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Abstra
t. Java supports separate type-
he
king in the sense that 
om-

pilation 
an be invoked on a single sour
e fragment, and this may en-

for
e type-
he
king of other either sour
e or binary fragments existing in

the environment. However, the Java spe
i�
ation does not de�ne pre
ise

rules on how this pro
ess should be performed, therefore the out
ome

of 
ompilation may strongly depend on the parti
ular 
ompiler imple-

mentation. Furthermore, rules adopted by standard Java 
ompilers, as

SDK and Jikes, 
an produ
e binary fragments whose exe
ution throws

linking related errors. We introdu
e a simple framework whi
h allows

to formally express the pro
ess of separate 
ompilation and the related

formal notion of type safety. Moreover, we de�ne, for a small subset of

Java, a type system for separate 
ompilation whi
h we 
onje
ture to be

safe.

1 Introdu
tion

Traditional type systems for programming languages de�ne the well-formedness

of self-
ontained programs, and are said to be safe if the (result of the 
ompilation

of) a well-typed program is guaranteed to well-behave at run time (see [6, 4, 5℄

for the Java 
ase).

However, in languages supporting separate 
ompilation and dynami
 linking,

like Java, this simple framework is no longer adequate. Indeed, it is possible

to type-
he
k a single sour
e fragment in a 
ontext where other fragments are

present either in sour
e or in binary form. Hen
e, there are two main new in-

gredients to be 
onsidered in typing rules: 
he
ks 
an be performed not only on

sour
e, but also on binary fragments, and, for type-
he
king a fragment, it 
an

be ne
essary to type-
he
k other (sour
e or binary) fragments, following some

strategy.

Moreover, the output of the 
ompilation phase is not a self-
ontained exe-


utable program, but a 
olle
tion of binary fragments whi
h 
an be linked and

exe
uted in many di�erent ways. Hen
e, the type safety notion must be expressed

in a more 
exible form.
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In this paper, we introdu
e a simple framework for separate 
ompilation,

modeled as a fun
tion whi
h, given a set of fragment names and a 
ompilation


ontext 
onsisting of both sour
e and binary fragments, produ
es a 
olle
tion of

binary fragments, and we de�ne a related notion of type safety.

Our aim is to fa
e the following problems related to Java separate 
ompila-

tion.

{ There is no spe
i�
ation of separate 
ompilation in [2℄, hen
e the out
ome

of 
ompilations may strongly depend on the parti
ular 
ompiler implemen-

tation.

{ Rules adopted by existing 
ompilers 
an be quite 
omplex and 
annot be

easily explained informally.

{ As known by Java programmers, rules adopted by standard Java 
ompilers,

as SDK and Jikes, 
an produ
e binary fragments whose exe
ution throws

linking related errors. This seems in 
ontradi
tion with the fa
t that type

safety results have been proved for the Java language [6, 4, 5℄; the explana-

tion, as we will illustrate in more detail in the following, is that these type

systems, and the related type safety results, are only related to a spe
ial


ase, whi
h is the 
ompilation of a self-
ontained set of sour
e fragments.

Our framework is a formal basis for de�ning type systems for languages sup-

porting separate 
ompilation, notably Java, and formally reasoning about them

by de�ning and proving good properties. For reasons of spa
e, here we fo
us on

type safety, however there exist other kinds of good properties one 
ould expe
t

from separate 
ompilation (see end of Se
t.3 and the Con
lusion).

In order to illustrate our approa
h, we de�ne, for a small Java subset, a type

system for separate 
ompilation whi
h we 
onje
ture to be safe (a formal proof

would require the de�nition of a simple exe
ution model, not 
onsidered here for

la
k of spa
e).

The work presented in this paper is a �rst step towards the formal de�nition

and 
omparison of di�erent type systems for Java separate 
ompilation, 
orre-

sponding, e.g., either to standard Java 
ompilers, , or to extended 
ompilers

whi
h perform additional 
he
ks. The overall motivation of this resear
h is the

following.

