
Java Separate Type Cheking is not Safe

(Extended Abstrat)

Davide Anona, Giovanni Lagorio, and Elena Zua

?

DISI - Universit�a di Genova

Via Dodeaneso, 35, 16146 Genova (Italy)

email: fdavide,lagorio,zuag�disi.unige.it

Abstrat. Java supports separate type-heking in the sense that om-

pilation an be invoked on a single soure fragment, and this may en-

fore type-heking of other either soure or binary fragments existing in

the environment. However, the Java spei�ation does not de�ne preise

rules on how this proess should be performed, therefore the outome

of ompilation may strongly depend on the partiular ompiler imple-

mentation. Furthermore, rules adopted by standard Java ompilers, as

SDK and Jikes, an produe binary fragments whose exeution throws

linking related errors. We introdue a simple framework whih allows

to formally express the proess of separate ompilation and the related

formal notion of type safety. Moreover, we de�ne, for a small subset of

Java, a type system for separate ompilation whih we onjeture to be

safe.

1 Introdution

Traditional type systems for programming languages de�ne the well-formedness

of self-ontained programs, and are said to be safe if the (result of the ompilation

of) a well-typed program is guaranteed to well-behave at run time (see [6, 4, 5℄

for the Java ase).

However, in languages supporting separate ompilation and dynami linking,

like Java, this simple framework is no longer adequate. Indeed, it is possible

to type-hek a single soure fragment in a ontext where other fragments are

present either in soure or in binary form. Hene, there are two main new in-

gredients to be onsidered in typing rules: heks an be performed not only on

soure, but also on binary fragments, and, for type-heking a fragment, it an

be neessary to type-hek other (soure or binary) fragments, following some

strategy.

Moreover, the output of the ompilation phase is not a self-ontained exe-

utable program, but a olletion of binary fragments whih an be linked and

exeuted in many di�erent ways. Hene, the type safety notion must be expressed

in a more exible form.

?

Partially supported by Murst - TOSCA Teoria della Conorrenza, Linguaggi di Or-

dine Superiore e Strutture di Tipi.

In this paper, we introdue a simple framework for separate ompilation,

modeled as a funtion whih, given a set of fragment names and a ompilation

ontext onsisting of both soure and binary fragments, produes a olletion of

binary fragments, and we de�ne a related notion of type safety.

Our aim is to fae the following problems related to Java separate ompila-

tion.

{ There is no spei�ation of separate ompilation in [2℄, hene the outome

of ompilations may strongly depend on the partiular ompiler implemen-

tation.

{ Rules adopted by existing ompilers an be quite omplex and annot be

easily explained informally.

{ As known by Java programmers, rules adopted by standard Java ompilers,

as SDK and Jikes, an produe binary fragments whose exeution throws

linking related errors. This seems in ontradition with the fat that type

safety results have been proved for the Java language [6, 4, 5℄; the explana-

tion, as we will illustrate in more detail in the following, is that these type

systems, and the related type safety results, are only related to a speial

ase, whih is the ompilation of a self-ontained set of soure fragments.

Our framework is a formal basis for de�ning type systems for languages sup-

porting separate ompilation, notably Java, and formally reasoning about them

by de�ning and proving good properties. For reasons of spae, here we fous on

type safety, however there exist other kinds of good properties one ould expet

from separate ompilation (see end of Set.3 and the Conlusion).

In order to illustrate our approah, we de�ne, for a small Java subset, a type

system for separate ompilation whih we onjeture to be safe (a formal proof

would require the de�nition of a simple exeution model, not onsidered here for

lak of spae).

The work presented in this paper is a �rst step towards the formal de�nition

and omparison of di�erent type systems for Java separate ompilation, orre-

sponding, e.g., either to standard Java ompilers, , or to extended ompilers

whih perform additional heks. The overall motivation of this researh is the

following.

