation of a source code fragment in
isolation generates a corresponding binary fragment equipped with type infor-
mation, formally modeled as a typing, allowing type safe linking of fragments
without re-inspecting code.

We formally define a notion of soundness and completeness of composi-
tional compilation w.r.t. global compilation, and show how linking can be in
practice expressed by an entailment relation on typings. Then, we provide a
sufficient condition on such entailment to ensure soundness and completeness
of compositional compilation, and compare this condition with the principal
typings property. Furthermore, we show that this entailment relation can often
be modularly expressed by an entailment relation on type environments and a
subtyping relation.

We illustrate the generality of our approach by instantiating the framework
on three main examples: simply typed lambda calculus, where the problem of
compositional compilation reduces to compositional type inference; Feather-
weight Java, where the generated binary code depends on the compilation con-
text; and an extension of Featherweight Java with a boxing/unboxing mech-
anism, to illustrate how the framework can also support more sophisticated
forms of linking-time binary code specialization.

Keywords: Type systems; Separate compilation.

1. Introduction

Originally, compilation was global, meaning that the complete source code
of an application was needed for performing typechecking and binary code
generation. In strongly typed languages execution of a globally compiled
application is guaranteed to be safe.

However, modern software systems, besides allowing global compilation,

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

2

support also separate compilation: open code fragments can be compiled in
isolation, provided that type information on the needed external definitions
are available in some form, and can then be linked in a type safe way. In
this way, smart recompilation (also known as selective recompilation)1–4 is
promoted, since a fragment can be reused in many different applications,
without re-inspecting its source code, provided that mutual compatibil-
ity requirements among fragments are verified. More importantly, sepa-
rate compilation is essential for developing applications in modern systems
where fragments can be distributed and loaded/linked dynamically, as hap-
pens in Java and C#.

Despite of this, there has been little work on formal models for sep-
arate compilation and linking, except for the seminal paper,5 which for-
malized intra-checking (separate compilation simplified to typechecking of
fragments in isolation) and inter-checking of linksets (collection of suc-
cessfully compiled fragments equipped with mutual type assumptions) on
simply typed lambda-calculus, and some other papers,6,7 where Cardelli’s
ideas are further developed, by formally defining compositional compila-
tion for Java-like languages as the combination of separate compilation
and linking steps. Our approach here, instead, is to abstract away from
language-specific problems, aiming at providing an abstract framework in
order to capture the main general properties needed by compilation to be
compositional.

To this end, we extend the simple framework in5 in many respects:

• We define an abstract framework which can be instantiated on an
arbitrary type system providing some ingredients. In particular,
we abstract from the form of type assumptions, rather than just
considering assumptions x : τ meaning that the fragment named x

should have type τ .
• We model linking rather than just inter-checking, that is, a well-

formed linkset is obtained by not only checking that mutual as-
sumptions are satisfied, but also by a non trivial manipulation of
the original fragments. That is, the framework supports code spe-
cialization.

• We expect linking to satisfy some properties which ensure that it
can actually replace global compilation. First, it should be at least
sound, in the sense that, if linking succeeds for some linkset, then
we can be sure that compiling altogether the fragments we would
succeed as well and get the same binaries. Furthermore, if linking
is complete, then when it fails we can conclude that we would get

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

3

a failure as well by compiling altogether the fragments.

We show that compositional compilation is sound and complete if link-
ing can be expressed by an entailment relation on typings such that each
composable fragment has a typing which entails all and only others, and
separate compilation always produces typings of this kind. Indeed, in this
way failure of linking cannot be caused by the fact that for some fragment
we have selected a typing which is not adequate in that particular linkset.
We formally compare this property with the principal typings property,8

formalized in a system-independent way by Wells,9 showing that the latter
notion is a specialization of the former which is obtained when the entail-
ment relation is sound, that is, preserves validity for all typings (not just
those principal). In this case, linking satisfies an extended soundness prop-
erty, that is, is sound for all linksets, not only those obtained by separate
compilation.

Moreover, we show that an entailment relation on typings can often be
modularly expressed by an entailment relation on type environments and
a subtyping relation which should satisfy in turn appropriate conditions of
soundness and completeness.

We show the expressive power of the framework by outlining three rather
different instantiations. First, we consider simply typed lambda calculus,
as representative of languages where the type of fragments depend on the
context and, hence, the hardest part of compositional compilation is type
inference and code generation can be disregarded,

Then, we consider Featherweight Java, as representative of languages,
such as Java and C#, where the type of fragments is fixed a priori (because
of type annotations) but the corresponding generated binary fragments
depend on the context, hence separate code generation is hard to achieve.
We re-cast the solution to Java compositional compilation based on the
notion of polymorphic bytecode7 into our abstract framework, showing in
particular that linking implies in this case specialization of binary code,
via instantiation of type variables. Finally, we extend Featherweight Java
with a boxing/unboxing mechanism, to illustrate how the framework also
supports code specialization in a broader sense, that is, linking implies that
conditional code is transformed in one of the branches.

The rest of the paper is organized in two sections, the former devoted
to the formal definition of the framework and the latter to the instantiation
examples, and the Conclusion.

In Sect.2 we first define compositional compilation on top of a generic
type system providing some basic ingredients, and formally define sound-

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

4

ness and completeness w.r.t. global compilation (Sect.2.1); then we intro-
duce the more concrete notion of linking by entailment on typings (Sect.2.2),
and investigate the relation with the notion of principal typing8,9 (Sect.2.3);
finally, we introduce the even more concrete notion of linking by entailment
on environments and subtyping (Sect.2.4).

In Sect.3 we present instantiations of the framework on simply typed
lambda calculus (Sect.3.1), Featherweight Java (Sect.3.2), and Feather-
weight Java extended with a boxing/unboxing mechanism (Sect.3.3).

In the Conclusion we summarize the contribution of the paper and out-
line further research directions.

2. Formalizing compositional compilation

In this section, we first define, in Sect.2.1, a schema formalizing both global
and compositional compilation on top of a given type system T . In global
compilation a collection of source fragments can be compiled only if self-
contained and altogether. In compositional compilation, instead, any sin-
gle source fragment can be compiled in isolation under type assumptions
on missing entities; then, successfully compiled fragments can be linked
together if their mutual assumptions are satisfied. We formally express a
property of soundness and completeness of compositional compilation w.r.t.
global compilation.

