
Regular corecursion in Prolog∗

Davide Ancona
DISI - Università di Genova

Via Dodecaneso, 35
16146 Genova, Italy
davide@disi.unige.it

ABSTRACT
Co-recursion is the ability of defining a function that pro-
duces some infinite data in terms of the function and the
data itself, and is typically supported by languages with lazy
evaluation. However, in languages as Haskell strict opera-
tions fail to terminate even on infinite regular data.

Regular co-recursion is naturally supported by co-inductive
Prolog, an extension where predicates can be interpreted
either inductively or co-inductively, that has proved to be
useful for formal verification, static analysis and symbolic
evaluation of programs.

In this paper we propose two main alternative vanilla
meta-interpreters to support regular co-recursion in Prolog
as an interesting programming style in its own right, able to
elegantly solve problems that would require more complex
code if conventional recursion were used. In particular, the
second meta-interpreters avoids non termination in several
cases, by restricting the set of possible answers.

The semantics defined by these vanilla meta-interpreters
are an interesting starting point to study new semantics able
to support regular co-recursion for non logical languages.

Categories and Subject Descriptors
D.1.6 [Programming Techniques]: Logic Programming;
D.3.3 [Programming Languages]: Language Constructs
and Features—recursion

∗This work has been partially supported by MIUR DISCO
Distribution, Interaction, Specification, Composition for
Object Systems.
2011 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by
an employee, contractor or affiliate of the national govern-
ment of Italy. As such, the government of Italy retains a
nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for Government purposes
only.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12 March 25-29, 2012, Riva del Garda, Italy.
Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

General Terms
Languages

Keywords
Logic programming, coinduction and corecursion

1. INTRODUCTION
Corecursion [4] is the ability of defining a function that

produces some infinite data in terms of the function and
the data itself, and is typically supported by languages with
lazy evaluation. As an example, the following Haskell code
defines the infinite stream !0 : 1! : 2! : . . . containing the
factorial of all natural numbers.

fact_stream = 1: gen_fact 1 1
gen_fact n m = let k = n*m in k:gen_fact k (m+1)

After having defined fact_stream, one can get the facto-
rial of n by simply selecting the element at position n in
fact_stream:

*Main > fact_stream !! 10
3628800

Though the stream is infinite, it is possible to access any
arbitrary element because the list constructor : is non-strict
and, hence, the call to function gen_fact is computed lazily.
Now let us use the predefined function all to check whether
all elements in the stream are greater than 0.

*Main > al l (\x -> x>0) fact_stream
-- does not terminate

Clearly these kinds of checks are only semi-decidable (termi-
nation is guaranteed only if the predicate does not hold for
some element, as in all (\x -> x<100) fact_stream) because
our stream represents an infinite non regular list of integers,
that is, it unfolds into an infinite term that it is not regular.

A term is regular if it has a finite set of subterms (hence,
trivially, every finite term is regular); infinite regular terms
correspond to cyclic data that can be represented in a finite
way.

ones = 1:ones

Variable ones as defined above contains the infinite regu-
lar stream 1 : 1 : . . ., indeed the set of all subterms con-
tains just two terms: 1 and the term itself. However, in
Haskell the expression all (\x -> x>0) ones does not termi-
nate, even though in this case the problem is trivially decid-
able; this happens because the logical conjunction && is strict
in its second argument (when the first argument evaluates
to True), and because all is defined inductively.

Ones=[1|Ones],all(positive,Ones)

all(positive,[1|**])

call(positive,1),all(positive,[1|**])

1>0,all(positive,[1|**])

Figure 1: Regular derivation for the goal
Ones=[1|Ones],all(positive,Ones)

Let us now consider the same problem in Prolog.1 We can
easily define predicate all s.t. all(p,l) succeeds iff predicate
p is true for all elements of list l.

all(_,[]).
all(P,[X|L]) :- call(P,X),all(P,L).
positive(X) :- X>0.