As illustrated in detail in the following, standard ompilers perform very

few heks on binary fragments, relying on the fat that these heks an be in

pratie delegated to the JVM

1

, whih �nds linking related errors and throws

orresponding exeptions (see examples in Set.2), thus guaranteeing that exe-

ution does not rash. However, we argue that this is not a good enough moti-

vation. Indeed, the fat that the JVM has a run-time veri�er (hene interepts

error situations) annot be used as a justi�ation for not trying to antiipate at

ompile-time heks whih atually an be performed earlier; otherwise, follow-

ing the same priniple, one ould also throw away heks on soure fragments

sine in any ase the fat that the exeution does not rash is guaranteed by the

byteode veri�er, hene these heks are in a sense redundant. In our opinion,

1

Java Virtual Mahine.

even though the run-time veri�ation annot, of ourse, be eliminated in Java

2

,

it is worthwhile to investigate the possibility of antiipate at ompile-time as

many heks as possible, as it is in the long tradition of type systems. The ob-

vious advantage is earlier error detetion; then, in priniple, the possibility that

exeution in a ontext of \erti�ed" byteode fragments obtained by a \smart"

ompiler ould be performed without some run-time heks (as it is already the

ase for a ontext of binary fragments resulting from the ompilation of all soure

fragments).

The paper is organized as follows. In Set.2 we present simple examples to

illustrate type-heking rules adopted by the SDK and Jikes ompilers and to

show that these rules are not safe. In Set.3 we introdue our framework and

formally express type safety. In Set.4 we show, for a small subset of Java, a type

system for separate ompilation whih we onjeture to be safe. Finally, Set.5

summarizes the ontribution of the paper and outlines further work.

2 Some motivating examples

In this setion we illustrate by means of some examples the type-heking rules

adopted by the two Java ompilers SDK 1.3 and Jikes 1.11 (whih apparently

seem to oinide

3

), and we show that these rules are not safe.

In the following, we will all ompilation ontext all the soure

4

and binary

fragments whih are available to the ompiler (the notion will be formalized in

the next setion). If both the soure and the orresponding binary fragment are

present for a lass, then standard ompilers inspet the binary and ignore the

soure, while the soure is inspeted if the binary is obsolete, that is, soure has

been hanged after last ompilation.

The �rst example illustrates non-safe behavior due to the fat that, when

heking a binary fragment, standard ompilers do not enfore heking of all

used fragments.

lass A{ stati void main(String[℄ args){new B().m();} }

lass B{ int m(){return new C().m();} }

lass C{ int m(){return 1;} }

If, in a ompilation ontext

0

onsisting of the three soure fragments, we

invoke the ompiler on A.java, then ompilation of B.java and C.java is en-

fored, so that, after ompilation, we obtain a new ontext

1

where the binary

fragments of the three lasses are available. However, if we re-ompile A.java in

the ontext

2

obtained by removing from

1

the binary fragment of C, then

re-ompilation of C.java is not enfored

5

, therefore we obtain again the ontext

2

(hene, no stati error has been deteted); however, if we try to exeute lass

A in this ontext, then error NoClassDefFoundError is thrown.

2

To deal with fragments whih are not known to be the result of some ompilation.

3

Exept that Jikes supports ompilation options that enfore more heks.

4

We assume for simpliity a unique �le for eah lass.

5

In Jikes re-ompilation of C.java an be enfored with the option +F or +U.

Indeed, in standard ompilers, when a fragment named N is heked, this

always enfores (transitively) heking the parent of N, regardless N is in soure

or binary form

6

, whereas used fragments are (transitively) heked only when N

is in soure form. This rule is not safe sine it an lead to linking related errors,

as shown above. In the type system in Set.4, instead, parent and used fragments

are always (transitively) heked.

Next examples illustrates ases in whih the non-safe behavior is not related

to dependenies among heking fragments, but rather to the fat that some

heks whih ould be in priniple performed on binary fragments are not atu-

ally performed.

In the ontext

1

, as previously de�ned, assume to modify C.java in the

following way:

lass C{ C m(){return new C();} }

Let

0

2

denote the ontext obtained from

1

by modifying the soure fragment

of C as shown above. If we re-ompile both A.java and C.java, then we obtain

a new ontext

0

3

(hene, no stati error has been deteted). However, in this

new ontext, the exeution of lass A throws NoSuhMethodError. The problem

is that, when heking B.lass, ompilers do not hek that lass C should have

a method int m(), as would be heked if only the soure of B were available.