In the framework of Sect.2.1, linking is modeled in a very abstract way as
a judgment `C [xi.Γi`τi

i∈1..n]:T asserting that a collection of (named by xi)
binary fragments τi, equipped with type assumptions Γi, can be successfully
linked together producing new binaries T. In Sect.2.2, we introduce a more
concrete model where linking is expressed by an entailment relation on
pairs Γ`τ (typings), and in Sect.2.3 we formally compare this notion with
the semantic relation on typings (a typing is stronger than another iff it is a
typing of less terms) which is used to state the principal typings property.8,9

Finally, in Sect.2.4 we provide an even more concrete view of linking,
where the relation on typings is defined in terms of an entailment relation
on type environments Γ and a subtyping relation on types depending on a
given type environment Γ ` τ<#τ ′.

2.1. An abstract framework

We start by listing the basic syntactic categories and judgments the type
system T should define.

Source fragments (Terms) s defined over a given numerable infinite set

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

5

of variables x ∈ Var .
Binary fragments (Types) τ . Note that, since our notion of typecheck-

ing also includes binary code generation, types correspond to binary
fragments.

Type assumptions γ. They always include the type assumptions of the
form x:τ , but possibly also other kinds as shown in Sect.3.

Type environments Γ. A type environment is just a possibly empty se-
quence of type assumptions. The term Γ,Γ′ denotes the concate-
nation of Γ and Γ′, when it is defined (because the concatenation
operator might be partial), and the empty type environment is
denoted by ∅.

Type judgments Γ`s:τ with the following meaning: term s has type τ

in the type environment Γ.
Binary fragments with assumptions (Typings) t = Γ`τ ∈ Typing .

Note that, analogously to what happens for types, typings cor-
respond to binary fragments equipped with type assumptions. If
Γ`s:τ is a valid judgment, then we say that Γ`τ is a typing of s;
we denote by typings(s) the set of all the typings of a term s, and
by terms(t) the set of all terms which have typing t . A term s is
typable if typings(s) 6= ∅.

The type system T consisting of the ingredients above formalizes the
well-formedness rules of terms, which are only language-dependent and do
not take into account any compilation mechanism. On top of T we can
model two different approaches to compilation, which we will call global
and compositional, respectively.

Let S and T denote collections of distinctly named source and binary
fragments, respectively, that is,

S = [xi.s
i∈1..n
i] T = [xi.τ i∈1..n

i]

where xi∈1..n
i are all distinct.

In the first approach, a collection of named source fragments can be
compiled only if it is self-contained. Global compilation is formalized by
the judgment:

Global compilation `GS:T

which is defined by the rule in Fig.1, which states that a collection of named
terms can be compiled only if all terms typecheck in the context of full type
information about each other.

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

6

(glob)
xi : τ i∈1..n

i `sj :τj , j ∈ 1..n

`G[xi.s
i∈1..n
i]:[xi.τ i∈1..n

i]

Fig. 1. Global compilation

Note that global compilation is in practice expected to be a function
from sources into binaries; however, this requirement is never needed in the
following technical treatment, hence we prefer to keep the more abstract
view of a relation.

In the second approach, instead, single source fragments can be com-
piled in isolation, generating binary fragments which are equipped with
type assumptions on the missing entities, and which can then be linked
together provided that mutual assumptions are satisfied. A compositional
compilation mechanism is defined by two new ingredients: separate compi-
lation and linking. Separate compilation is formalized by selecting a subset
of the valid type judgments:

Separate compilation Γ`Cs:τ (s.t. if Γ`Cs:τ holds, then Γ`s:τ holds)

This models the fact that when we compile a term in isolation, we need
to fix type assumptions on missing entities. As already noted for global com-
pilation, also separate compilation is in practice expected to be a function
from sources into typingsa; however, again this requirement is not needed
for the following technical treatment, hence we prefer to keep the more
abstract view of a relation (a subset of the valid judgments).

Linking is performed on a linkset, that is, a collection of distinctly named
typings:

Linksets L = [xi.Γi`τi
i∈1..n] where xi∈1..n

i are all distinct,

and is formalized by the judgment:

Linking `CL:T

This judgment models an effective procedure for linking together a linkset
obtained by separate compilation of a collection of terms. Note that this
check does not depend on the source code.

aType assumptions can be extracted from source code either trivially, if they are spec-
ified by the programmer, or by an inference algorithm; we do not care here about this
distinction.

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

7

Compositional compilation can then be formalized by the judgment:

Compositional compilation `CS:T

which is defined by the rule in Fig.2.

(comp)

Γi`Csi:τ ′i
`C [xi.Γi`τ ′i

i∈1..n]:[xi.τ i∈1..n
i]

`C [xi.s
i∈1..n
i]:[xi.τ i∈1..n

i]

Fig. 2. Compositional compilation

The advantages of compositional compilation (that is, separate compila-
tion plus linking) w.r.t. global compilation are clear. Each fragment can be
compiled without inspecting the fragments it depends on; then, a collection
of fragments can be put together without re-inspecting source code. How-
ever, in order to really offer these advantages, compositional compilation
should satisfy some properties which ensure that it can actually replace
global compilation. This issue was not considered in.5

Definition 2.1. Compositional compilation `C is sound and complete
(w.r.t. global compilation) iff for all S, T

`CS:T ⇐⇒ `GS:T.

The ⇒ implication corresponds to soundness of linking and, thus, can
be considered as the minimal requirement to be met by a linking procedure.
Indeed, it ensures that, in case of successful linking, global (re)compilation
would succeed as well and generate the same binaries. On the other hand, we
would like to be sure that, if linking fails, then we would get failure by global
(re)compilation as well. This is expressed by the⇐ implication which corre-
sponds to completeness of linking. Note that soundness and completeness of
linking allow optimal selective recompilation: we never need to recompile a
source fragment when we put it together with others, hence, even more, we
never need to have source code available. Note that, even though desirable,
completeness is not as fundamental as soundness. Indeed, as will be shown
in the examples in Sect.3, in general linking is not complete if in separate
compilation we select arbitrary judgments (e.g., all valid judgments); the
intuition suggests that, in order to achieve completeness, linksets should

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

8

only contain those typings that better represent a given source. As we will
see in the next sections, the intuitive notion of best representative typing
is intimately connected with that of principal typing. On the other hand,
soundness can be reasonably extended to all valid judgments.