As illustrated in detail in the following, standard 
ompilers perform very

few 
he
ks on binary fragments, relying on the fa
t that these 
he
ks 
an be in

pra
ti
e delegated to the JVM

1

, whi
h �nds linking related errors and throws


orresponding ex
eptions (see examples in Se
t.2), thus guaranteeing that exe-


ution does not 
rash. However, we argue that this is not a good enough moti-

vation. Indeed, the fa
t that the JVM has a run-time veri�er (hen
e inter
epts

error situations) 
annot be used as a justi�
ation for not trying to anti
ipate at


ompile-time 
he
ks whi
h a
tually 
an be performed earlier; otherwise, follow-

ing the same prin
iple, one 
ould also throw away 
he
ks on sour
e fragments

sin
e in any 
ase the fa
t that the exe
ution does not 
rash is guaranteed by the

byte
ode veri�er, hen
e these 
he
ks are in a sense redundant. In our opinion,

1
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hine.



even though the run-time veri�
ation 
annot, of 
ourse, be eliminated in Java

2

,

it is worthwhile to investigate the possibility of anti
ipate at 
ompile-time as

many 
he
ks as possible, as it is in the long tradition of type systems. The ob-

vious advantage is earlier error dete
tion; then, in prin
iple, the possibility that

exe
ution in a 
ontext of \
erti�ed" byte
ode fragments obtained by a \smart"


ompiler 
ould be performed without some run-time 
he
ks (as it is already the


ase for a 
ontext of binary fragments resulting from the 
ompilation of all sour
e

fragments).

The paper is organized as follows. In Se
t.2 we present simple examples to

illustrate type-
he
king rules adopted by the SDK and Jikes 
ompilers and to

show that these rules are not safe. In Se
t.3 we introdu
e our framework and

formally express type safety. In Se
t.4 we show, for a small subset of Java, a type

system for separate 
ompilation whi
h we 
onje
ture to be safe. Finally, Se
t.5

summarizes the 
ontribution of the paper and outlines further work.

2 Some motivating examples

In this se
tion we illustrate by means of some examples the type-
he
king rules

adopted by the two Java 
ompilers SDK 1.3 and Jikes 1.11 (whi
h apparently

seem to 
oin
ide

3

), and we show that these rules are not safe.

In the following, we will 
all 
ompilation 
ontext all the sour
e

4

and binary

fragments whi
h are available to the 
ompiler (the notion will be formalized in

the next se
tion). If both the sour
e and the 
orresponding binary fragment are

present for a 
lass, then standard 
ompilers inspe
t the binary and ignore the

sour
e, while the sour
e is inspe
ted if the binary is obsolete, that is, sour
e has

been 
hanged after last 
ompilation.

The �rst example illustrates non-safe behavior due to the fa
t that, when


he
king a binary fragment, standard 
ompilers do not enfor
e 
he
king of all

used fragments.


lass A{ stati
 void main(String[℄ args){new B().m();} }


lass B{ int m(){return new C().m();} }


lass C{ int m(){return 1;} }

If, in a 
ompilation 
ontext 



0


onsisting of the three sour
e fragments, we

invoke the 
ompiler on A.java, then 
ompilation of B.java and C.java is en-

for
ed, so that, after 
ompilation, we obtain a new 
ontext 



1

where the binary

fragments of the three 
lasses are available. However, if we re-
ompile A.java in

the 
ontext 



2

obtained by removing from 



1

the binary fragment of C, then

re-
ompilation of C.java is not enfor
ed

5

, therefore we obtain again the 
ontext





2

(hen
e, no stati
 error has been dete
ted); however, if we try to exe
ute 
lass

A in this 
ontext, then error NoClassDefFoundError is thrown.

2

To deal with fragments whi
h are not known to be the result of some 
ompilation.

3

Ex
ept that Jikes supports 
ompilation options that enfor
e more 
he
ks.

4

We assume for simpli
ity a unique �le for ea
h 
lass.

5

In Jikes re-
ompilation of C.java 
an be enfor
ed with the option +F or +U.



Indeed, in standard 
ompilers, when a fragment named N is 
he
ked, this

always enfor
es (transitively) 
he
king the parent of N, regardless N is in sour
e

or binary form

6

, whereas used fragments are (transitively) 
he
ked only when N

is in sour
e form. This rule is not safe sin
e it 
an lead to linking related errors,

as shown above. In the type system in Se
t.4, instead, parent and used fragments

are always (transitively) 
he
ked.

Next examples illustrates 
ases in whi
h the non-safe behavior is not related

to dependen
ies among 
he
king fragments, but rather to the fa
t that some


he
ks whi
h 
ould be in prin
iple performed on binary fragments are not a
tu-

ally performed.