A similar situation arises in the following example:

lass A{ stati void main(String[℄ args){new B().m()} }

lass B{ D m(){return new C();} }

lass C extends D {}

lass D {}

Assume, analogously to the example above, to �rst ompile all fragments, then

modify C.java as follows:

lass C {}

If we re-ompile A.java and C.java in this ontext, then we get no stati error,

but the exeution of lass A throws VerifyError. The problem, again, is that,

when heking B.lass, ompilers do not hek that lass C should be a subtype

of D, as would be heked if only the soure of B were available.

Finally, onsider the following soure fragments:

lass A{ stati void main(String[℄ args){new B().m()} }

lass B{ int m(){return new C().m();} }

lass C extends D {}

lass D { int m(){return 1;} }

6

Hene in an analogous example where A extends B whih extends C re-ompilation

of C.java would be enfored even by heking B.lass, thus ausing no run-time

error.

and the situation in whih we start from the ontext ontaining the soure frag-

ments above, we ompile all of them, and then we remove B.java

7

and modify

C.java and D.java as follows:

lass D {}

lass C extends D{ int m() { return 1;} }

Again, re-ompiling A.java, C.java and D.javawe get no stati error and obtain

a ontext in whih the exeution of lass A throws NoSuhMethodError. Here the

problem is that the all new C().m() in B.lass is annotated with the lass D

where method m was previously delared and the JVM veri�es that m is atually

delared either in D or in some superlass of D. Note that, as in the preeding

example, in presene of B.java the problem an be �xed by re-ompiling it; in

this ase, however, no stati error is deteted, but a new binary fragment for B

where the all is annotated with C is produed.

In summary, these three examples show that standard ompilers do not per-

form on binary fragments some heks whih ould be possibly performed at

ompile-time. These are either heks whih are performed on soure fragments,

or heks related to additional informations stored in the byteode whih make

it less \abstrat" w.r.t. to soure. In the type system we de�ne in the follow-

ing, on the ontrary, these heks on binaries are performed, hene in the three

examples a stati error would be raised.

As �nal remark, the examples above also show that rules for Java separate

ompilation are not trivial to understand and express and that, therefore, the

behavior of the existing ompilers annot be always easily predited; other exam-

ples, not related to violating type safety, where the ompilers exhibit unexpeted

behavior an be found in [1℄.

3 Framework

We introdue now a simple framework allowing to model separate ompilation

and to express the property of type safety in a formal way.

Notations.We denote by [A *

�n

B℄ the set of the �nite partial funtions from A into

B, that is, funtions from A into B whih are de�ned on a �nite subset of A. For eah

f 2 [A *

�n

B℄, we set Def (f) = fa 2 Ajf(a) 2 Bg. 2

Let us denote by C the set of fragment names, ranged over by , and by S and B

the set of soure and binary fragments, respetively. We assume that S\ B = ;.

In the Java ase, fragment names will be lass/interfae names, soure fragments

will be .java �les ontaining (for simpliity) exatly one lass/interfae delara-

tion, and binary fragments will be .lass �les. However, the model we present

is general and an be applied to fragments of di�erent nature.

7

In presene of B.java the ounter-example works as well, but the error an be

deteted by foring its re-ompilation.

A ompilation ontext is a pair h

b

;

s

i 2 CC = [C *

�n

B ℄� [C *

�n

S℄.

In general Def (

b

)\Def (

s

) 6= ;, sine for some fragment both the soure and

the binary an be available (intuitively, this means that the binary is obsolete).

The results of (suessful) ompilations are �nite partial funtions from lass

names into binary fragments. Hene, we an model the ompilation proess by

a (partial) funtion:

C : }(C) � CC * [C *

�n

B ℄

where C(C ; h

b

;

s

i) =

0

b

intuitively means that the ompilation, invoked

on fragments with names in C , in the ompilation ontext onsisting of binary

fragments

b

and soure fragments

s

, produes binary fragments

0

b

.

We introdue now the formal property of type safety for separate ompilation.

