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Abstract

Corecursion is the ability of defining a function that produces some infinite data
in terms of the function and the data itself, as supported by lazy evaluation.
However, in languages such as Haskell strict operations fail to terminate even
on infinite regular data, that is, cyclic data.

Regular corecursion is naturally supported by coinductive Prolog, an ex-
tension where predicates can be interpreted either inductively or coinductively,
that has proved to be useful for formal verification, static analysis and symbolic
evaluation of programs.

In this paper we use the meta-programming facilities offered by Prolog to
propose extensions to coinductive Prolog aiming to make regular corecursion
more expressive and easier to program with.

First, we propose an interpreter where the search tree is pruned to guarantee
termination for certain kinds of predicate definition; then we introduce finally

clauses, to provide a default value for all those cases where unification with a
coinductive hypothesis is not correct. Finally, we propose a finer grain semantics
where the user can specify only a subset of the arguments that have to be
considered when coinductive hypotheses are unified.

The semantics defined by these vanilla meta-interpreters are an interesting
starting point for a more mature design and implementation of coinductive
Prolog.

Keywords: Logic programming, coinduction and corecursion

1. Introduction

Corecursion [6] has been used in some contexts to denote the ability, sup-
ported by lazy evaluation, of defining a function that produces some infinite
data in terms of the function and the data itself.

IThis work has been partially supported by MIUR DISCO Distribution, Interaction, Spec-
ification, Composition for Object Systems.
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As an example, let us consider the following Haskell code defining the infinite
stream !0 : 1! : 2! : . . . of the factorials of all natural numbers.

fact_stream = 1: gen_fact 1 fact_stream

where
gen_fact n (m:l) = n*m:gen_fact (n+1) l

The stream fact_stream is defined in terms of itself and of the corecursive func-
tion gen_fact that takes the stream itself as one of its arguments.

An equivalent, but simpler definition is the following one:

fact_stream = 1: gen_fact 1 1

gen_fact n m = l e t k = n*m in k:gen_fact k (m+1)

After having defined fact_stream, one can get the factorial of n by simply se-
lecting the element at position n in fact_stream:

*Main > fact_stream !! 10

3628800

Though the stream is infinite, it is possible to access any arbitrary element
because the list constructor ‘:’ is non-strict and, hence, the call to function
gen_fact is computed lazily. More abstractly, the data returned by gen_fact

corresponds to a tree whose depth is infinite, and that is not regular ; a regular
tree can have infinite depth, but it is only allowed to have a finite set of subtrees.
Trivially, finite trees are regular, whereas infinite regular trees can be effectively
represented by finite cyclic data structures, without relying on lazily evaluated
computations.

Now let us try to check whether all elements in the stream are greater than
0, with the predefined function all.

*Main > a l l (\x -> x>0) fact_stream

-- does not terminate

Checking that an arbitrary predicate holds on all the factorials of natural num-
bers is only semi-decidable: termination is guaranteed only if the predicate does
not hold for some element, as in all (\x -> x<100) fact_stream.

Let us now consider this other stream declaration:

ones = 1:ones

Differently from fact_stream, stream ones is regular: it corresponds to a tree
whose set of subterms contains just 1 and the stream itself. Such a stream
is defined as a cyclic data structure, and no lazy evaluation is required: it is
recursively defined by using just the list constructor.

Despite the regularity of ones, in Haskell the evaluation of the expression
all (\x -> x>0) ones does not terminate; this happens because the logical con-
junction && is strict in its second argument (when the first argument evaluates
to True), and all is defined in the standard inductive way.
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Let us now consider the same problem in Prolog.1 We can easily define
predicate all s.t. all(p,l) succeeds iff predicate p is true for all elements of list
l.

all(_ ,[]).

all(P,[X|L]) :- call(P,X),all(P,L).

positive(X) :- X>0.

The resolution of the goal Ones=[1|Ones],all(positive,Ones) does not termi-
nate, for the same reason explained for Haskell. Modern Prolog interpreters sup-
port regular terms; the unification Ones=[1|Ones] succeeds, because occur-check
is not performed, and Ones is substituted with the regular term corresponding to
the cyclic list containing infinite occurrences of 1. For instance, in SWI-Prolog
the goal ?- Ones = [1|Ones] succeeds with the answer Ones = [1|Ones], that is,
Ones is the unique regular tree which is solution of the equation Ones = [1|Ones].
Such a tree can be represented in infinite different ways; for instance, the follow-
ing goal (where ‘==’ is the built-in predicate corresponding to syntactic equality)
succeeds as follows:

?- Ones =[1| Ones],OnesOnes =[1,1| OnesOnes],Ones== OnesOnes.

Ones=OnesOnes ,OnesOnes =[1 ,1| OnesOnes ].

If predicate all is interpreted in the standard inductive way, then the Pro-
log interpreter tries to build an infinite derivation for the goal and, thus, the
computation does not terminate. The conventional inductive interpretation of a
logic program is based on the inductive Herbrand model, that is, the least fixed
point of the one-step inference operator defined by the clauses of the program.
This can be proved equivalent to the set of all ground atoms for which there
exists a finite SLD derivation.