The resolution of the goal Ones=[1|Ones],all(positive,Ones)
does not terminate, for the same reason explained above.
Modern Prolog interpreters (as SWI-Prolog) support regu-
lar terms; the unification Ones=[1|Ones] succeeds, because
occur-check is not performed, and Ones is substituted with
the regular list containing infinite occurrences of 1 (repre-
sented by [1|**] in SWI-Prolog); in this way the Prolog in-
terpreter tries to build an infinite derivation for the goal and,
thus, does not terminate. The conventional interpreter is
based on the inductive interpretation of Horn clauses (called
the inductive Herbrand model), which is the least fixed point
of the one-step inference operator defined by the clauses of
the program. This can be proved equivalent to the set of all
ground atoms for which there exists a finite SLD derivation.

Simon et al. [11, 13, 12] have proposed coinductive SLD
resolution (abbreviated by coSLD) as an operational seman-
tics for logic programs interpreted coinductively: the coin-
ductive Herbrand model is the greatest fixed-point of the
one-step inference operator. This can be proved equivalent
to the set of all ground atoms for which there exists either
a finite or an infinite SLD derivation [13, 7].

Coinductive logic programming has proved to be useful
for formal verification [8, 10], static analysis and symbolic
evaluation of programs [2, 1, 3]. In this paper we propose
two main alternative vanilla meta-interpreters to support
regular corecursion in Prolog as an interesting programming
style in its own right, able to elegantly solve problems that
would require more complex code if conventional recursion
were used.

CoSLD resolution is not computable in its general form,
but it can be implemented if only regular terms and deriva-
tions are considered. Let cosld be a predicate, implemented
by a Prolog meta-interpreter (see the next section), that
coinductively resolves a goal; then the following goal suc-
ceeds:

?- cosld((Ones =[1| Ones],all(positive ,Ones))).
Ones = [1|**] .

The infinite regular derivation built by the meta-interpreter
is depicted in Figure 1.

In Haskell a function with the same behavior cannot be
implemented so simply, and specific datatypes must be ex-
pressly defined and used [14, 5]

1All Prolog examples shown in the paper have been tested
with SWI-Prolog.

Regular corecursion is a programming style that is im-
plicitly adopted quite frequently when cyclic data structures
are manipulated and termination becomes an issue; maybe
the most evident examples are given by graph algorithms
where vertices or edges must be marked to avoid infinite
loops (in the next section we see a similar example involving
automata). Direct support for regular coinduction allows
elimination of all boilerplate code needed for manual book-
keeping of inspected data in a cyclic structure, thus making
code simpler and more readable; furthermore, similarly as
happens for recursion, regular corecursion supported by an
interpreter or a compiler can be more reliable and efficient
then a manual implementation; roughly, while recursion can
always be eliminated in a program by using iteration with a
stack, regular corecursion can be eliminated by using recur-
sion with a set (that is, a data structure implementing the
abstract data type set).

In the next section we will define different versions of a
meta-interpreter supporting regular corecursion in Prolog,
and see some concrete examples of regular corecursion in
Prolog. In particular, we show that a rather drastic pruning
of the search tree is needed to ensure termination in useful
cases; even though such a pruning may limit the number of
possible answers, this limitation does not affect the results
in our examples where predicates are expected to be used
with arguments that are either ground (input arguments)
or variables (output argument). This seems a promising
starting point for studying the design and the semantics of
regular corecursion for programming languages not based on
the logical paradigm.

2. META-INTERPRETERS
This section elaborates previous results [11] by defining

two different versions of a vanilla meta-interpreter (where
vanilla means based on built-in unification and predicate
clause/2) implementing regular coSLD. Even though vanilla
meta-interpreters are too inefficient to be suitable for prac-
tical uses, the meta-programming facilities offered by Prolog
are an ideal tool to experiment implementations of coSLD
adaptable to other programming language paradigms.2

We first define a basic meta-interpreter, and then extend it
to allow resolution of built-in and library predicates, mixing
of coinductive and inductive predicates, and elimination of
repeated answers.

The basic meta-interpreter implementing regular coSLD
is a straightforward extension of the conventional vanilla in-
terpreter implementing standard SLD resolution for Prolog.