For our purposes, we an abstrat from all details of the linking and exeution

model and just assume a very general judgment of the form

b

` ;OK whih

is valid if and only if exeution of in the ontext of binary fragments

b

does

not throw any linking related error. In the Java ase, for instane, this judgment

orresponds to start exeution from lass

8

 in a ontext where all binaries in

b

are available to the JVM, hene some of them ould be dynamially linked

during exeution.

De�nition 1. A ompilation funtion C is type safe i� for any ompilation

ontext h

b

;

s

i and set of fragment names C , if C(C ; h

b

;

s

i) =

0

b

, then,

for any 2 Def (

0

b

),

b

[

0

b

℄ ` ;OK.

Note that type safety requires that exeution does not raise linking related errors

only when started from lasses that were the produt of the ompilation. An

error raised by an exeution started from a lass present in the original binary

ontext

b

an be either an error whih was already present (that is,

b

`

;OK does not hold), hene not due to ompilation, or is due to the fat that

some binary used by has been modi�ed. In this ase we say that the ompilation

funtion does not satisfy ontextual binary ompatibility [1℄.

4 A safe type system for separate ompilation

In this setion, we de�ne a type system (that we onjeture to be safe) whih

models separate ompilation for a small Java subset.

The language we onsider is shown in Fig. 1; metavariables C, m,x and N range

over sets of lass, method and parameter names, and integer literals, respetively.

Both soure and binary fragments are spei�ed.

A soure fragment S is a lass delaration onsisting of the lass name, the

name of the superlass and a set of method delarations. A method delaration

onsists of a method header and a method body (an expression). A method

header onsists of a (return) type, a method name and a sequene of parameter

8

We also ignore for simpliity the fat that should have a main method.

types and names. There are four kinds of expressions: instane reation, param-

eter name, integer literal and method invoation. A type is either a lass name

or int.

A binary fragment B onsists of the name of the superlass, a set of annotated

method headers and a set of type onstraints KS. An annotated method header

is a method header pre�xed by an annotation indiating the lass whih ontains

the method delaration. A type onstraint K is either a subtype onstraint C

1

�

C

2

, or an implementation onstraint C� AMHS, stating that lass C must provide

annotated methods AMHS.

Note that here, for simpliity, binary fragments ontain no ode, but only

some type information whih an, however, easily retrieved from a regular Java

.lass �le.

S ::= lass C extends C

0

f MDS g

MDS ::= MD

1

: : : MD

n

(n � 0)

MD ::= MH f return E; g

MH ::= T

0

m(T

1

x

1

; : : : ; T

n

x

n

) (n � 0)

E ::= new C j x j N

E

0

:m(E

1

; : : : ; E

n

) (n � 0)

T ::= C j int

B ::= hC; AMHS; KSi

KS ::= K

1

: : : K

n

(n � 0)

K ::= C

1

� C

2

j C� AMHS

AMHS ::= C

1

T

1

m(

�

T

1

) : : : C

n

T

n

m(

�

T

n

) (n � 0)

�

T ::= T

1

: : : T

n

(n � 0)

Fig. 1. Syntax and types

The top-level rules of the type system are de�ned in Fig.2.

The main judgment ` CS;

b

is valid whenever the ompilation invoked on

the lass names in CS in ompilation ontext suessfully produes the binary

ontext

b

.

The ompilation an be split in two distint phases; �rst, all lasses in CS

(and, impliitly, all lasses whih lasses in CS depends on) are type-heked

(hypotheses), then binary fragments are produed for all the type-heked lasses

whih were not yet in binary form (onlusion).

The side ondition CS � Def (

s

) ensures that all lasses in CS have a soure

fragment in ; if not so, ompilation fails, otherwise lasses in CS are sequentially

type-heked (hypotheses).