In the 
ontext 



1

, as previously de�ned, assume to modify C.java in the

following way:


lass C{ C m(){return new C();} }

Let 



0

2

denote the 
ontext obtained from 



1

by modifying the sour
e fragment

of C as shown above. If we re-
ompile both A.java and C.java, then we obtain

a new 
ontext 



0

3

(hen
e, no stati
 error has been dete
ted). However, in this

new 
ontext, the exe
ution of 
lass A throws NoSu
hMethodError. The problem

is that, when 
he
king B.
lass, 
ompilers do not 
he
k that 
lass C should have

a method int m(), as would be 
he
ked if only the sour
e of B were available.

A similar situation arises in the following example:


lass A{ stati
 void main(String[℄ args){new B().m()} }


lass B{ D m(){return new C();} }


lass C extends D {}


lass D {}

Assume, analogously to the example above, to �rst 
ompile all fragments, then

modify C.java as follows:


lass C {}

If we re-
ompile A.java and C.java in this 
ontext, then we get no stati
 error,

but the exe
ution of 
lass A throws VerifyError. The problem, again, is that,

when 
he
king B.
lass, 
ompilers do not 
he
k that 
lass C should be a subtype

of D, as would be 
he
ked if only the sour
e of B were available.

Finally, 
onsider the following sour
e fragments:


lass A{ stati
 void main(String[℄ args){new B().m()} }


lass B{ int m(){return new C().m();} }


lass C extends D {}


lass D { int m(){return 1;} }

6

Hen
e in an analogous example where A extends B whi
h extends C re-
ompilation

of C.java would be enfor
ed even by 
he
king B.
lass, thus 
ausing no run-time

error.



and the situation in whi
h we start from the 
ontext 
ontaining the sour
e frag-

ments above, we 
ompile all of them, and then we remove B.java

7

and modify

C.java and D.java as follows:


lass D {}


lass C extends D{ int m() { return 1;} }

Again, re-
ompiling A.java, C.java and D.javawe get no stati
 error and obtain

a 
ontext in whi
h the exe
ution of 
lass A throws NoSu
hMethodError. Here the

problem is that the 
all new C().m() in B.
lass is annotated with the 
lass D

where method m was previously de
lared and the JVM veri�es that m is a
tually

de
lared either in D or in some super
lass of D. Note that, as in the pre
eding

example, in presen
e of B.java the problem 
an be �xed by re-
ompiling it; in

this 
ase, however, no stati
 error is dete
ted, but a new binary fragment for B

where the 
all is annotated with C is produ
ed.

In summary, these three examples show that standard 
ompilers do not per-

form on binary fragments some 
he
ks whi
h 
ould be possibly performed at


ompile-time. These are either 
he
ks whi
h are performed on sour
e fragments,

or 
he
ks related to additional informations stored in the byte
ode whi
h make

it less \abstra
t" w.r.t. to sour
e. In the type system we de�ne in the follow-

ing, on the 
ontrary, these 
he
ks on binaries are performed, hen
e in the three

examples a stati
 error would be raised.

As �nal remark, the examples above also show that rules for Java separate


ompilation are not trivial to understand and express and that, therefore, the

behavior of the existing 
ompilers 
annot be always easily predi
ted; other exam-

ples, not related to violating type safety, where the 
ompilers exhibit unexpe
ted

behavior 
an be found in [1℄.

3 Framework

We introdu
e now a simple framework allowing to model separate 
ompilation

and to express the property of type safety in a formal way.

Notations.We denote by [A *

�n

B℄ the set of the �nite partial fun
tions from A into

B, that is, fun
tions from A into B whi
h are de�ned on a �nite subset of A. For ea
h

f 2 [A *

�n

B℄, we set Def (f) = fa 2 Ajf(a) 2 Bg. 2

Let us denote by C the set of fragment names, ranged over by 
, and by S and B

the set of sour
e and binary fragments, respe
tively. We assume that S\ B = ;.

In the Java 
ase, fragment names will be 
lass/interfa
e names, sour
e fragments

will be .java �les 
ontaining (for simpli
ity) exa
tly one 
lass/interfa
e de
lara-

tion, and binary fragments will be .
lass �les. However, the model we present

is general and 
an be applied to fragments of di�erent nature.

7

In presen
e of B.java the 
ounter-example works as well, but the error 
an be

dete
ted by for
ing its re-
ompilation.



A 
ompilation 
ontext 

 is a pair h



b

; 



s

i 2 CC = [C *

�n

B ℄� [C *

�n

S℄.