:- use_module(library(ordsets)).
cosld(G) :- ord_empty(E),solve(E,G).
solve(H, (G1,G2)) :- !,solve(H, G1), solve(H,G2).
solve(_,true) :- !.
solve(H,A):- member(A, H).
solve(H,A):- clause(A,As),ord_add_element(H,A,NewH),

solve(NewH ,As).

The predicate solve takes two arguments where the first is
an ordered set of atoms, called the coinductive hypotheses,
and the second is the goal that have to be resolved. The
set of coinductive hypotheses contains all atoms that the
interpreter has been processed so far, and are needed for
building infinite regular derivations (see below).

2We mainly think of functional languages, even though sup-
porting regular coinduction for object-oriented languages
could be interesting as well.

The first two clauses for solve deal with goals having
more than one atoms and with the empty goal, respectively,
while the remaining clauses manage the most interesting
case when the goal contains just one atom. To resolve an
atom A the interpreter first tries to build an infinite regu-
lar derivation by searching for an atom in the coinductive
hypotheses H that unifies with A (member(A,H)); if the search
succeeds, then the atom is resolved and removed from the
goal, and the computed answer substitution is refined ac-
cordingly, since predicate member exploits unification.3

If no unifiable coinductive hypothesis can be found, then
a clause in the program whose head unifies with the current
atom is searched with the built-in predicate clause; if such
a clause is found, then the unified body As of the clause is
solved in the new set of coinductive hypotheses NewH where
the atom A unified with the body of the clause has been
added.

Finally, the main predicate cosld tries to solve the goal
starting from the empty set of coinductive hypotheses.

Let us see how the interpreter works with a very simple
example program defining the predicate is_nat.

is_nat(s(N)) :- is_nat(N).

In this case, the only difference with inductive Prolog is
that is_nat succeeds also for the infinite regular term s(**)

solution of the unification problem N=s(N). The resolution of
the goal cosld(is_nat(N)) (corresponding to the coSLD res-
olution of the goal is_nat(N)) returns the following infinite
sequence of answers (we will consider shortly the problem of
avoiding some redundant answers):

N = z ;
N = s(**) ;
N = s(z) ;
N = s(s(**)) ;
N = s(s(**)) ;
N = s(s(z)) ;
...

This very basic meta-interpreter has a serious restriction,
since the clause predicate does not work with built-in predi-
cates; furthermore, library predicates that have been defined
for the standard inductive semantics should not be inter-
preted coinductively. To this aim, we introduce two predi-
cates inductive and coinductive to partition predicates: the
user has to explicitly specify all coinductive predicates (nec-
essarily user-defined), whereas all other predicates are in-
ductive: those that are built-in or imported from the Prolog
library, and all user-defined predicates that have not been
declared to be coinductive.

:- use_module(library(ordsets)).
cosld(G) :- ord_empty(E),solve(E,G).
solve(H, (G1,G2)) :- !,solve(H, G1), solve(H,G2).
solve(_,A) :- inductive(A), !, A.
solve(H,A):- member(A, H).
solve(H,A):- clause(A,As),ord_add_element(H,A,NewH),

solve(NewH ,As).
inductive(A) :- predicate_property(A,built_in),!.
inductive(A) :- predicate_property(A, f i l e (AbsPath)),

file_name_on_path(AbsPath ,library(_)),!.
inductive(A) :- \+ coinductive(A).

If an atom is inductive, then it is directly solved by the Pro-
log interpreter; the cut allows the meta-interpreter to skip
the clauses dealing with coinduction. Since true is a built-in
predicate, the clause for the empty goal is no longer required.

3The atom member(A,H) succeeds iff there exists an atom in
H unifying with A.

This solution enforces a stratification between coinductive
and inductive predicates: while a coinductive predicate can
be defined in terms of an inductive one, the opposite is not
allowed; this restriction avoids contradictions due to naive
mixing of coinduction and induction [12].