Simon et al. [13, 15, 14] have proposed coinductive SLD resolution (abbre-
viated by coSLD) as an operational semantics for logic programs interpreted
coinductively: the coinductive Herbrand model is the greatest fixed-point of
the one-step inference operator. This can be proved equivalent to the set of all
ground atoms for which there exists either a finite or an infinite SLD derivation
[15, 9].

Coinductive logic programming has proved to be useful for formal verification
[10, 12], static analysis and symbolic evaluation of programs [3, 2, 4].

CoSLD resolution is not computable in its general form, but it becomes
implementable when restricted to the fragment where only regular terms and
regular derivations are allowed. In SWI-Prolog the library coinduction has
been recently introduced, to allow coinductive interpretation of predicates. For
instance, we want predicate all to be interpreted coinductively:

:- use_module(library(coinduction )).

:- coinductive(all /2).

all(_ ,[]).

1All Prolog examples shown in the paper have been tested with SWI-Prolog, version 6.0.2.
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Ones=[1|Ones],all(positive,Ones)

all(positive,Ones)

call(positive,1),all(positive,Ones)

1>0,all(positive,Ones)

Figure 1: Regular derivation for the goal Ones=[1|Ones],all(positive,Ones)

all(P,[X|L]) :- call(P,X),all(P,L).

positive(X) :- X>0.

Now the resolution of our goal terminates succesfully:

?- cosld((Ones =[1| Ones],all(positive ,Ones ))).

Ones = [1| Ones].

This happens because the interpreter is able to build an infinite but regular
derivation, as depicted in Figure 1, by unifying the atom all(positive,Ones),
that has to be solved, with the ancestor atom that have been already solved.

In Haskell a function with the same behavior cannot be implemented so
simply; for instance, specific datatypes have to be expressly defined and used
[16, 7], or physical equality has to be exploited, at the cost of breaking referential
transparency, and other nice properties.

Regular corecursion is expressly suited for cyclic data structures; among
them, the most commonly used are certainly graphs, a kind of data structure
that is heavily employed in many application domains; we will see some non triv-
ial examples of corecursion with graphs in Section 3 and 4. Regular corecursion
allows elimination of the boilerplate code needed for manual bookkeeping of in-
spected data in a cyclic structure, thus making code simpler, and more reliable,
and favoring coinductive reasoning; furthermore, programming abstractions for
regular corecursion promote code reuse, and optimization; roughly, recursion
compares to iteration with a stack, as regular corecursion compares to ordinary
recursion with a set (that is, a data structure implementing the abstract data
type set).

In this paper we propose new semantics and programming abstractions to
make regular corecursion more expressive, and easier to program with.

In the next section we will present three different semantics of regular core-
cursion in Prolog, by means of simple vanilla interpreters. Besides the semantics
coinciding with the original definition of coSLD [15], two optimized versions are
presented: the former is complete w.r.t. the original semantics, whereas the
latter is not, but it ensures termination of coSLD under certain assumptions;
furthermore, completeness is still guaranteed for some forms of goals.

In Section 4 we extend our interpreters by adding finally clauses, to en-
hance the expressivity of regular corecursion; such a feature allows a simpler

4



definition for some coinductive predicates (for instance, those that correspond
to existentially quantified properties).

In Section 5 we introduce yet another feature aiming to make regular core-
cursion even more expressive and flexible to be used: the user can select the
arguments that have to be considered in the coinductive definition of a predi-
cate. Also in this case, some meaningful examples show the usefulness of such
an extension.

Finally, Section 6 draws conclusions, and outlines further interesting research
directions.

2. Meta-interpreters for coSLD

This section elaborates previous results [13] by defining two different ver-
sions of a vanilla meta-interpreter (where vanilla means based on built-in uni-
fication and predicate clause/2) supporting coSLD. Even though vanilla meta-
interpreters are not efficient to be suitable for practical uses, the meta-programming
facilities offered by Prolog are an ideal tool to experiment with new semantics
and programming abstractions: vanilla meta-interpreters are concise and ab-
stract enough to serve as a formal semantics, yet they provide prototype imple-
mentations to test new language features.

We first define a basic meta-interpreter, and then extend it to allow reso-
lution of built-in and library predicates, mixing of coinductive and inductive
predicates, and elimination of repeated answers.

2.1. Basic meta-iterpreters
The basic meta-interpreter corresponding to the original formulation of the

coSLD operational semantics [13] is a straightforward extension of the conven-
tional vanilla interpreter implementing standard SLD resolution for Prolog.

:- module(cosldmeta0 ,[ cosld /1]).

:- use_module(library(ordsets )).

cosld(G) :- ord_empty(E),solve(E,G).

solve(H, (G1 ,G2)) :- !,solve(H, G1), solve(H,G2).

solve(_,true) :- !.

solve(H,A):- found(A, H).

solve(H,A):- !,clause(A,As),insert(H,A,NewH),solve(NewH ,As).

insert(L1 ,A,L2) :- !,ord_add_element(L1,A,L2).

found(A,H) :- member(A,H).