In general Def (



b

)\Def (



s

) 6= ;, sin
e for some fragment both the sour
e and

the binary 
an be available (intuitively, this means that the binary is obsolete).

The results of (su

essful) 
ompilations are �nite partial fun
tions from 
lass

names into binary fragments. Hen
e, we 
an model the 
ompilation pro
ess by

a (partial) fun
tion:

C : }(C ) � CC * [C *

�n

B ℄

where C(C ; h



b

; 



s

i) = 



0

b

intuitively means that the 
ompilation, invoked

on fragments with names in C , in the 
ompilation 
ontext 
onsisting of binary

fragments 



b

and sour
e fragments 



s

, produ
es binary fragments 



0

b

.

We introdu
e now the formal property of type safety for separate 
ompilation.

For our purposes, we 
an abstra
t from all details of the linking and exe
ution

model and just assume a very general judgment of the form 



b

` 
;OK whi
h

is valid if and only if exe
ution of 
 in the 
ontext of binary fragments 



b

does

not throw any linking related error. In the Java 
ase, for instan
e, this judgment


orresponds to start exe
ution from 
lass

8


 in a 
ontext where all binaries in





b

are available to the JVM, hen
e some of them 
ould be dynami
ally linked

during exe
ution.

De�nition 1. A 
ompilation fun
tion C is type safe i� for any 
ompilation


ontext h



b

; 



s

i and set of fragment names C , if C(C ; h



b

; 



s

i) = 



0

b

, then,

for any 
 2 Def (



0

b

), 



b

[



0

b

℄ ` 
;OK.

Note that type safety requires that exe
ution does not raise linking related errors

only when started from 
lasses that were the produ
t of the 
ompilation. An

error raised by an exe
ution started from a 
lass 
 present in the original binary


ontext 



b


an be either an error whi
h was already present (that is, 



b

`


;OK does not hold), hen
e not due to 
ompilation, or is due to the fa
t that

some binary used by 
 has been modi�ed. In this 
ase we say that the 
ompilation

fun
tion does not satisfy 
ontextual binary 
ompatibility [1℄.

4 A safe type system for separate 
ompilation

In this se
tion, we de�ne a type system (that we 
onje
ture to be safe) whi
h

models separate 
ompilation for a small Java subset.

The language we 
onsider is shown in Fig. 1; metavariables C, m,x and N range

over sets of 
lass, method and parameter names, and integer literals, respe
tively.

Both sour
e and binary fragments are spe
i�ed.

A sour
e fragment S is a 
lass de
laration 
onsisting of the 
lass name, the

name of the super
lass and a set of method de
larations. A method de
laration


onsists of a method header and a method body (an expression). A method

header 
onsists of a (return) type, a method name and a sequen
e of parameter

8

We also ignore for simpli
ity the fa
t that 
 should have a main method.



types and names. There are four kinds of expressions: instan
e 
reation, param-

eter name, integer literal and method invo
ation. A type is either a 
lass name

or int.

A binary fragment B 
onsists of the name of the super
lass, a set of annotated

method headers and a set of type 
onstraints KS. An annotated method header

is a method header pre�xed by an annotation indi
ating the 
lass whi
h 
ontains

the method de
laration. A type 
onstraint K is either a subtype 
onstraint C

1

�

C

2

, or an implementation 
onstraint C� AMHS, stating that 
lass C must provide

annotated methods AMHS.

Note that here, for simpli
ity, binary fragments 
ontain no 
ode, but only

some type information whi
h 
an, however, easily retrieved from a regular Java

.
lass �le.

S ::= 
lass C extends C

0

f MDS g

MDS ::= MD

1

: : : MD

n

(n � 0)

MD ::= MH f return E; g

MH ::= T

0

m(T

1

x

1

; : : : ; T

n

x

n

) (n � 0)

E ::= new C j x j N

E

0

:m(E

1

; : : : ; E

n

) (n � 0)

T ::= C j int

B ::= hC; AMHS; KSi

KS ::= K

1

: : : K

n

(n � 0)

K ::= C

1

� C

2

j C� AMHS

AMHS ::= C

1

T

1

m(

�

T

1

) : : : C

n

T

n

m(

�

T

n

) (n � 0)

�

T ::= T

1

: : : T

n

(n � 0)

Fig. 1. Syntax and types

The top-level rules of the type system are de�ned in Fig.2.