To allow regular coSLD resolution for predicate all, as
defined in the previous section, we only need to declare it to
be coinductive.

coinductive(all(_,_)).
all(_,[]).
all(P,[X|L]) :- call(P,X),all(P,L).
positive(X) :- X>0.

We now propose two extensions to the meta-interpreter, the
first allows elimination of repeated answers due to redun-
dant coinductive hypotheses, while the second performs also
a pruning of the search tree (therefore we call it “pruning
meta-interpreter) to avoid some kinds of non terminating
failures.

The basic meta-interpreter computes set of redundant coin-
ductive hypotheses, as shown by the resolution of the goal
cosld(is_nat(N)): initially the set of coinductive hypotheses
is empty, the first clause for is_nat is applicable, and the
first computed answer is N=z; if backtracking is forced, then
the second clause for is_nat is considered, the substitution
N=s(N0) is computed, and the goal is_nat(N0) is resolved,
with the set of coinductive hypotheses [is_nat(s(N0))].

Since is_nat(N0) unifies with the unique coinductive hy-
pothesis, the meta-interpreter can build an infinite regular
derivation whose answer is the solution of the unification
problem is_nat(N0)=is_nat(s(N0)), that is, s(**). Proceed-
ing further, the meta-interpreter re-applies the first clause
for is_nat, to get the answer N=s(z), and then re-applies
the second clause for is_nat; the substitution N0=s(N1) is
computed, and the goal is_nat(N1) is resolved, with the set
of coinductive hypotheses [is_nat(s(N1),is_nat(s(s(N1)))].
At this point the insertion of atom is_nat(s(N1) in the set
of coinductive hypotheses is redundant, since it unifies with
the atom is_nat(s(s(N1))) already present in the set. How-
ever, predicate ord_add_element works by syntactic equality,
therefore is_nat(s(N1) and is_nat(s(s(N1))) are considered
different elements, hence the atom is inserted.

As a consequence of such a redundancy, the atom

member(is_nat(N1),[is_nat(s(N1)),is_nat(s(s(N1)))])

succeeds twice, with the same answer s(s(**)).4

To avoid this problem, we modify the meta-interpreter:
a new coinductive hypothesis is inserted only if it does not
unify with any other element in the set. For brevity, we
show only the modified clause for solve, and the clauses for
predicate is_in.

solve(H,A):- clause(A,As),
(is_in(A,H) -> NewH=H; %no insertion

ord_add_element(H,A,NewH)),
solve(NewH ,As).

is_in(E,[X|_]) :- unifiable(E,X,_),!.
is_in(E,[_|L]) :- is_in(E,L),!.

In this way the set of coinductive hypotheses is kept smaller,
and some repeated answers are avoided. Now resolution of
the goal cosld(is_nat(N)) yields the following answers:

4In SWI-Prolog the goal N1=s(N1),N2=s(s(N2)),N1==N2 suc-
ceeds, as expected; however, since terms are not simplified
after unification, the interpreter displays N1 and N2 differ-
ently.

N = z ;
N = s(**) ;
N = s(z) ;
N = s(s(**)) ;
N = s(s(z)) ;
...

A pruning of the search trees can be performed by apply-
ing a clause only if the atom to be resolved does not unify
with a coinductive hypothesis, after it has been unified with
the head of the clause. Hence we derive from the previous
meta-interpreter a pruning version by modifying the clause

solve(H,A):- clause(A,As),
(is_in(A,H) -> NewH=H;

ord_add_element(H,A,NewH)),
solve(NewH ,As).

in the following way

solve(H,A):- clause(A,As),
(\+ is_in(A,H) -> ord_add_element(H,A,NewH),

solve(NewH ,As)).

In this way the set of computed answers can be consid-
erably restricted. For instance, the resolution of the goal
cosld(is_nat(N)) only yields three possible answers.

N = z ;
N = s(**) ;
N = s(z) ;
false.

This version of the meta-interpreter does not work with pro-
grams based on generate-and-test methods. However, the
resolution of all ground goals having shape is_nat(sn(z))

still succeeds:

?- cosld(is_nat(s(s(s(z))))).
true.