2.2. Linking by entailment

We introduce now a more concrete model where linking is expressed by a
relation <# on typings (expected to be computable). We call this relation
entailment since we will see later that in reasonable cases it is expected
to preserve typability of terms. However, in principle there are no require-
ments on this relation. We show that a necessary and sufficient condition
for soundness and completeness of compositional compilation is that each
composable term has a <#-principal typing, where a composable term s is
a source fragment for which there exists an S which contains s and which
can be globally compiled. This means that, for each composable term s, it
is possible to select a typing t of s which entails all and only all the typings
of s, hence can be considered a “representative” of the typings of s.

In the following, an entailment relation is a relation on Typing . More-
over, if <# is an entailment relation and t<#t ′, then we say that t entails
t ′.

Definition 2.2. A typing t of s is a <#-principal typing of s iff it entails all
and only all the typings of s; that is, ∀t ′ ∈ Typing t<#t ′ ⇔ s ∈ terms(t ′).

A type system T has <#-principal typings if each typable term has a
<#-principal typing.

Definition 2.3. A term s is composable iff there exists S = [xi.s
i∈1..n
i]

s.t.

(1) s is in S, that is, there exists k ∈ 1..n s.t. s = sk;
(2) S is globally compilable, that is, there exists T s.t. `GS:T.

Note that the notion of composable is in general stricter than that of ty-
pable. Indeed, by definition of composable term and of global compilation,
a composable term is always typable, whereas the converse might not hold.
This happens in type systems where deciding whether the type assump-
tions of a given type environment are satisfiable is so hard that in practice
is better to allow typings with unsatisfiable type environments, with the
drawback that some type error can be detected only at linking time rather
than at (separate) compilation time (for a concrete example, see FJP as
defined in Sect.3.2).

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

9

Definition 2.4. Let <# be an entailment relation. We denote by `<# the
separate compilation and linking induced by <#, defined as follows:

• Γ `<# s:τ iff Γ`τ is a <#-principal typing of s;
• `<#[xi.Γi`τ ′i

i∈1..n]:[xi.τ i∈1..n
i] iff

for all i ∈ 1..n, (Γi`τ ′i)<#(xj : τj
j∈1..n`τi).

We denote by `<#
C the compositional compilation induced by <#, defined

by the rule (comp) in Fig.2 on top of the separate compilation and linking
`<#.

Theorem 2.1. Let <# be an entailment relation. Then, the compositional
compilation induced by <# is sound and complete iff each composable term
has a <#-principal typing.

Proof.

⇒ Let s be a composable term, then by definition there exists S =
[xi.s

i∈1..n
i] s.t.

(1) s is in S, that is, there exists k ∈ 1..n s.t. s = sk;
(2) S is globally compilable, that is, there exists T s.t. `GS:T.

By 2 and by completeness of compositional compilation, `<#
C S:T is valid,

and by 1 and by definition of compositional compilation induced by <#,
Γk `<# s:τ ′k for some Γk, τ ′k. Finally, by definition of separate compilation
`<#, we can conclude that Γk`τ ′k is a <#-principal typing of s.

⇐ The following equivalences hold:
`<#

C [xi.s
i∈1..n
i]:[xi.τ i∈1..n

i]
⇐⇒ (def. of `<#

C)
Γi `<# si:τ ′i and
`<#[xi.Γi`τ ′i

i∈1..n]:[xi.τ i∈1..n
i] for all i ∈ 1..n

⇐⇒ (def. of `<#)
Γi`τ ′i is a <#-principal typing of si and
(Γi`τ ′i)<#(xj : τj

j∈1..n`τi) for all i ∈ 1..n

⇐⇒ (def. of <#-principal typing and
hypothesis)

xi : τ i∈1..n
i `sj :τj and sj composable for all j ∈ 1..n

⇐⇒ (def. of `G and of composable term)
`G[xi.s

i∈1..n
i]:[xi.τ i∈1..n

i] �

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

10

2.3. Compositional compilation and principal typings

In this section we investigate the relation between the notion of <#-
principal typing and that of principal typing introduced, in its general for-
mulation, by Wells,9 which is based on a fixed semantic relation on typings
(a typing is stronger than another iff it is a typing of less terms). We show
that the latter notion is a specialization of the former which is obtained
when the entailment relation is sound. In this case, besides soundness and
completeness, compositional compilation satisfies an extended soundness
property (Theorem 2.3) which amounts to say that linking is sound (but
not necessarily complete) for all linksets, not only those which are formed
by principal typings.

Definition 2.5. For all typings t , t ′, we say that t is stronger than t ′, and
write t ≤ t ′, iff terms(t) ⊆ terms(t ′).

A typing t is principal for s iff it is a typing of s which is stronger than
all typings of s. A term s has a principal typing iff there exists a typing
principal for s; conversely, a typing is principal iff it is principal for some s.
A type system T has principal typings if each typable term has a principal
typing.

Proposition 2.1. The following facts hold:

(1) If a type system T has principal typings, then it has <#-principal typ-
ings for some entailment relation <#.

(2) The opposite implication does not hold.

Proof.

(1) It suffices to show that T has <#-principal typings with <# =≤.
Indeed, a principal typing t of s is a ≤-principal typing of s since if
t ≤ t ′, then s ∈ terms(t ′) by definition of ≤. On the other hand, if
s ∈ terms(t ′) then t ≤ t ′ since by definition of principal typing t is the
minimum typing of s w.r.t. ≤.

(2) Consider example 2.1 in the following. �

Definition 2.6. An entailment relation <# is sound iff, for all typings
t , t ′,

t<#t ′ ⇒ terms(t) ⊆ terms(t ′).

Theorem 2.2. A type system T has principal typings iff it has <#-
principal typings for some sound entailment relation <#.

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

11

Proof.

⇒ By proposition 2.1 and the fact that ≤ is sound by definition.