The main judgment 

 ` CS; 



b

is valid whenever the 
ompilation invoked on

the 
lass names in CS in 
ompilation 
ontext 

 su

essfully produ
es the binary


ontext 



b

.

The 
ompilation 
an be split in two distin
t phases; �rst, all 
lasses in CS

(and, impli
itly, all 
lasses whi
h 
lasses in CS depends on) are type-
he
ked

(hypotheses), then binary fragments are produ
ed for all the type-
he
ked 
lasses

whi
h were not yet in binary form (
on
lusion).

The side 
ondition CS � Def (



s

) ensures that all 
lasses in CS have a sour
e

fragment in 

; if not so, 
ompilation fails, otherwise 
lasses in CS are sequentially

type-
he
ked (hypotheses).

Judgment 

;� ` C;�

0

is valid whenever 
lass C is well-typed w.r.t. 
om-

pilation 
ontext 

 and 
lass environment � ; �

0

is the new 
lass environment

produ
ed during the type-
he
king of C. A 
lass environment is a �nite map

asso
iating with ea
h 
lass name C a pair hC

0

; AMHSi, where C

0

denotes the super-


lass of C, while AMHS is the set of all annotated method headers (either inherited



h



b

; 



s

i;�

0

` C

1

;�

1

: : :

h



b

; 



s

i;�

n�1

` C

n

;�

n

h



b

; 



s

i ` CS; 



0

b

CS = fC

1

; : : : ; C

n

g � Def (



s

)

Def (�

0

) = fObje
tg; �

0

(Obje
t) = h?; ;i

Def (



0

b

) = Def (�

n

) n Def (



b

)

8 C 2 Def (



0

b

) 



0

b

(C) = bin(



s

; �

n

; C)



;� ` int;� 

;� ` C;�

C 2 Def (� )

h



b

; 



s

i;� ` C

1

;�

1

h



b

; 



s

i;�

1

[C 7! hC

1

; AMHSi℄ ` KS;�

2

h



b

; 



s

i;� ` C;�

2

C 62 Def (� )





b

(C) = hC

1

; AMHS

0

; KSi

�

1

(C

1

) = h ; AMHS

1

i

AMHS

1

[AMHS

0

℄ = AMHS

h



b

; 



s

i;� ` C

1

;�

1

h



b

; 



s

i;�

1

[C 7! hC

1

; AMHSi℄ ` MDS;�

2

h



b

; 



s

i;� ` C;�

2

C 62 Def (� ) [ Def (



b

)





s

(C) = 
lass C extends C

1

f MDS g

AMHS

0

= Amhs(C; MDS)

�

1

(C

1

) = h ; AMHS

1

i

AMHS

1

[AMHS

0

℄ = AMHS

Fig. 2. Top-level rules

or de
lared) of C. Class environments model the needed type information about


lasses 
olle
ted by the 
ompiler while inspe
ting sour
e and binary fragments

in the 
ompilation 
ontext.

The initial 
lass environment �

0

(see the 
orresponding side 
ondition) 
on-

tains only the prede�ned empty 
lass (with no super
lass) Obje
t

9

. Class envi-

ronment �

1

, produ
ed while type-
he
king C

1

, 
ontains (besides �

0

) type infor-

mation about all 
lasses needed for type-
he
king C

1

: all super
lasses of C

1

and

all 
lasses used (both dire
tly and indire
tly) by C

1

.

The new 
lass environment �

1

is used for 
he
king next 
lass C

2

and so on,

until produ
ing an environment �

n


ontaining all 
lasses whi
h have been type-


he
ked; from this set we 
an easily retrieve the set of all 
lasses whi
h need to

be 
ompiled (see the side 
ondition de�ning 



0

b

).

The remaining rules spe
ify type-
he
king of primitive types and 
lasses.

Type-
he
king of primitive types and or 
lasses already 
olle
ted in the 
lass

environment is trivial.

The other two rules 
on
ern 
lasses whi
h have not been inspe
ted yet (the

former deals with binary fragments, whereas the latter with sour
e fragments).

They are almost symmetri
, ex
ept that when both binary and sour
e fragment

are present, priority is given to the former

10

. First, the dire
t parent 
lass C

1

is

type-
he
ked; then, from the annotated method headers of C

1

and those de
lared

in C, the annotated method headers of C are derived (and rules on overriding are

9

For simpli
ity, we ignore all the prede�ned methods of Obje
t.