Judgment ;� ` C;�

0

is valid whenever lass C is well-typed w.r.t. om-

pilation ontext and lass environment � ; �

0

is the new lass environment

produed during the type-heking of C. A lass environment is a �nite map

assoiating with eah lass name C a pair hC

0

; AMHSi, where C

0

denotes the super-

lass of C, while AMHS is the set of all annotated method headers (either inherited

h

b

;

s

i;�

0

` C

1

;�

1

: : :

h

b

;

s

i;�

n�1

` C

n

;�

n

h

b

;

s

i ` CS;

0

b

CS = fC

1

; : : : ; C

n

g � Def (

s

)

Def (�

0

) = fObjetg; �

0

(Objet) = h?; ;i

Def (

0

b

) = Def (�

n

) n Def (

b

)

8 C 2 Def (

0

b

)

0

b

(C) = bin(

s

; �

n

; C)

;� ` int;� ;� ` C;�

C 2 Def (�)

h

b

;

s

i;� ` C

1

;�

1

h

b

;

s

i;�

1

[C 7! hC

1

; AMHSi℄ ` KS;�

2

h

b

;

s

i;� ` C;�

2

C 62 Def (�)

b

(C) = hC

1

; AMHS

0

; KSi

�

1

(C

1

) = h ; AMHS

1

i

AMHS

1

[AMHS

0

℄ = AMHS

h

b

;

s

i;� ` C

1

;�

1

h

b

;

s

i;�

1

[C 7! hC

1

; AMHSi℄ ` MDS;�

2

h

b

;

s

i;� ` C;�

2

C 62 Def (�) [Def (

b

)

s

(C) = lass C extends C

1

f MDS g

AMHS

0

= Amhs(C; MDS)

�

1

(C

1

) = h ; AMHS

1

i

AMHS

1

[AMHS

0

℄ = AMHS

Fig. 2. Top-level rules

or delared) of C. Class environments model the needed type information about

lasses olleted by the ompiler while inspeting soure and binary fragments

in the ompilation ontext.

The initial lass environment �

0

(see the orresponding side ondition) on-

tains only the prede�ned empty lass (with no superlass) Objet

9

. Class envi-

ronment �

1

, produed while type-heking C

1

, ontains (besides �

0

) type infor-

mation about all lasses needed for type-heking C

1

: all superlasses of C

1

and

all lasses used (both diretly and indiretly) by C

1

.

The new lass environment �

1

is used for heking next lass C

2

and so on,

until produing an environment �

n

ontaining all lasses whih have been type-

heked; from this set we an easily retrieve the set of all lasses whih need to

be ompiled (see the side ondition de�ning

0

b

).

The remaining rules speify type-heking of primitive types and lasses.

Type-heking of primitive types and or lasses already olleted in the lass

environment is trivial.

The other two rules onern lasses whih have not been inspeted yet (the

former deals with binary fragments, whereas the latter with soure fragments).

They are almost symmetri, exept that when both binary and soure fragment

are present, priority is given to the former

10

. First, the diret parent lass C

1

is

type-heked; then, from the annotated method headers of C

1

and those delared

in C, the annotated method headers of C are derived (and rules on overriding are

9

For simpliity, we ignore all the prede�ned methods of Objet.

10

For simpliity, we assume that a binary fragment is always more reent than its

orresponding soure.

heked). Finally, either the set of type onstraints (in the binary ase) or the

set of method delarations (in the soure ase) of C is type-heked.

For lak of spae, all other rules and auxiliary funtions are de�ned in the

Appendix.

Finally we show how the seond example disussed in Set.2 an be modeled

in the framework de�ned above.

The ompilation ontext

0

= h

0

b

;

0

s

i is de�ned by

0

b

= ;,

0

s

=

fA 7! S

A

; B 7! S

B

; C 7! S

C

g, where S

A

, S

B

, and S

C

are the soure ode of A, B, and

C as de�ned in the example

11

.

The ompilation ontext

1

= h

1

b

;

0

s

i (orresponding to the ontext after

invoking the ompiler on A) is obtained by updating the previous binary ontext

0

b

with the binary ontext

b

derived from the judgment

0

` fAg;

b

.

Sine in this ase

0

b

is empty, we have

1

b

=

b

= fA 7! B

A

; B 7! B

B

; C 7! B

C

g,

where

B

A

= hObjet; fA int main()g; fB � B; B� fB int m()ggi

B

B

= hObjet; fB int m()g; fC � C; C� fC int m()ggi

B

C

= hObjet; fC int m()g; ;i

The subtype onstraints B � B and C � C simply require the existene of lass

B and C, respetively, otherwise no onstrutor ould be orretly invoked on

them.