Module cosldmeta0 exports the main predicate cosld/1 which takes a goal as
argument, and solves it according to the coSLD operational semantics, which is
implemented through the predicate solve.
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The first argument of solve is the ordered set of ancestor atoms that have
been already solved (hence the set is initially empty), which are called coinduc-
tive hypotheses, whereas the second argument is the goal that have to be solved.
The set of coinductive hypotheses contains all atoms that the interpreter has
been solved so far, and are needed for building infinite regular derivations (see
below); such a set is implemented as a list with unique elements sorted to the
standard order of terms, by using the library ordsets.

The first two clauses for solve deal with goals having more than one atoms
and with the empty goal, respectively, while the remaining clauses manage the
most interesting case when the goal contains just one atom. To solve an atom
A the interpreter first tries to build an infinite regular derivation by searching
for an atom in the coinductive hypotheses H that unifies with A (found(A,H));
for this simple version of the meta-interpreter predicate found coincides with
the library predicate member that checks whether an element is a member of a
list. If the search succeeds, then the atom is solved and removed from the goal,
and the computed answer substitution is refined accordingly, since the atom A

is unified with the coinductive hypothesis found in H.2

If no unifiable coinductive hypothesis can be found, then a clause in the
program whose head unifies with the current atom is searched with the built-
in predicate clause; if such a clause is found, then the unified body As of the
clause is solved in the new set of coinductive hypotheses NewH where the atom
A unified with the body of the clause has been added; for this simple version of
the meta-interpreter predicate insert coincides with predicate ord_add_element

defined in library ordsets, which inserts an element into an ordered set.
We show how the interpreter works with a very simple example program

defining the predicate is_nat.

is_nat(z).

is_nat(s(N)) :- is_nat(N).

In this case, the only difference with inductive Prolog is that is_nat succeeds
also when N = s(N). The resolution of the goal cosld(is_nat(N)) (corresponding
to the coSLD resolution of the goal is_nat(N)) returns the following infinite
sequence of answers (we will consider shortly the problem of avoiding some
redundant answers):

N = z ;

N = s(N) ;

N = s(z) ;

N = s(_S1), % where

_S1 = s(_S1) ;

N = s(s(N)) ;

N = s(s(z)) ;

...

2The atom member(A,H) succeeds iff there exists an atom in H unifying with A.
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This very basic meta-interpreter has two serious restrictions: built-in predicates
cannot be used, since the clause predicate does not work with them; all predi-
cates are interpreted coinductively, whereas there are cases where we may want
the standard inductive interpretation for predicates (consider, for instance, li-
brary predicates). To this aim, we introduce two predicates inductive and
coinductive to partition predicates: predicates are inductive by default, those
coinductive (and necessarily user-defined) have to be explicitly specified by the
user. Therefore the inductive predicates are either built-in or imported from a
standard library or they have not been declared coinductive.

:- module(cosldmeta0 ,[ cosld /1]).

:- use_module(library(ordsets )).

cosld(G) :- ord_empty(E),solve(E,G).

solve(H, (G1 ,G2)) :- !,solve(H, G1), solve(H,G2).

solve(_,A) :- inductive(A),!,A.

solve(H,A):- found(A, H).

solve(H,A):- !,clause(A,As),insert(H,A,NewH),solve(NewH ,As).

inductive(A) :- predicate_property(A,built_in ),!.

inductive(A) :- predicate_property(A, f i l e (AbsPath)),

file_name_on_path(AbsPath ,library(_)),!.

inductive(A) :- !,\+ coinductive(A).

insert(L1 ,A,L2) :- !,ord_add_element(L1,A,L2).

found(A,H) :- member(A,H).

If an atom is inductive, then it is directly solved by the Prolog interpreter; the
cut allows the meta-interpreter to skip the clauses dealing with coinduction.
Since true is a built-in predicate, the clause for the empty goal is no longer
required. This solution enforces a stratification between coinductive and in-
ductive predicates: while a coinductive predicate can be defined in terms of an
inductive one, the opposite is not allowed; this restriction avoids contradictions
due to naive mixing of coinduction and induction [14].

To allow regular coSLD resolution for predicate all, as defined in the previ-
ous section, we only need to declare it to be coinductive.

:- use_module(cosldmeta0 ).

coinductive(all(_,_)).

all(_ ,[]).

all(P,[X|L]) :- call(P,X),all(P,L).

positive(X) :- X>0.

test :- cosld((Ones =[1| Ones],all(positive ,Ones ))).

As expected, the goal test succeeds.
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?- test.

true .

2.2. Avoiding redundant coinductive hypotheses
We extend the basic meta-interpreter to allow elimination of repeated an-

swers due to redundant coinductive hypotheses.
The basic meta-interpreter computes set of redundant coinductive hypothe-

ses, as shown by the resolution of the goal cosld(is_nat(N)): initially the set of
coinductive hypotheses is empty, the first clause for is_nat is applicable, and the
first computed answer is N=z; if backtracking is forced, then the second clause
for is_nat is considered, the substitution N=s(N0) is computed, and the goal
is_nat(N0) is solved, with the set of coinductive hypotheses [is_nat(s(N0))].