10

For simpli
ity, we assume that a binary fragment is always more re
ent than its


orresponding sour
e.




he
ked). Finally, either the set of type 
onstraints (in the binary 
ase) or the

set of method de
larations (in the sour
e 
ase) of C is type-
he
ked.

For la
k of spa
e, all other rules and auxiliary fun
tions are de�ned in the

Appendix.

Finally we show how the se
ond example dis
ussed in Se
t.2 
an be modeled

in the framework de�ned above.

The 
ompilation 
ontext 



0

= h



0

b

; 



0

s

i is de�ned by 



0

b

= ;, 



0

s

=

fA 7! S

A

; B 7! S

B

; C 7! S

C

g, where S

A

, S

B

, and S

C

are the sour
e 
ode of A, B, and

C as de�ned in the example

11

.

The 
ompilation 
ontext 



1

= h



1

b

; 



0

s

i (
orresponding to the 
ontext after

invoking the 
ompiler on A) is obtained by updating the previous binary 
ontext





0

b

with the binary 
ontext 



b

derived from the judgment 



0

` fAg; 



b

.

Sin
e in this 
ase 



0

b

is empty, we have 



1

b

= 



b

= fA 7! B

A

; B 7! B

B

; C 7! B

C

g,

where

B

A

= hObje
t; fA int main()g; fB � B; B� fB int m()ggi

B

B

= hObje
t; fB int m()g; fC � C; C� fC int m()ggi

B

C

= hObje
t; fC int m()g; ;i

The subtype 
onstraints B � B and C � C simply require the existen
e of 
lass

B and C, respe
tively, otherwise no 
onstru
tor 
ould be 
orre
tly invoked on

them.

The 
ontext 



0

2

is obtained from 



1

by 
hanging the sour
e 
ode of C (a
-


ording to the example), therefore 



0

2

= h



1

b

; 



2

s

i, where 



2

s

= 



0

s

[S

0

C

=C℄ is

obtained from 



0

s

by updating C with the new sour
e S

0

C

.

Finally, A 
annot be su

essfully 
ompiled in 
ontext 



2

, sin
e there is no





b

s.t. the judgment 



2

` fAg; 



b

is valid.

5 Con
lusion

We have shown that typing rules for Java separate 
ompilation 
an be quite


omplex and 
annot easily explained informally. Moreover, they 
an be be unsafe,

as happens for SDK and Jikes 
ompilers sin
e they perform very few 
he
ks on

binary fragments delegating them to the JVM. We argue that a more robust


ompiler implementation should perform as mu
h 
he
ks as possible at 
ompile

time, delegating to the JVM only those 
he
ks that 
an only be performed at

run time.

We have introdu
ed a simple framework whi
h allows to formally model

separate 
ompilation and the related properties. Within this framework, we have

de�ned, for a small subset of Java, a type system for separate 
ompilation whi
h

we 
onje
ture to be type safe.

In this paper, for la
k of spa
e, we have fo
used on the safety property; how-

ever, there are other interesting properties one 
an express for separate 
ompi-

lation, like 
ontextual binary 
ompatibility (mentioned at the end of Se
t.3) and

11

Where, however, stati
 has been removed and void repla
ed with int.



monotoni
ity, that is, the fa
t that when a subset of the sour
e fragments 
om-

posing a program is 
hanged, re-
ompiling only this set gives the same result as

re-
ompiling the whole program (this property is mentioned as desirable in [3℄

and formalized in [1℄).

The work presented in this paper is a �rst step towards the formal de�nition

and 
omparison of di�erent type systems for Java separate 
ompilation, 
orre-

sponding, e.g., either to standard Java 
ompilers, or to extended 
ompilers whi
h

perform additional 
he
ks. A lot of work still has to be done. On the theoreti
al

side, we plan to de�ne a 
omplete exe
ution and linking model for the toy lan-

guage de�ned in this paper, in
luding a toy byte
ode, thus allowing to formally

prove type safety. We also want to study the formal relations between the type

safety property analyzed in this paper and other properties like monotoni
ity

and 
ontextual binary 
ompatibility [1℄. On the pra
ti
al side, we plan to extend

the safe type system de�ned here to more relevant Java subsets and to develop

extended 
ompilers whi
h satisfy good properties like type safety.

A
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A Appendix

Class environments:

� ::= C

1

:hC

?

1

; AMHS

1

i; : : : ; C

n

:hC

?

n

; AMHS

n

i (n � 0)

C

?