Even though there are cases where resolution with pruning
fails for ground goals which succeeds with the non pruning
meta-interpreter, some interesting examples (see next sec-
tion) require pruning of the search trees to avoid infinite
failures.

3. REGULAR CORECURSION AT WORK
In this section we consider several examples where regular

corecursion allows more succinct and elegant solutions; we
also show how constraint logic programming can be usefully
exploited in conjunction with regular corecursion. For two
examples the pruning meta-interpreter is needed to avoid
non terminating failures.

Membership for regular lists. In the previous section we
have shown how predicate all can be easily defined corecur-
sively in Prolog; more generally, this is true whenever uni-
versally quantified predicates have to be checked on regular
terms. Checking existentially quantified predicates is less
simple. A classical example is membership test on regular
lists. The following definition is not correct.

coinductive(member(_,_)).
member(N,[N|_]).
member(N1 ,[N2|L]) :- N1\=N2,member(N1,L).

For instance, the goal cosld(L=[1,2,3|L],member(5,L)) suc-
ceed, instead of failing. Indeed, with coinductive recur-
sion the meta-interpreter ends up resolving the initial goal,
and, hence, always succeeds. A possible solution consists
in defining the predicate not_member that checks that the
negated property holds universally, but then one has to rely
on coSLD negation [9].

An alternative solution is given by the following clauses.

S2S1

a

b

Figure 2: A deterministic finite automaton recog-
nizing the language a*b

coinductive(member(_,_)).
coinductive(aux_member(_,_,_)).
member(N,L) :- aux_member(N,L,_).
aux_member(N,[N|_],t).
aux_member(N1 ,[N2|L],R2) :-

N1\=N2,aux_member(N1,L,R1),R1==t,R2=t.

The coinductive auxiliary predicate aux_member has a third
argument corresponding to the Boolean result of the mem-
bership test; such an argument is not used by the main pred-
icate member, but is necessary for ensuring correctness. To
be used correctly, the third argument of aux_member must be
a variable; the search of the element in the list succeeds iff
such a variable is instantiated with the constant t; for this
reason the syntactic equality test R1==t is used.

The resolution of the goal cosld(L=[1,2,3|L],member(5,L))
correctly fails with this new definition, but only when the
pruning meta-interpreter is used; resolution without pruning
does not terminate since the second clause of aux_member is
selected infinitely many times. Note that the clauses defined
above work with both finite and infinite regular lists.

Finite automata and regular languages. We now consider
a classical application from formal languages, by defining
a predicate that succeeds iff a finite automaton (either de-
terministic or not) accepts all strings of a regular language
(generated by an extended right linear grammar). In other
words, the predicate succeeds iff the language defined by the
grammar is a subset of the language defined by the automa-
ton. Regular terms allow a very compact representation of
automata and regular grammars.5

Let us consider the automaton depicted in Figure 2, where
S1 (pointed by the arrow) is the initial state, and S2 (with
a thicker circle) is final.

Such an automaton can be represented by the infinite reg-
ular Prolog term associated with the logical variable S1 after
the resolution of the following unification problem:

S1=state(notfinal ,[(a,S1),(b,S2)]),S2=state(final ,[])

Each state is represented by the term state(k,e), where k
can be one of the two constants final and notfinal, and e is
the list of outgoing edges, represented by pairs (σ,S), where
σ is a symbol of the alphabet of the automaton, and S is
one of its states. Since an automaton has only an initial
state, there is no need to explicitly represent initial states.
If we consider the unification problem above, then S1 is as-
sociated with the term corresponding to the automaton in
Figure 2, whereas S2 is associated with a term corresponding
to another automaton, where S2 is both an initial and a final
state (such an automaton accepts only the empty string).

Let us now consider the following right linear grammar:

5In the example we consider extended right linear grammars
since acceptance by a finite automaton can be defined more
easily, and the standard Prolog constructors for lists can be
suitably used for representing them.