The ontext

0

2

is obtained from

1

by hanging the soure ode of C (a-

ording to the example), therefore

0

2

= h

1

b

;

2

s

i, where

2

s

=

0

s

[S

0

C

=C℄ is

obtained from

0

s

by updating C with the new soure S

0

C

.

Finally, A annot be suessfully ompiled in ontext

2

, sine there is no

b

s.t. the judgment

2

` fAg;

b

is valid.

5 Conlusion

We have shown that typing rules for Java separate ompilation an be quite

omplex and annot easily explained informally. Moreover, they an be be unsafe,

as happens for SDK and Jikes ompilers sine they perform very few heks on

binary fragments delegating them to the JVM. We argue that a more robust

ompiler implementation should perform as muh heks as possible at ompile

time, delegating to the JVM only those heks that an only be performed at

run time.

We have introdued a simple framework whih allows to formally model

separate ompilation and the related properties. Within this framework, we have

de�ned, for a small subset of Java, a type system for separate ompilation whih

we onjeture to be type safe.

In this paper, for lak of spae, we have foused on the safety property; how-

ever, there are other interesting properties one an express for separate ompi-

lation, like ontextual binary ompatibility (mentioned at the end of Set.3) and

11

Where, however, stati has been removed and void replaed with int.

monotoniity, that is, the fat that when a subset of the soure fragments om-

posing a program is hanged, re-ompiling only this set gives the same result as

re-ompiling the whole program (this property is mentioned as desirable in [3℄

and formalized in [1℄).

The work presented in this paper is a �rst step towards the formal de�nition

and omparison of di�erent type systems for Java separate ompilation, orre-

sponding, e.g., either to standard Java ompilers, or to extended ompilers whih

perform additional heks. A lot of work still has to be done. On the theoretial

side, we plan to de�ne a omplete exeution and linking model for the toy lan-

guage de�ned in this paper, inluding a toy byteode, thus allowing to formally

prove type safety. We also want to study the formal relations between the type

safety property analyzed in this paper and other properties like monotoniity

and ontextual binary ompatibility [1℄. On the pratial side, we plan to extend

the safe type system de�ned here to more relevant Java subsets and to develop

extended ompilers whih satisfy good properties like type safety.

Aknowledgments: We warmly thank Sophia Drossopoulou for her preious on-

tribution to stimulate and enhane this work.

Referenes

1. D. Anona, G. Lagorio, and E. Zua. Monotone separate ompilation in Java.

Tehnial Report, DISI. Submitted for publiation, April 2001.

2. G. Braha, J. Gosling, B. Joy, and G. Steele. The Java

TM

Language Spei�ation,

Seond Edition. Addison-Wesley, 2000.

3. L. Cardelli. Program fragments, linking, and modularization. In ACM Symp. on

Priniples of Programming Languages 1997, pages 266{277. ACM Press, January

1997.

4. S. Drossopoulou and S. Eisenbah. Desribing the semantis of Java and proving

type soundness. In J. Alves-Foss, editor, Formal Syntax and Semantis of Java,

number 1523 in Leture Notes in Computer Siene, pages 41{82. Springer Verlag,

Berlin, 1999.

5. D. Syme. Proving Java type sound. In Jim Alves-Foss, editor, Formal Syntax and

Semantis of Java, number 1523 in Leture Notes in Computer Siene, pages 83{

118. Springer Verlag, 1999.

6. D. von Oheimb and T. Nipkow. Mahine-heking the Java spei�ation: Proving

type-safety. In Jim Alves-Foss, editor, Formal Syntax and Semantis of Java, num-

ber 1523 in Leture Notes in Computer Siene, pages 119{156. Springer Verlag,

1999.

A Appendix

Class environments:

� ::= C

1

:hC

?

1

; AMHS

1

i; : : : ; C

n

:hC

?

n

; AMHS

n

i (n � 0)

C

?

::= ? j C

Binary lass generation:

bin(

s

; �; C) = hC

1

; AMHS; KSi if

s

(C) = lass C extends C

1

f MDS g

AMHS = Amhs(MDS)

� ` MDS;KS

Annotated methods update: A set of method headers AMHS is well-formed if it

does not ontain overloaded methods.