::= ? j C



Binary 
lass generation:

bin(



s

; �; C) = hC

1

; AMHS; KSi if 



s

(C) = 
lass C extends C

1

f MDS g

AMHS = Amhs(MDS)

� ` MDS;KS

Annotated methods update: A set of method headers AMHS is well-formed if it

does not 
ontain overloaded methods.

AMHS

0

[AMHS℄ =

�

AMHS! AMHS

0

if AMHS! AMHS

0

is well-formed

unde�ned otherwise

where AMHS! AMHS

0

= AMHS [ fC T m(

�

T) j6 9 C

1

s:t: C

1

T m(

�

T) 2 AMHSg

Annotation and extra
tion of method headers:

Amhs(C; MDS) = annotate(C;Mhs(MDS))

annotate(C; MH

1

: : : MH

n

) = C MH

1

: : : C MH

n

Mhs(MH

1

f return E

1

; g : : : MH

n

f return E

n

; g) = MH

1

: : :MH

n

Method resolution

RetType(�; C; m; T

1

: : : T

n

) = T

0

if

8

<

:

� (C) = AMHS

C

1

T

0

m(T

0

1

x

1

; : : : ; T

0

n

x

0

n

) 2 AMHS

� ` T

i

� T

0

i

for i = 1::n



;�

0

` K

1

;�

1

: : : 

;�

n�1

` K

n

;�

n



;�

0

` K

1

: : : K

n

;�

n



;� ` C

1

;�

1



;�

1

` C

2

;�

2

�

2

` C

1

� C

2



;� ` C

1

� C

2

;�

2



;� ` C;�

1

�

1

` AMHS

1

� AMHS



;� ` C� AMHS;�

1

�

1

(C) = AMHS

1

Fig. 3. Type-
he
king sets of 
onstraints



� ` MD

1

; KS

1

: : : � ` MD

n

; KS

n

� ` MD

1

: : : MD

n

; KS

1

: : : KS

n

� ; fx

1

7! T

1

; : : : ; x

n

7! T

n

g ` E : T; KS

� ` T

0

m(T

1

x

1

; : : : ; T

n

x

n

) f return E; g; KS T

1

� T

1

: : : T

n

� T

n

T � T

0

� ;� ` new C : C; C � C � ;� ` N : int;� � ;� ` x : T;�

�(x) = T

� ;� ` E

0

: C; KS

0

� ;� ` E

1

: T

0

1

; KS

1

: : : � ;� ` E

n

: T

0

n

; KS

n

� ` T

0

1

� T

1

: : : � ` T

0

n

� T

n

� ;� ` E

0

:m(E

1

; : : : ; E

n

) : T; KS

0

: : : KS

n

C� fC

1

T m(T

1

: : : T

n

)g

� (C) = AMHS

1

C

1

T m(T

1

: : : T

n

) AMHS

2

Fig. 4. Code generation



;�

0

` MD

1

;�

1

: : : 

;�

n�1

` MD

n

;�

n



;�

0

` MD

1

: : : MD

n

;�

n



;� ` T

0

;�

0

: : : 

;� ` T

n

;�

n



;�

n

; fx

1

7! T

1

; : : : ; x

n

7! T

n

g ` E : T;�

0

�

0

` T � T

0



;� ` T

0

m(T

1

x

1

; : : : ; T

n

x

n

) f return E; g;�

0



;� ` C;�

0



;� ;� ` new C : C;�

0



;� ;� ` N : int;�



;� ;� ` x : T;�

�(x) = T



;� ;� ` E

0

: C;�

0



;�

0

;� ` E

1

: T

1

;�

1

: : :



;�

n�1

;� ` E

n

: T

n

;�

n



;� ;� ` E

0

:m(E

1

; : : : ; E

n

) : T;�

n

RetType(�; C; m; T

1

: : : T

n

) = T

Fig. 5. Type-
he
king of sour
e 
lass bodies

� ` C

0

1

� C

1

: : : � ` C

0

n

� C

n

� ` fC

1

T

1

m

1

(

�

T

1

); : : : ; C

k

T

k

m

k

(

�

T

k

)g� fC

0

1

T

1

m

1

(

�

T

1

); : : : ; C

0

n

T

n

m

n

(

�

T

n

)g

n � k

� ` int � int � ` C � C

C 2 Def (� )

� ` C � C

0

� (C) = hC

0

; i

� ` C � C

0

� ` C

0

� C

00

� ` C � C

0

Fig. 6. Implementation and widening