A ::= b | aA

Using the Prolog constructors for list, and a binary opera-
tion or for expressing alternative productions, we can easily
represent such a grammar by the infinite regular Prolog term
associated with the logical variable A, after the resolution of
the following unification problem:

A = or([b],[a|A])

Even though we have omitted the formal definitions for space
limitations, from the two examples above it should be clear
how any finite automaton and extended right linear gram-
mar can be represented by a regular Prolog term. We are
now ready for defining the predicate accept.

coinductive(accept(_,_)).

accept(state(final ,_),[]).
accept(state(_,E),[H|T]):- member ((H,S),E),accept(S,T).
accept(S,or(L1,L2)) :- accept(S,L1),accept(S,L2).

The first two clauses for accept show that using the list con-
structors for representing our grammars has an advantage:
strings (that is, sequences of symbols), are considered as
particular cases of grammars (defining just a single string),
in the same way as an element can be identified with the sin-
gleton set containing it. The first two clauses define whether
an automaton accepts a given string: any final state accepts
the empty string, whereas the non empty string [H|T] is ac-
cepted from the state state(_,E) if there exists an outgoing
edge labeled with H and pointing to a state S starting from
which the tail T of the string can be accepted. If we con-
sider just strings (that is, finite lists), then corecursion is
not needed, since termination is guaranteed by the induc-
tion on strings. For instance, the following two goals can be
resolved without the predicate cosld (obviously resolution
for the former succeeds, whereas it fails for the second).

S1=state(notfinal ,[(a,S1),(b,S2)]),S2=state(final ,[]),
accept(S1 ,[a,b]).

S1=state(notfinal ,[(a,S1),(b,S2)]),S2=state(final ,[]),
accept(S1 ,[b,a]).

The third clause dealing with alternatives is self-explanatory:
the union or(L1,L2) of the languages L1 and L2 is accepted
if both languages are accepted starting from the state S. To
verify that all strings generated by the grammar A ::= b | aA

are accepted by our automaton we need regular corecursion,
since the term representing the grammar is not inductive:

cosld((
S1=state(notfinal ,[(a,S1),(b,S2)]),
S2=state(final ,[]),A=or([b],[a|A]),
accept(S1,A))).

To avoid infinite failure, we need to run the pruning version
of the meta-interpreter. The resolution of the following goal
terminates and fails, as expected, only if the pruning meta-
interpreter is used.

cosld((
S1=state(notfinal ,[(a,S1),(b,S2)]),
S2=state(final ,[]),A=or([a|A],or([b|A],[b])),
accept(S1,A))).

Clearly, the grammar A ::= aA | bA | b generates (among
infinite others) the string bb which is not accepted by our
automaton.

The careful reader may have noticed that the definition
of accept is not completely correct, since it does not cor-
rectly manage the corner case when a grammar generates
the empty set. Consider for instance the following two goals:

cosld((
S1=state(notfinal ,[(a,S1),(b,S2)]),
S2=state(final ,[]),A=[a|A],
accept(S1,A))).

cosld((
S1=state(notfinal ,[(a,S1),(b,S2)]),
S2=state(final ,[]),A=[c|A],
accept(S1,A))).

The former succeeds, while the second fails, even though
both should succeed, since the two grammars A ::= aA and
A ::= cA generate the empty set. To overcome this prob-
lem, we introduce the coinductive predicate empty check-
ing whether a grammar generates the empty set, and add
a clause for dealing with this corner case.

coinductive(accept(_,_)).
coinductive(empty(_)).
accept(_,L) :- empty(L).
accept(state(final ,_),[]).
accept(state(_,E),[H|T]):- member ((H,S),E),accept(S,T).
accept(S,or(L1,L2)) :- accept(S,L1),accept(S,L2).
empty([_|T]) :- empty(T).
empty(or(L1,L2)) :- empty(L1),empty(L2).

The definitions of the two predicates are extremely concise
and simple to understand. The concatenation of a symbol
with a set of strings T is empty iff T is empty, and the union
or(L1,L2) of L1 and L2 is empty iff both L1 and L2 are empty.
The definition works because empty is interpreted coinduc-
tively, and it fails (as expected) on the empty list (which
represents the singleton set containing the empty string).