⇐ By contradiction, assume that the system has no principal typings,
hence there exists a typable term s which has no principal typing. How-
ever, s has a <#-principal typing t . Since s has no principal typing, there
exists t ′ typing of s s.t. t is not stronger than t ′. This means, by definition
of ≤, that there exists a term s′ s.t. s′ ∈ terms(t), s′ 6∈ terms(t ′). Since t ′

is a typing of s, and t is <#-principal typing of s, t<#t ′ holds, hence <#
would not be sound. �

Remark 2.1. Note that if a type system T has <#-principal typings for
a sound entailment relation <#, such relation does not necessarily coincide
with ≤: indeed, by soundness trivially <# ⊆≤, but the converse inclusion
does not hold in general. For instance, if there exists a term with two
different principal typings t and t ′, then T has <#-principal typings for
the sound entailment <# defined by ≤ \{(t ′, t)} (≤.

Theorem 2.3. Let <# be a sound entailment relation and `C the separate
compilation defined by

Γ`Cs:τ ⇐⇒ Γ`s:τ .

Then the compositional compilation `C defined by rule (comp) in Fig.2 on
top of the separate compilation `C and of the linking `<# is sound, that
is, for all S, T

`CS:T⇒ `GS:T.

Proof. By definition `C [xi.s
i∈1..n
i]:[xi.τ i∈1..n

i] implies Γi`si:τ ′i and
(Γi`τ ′i)<#(xj : τj

j∈1..n`τi). Then, by soundness of <# we deduce
xj : τj

j∈1..n`si:τi for i ∈ 1..n and, therefore, conclude by definition of global
compilation. �

Example 2.1. Given a T which does not have principal typings, we show
how it is possible to define a relation <# so that each typable term s has
a <#-principal typing.

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

12

Let us consider, for instance, system F in Curry style, which is known
not to have principal typingsb:9

s ::= x | (s1s2) | (λx.s)

τ ::= α | τ1 → τ2 | (∀α.τ)

Without any loss of generality, we may assume that there exists a bijec-
tion η between type and term variables. Then any λ-term can be encoded
into a type in the following way:

enc(x) = η(x)
enc(s1s2) = enc(s1) → enc(s2)
enc(λx.s) = (∀ η(x).enc(s))

Let dec denote the inverse function of enc; then <# is the relation on F

typings defined as follows:

Γ, x : τ1`τ2<#Γ′`τ ′ iff Γ′ ` dec(τ1) : τ ′ is valid in F.

Note that in the definition x is a meta-variable (and not a fixed variable)
corresponding to the rightmost type assumption in the environment (recall
that we assume that type environments are sequences of type assumptions).
We claim that any typable term s in F has a <#-principal typing. Indeed,
if s is typable in F, then we can choose a typing Γ`τ of s and derive from it
another typing t = Γ, x : enc(s)`τ (where x is a term variable not defined
in Γ). By weakening t is a typing of s, and, by definition, for all t ′, t<#t ′

iff t ′ is a typing of dec(enc(s)) = s.
As one would expect <# fails to be sound; for instance, if t1 =

x : ∀α.α → α`∀α.α → α and t2 = ∅`∀α.α → α, then t1<#t2, t1 is a typ-
ing of x, but not t2.

2.4. Linking by environment entailment and subtyping

In Sect.2.2 we have shown that compositional compilation can be expressed
in terms of an entailment relation <# between typings, and in Sect.2.3
that such a relation is expected to be sound, and, therefore, a subset of the
semantic relation ≤ defined in Def. 2.5.

In this section we provide a practical and general schema to define <#
modularly on top of an entailment relation on type environments (which is

bIn particular, (x x) does not have a principal typing, hence, for sake of simplicity, here
we can restrict to system F without the let construct.

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

13

expected to be at least sound, that is, if Γ<#Γ′ is valid, then whatever holds
in Γ, holds in Γ′ as well), and a subtyping relation (which is expected to be
at least sound, that is, if Γ ` τ<#τ ′ is valid, then under the assumptions
in Γ, whatever has type τ , has type τ ′ as well).

To achieve that, a type system has to provide the following additional
ingredients:

Environment Entailment A relation (not necessarily a pre-order) be-
tween type environments: Γ1<#Γ2 means that Γ1 entails Γ2, hence Γ1

contains assumptions stronger than those in Γ2.
Subtyping relation A subtyping relation (not necessarily a pre-order)

defined by a judgment of the form Γ ` τ1<#τ2, meaning that τ1 is a
subtype of τ2 in Γ.

Type variable substitution A standard notion of substitution σ which
is a finite map from type variables to typesc, where σ(τ) and σ(Γ)
denote the usual capture avoiding substitution applied to a type and a
type environment, respectively. We assume that terms do not contain
free type variables, hence σ(s) = s for all s.
Furthermore, we assume that substitutions well-behave w.r.t. typings,
that is, the following property is verified:
for all σ,Γ, s, τ Γ`s:τ implies σ(Γ)`s:σ(τ)

With the ingredients above, the entailment relation <# between typings
can be defined by the following general rule:

(entail)
Γ2<#σ(Γ1) Γ2 ` σ(τ1)<#τ2

(Γ1`τ1)<#(Γ2`τ2)

This rule captures the intuition that <# is expected to be transitive, to
be covariant w.r.t. subtyping and contravariant w.r.t. entailment between
environments, and finally, to satisfy Γ`τ<#σ(Γ)`σ(τ).

The following theorems express sufficient conditions on the entailment
between type environments and on subtyping to ensure that the entailment
defined by (entail) is sound and complete.

Definition 2.7. An environment entailment <# is sound iff for all Γ,Γ′

Γ<#Γ′ ⇒ for all s, τ Γ′`s:τ ⇒ Γ`s:τ ; it is sound and complete iff
for all Γ,Γ′ Γ<#Γ′ ⇐⇒ for all s, τ Γ′`s:τ ⇒ Γ`s:τ .

cIn type systems with no type variables this notion collapses to the unique empty sub-
stitution.

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

14

Definition 2.8. A subtyping relation <# is sound iff for all Γ, τ, τ ′ Γ `
τ<#τ ′ ⇒ for all s Γ`s:τ ⇒ Γ`s:τ ′; it is is sound and complete iff for all
Γ, τ, τ ′

Γ ` τ<#τ ′ ⇐⇒ for all s Γ`s:τ ⇒ Γ`s:τ ′.

Theorem 2.4. If the environment entailment and the subtyping relation
are sound, then the typing entailment <# defined by rule (entail) is sound
as well.