Since is_nat(N0) unifies with the unique coinductive hypothesis, the meta-
interpreter can build an infinite regular derivation whose answer is N=s(N). Pro-
ceeding further, the meta-interpreter re-applies the first clause for is_nat, to
get the answer N=s(z), and then re-applies the second clause for is_nat; the
substitution N0=s(N1) is computed, and the goal is_nat(N1) is solved, with the
set of coinductive hypotheses [is_nat(s(N1),is_nat(s(s(N1)))]. At this point
the insertion of atom is_nat(s(N1) in the set of coinductive hypotheses is re-
dundant, since it unifies with the atom is_nat(s(s(N1))) already present in the
set. However, predicate ord_add_element works by syntactic equality, therefore
is_nat(s(N1) and is_nat(s(s(N1))) are considered different elements, hence the
atom is inserted.

As a consequence of such a redundancy, the atom

member(is_nat(N1),[is_nat(s(N1)),is_nat(s(s(N1)))])

succeeds twice, the first time with the answer N = s(_S1), _S1 = s(_S1), the sec-
ond time with the equivalent answer N = s(s(N)); this happens because member

allows backtracking. One may solve this problem by simply using memberchk

which does not perform backtracking; however, inserting non unifiable atoms
allows to keep the set of coinductive hypotheses smaller.

To avoid this problem, we modify the meta-interpreter: a new coinductive
hypothesis is inserted in the set only if it does not unify with any other ancestor
atoms in the set. Furthermore, predicate find is defined by memberchk.

:- module(cosldmeta1 ,[ cosld /1]).

:- use_module(library(ordsets )).

cosld(G) :- ord_empty(E),solve(E,G).

solve(H, (G1 ,G2)) :- !,solve(H, G1), solve(H,G2).

solve(_,A) :- inductive(A),!,A.

solve(H,A):- found(A, H).

solve(H,A):- !,clause(A,As),insert(H,A,NewH),solve(NewH ,As).

inductive(A) :- predicate_property(A,built_in ),!.

inductive(A) :- predicate_property(A, f i l e (AbsPath)),
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file_name_on_path(AbsPath ,library(_)),!.

inductive(A) :- !,\+ coinductive(A).

insert(L1 ,X,L1) :- is_in(X,L1),!.

insert(L1 ,X,L2) :- !,ord_add_element(L1,X,L2).

is_in(E,[X|_]) :- unifiable(E,X,_),!.

is_in(E,[_|L]) :- is_in(E,L),!.

found(A,H) :- memberchk(A,H).

In this way the set of coinductive hypotheses is kept smaller, and some
repeated answers are avoided. Now found is defined by memberchk, thus making
the searching more efficient. With this new version of the meta-interpreter the
goal cosld(is_nat(N)) yields the following answers:

N = z ;

N = s(N) ;

N = s(z) ;

N = s(s(N)) ;

N = s(s(z)) ;

...

2.3. A pruning meta-interpreter
Let us consider the following logic program:

:- use_module(cosldmeta1).

coinductive(lth(_,_)).

lth(tree(N1 ,LT1 ,RT1),tree(N2 ,LT2 ,RT2)) :-

N1<N2,lth(LT1 ,LT2),lth(RT1 ,RT2).

Atom lth(t1,t2) should succeed if and only if t1 and t2 are two infinite regular
complete binary trees, where nodes are intenger numbers, such that each node in
t1 is less than the corresponding node in t2. Although the coinductive definition
of lth is correct, the program fails to terminate for some goals whose resolution
should fail; for instance, this happens for the goal

?- T1=tree(4,T1 ,tree(5,T1 ,T1)),T2=tree(5,T2 ,tree(4,T2 ,T2)),

cosld(lth(T1 ,T2)).

After one resolution step we get the goal

?- 4<5,lth(T1 ,T2),lth(tree(5,T1 ,T1),tree(4,T2 ,T2)).

Resolution of the first atom trivially succeeds, the second atom succeeds as well
by coinductive hypothesis, whereas the third atom fails, therefore, by backtrack-
ing, resolution of lth(T1,T2) is tried again, thus entering an infinite loop with
the following goal
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?- 4<5,lth(T1 ,T2),lth(tree(5,T1 ,T1),tree(4,T2 ,T2)),

lth(tree(5,T1 ,T1),tree(4,T2 ,T2)).

An ad hoc solution to this problem would consist in inserting a cut in the body
of the clause, between the two atoms lth(LT1,LT2) and lth(RT1,RT2); here,
instead, we propose a pruning version of the meta-interpreter, to avoid this
kind of non terminating failures.

A pruning of the search trees can be performed by applying a clause only if
the atom to be solved does not unify with a coinductive hypothesis, after it has
been unified with the head of the clause.

:- module(cosldmeta2 ,[ cosld /1]).

:- use_module(library(ordsets )).

cosld(G) :- ord_empty(E),solve(E,G).

solve(H, (G1 ,G2)) :- !,solve(H, G1), solve(H,G2).

solve(_,A) :- inductive(A),!,A.

solve(H,A):- found(A, H).

solve(H,A):- !,clause(A,As),insert(H,A,NewH),solve(NewH ,As).

inductive(A) :- predicate_property(A,built_in ),!.

inductive(A) :- predicate_property(A, f i l e (AbsPath)),

file_name_on_path(AbsPath ,library(_)),!.

inductive(A) :- !,\+ coinductive(A).

insert(L1 ,A,L2) :- is_in(A,L1) -> f a i l ;ord_add_element(L1 ,A,L2).

is_in(A1 ,[A2|_]) :- unifiable(A1 ,A2 ,_),!.

is_in(A,[_|L]) :- is_in(A,L),!.

found(A,H) :- memberchk(A,H).