Repeating decimals. It is well-known that every rational
number is either a terminating or repeating decimal, that
is, all rational numbers can be represented by an infinite
regular lists of digits. In the sequel we only consider ra-
tional numbers in the interval [0, 1] represented with base
10; all clauses shown in this section can be generalized in a
straightforward way to deal with the whole set of rational
numbers, represented with any base (≥ 2). For instance,
the term associated with N after the resolution of the uni-
fication problem N=[5|P],P=[7,2|P] corresponds to the re-
peating decimal 0.572 that equals the fraction 62

110
. Since

multiplying a repeating decimal by 10e (with e > 0) is
equivalent to a left shift of e positions, we have that the
following equations hold: 100P= 72+P, 10N= 5+P. Therefore
P= 72

99
,N= 5

10
+ 72

99
= 62

110
. For uniformity, we represent termi-

nating decimals as infinite regular lists as well (by definition,
a decimal is terminating if it has a repeating final 0). For in-
stance, 0.5 is represented by the term associated with N after
the resolution of the unification problem N=[5|Z],Z=[0|Z].

We can now define a coinductive predicate to compute the
addition between two repeating decimals represented as in-
finite regular lists of digits. Since the operands have infinite
digits, we cannot simply mimic the conventional algorithm
for addition, because the notion of least significant digit does
not make sense in our case. We first consider a simple so-
lution which consists in using an auxiliary predicate that
computes all result and carry digits for all infinite positions,
and returns two corresponding regular lists.

coinductive(aux_add(_,_,_,_)).
aux_add ([D1|N1],[D2|N2],[RD|R],[CD|C]) :-

Sum i s D1+D2, RD i s Sum mod 10,
CD i s Sum // 10, aux_add(N1,N2,R,C).

The predicate takes two operands [D1|N1] and [D2|N2], com-
putes the addition RD and the carry CD for the two most sig-
nificant digits D1 and D2, and then continues corecursively
for the rest of the digits N1 and N2.

We can now define the main predicate add.

coinductive(add(_,_,_,_)).
add(O1,O2,R,CD) :-

O2\=[0|O2],aux_add(O1,O2,PR ,[CD1|C]),
add(PR,C,R,CD2),CD i s CD1 + CD2.

add(O1,Z,O1 ,0) :- Z=[0|Z].

If the second operand is zero (second clause), then the result
is the first operand O1, and the carry digit for the next more
significant position is 0. Otherwise (first clause) the partial
result PR and all carry digits [CD1|C] of the addition O1+O2

are computed with aux_add; then we have to accommodate
the carry digits: first they need to be left shifted of one
position (thus we get C); indeed, the carry digit generated at
position i (corresponding to the power 10−i) must be added
to the digit of the partial result PR at position i−1. Therefore
the addition between PR and C is computed, to get the final
result R and a carry digit CD2 that has to be combined with
the most significant digit CD1 of the carry digits computed
by aux_add, to get the carry digit CD corresponding to the
next more significant position. The computation terminates
because of regularity, and because each position can yield
a carry of 1 just once; actually, add (but not aux_add) is
defined by induction, but since it depends from a coinductive
predicate, stratification (recall Section 2) requires add to be
interpreted coinductively as well.

We consider now a more advanced solution exploiting con-
straints over finite domains, to show also how constraint
logic programming fits well with regular corecursion.

:- use_module(library(clpfd)). % finite domain CLP
coinductive(add(_,_,_,_)).
add([D1|N1],[D2|N2],[RD|R],C) :-

add(N1,N2,R,PC), PC in 0..1, Sum #= D1 + D2 + PC,
RD #= Sum mod 10, C #= Sum / 10, label([RD]).