Proof. Let us assume that (Γ1`τ1)<#(Γ2`τ2) and that Γ1`s:τ1. By
definition of <# and by the property of substitutions Γ2<#σ(Γ1)
and σ(Γ1)`s:σ(τ1), therefore by soundness of environment entailment,
Γ2`s:σ(τ1). By definition of <# Γ2 ` σ(τ1)<#τ2, therefore we can con-
clude by soundness of the subtyping relation that Γ2`s:τ2. �

Theorem 2.5. If the environment entailment and the subtyping relation
are sound and complete, if all composable terms have a principal typing
Γ1`τ1 s.t. for all typings Γ2`τ2 if Γ1`τ1 ≤ Γ2`τ2, then there exists a sub-
stitution σ s.t.

(1) for all s, τ if σ(Γ1)`s:τ , then Γ2`s:τ ;
(2) for all s if Γ2`s:σ(τ1), then Γ2`s:τ2.

Then each composable term has a <#-principal typing, where <# is the
relation defined by rule (entail).

Proof. Let s be a composable term; by hypothesis s has a principal typing
t = Γ1`τ1 s.t. properties 1 and 2 above hold.

We prove that t is also <#-principal for s. We already know by The-
orem 2.4 that <# is sound, therefore for all t ′ t<#t ′ ⇒ terms(t) ⊆
terms(t ′), hence s ∈ terms(t ′). For proving the opposite implication, let
t ′ = Γ2`τ2 be s.t. s ∈ terms(t ′). Then we have the following implications:

s ∈ terms(t ′) ⇒
(t is principal for s)
t ≤ t ′ ⇒
(by properties 1 and 2 and completeness
of the entailment and subtyping relations)
∃σ s.t. Γ2<#σ(Γ1) and Γ2 ` σ(τ1)<#τ2 ⇒
(by rule (entail))
t<#t ′.

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

15

�

In the hypothesis of Theorem 2.5, we have the following two corollaries:

(1) Linking `<#, with <# defined by rule (entail), induces a sound com-
positional compilation for all typings (by Theorems 2.3 and 2.4);

(2) Compositional compilation `<#
C with <# defined by rule (entail) is

sound and complete (by Theorems 2.1 and 2.5).

It is interesting to notice that in general properties 1. and 2. of Theo-
rem 2.5 are not expected to hold for all pairs of typings t1, t2 s.t. t1 ≤ t2;
this is due to the fact that rule (entail) is sound but not complete w.r.t. ≤.
However, recalling Remark 2.1 in Sect.2.3, this fact does not prevent the
typable terms of the type system to have <#-principal typings for a sound
relation <# which does not coincide with ≤.

3. Examples of instantiations of the framework

In this section we show how our framework can be instantiated with quite
different type systems.

In order to prove the generality of our approach, we consider instantia-
tions of the framework both for functional and object-oriented languages,
choosing the λ-calculus and Featherweight Java as representative of the two
paradigms, respectively. We also show how the framework can be used to
guarantee compositionality in the presence of binary code transformation.

3.1. Simply typed λ-calculus

As a first example of instantiation of the framework we consider the simply
typed λ-calculus (STLC for short, for the details see the Appendix). In this
very simple case a source fragment is a λ-term, and τ denotes just a type
and not binary code, since here we are interested in type inference, rather
than in the whole compilation process.

It is well-known9 that STLC has principal typings. For instance, let us
consider the following source fragment:
[f.λx.(g (g x)), g.λx.(h (h c)), h.λx.c]
Then we can derive the following principal typings for the three terms
named f , g and h, respectively:

• tf = g : α → α`α → α for λx.(g (g x))
• tg = h : κ → κ`α → κ for λx.(h (h c))

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

16

• th = ∅`α → κ for λx.c

If we consider the linkset formed by the three principal typings above

L = [f.tf , g.tg, h.th]

then we can derive the following linking judgment:

`CL:[f.κ → κ, g.κ → κ, h.κ → κ]

It is not difficult to prove that the typings tf , tg and th are all stronger
than f : κ → κ, g : κ → κ, h : κ → κ`κ → κ. Clearly, if we compile the three
functions globally we get the same result.

We show on this example how the linking judgment is defined in terms
of the entailment <# defined by rule (entail) (see the Appendix for the
straight definitions of the entailment between environments and of subtyp-
ing).

By definition the linking judgment above is valid iff tf<#t , tg<#t and
th<#t are valid, with t = f : κ → κ, g : κ → κ, h : κ → κ`κ → κ. The va-
lidity of the three relations can be obtained by applying the substitution
σ mapping α to κ; for instance, if Γ = f : κ → κ, g : κ → κ, h : κ → κ

and τ = κ → κ, Γf = g : α → α and τf = α → α, then Γ<#σ(Γf) and
Γ ` σ(τf)<#τ .

3.2. Compositional compilation in Java

Solutions to the problem of compositional compilation of Java has been
already proposed.6,7 Here we show how those results can be re-casted in
the general framework defined in this paper.

We first show that type systems for Java-like languages based on conven-
tional Java separate compilation fail to be compositional. For doing that
we consider Featherweight Java (FJ for short),10 a standard calculus for
Java-like languages.

In the FJ examples below, s will denote a single FJ class declaration.
Furthermore, types as defined in FJ are extended in order to include a
notion of bytecode, since type annotations, needed by the verifier, make
Java compositional compilation a hard task.

For instance, let us consider the following class declaration:

class A extends Object{

E m(B x){return x.f1.f2;}}

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

17

The fact that class A can be successfully compiled in an environment con-
taining class B with field f1 of type C, and class C with field f2 of type E

can be formalized by the validity of the typing judgment Γ`sA:τ where

•
Γ=B:class B extends Object{C f1;},

C:class C extends Object{E f2;},
E:class E extends Object{}

• sA is the declaration of A as above;
• τ=class A extends Object{
E m(B x){return x[B.f1 C][C.f2 E]}}.

The type of a class contains, as expected, all usual type information (the
name of the class and of its direct superclass, the name and type of declared
fields, and the name and signature of declared methods). Furthermore, the
type contains the generated bytecode for each declared method: for instance
the bytecode of the method of A contains annotations which reflect the
classes where fields were found and their types.