With such an interpreter, the set of computed answers can be considerably re-
stricted in some cases. For instance, the resolution of the goal cosld(is_nat(N))
only yields three possible answers.

?- cosld(is_nat(N)).

N = z ;

N = s(N) ;

N = s(z) .

However, the resolution of all ground goals having shape is_nat(sn(z)) still
succeeds.

Though this version of the meta-interpreter is not suitable for programs
based on generate-and-test patterns, in the next section we will show several
examples where pruning is very effective and useful.
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3. Examples of use of regular corecursion

In this section we consider more significant examples of regular corecursion;
some of them will show the usefulness of pruning, some others will be used to
motivate the features that will be introduced in the next sections. We also show
how constraint logic programming can be usefully exploited in conjunction with
regular corecursion.

3.1. Membership for regular lists
In the previous section we have shown how predicate all can be easily defined

corecursively in Prolog for regular lists; more generally, this is true whenever
predicates corresponding to universally quantified properties have to be defined
on regular terms. However, properties which are existentially quantified on
cyclic data cannot be defined so easily; a classical example is given by the
member predicate for regular lists [13].

coinductive(member(_,_)).

member(N,[N|_]).

member(N1 ,[N2|L]) :- member(N1,L).

At a first glance the definition above may seem correct, but a more thor-
ough analysis reveals that this is not true. For instance, the resolution of goal
cosld(L=[1,2,3|L],member(5,L)) succeeds, whereas it should fail. Indeed, after
three steps the initial goal is found again, and resolution succeeds by coinduc-
tive hypothesis; in fact, all ground atoms built with predicate member always
succeeds.

To avoid this problem, one might define the complemented predicate not_member,
which corresponds to a universally quantified property; unfortunately, this ap-
proach has the drawback that it requires coSLD negation [11].

An alternative solution is given by the following program.

coinductive(member(_,_)).

coinductive(aux_member(_,_,_)).

member(N,L) :- aux_member(N,L,_).

aux_member(N,[N|_],t).

aux_member(N1 ,[N2|L],R2) :-

aux_member(N1 ,L,R1),R1==t,R2=t.

The coinductive auxiliary predicate aux_member has a third argument corre-
sponding to the Boolean result of the membership test; such an argument is
not used by the main predicate member, but it is necessary for ensuring a cor-
rect behavior. The body of member ensures that initially the last argument of
aux_member is a logical variable; this corresponds to the fact that the truth value
is initially unknown. If the element is found (first clause), then the variable
is unified with the constant t, representing true. If the initial list is found
again, then the goal is resolved by coinduction hypothesis, but the variable cor-
responding to the result is not substituted; hence, atom aux_member(N1,L,R1)
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S2S1

a

b

Figure 2: A deterministic finite automaton recognizing the language a*b

in the body of the second clause for aux_member always succeeds, but R1 is sub-
stituted with t if and only if the element has been found. For this reason, the
atom is followed by the syntactic equality test R1==t.

Such a solution is correct, providing that the pruning meta-interpreter is
used: goals like cosld(L=[1,2,3|L],member(5,L)) correctly fail only with prun-
ing, otherwise the second clause of aux_member is selected infinitely many times.

In Section 4 a new feature, called finally clause, is expressly introduced to
overcome ad hoc and rather involved definitions for predicates as member.

3.2. Finite automata and regular languages
We now consider a classical application from formal languages, by defining

a predicate that succeeds iff a finite automaton (either deterministic or not)
accepts all strings of a regular language (defined by an extended right linear
grammar). In other words, the predicate succeeds iff the language defined by
the grammar is a subset of the language defined by the automaton.

Regular terms allow a very compact representation of automata and regular
grammars.3 Let us consider the automaton depicted in Figure 2, where S1
(pointed by the arrow) is the initial state, and S2 (with a thicker circle) is final.

Such an automaton can be represented by the following cyclic Prolog term
associated with the logical variable S1:

S1=state(notfinal ,[(a,S1),(b,S2)]),S2=state(final ,[])

Each state is represented by the term state(k,e), where k can be one of the two
constants final and notfinal, and e is the list of outgoing edges, represented by
pairs (σ,S), where σ is a symbol of the alphabet of the automaton, and S is one
of its states. Since an automaton has only an initial state, there is no need to
explicitly represent initial states. If we consider the definition above, then S1 is
associated with the term corresponding to the automaton in Figure 2, whereas
S2 is associated with a term corresponding to another automaton, where S2 is

3In the example we consider extended right linear grammars since acceptance by a finite
automaton can be defined more easily, and the standard Prolog constructors for lists can be
suitably used for representing them.
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both an initial and a final state (such an automaton accepts only the empty
string).

Let us now consider the following right linear grammar: A ::= b | aA.
Using the Prolog constructors for list, and a binary operation or for ex-

pressing alternative productions, we can easily represent such a grammar by
the following cyclic Prolog term: A = or([b],[a|A]).