With constraints, propagation of the evaluation of integer
expressions can proceed in all directions, therefore we can
avoid using aux_add and define add coinductively with just
one clause. To compute [D1|N1]+[D2|N2], N1+N2 is first com-
puted, yielding the result R, and the carry PC that must be
added to the most significant digits D1 and D2 to compute
the most significant digit RD of the result, and the carry C

for the next more significant position.
Since the predicate is coinductive, the atom add(N1,N2,R,PC)

can be placed indifferently before or after all constraints; the
atom label([RD]) is required for obtaining ground solutions
(all values for the finite domain variable RD are systemati-
cally tried out), since in some cases there exist two different
solutions. For instance, let us consider the addition 0.9+0.1:

?- cosld((_M=[9|_M],_Z=[0|_Z],_N=[1|_Z],
add(_M,_N,R,C))).

R = [1, 0|**],
C = 1 ;
R = [0, 9|**],
C = 1 ;
false.

The meta-interpreter finds two different solutions (clearly
equivalent): 0.10 with carry 1, or 0.09 with carry 1.

As a final remark, both definitions (with or without con-
straints) work with both versions of the meta-interpreter,
with the only difference that the pruning version does not
return redundant answers.

4. CONCLUSION
We have proposed two alternative meta-interpreters to

support regular corecursion in Prolog as an interesting pro-

gramming style in its own right, able to elegantly solve prob-
lems that would require more complex code if conventional
recursion were used. To avoid infinite failure, one of the
meta-interpreters uses a simple but effective heuristic for
pruning search trees.

For future developments we envisage at least two different
interesting directions.

The first direction is to investigate on efficient implemen-
tations of coinductive Prolog able to avoid non terminat-
ing failures as the pruning vanilla meta-interpreter presented
here; for instance, one could use DRA tabling [6] to imple-
ment efficient meta-interpreters supporting effective regular
corecursion in Prolog. Another interesting research direc-
tion consists in studying regular corecursion for non logical
programming languages.

5. REFERENCES
[1] D. Ancona, A. Corradi, G. Lagorio, and F. Damiani.

Abstract compilation of object-oriented languages into
coinductive CLP(X): can type inference meet
verification? In FoVeOOS 2010, LNCS. Springer,
2011.

[2] D. Ancona and G. Lagorio. Coinductive type systems
for object-oriented languages. In ECOOP 2009,
LNCS, Springer, 2009. Best paper prize.

[3] D. Ancona and G. Lagorio. Idealized coinductive type
systems for imperative object-oriented programs.
RAIRO - Theoretical Informatics and Applications,
45(1), 2011.

[4] J. Barwise and L. Moss. Vicious circles: On the
mathematics of non-wellfounded phnenomena. J. of
Logic, Lang. and Inf., 6, 1997.

[5] N. Ghani, M. Hamana, T. Uustalu, and V. Vene.
Representing cyclic structures as nested datatypes. In
TFP, 2006.

[6] H.-F. Guo and G. Gupta. A simple scheme for
implementing tabled logic programming systems based
on dynamic reordering of alternatives. In ICLP, 2001.

[7] X. Leroy and H. Grall. Coinductive big-step
operational semantics. Inf. Comput., 207(2), 2009.

[8] R. Min and G. Gupta. Coinductive logic programming
and its application to boolean sat. In FLAIRS
Conference, 2009.

[9] R. Min and G. Gupta. Coinductive logic programming
with negation. In LOPSTR, 2009.

[10] N.Saeedloei and G. Gupta. Verifying complex
continuous real-time systems with coinductive
CLP(R). In LATA 2010, LNCS. Springer, 2010.

[11] L. Simon. Extending logic programming with
coinduction. PhD thesis, University of Texas at Dallas,
2006.

[12] L. Simon, A. Bansal, A. Mallya, and G. Gupta.
Co-logic programming: Extending logic programming
with coinduction. In ICALP 2007, 2007.

[13] L. Simon, A. Mallya, A. Bansal, and G. Gupta.
Coinductive logic programming. In ICLP 2006, 2006.

[14] F. A. Turbak and J. B. Wells. Cycle therapy: A
prescription for fold and unfold on regular trees. In
PPDP, 2001.

	Introduction
	Meta-interpreters
	Regular corecursion at work
	Conclusion
	References