However, the typing Γ`τ is not the only valid typing for sA. For instance,
class A can be successfully compiled also in an environment containing a
class B with a field f1 of type D, and a class D with a field f2 of type F, for
some F subclass of E. Formally, Γ′`τ ′ is another valid typing for sA, where

•
Γ′=B:class B extends Object{D f1;},

D:class D extends Object{F f2;},
F:class F extends E{},
E:class E extends Object{}

• τ ′=class A extends Object{
E m(B x){return x[B.f1 D][D.f2 F]}}.

Now one can prove that in FJ neither of the two typings above is princi-
pal for sA; indeed, the two typings are not comparable (neither is stronger
than the other), and there is no typing of sA which is stronger than both
Γ`τ and Γ′`τ ′. The former claim can be easily proved by showing a class
declaration for which Γ`τ is a valid typing but not Γ′`τ ′, and conversely;
the latter claim relies on the (provable) intuition that in FJ a typing Γ`τ

is stronger than Γ′`τ ′ iff Γ′<#Γ, where <# basically corresponds to width
and depth record subtyping. Then, it is not difficult to prove that there is
no way to weaken Γ or Γ′ (hence to find an environment Γ′′ s.t. Γ,Γ′<#Γ′′)
without losing typability of sA in FJ.

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

18

The solution7 to achieve principality consists in adding type constraints
and type variables (for avoiding confusion we call FJP the calculus obtained
from this extension). For instance, in FJP the class declaration sA as above
has the principal typing ΓA`τA where

• ΓA=φ(B,f1,α),φ(α,f2,β),β ≤ E

• τA=class A extends Object{
E m(B x){return x[B.f1 α][α.f2 β]}}.

A constraint of the shape φ(T1,f,T2) requiresd type T1 to declare or inherit
a field f of type T2, while α and β are type variables. Note that α and β

occur both in the type environment and in the generated bytecode. Indeed,
compilation generates polymorphic bytecode, a generalized form of bytecode
which needs to be instantiated into conventional bytecode before being
correctly executed by the Java Virtual Machine (JVM).

Finally, the constraint T1 ≤ T2 requires T1 to be a subtype (in the
Java sense) of T2. It is important not to confuse Java subtyping with the
subtyping relation <# introduced in Sect.2.4; indeed, in this example of
instantiation of the framework the two relations do not coincide (see below).

Now we can show how a sequence of class declarations can be compiled
compositionally. Let sB and sE denote the following class declarations,
respectively:

class B extends Object{

E f1; B m1(){return this;}}

class E extends B{

E f2; B m2(A x){return x.m(this.f1);}}

If ΓB , τB ,ΓE , τE are defined as follows:

• ΓB = ∃ E
• τB=class B extends Object{
E f1; B m1(){return this;}}

• ΓE=B 6< E, φ(E, f1, α), µ(A, m, α, (β, α′)),β ≤ B

• τE=class E extends B{
E f2;

B m2(A x){
return x [A.m(α′) β] (this [E.f1 α]);}}

dAnalogous constraints are introduced for dealing with the other constructs, namely,
method invocation, object creation, and type cast.

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

19

Then ΓB`τB and ΓE`τE are principal for sB and sE , respectively.
Linking on the linkset

L = [A.ΓA`τA, B.ΓB`τB , E.ΓE`τE]

is modeled by the following valid judgment:

`CL:A.τ ′A, B.τ ′B , E.τ ′E

where τ ′A and τ ′E are obtained by applying the substitution [E/α, B/α′,

E/β] to τA and τE , respectively, while τ ′B is equal to τB . Then by rule
(comp) we derive the judgment `C [A.sA, B.sB , E.sE]:A.τ ′A, B.τ ′B , E.τ ′E ,
thus obtaining the same set of binaries generated by a global compilation.

Finally, we would like to point out that it can be proved that every term
in FJP is typable, but of course not all terms are composable; typings of non
composable terms are always of the form Γ`τ , where Γ is unsatisfiable, that
is, there is no statically correct program corresponding to Γ, like happens,
for instance, for Γ = c1 ≤ c2, c2 ≤ c1, with c1 and c2 distinct class names.

3.3. Compositional compilation and binary code

transformation

Binary code transformation/optimization is often in contrast with com-
positional compilation, since many times it requires some form of global
analysis. However, by introducing some intermediate form of more abstract
binary code one can recover compositionality. As suggested by rule (entail)
given in Sect.2.4, at linking-time the code generated for each single source
fragment is expected to be modified in two different ways: first some type
variables might need to be instantiated; second, the type obtained by sub-
stitution might need to be replaced with a supertype.

In the example in Sect.3.2 substitutions apply both to type information
and to code, and a non trivial subtyping relation is defined since, for in-
stance, Γ `�c, t� eb<#eb is valid whenever Γ<#t ≤ c is valid. The fact
that � c, t� eb is a subtype of eb whenever Γ<#t ≤ c, corresponds to
the intuition that there is a loss of information when � c, t� eb is trans-
formed into eb, even though the transformation preserves the semantics.
More formally, we expect subtyping to be sound according to Def. 2.8.

In a sense, specializing �c, t� eb into eb is already an example of code
optimization. However here we consider a more meaningful example of code
transformation, namely, auto-boxing and -unboxing of integer values and
objects, respectively; we refer to11 for other interesting just-in-time type

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

20

specializations in the context of Java-like languages. The following example
of correct Java 1.5 source code illustrates the use of auto-boxing and -
unboxing:

class C{

void m1(int i){}

void m2(Integer i){}

void m3(){m2(1);m1(new Integer(1));}}

While processing the invocation of m2 the compiler automatically coerces
the expression 1 to have type Integer by wrapping 1 with new Integer().
Conversely, while processing the invocation of m1 the compiler automati-
cally coerces the expression new Integer(1) to have type int by invoking
method intValue() of class Integer.

In order to model auto-boxing and -unboxing in FJP we need to add
integer literals and the primitive type int to the source syntax, to assume
that besides Object, there is also the predefined Integer class with its
corresponding field and method, and, more importantly, we need to add a
new form of binary method call where type annotation includes also the
types of the arguments:

eb ::= . . . | (all FJP binary expressions)
eb
0[t(t̄).m(t̄′)t′](eb

1 ... eb
n)

where t̄ are the types of the arguments, whereas t̄′ are the expected types
of the parameters.