AMHS

0

[AMHS℄ =

�

AMHS! AMHS

0

if AMHS! AMHS

0

is well-formed

unde�ned otherwise

where AMHS! AMHS

0

= AMHS [fC T m(

�

T) j6 9 C

1

s:t: C

1

T m(

�

T) 2 AMHSg

Annotation and extration of method headers:

Amhs(C; MDS) = annotate(C;Mhs(MDS))

annotate(C; MH

1

: : : MH

n

) = C MH

1

: : : C MH

n

Mhs(MH

1

f return E

1

; g : : : MH

n

f return E

n

; g) = MH

1

: : :MH

n

Method resolution

RetType(�; C; m; T

1

: : : T

n

) = T

0

if

8

<

:

� (C) = AMHS

C

1

T

0

m(T

0

1

x

1

; : : : ; T

0

n

x

0

n

) 2 AMHS

� ` T

i

� T

0

i

for i = 1::n

;�

0

` K

1

;�

1

: : : ;�

n�1

` K

n

;�

n

;�

0

` K

1

: : : K

n

;�

n

;� ` C

1

;�

1

;�

1

` C

2

;�

2

�

2

` C

1

� C

2

;� ` C

1

� C

2

;�

2

;� ` C;�

1

�

1

` AMHS

1

� AMHS

;� ` C� AMHS;�

1

�

1

(C) = AMHS

1

Fig. 3. Type-heking sets of onstraints

� ` MD

1

; KS

1

: : : � ` MD

n

; KS

n

� ` MD

1

: : : MD

n

; KS

1

: : : KS

n

� ; fx

1

7! T

1

; : : : ; x

n

7! T

n

g ` E : T; KS

� ` T

0

m(T

1

x

1

; : : : ; T

n

x

n

) f return E; g; KS T

1

� T

1

: : : T

n

� T

n

T � T

0

� ;� ` new C : C; C � C � ;� ` N : int;� � ;� ` x : T;�

�(x) = T

� ;� ` E

0

: C; KS

0

� ;� ` E

1

: T

0

1

; KS

1

: : : � ;� ` E

n

: T

0

n

; KS

n

� ` T

0

1

� T

1

: : : � ` T

0

n

� T

n

� ;� ` E

0

:m(E

1

; : : : ; E

n

) : T; KS

0

: : : KS

n

C� fC

1

T m(T

1

: : : T

n

)g

� (C) = AMHS

1

C

1

T m(T

1

: : : T

n

) AMHS

2

Fig. 4. Code generation

;�

0

` MD

1

;�

1

: : : ;�

n�1

` MD

n

;�

n

;�

0

` MD

1

: : : MD

n

;�

n

;� ` T

0

;�

0

: : : ;� ` T

n

;�

n

;�

n

; fx

1

7! T

1

; : : : ; x

n

7! T

n

g ` E : T;�

0

�

0

` T � T

0

;� ` T

0

m(T

1

x

1

; : : : ; T

n

x

n

) f return E; g;�

0

;� ` C;�

0

;� ;� ` new C : C;�

0

;� ;� ` N : int;�

;� ;� ` x : T;�

�(x) = T

;� ;� ` E

0

: C;�

0

;�

0

;� ` E

1

: T

1

;�

1

: : :

;�

n�1

;� ` E

n

: T

n

;�

n

;� ;� ` E

0

:m(E

1

; : : : ; E

n

) : T;�

n

RetType(�; C; m; T

1

: : : T

n

) = T

Fig. 5. Type-heking of soure lass bodies

� ` C

0

1

� C

1

: : : � ` C

0

n

� C

n

� ` fC

1

T

1

m

1

(

�

T

1

); : : : ; C

k

T

k

m

k

(

�

T

k

)g� fC

0

1

T

1

m

1

(

�

T

1

); : : : ; C

0

n

T

n

m

n

(

�

T

n

)g

n � k

� ` int � int � ` C � C

C 2 Def (�)

� ` C � C

0

� (C) = hC

0

; i

� ` C � C

0

� ` C

0

� C

00

� ` C � C

0

Fig. 6. Implementation and widening