It is not difficult to define two functions that are inspired by the two examples
above, and that encode finite automata and extended right linear grammars into
cyclic Prolog terms. We are now ready for defining the predicate accept.

coinductive(accept(_,_)).

accept(state(final ,_),[]).

accept(state(_,E),[H|T]):- member ((H,S),E),accept(S,T).

accept(S,or(L1 ,L2)) :- accept(S,L1),accept(S,L2).

The clauses show that using the list constructors for representing our grammars
has an advantage: strings (that is, sequences of symbols), are considered as
particular cases of grammars (defining just a single string), in the same way
as an element can be identified with the singleton set containing it. The first
two clauses define whether an automaton accepts a given string: any final state
accepts the empty string, whereas the non empty string [H|T] is accepted from
the state state(_,E) if there exists an outgoing edge labeled with H and pointing
to a state S starting from which the tail T of the string can be accepted. If we
consider just strings (that is, finite lists), then corecursion is not needed, since
termination is guaranteed by the induction on strings. For instance, the follow-
ing two goals can be resolved without the predicate cosld (obviously resolution
for the former succeeds, whereas it fails for the second).

S1=state(notfinal ,[(a,S1),(b,S2)]),S2=state(final ,[]),

accept(S1 ,[a,b]).

S1=state(notfinal ,[(a,S1),(b,S2)]),S2=state(final ,[]),

accept(S1 ,[b,a]).

The third clause dealing with alternatives is self-explanatory: the union or(L1,L2)

of the languages L1 and L2 is accepted if both languages are accepted start-
ing from the state S. To verify that all strings generated by the grammar
A ::= b | aA are accepted by our automaton we need regular corecursion, since
the term representing the grammar is cyclic:

cosld((

S1=state(notfinal ,[(a,S1),(b,S2)]),

S2=state(final ,[]),A=or([b],[a|A]),
accept(S1,A))).

To avoid infinite failure, we need to run the pruning version of the meta-
interpreter. The resolution of the following goal terminates and fails, as ex-
pected, only if the pruning meta-interpreter is used.

cosld((

S1=state(notfinal ,[(a,S1),(b,S2)]),
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S2=state(final ,[]),A=or([a|A],or([b|A],[b])),
accept(S1,A))).

Clearly, the grammar A ::= aA | bA | b generates (among infinite others) the
string bb which is not accepted by our automaton.

The careful reader may have noticed that the definition of accept is not
completely correct, since it does not correctly manage the corner case when a
grammar generates the empty set. Consider for instance the following two goals:

cosld((

S1=state(notfinal ,[(a,S1),(b,S2)]),

S2=state(final ,[]),A=[a|A],

accept(S1,A))).

cosld((

S1=state(notfinal ,[(a,S1),(b,S2)]),

S2=state(final ,[]),A=[c|A],

accept(S1,A))).

The former succeeds, while the second fails, even though both should succeed,
since the two grammars A ::= aA and A ::= cA generate the empty set. To
overcome this problem, we introduce the coinductive predicate empty checking
whether a grammar generates the empty set, and add a clause for dealing with
this corner case.

coinductive(accept(_,_)).

coinductive(empty(_)).

accept(_,L) :- empty(L).

accept(state(final ,_),[]).

accept(state(_,E),[H|T]):- member ((H,S),E),accept(S,T).

accept(S,or(L1 ,L2)) :- accept(S,L1),accept(S,L2).

empty([_|T]) :- empty(T).

empty(or(L1 ,L2)) :- empty(L1),empty(L2).

The definitions of the two predicates are extremely concise and simple to un-
derstand. The concatenation of a symbol with a set of strings T is empty iff
T is empty, and the union or(L1,L2) of L1 and L2 is empty iff both L1 and
L2 are empty. The definition works because empty is interpreted coinductively,
and it fails (as expected) on the empty list (which represents the singleton set
containing the empty string).

3.3. Repeating decimals
It is well-known that every rational number is either a terminating or re-

peating decimal, that is, all rational numbers can be represented by an infinite
regular lists of digits.

In the sequel we only consider rational numbers in the interval [0, 1] repre-
sented with base 10; all clauses shown in this section can be generalized in a
straightforward way to deal with the whole set of rational numbers, represented
with any base (≥ 2).

For instance, the term associated with N in N=[5|P],P=[7,2|P] corresponds
to the repeating decimal 0.572 that equals the fraction 63

110 . Indeed, multiplying
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a repeating decimal by 10e (with e > 0) is equivalent to a left shift of e positions,
therefore we have that the following equations hold:

100P=72+P

10N=5+P.

From the two equations above we can derive

P=
72

99
=

8

11

N=
1

2
+

4

55
=

55 + 8

110
=

63

110

For uniformity, we represent terminating decimals as infinite regular lists as
well (by definition, a decimal is terminating if it has a repeating final 0). For
instance, 0.5 is represented by the term associated with N in N=[5|Z],Z=[0|Z].

We can now define a coinductive predicate to compute the addition between
two repeating decimals represented as infinite regular lists of digits. Since the
operands have infinite digits, we cannot simply mimic the conventional algo-
rithm for addition, because the notion of least significant digit does not make
sense in our case. We first consider a simple solution which consists in using an
auxiliary predicate that computes digit-wise result and carry for all positions,
and returns two corresponding regular lists.

coinductive(aux_add(_,_,_,_)).

aux_add ([D1|N1],[D2|N2],[RD|R],[CD|C]) :-

Sum i s D1+D2, RD i s Sum mod 10,

CD i s Sum // 10, aux_add(N1 ,N2 ,R,C).