Then, the following rule has to be added:

Γ` es
0 : (t0,e

b
0)

Γ` es
i : (ti,e

b
i) ∀i ∈ 1..n

t̄ = t1, . . . , tn Γ<#µ(t0,m, (t̄), (t, t̄′))
Γ` es

0.m(es
1, . . . , e

s
n) : (t,eb

0[t0(t̄).m(t̄′)t](eb
1, . . . , e

b
n))

For what concerns environment entailment, we need to specify that
types int and Integer are interchangeable:

Γ<#(int ≤ Integer) Γ<#(Integer ≤ int)

Finally, we add the new subtyping rule which allows specialization of
the generalized binary method invocation into standard bytecode, where u

ranges over ground types (either a class or int):

Γ<#ui ≤ u′i, i = 1..n

Γ`eb
0[u0(ū).m(ū′)u](ēb)<#eb

0[u0.m(ū′)u](ēb
T)

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

21

where
ū = u1, . . . , un ū′ = u′1, . . . , u

′
n

ēb = eb
1, . . . , e

b
n ēb

T = eb
n+1, . . . , e

b
2n

for i ∈ 1..n

eb
n+i =

new Integer(eb

i) if ui = int and ui 6= u′i
eb
i .intValue() if ui = Integer

and u′i = int
eb
i otherwise

As a last remark, we would to note that this extension can be nicely
integrated with the existing type system, thanks to the adopted modular
approach.

4. Conclusion

The contributions of the paper can summarized as follows:

(1) A system-independent formal definition of compositional compilation
(separate compilation and linking) and its expected properties. This
work has been inspired by the seminal paper,5 where, however, defini-
tions were given for a fixed language (a simple lambda calculus) and
issues of soundness and completeness were not considered.

(2) A sufficient condition for soundness and completeness of compositional
compilation, that is, the existence of an entailment relation on typings
s.t. for each composable fragment there is a typing which entails all and
only all the typings of the fragment. This condition is weaker than the
principal typings9 property, and coincides with it for relations which
are sound w.r.t. typability of all terms.

(3) A modular way of defining an entailment relation between typings on
top of an entailment relation between type environments and a subtyp-
ing relation which satisfy in turn appropriate soundness and complete-
ness requirements.

(4) Instantiations of the framework on three rather different type systems:
simply typed lambda calculus, Featherweight Java and an extension of
Featherweight Java with a boxing/unboxing mechanism.

Concerning the second point, we believe the result is significant since
it shows that an independent characterization, designed starting from the
intuition on what a linking procedure should guarantee, is then discovered
to be equivalent to the principal typings property, thus confirming that this
property is the right one when we want both sound and complete composi-
tional compilation and soundness of the entailment relation. In this case, we

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

22

have the additional benefit that linking is safe for all typings, and not only
for those principal. However, it is interesting to note that, for only achiev-
ing sound and complete compositional compilation, one could in principle
rely on the weaker property of <#-principal typings for some <# entail-
ment relation: in this case, if the type information carried by a fragment
is <#-principal, then linking succeeds if and only if global recompilation
does; however, linking of arbitrary typings might not be safe.

Concerning the last point, an important result is that we have shown
how the notion of type specialization, which is widely used in functional
languages, can be nicely extended to include binary code specialization as
well. More in general, our work demonstrates that many classical notions
from type theory, where compilation is usually simplified to the hardest
part, that is, type inference, can be reformulated in those contexts where
binary code generation becomes an issue which cannot be neglected to
guarantee compositionality. What happens is that, to achieve compositional
compilation, one needs to define more abstract forms of binary code, as
happens for types in compositional analysis.

We have provided here a simple preliminary example based on this idea,
which we believe can be applied to a variety of code transformations (as
optimization) in different languages.

Appendix A. Main definitions for STLC and FJP

s ::= c | x | (s1s2) | (λx.s)
τ ::= κ | α | τ1 → τ2

Fig. A1. Syntax of STLC

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

23

con
Γ ` c : κ

var
Γ ` x : τ

x : τ ∈ Γ

app
Γ ` s1 : τ1 → τ2 Γ ` s2 : τ1

Γ ` (s1s2) : τ2

abs
Γ, x : τ1 ` s : τ2

Γ ` (λx.s) : τ1 → τ2

Fig. A2. Typing rules for STLC

Γ<#Γ′
Γ′ ⊆ Γ

Γ`τ<#τ

Fig. A3. Environment entailment and subtyping for STLC

s ::= class c extends c′ { fds mdss } (c 6= Object)
fds ::= c1 f1; ... cn fn;

mdss ::= mds
1 ...mds

n

mds ::= mh {return es;}
mh ::= c0 m(c1 x1 ... cn xn)
es ::= x | es.f | es

0.m(es
1 ... es

n) | new c(es
1 ... es

n) | (c)es

where field, method and parameter names
are distinct in fds, mdss and mh

Fig. A4. Syntax of FJP source language

References

1. W. F. Tichy, ACM Transactions on Programming Languages and Systems 8,
273 (1986).

2. R. W. Schwanke and G. E. Kaiser, ACM Transactions on Programming Lan-
guages and Systems 10, 627 (1988).

3. Z. Shao and A. Appel, Smartest recompilation, in ACM Symp. on Principles
of Programming Languages 1993 , (ACM Press, 1993).

4. R. Adams, W. Tichy and A. Weinert, ACM Transactions on Software Engi-
neering and Methodology 3, 3 (1994).

5. L. Cardelli, Program fragments, linking, and modularization, in ACM Symp.
on Principles of Programming Languages 1997 , (ACM Press, 1997).

6. D. Ancona and E. Zucca, Principal typings for Java-like languages, in ACM

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

24

τ ::= class c extends c′ { fds mdsb } (c 6= Object)
mdsb ::= mdb

1 ...mdb
n

mdb ::= mh {return eb;}
eb ::= x | eb[t.f t′] | eb

0[t.m(t̄)t′](eb
1 ... eb

n) |
new [c t̄](eb

1 ... eb
n) | (c)eb | �c, t� eb

t ::= c | α

t̄ ::= t1 ... tn

where fds and mh are defined in Fig.A4 and
method names in mdsb are distinct

Fig. A5. Syntax of FJP polymorphic bytecode

Γ ::= ∅ | γ, Γ
γ ::= t ≤ t′ | ∃ c | φ(t, f, t′) | µ(t,m, t̄, (t′, t̄′)) |

κ(c, t̄, t̄′) | c ∼ t | c 6< c′ | x : (c, eb) |
c : class c extends c′ { fds mdsb } (c 6= Object)

where ∃ c is just a convenient shortcut for c ≤ c

Fig. A6. Type environments for FJP

Symp. on Principles of Programming Languages 2004 , (ACM Press, January
2004).

7. D. Ancona, F. Damiani, S. Drossopoulou and E. Zucca, Polymorphic byte-
code: Compositional compilation for Java-like languages, in ACM Symp. on
Principles of Programming Languages 2005 , (ACM Press, January 2005).

8. T. Jim, What are principal typings and what are they good for?, in ACM
Symp. on Principles of Programming Languages 1996 , (ACM Press, 1996).

9. J. B. Wells, The essence of principal typings, in International Colloquium on
Automata, Languages and Programming 2002 , Lecture Notes in Computer
Science(2380) (Springer, 2002).

10. A. Igarashi, B. C. Pierce and P. Wadler, ACM Transactions on Programming
Languages and Systems 23, 396 (2001).

11. A. Kennedy and D. Syme, Design and implementation of generics for the
.net common language runtime, in PLDI’01 - ACM Conf. on Programming
Language Design and Implementation, (ACM Press, New York, NY, USA,
2001).

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

25

Γ`mdsb1<#mdsb2
Γ`class c extends c′ { fds mdsb1 }<#

class c extends c′ { fds mdsb2 }

Γ`mdb
i <#mdb

i+n ∀i ∈ 1..n

Γ`mdb
1 ...mdb

n<#mdb
1+n ...mdb

2n

Γ`eb<#eb′

Γ`mh {return eb;}<#mh {return eb′;}

Γ`eb<#eb′

Γ`(t, eb)<#(t, eb′) Γ`eb<#eb

Γ<#c ≤ t

Γ` �c, t� eb<#(c)eb

Γ<#t ≤ c

Γ` �c, t� eb<#eb

Fig. A7. Subtyping for FJP

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

26

⊆
Γ<#Γ′

Γ′ ⊆ Γ ≤-refl
Γ<#c ≤ c

c : τ ∈ Γ ≤-Obj
Γ<#Object ≤ Object

≤-trans
Γ<#c2 ≤ c3

Γ<#c1 ≤ c3
c1 : class c1 extends c2 { fds mdsb } ∈ Γ

φ-1
Γ<#φ(c, f, c′′)

c : τ ∈ Γ
c′′ f; ∈ τ

φ-2
Γ<#φ(c′, f, c′′)
Γ<#φ(c, f, c′′)

c : class c extends c′ { fds mdsb } ∈ Γ
f 6∈ fds

µ-1
Γ<#ci ≤ c′′i ∀ i ∈ 1..n

Γ<#µ(c,m, c1 . . . cn, (c′′, c′′1 . . . c′′n))
c : τ ∈ Γ
c′′ m(c′′1 . . . c′′n) ∈ τ

µ-2
Γ<#µ(c′,m, c̄, (c′′, c̄′′))
Γ<#µ(c,m, c̄, (c′′, c̄′′))

c : class c extends c′ { fds mdsb } ∈ Γ
m 6∈ mdsb

κ-1
Γ<#κ(Object, ε, ε)

κ-2

Γ<#κ(c′, c′1 . . . c′k, c1 . . . ck)
Γ<#c′i ≤ ci ∀ i ∈ k + 1..n

Γ<#κ(c, c′1 . . . c′n, c1 . . . cn)
c : class c extends c′ { ck+1 fk+1; ... cn fn; mdsb } ∈ Γ

∼-1
Γ<#c ≤ c′

Γ<#c ∼ c′
∼-2

Γ<#c ∼ c′

Γ<#c′ ∼ c

6<-1
Γ<#c 6< c′

c : τ 6∈ Γ 6<-2
Γ<#c′ 6< c′′

Γ<#c 6< c′′
c : class c extends c′ { fds mdsb } ∈ Γ
c′ 6= c′′

Fig. A8. Environment entailment for FJP

April 24, 2007 15:5 WSPC - Proceedings Trim Size: 9in x 6in main

27

class
Γ`fds:fds Γ, this:(c, this)` mdss : mdsb Γ<#∃ c′ Γ<#c′ 6< c

Γ` class c extends c′ {fds mdss}:class c extends c′ {fds mdsb}

fields
Γ<#∃ ci i ∈ 1..n

Γ`(c1 f1; ... cn fn;):(c1 f1; ... cn fn;)

methods
Γ` mds

i : mdb
i ∀i ∈ 1..n

Γ` mds
1 ... mds

n : mdb
1 ...mdb

n

n 6= 1

method
Γ, x1:(c1, x1) ... xn:(cn, xn)` es : (t,eb) Γ<#t ≤ c0 Γ<#∃ ci ∀i ∈ 0..n

Γ` c0 m(c1 x1 ... cn xn) {return es;} : c0 m(c1 x1 ... cn xn) {return eb;}

parameter
Γ` x : (c,eb)

x : (c, eb) ∈ Γ field access
Γ` es : (t,eb) Γ<#φ(t, f, t′)

Γ` es.f : (t′,eb[t.f t′])

meth call
Γ` es

0 : (t0,e
b
0) Γ` es

i : (ti,e
b
i) ∀i ∈ 1..n Γ<#µ(t0,m, (t1, . . . , tn), (t, t̄))

Γ` es
0.m(es

1, . . . , e
s
n) : (t,eb

0[t0.m(t̄)t](eb
1, . . . , e

b
n))

new
Γ` es

i : (ti,e
b
i) ∀i ∈ 1..n Γ<#κ(c, t1 . . . tn, t̄)

Γ` new c(es
1 ... es

n) : (c,new [c t̄](eb
1 ... eb

n))

cast
Γ` es : (t,eb) Γ<#c ∼ t

Γ` (c)es : (c,�c, t� eb)
sub

Γ` es : (c,eb) Γ`(c, eb)<#(c′, eb′)
Γ` es : (c′,eb′)

Fig. A9. Typing rules for FJP