The predicate takes two operands [D1|N1] and [D2|N2], computes the addition
RD and the carry CD for the two most significant digits D1 and D2, and then
continues corecursively for the rest of the digits N1 and N2.

We can now define the main predicate add.

coinductive(add(_,_,_,_)).

add(O1 ,O2 ,R,CD) :-

O2 \=[0|O2],aux_add(O1,O2,PR ,[CD1|C]),

add(PR ,C,R,CD2),CD i s CD1 + CD2.

add(O1 ,Z,O1 ,0) :- Z=[0|Z].

If the second operand is zero (second clause), then the result is the first operand
O1, and the carry digit for the next more significant position is 0.

Otherwise (first clause) the partial result PR and all carry digits [CD1|C] of
the addition O1+O2 are computed with aux_add; then we have to accommodate
the carry digits: first they need to be left shifted of one position (thus we get
C). Indeed, the carry digit generated at position i (corresponding to 10i, with
i < −1) must be added to the digit of the partial result PR at position i + 1.
Therefore the addition between PR and C is computed, to get the final result R

and a carry digit CD2 that has to be combined with the most significant digit CD1

of the carry digits computed by aux_add, to get the carry digit CD corresponding
to the next more significant position.
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The computation terminates because of regularity, and because each position
can yield a carry of 1 just once; actually, add (but not aux_add) is defined
by induction, but since it depends from a coinductive predicate, stratification
(recall Section 2) requires add to be interpreted coinductively as well.

In the next section we will see how finally clauses allow a simpler solution
that does not require the use of an auxiliary predicate. A simpler and also more
efficient solution can be obtained by exploiting constraints over finite domains;
the following example shows how constraint logic programming fits well with
regular corecursion.
:- use_module(library(clpfd )). % finite domain CLP

coinductive(add(_,_,_,_)).

add([D1|N1],[D2|N2],[RD|R],C) :-

add(N1 ,N2 ,R,PC), PC in 0..1, Sum #= D1 + D2 + PC ,

RD #= Sum mod 10, C #= Sum / 10, label ([RD]).

With constraints, propagation of the evaluation of integer expressions can pro-
ceed in both directions, therefore we can avoid using aux_add and define add

coinductively with just one clause.
To compute [D1|N1]+[D2|N2], N1+N2 is first computed, yielding the result R,

and the carry PC that must be added to the most significant digits D1 and D2 to
compute the most significant digit RD of the result, and the carry C for the next
more significant position.

Since the predicate is coinductive, the atom add(N1,N2,R,PC) can be placed
indifferently before or after all constraints; the atom label([RD]) is required
for obtaining ground solutions (all values for the finite domain variable RD are
systematically tried out), since in some cases there exist two different solutions.
For instance, let us consider the addition 0.08 + 0.01:
?- cosld((N1=[0| Eights],N2=[0| Ones],Eights =[8| Eights],

Ones =[1| Ones],add(N1,N2,R,O))).

R = [1|_S1], % where

_S1 = [0| _S1],

O = 0 ;

R = [0|_S1], % where

_S1 = [9| _S1],

O = 0 ;

false.

The meta-interpreter finds two different solutions (clearly equivalent): 0.10 with
carry 0, or 0.09 with carry 0.

As a final remark, both definitions (with or without constraints) work with
both versions of the meta-interpreter, with the only difference that the pruning
version does not return redundant answers.

4. Extending regular corecursion with the finally clause

In Section 3 we have seen that properties which are existentially quantified
on cyclic data (as membership for regular lists) cannot be defined easily in a
coinductive way, and a rather involved and ad hoc solution has been proposed.
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Here we propose a new feature aiming to solve this problem, by allowing the
user to define the specific behavior of a predicate when an atom is solved by
coinductive hypothesis, by means of finally clauses.

While facts are used in Prolog for defining the base cases for induction,
finally clauses specify the behavior in case of application of the coinductive
hypothesis in regular coinduction.

Let us first introduce finally clauses with the definition of predicate member.

:- use_module(cosldmeta2finally ).

coinductive(member(_,_)).

member(N,[N|_]).

member(N,[_|L]) :- member(N,L).

finally(member(_,_)) :- f a i l .

In the case of member the coinductive hypothesis is applied when all the elements
of the cyclic list has been already inspected; this means that none of them was
found equal to the first argument, therefore in this case the goal must fail. The
last clause with finally is used for specifying such a behavior: when a coin-
ductive hypothesis can be applied for member (independently of the arguments),
then the goal must fail.

The semantics of finally clauses is specified by the following meta-interpreter,
which is an extension of the pruning meta-interpreter presented in Section 2;
the non pruning version can be extended in a very similar way.

:- module(cosldmeta2finally ,[ cosld /1]).

:- use_module(library(ordsets)).

cosld(G) :- ord_empty(E),solve(E,G).

solve(H, (G1 ,G2)) :- !,solve(H, G1), solve(H,G2).

solve(_,A) :- inductive(A),!,A.

solve(H,A):- found(A, H),(clause(finally(A),As) *-> solve(H,

As);true).
solve(H,A):- !,clause(A,As),insert(H,A,NewH),solve(NewH ,As).

inductive(A) :- predicate_property(A,built_in) ,!.

inductive(A) :- predicate_property(A, f i l e (AbsPath)),

file_name_on_path(AbsPath ,library(_)) ,!.

inductive(A) :- !,\+ coinductive(A).

insert(L1 ,A,L2) :- is_in(A,L1) ->

f a i l ;ord_add_element(L1 ,A,L2).

is_in(A1 ,[A2|_]) :- unifiable(A1 ,A2 ,_) ,!.

is_in(A,[_|L]) :- is_in(A,L) ,!.

found(A,H) :- memberchk(A,H).
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For keeping the treatment simple, finally is managed as a predicate symbol,
hence in this approach finally cannot be chosen for naming user-defined pred-
icates; in a real implementation this limitation can be easily avoided with a
suitable syntax.

In comparison with the pruning meta-interpreter defined in Section 2, the
only difference is the definition of the third clause for solve/2, which deals with
the application of the coinductive hypothesis. If the current atom A unifies
with some coinductive hypothesis in H (that is, found(A,H) succeeds), then the
meta-interpreter checks whether there exists a finally clause applicable for A,
with the atom clause(finally(A),As); if it is the case, then the body of the
corresponding finally clause is solved; if no finally clause is found, then the
default behavior is implemented: the atom A succeeds.

The built-in predicate *-> has been used instead of ->, to allow backtrack-
ing for the resolution of clause(finally(A),As); we will see in the sequel why
backtracking for the finally clause may be useful.

We conclude this section with two examples showing more advanced uses of
the finally clause.

Maximum of a regular list
We define the predicate max/2 to compute the greatest element of a regular

(hence, possibly cyclic) list of integers.

:- use_module(cosldmeta2finally).

coinductive(max(_,_)).

coinductive(aux_max(_,_,_)).

max([N|L],M) :- aux_max(L,N,M).

aux_max ([],N,N).

aux_max ([N1|L],N2 ,M) :- (N1 > N2 -> N3 = N1; N3 = N2),

aux_max(L,N3 ,M).

finally(aux_max(_,N,N)).

The main predicate max/2 is defined in terms of the auxiliary predicate aux_max/3

where the second argument is used as an accumulator to store the maximum
value computed so far.

As usual, the predicate correctly works for both cyclic (that is, coinductive)
and non cyclic (that is, inductive) lists.

If the list is not cyclic, then the empty list is eventually reached, and then the
returned value is the current value of the accumulator (fact aux_max([],N,N)).

If the list is cyclic, then the atom eventually unifies with a coinductive hy-
pothesis, and then the returned value is the current value of the accumulator
(finally clause).

For instance, the following atoms succeed:

?- L=[1,2,3,2,1|L],cosld(max(L,M)).

L = [1, 2, 3, 2, 1|L],
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M = 3 .

?- L=[1,2,3,2,1], cosld(max(L,M)).

L = [1, 2, 3, 2, 1],

M = 3.

Note that, in the worst case, if the cyclic list has period n, then 2n elements
have to be inspected to return the correct value; indeed, to be able to apply the
coinductive hypothesis the second argument to aux_max must first become the
maximum of the whole list. This limitation will be overcome in the next section,
with a more expressive semantics allowing the user to have more control on the
application of coinductive hypotheses.

Finally, we point out that the following direct definition for max is not correct.

:- use_module(cosldmeta2finally).

coinductive(max(_,_)).

max([N],N).

max([N|L],M) :- max(L,M1),(N > M1 -> M = N; M = M1).

finally(max([N|_],N)).

For instance, the following goal fails:

?- L=[1,2,3,2,1|L],cosld(max(L,M)).

false.

Indeed, as happens in this case, the first element of the repeated pattern of a
cyclic list is not guaranteed to be the maximum of the whole list. Again, the
more expressive semantics proposed in the next section allows us to make the
definition above correct, with minimal changes.

Addition between repeating decimals
With finally clauses, the definition of predicate add/4, as given in Section 3

(without constraints), can be significantly simplified.

:- use_module(cosldmeta2finally).

coinductive(add(_,_,_,_)).

add([D1|R1],[D2|R2],[Sd|S],O) :- add(R1 ,R2 ,S,C),Sum i s D1 +

D2 + C,Sd i s Sum mod 10,O i s Sum // 10.

finally(add(_,_,_,0)).

finally(add(_,_,_,1)).

Such a definition works correctly because the meta-interpreter allows backtrack-
ing for finally clauses. When the coinductive hypothesis is eventually applied,
the only unknown value is the final carry, which, however, must be either 0 or
1. As already shown in Section 3, there are cases where both values of the carry
are correct as happens in the following example of goal:
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?- cosld((N1=[0| Eights],N2=[0| Ones],Eights =[8| Eights],Ones

=[1| Ones],add(N1,N2,R,O))).

R = [0|_S1], % where

_S1 = [9| _S1],

O = 0 ;

R = [1|_S1], % where

_S1 = [0| _S1],

O = 0 ;

false.

5. Argument annotations for corecursion

In this section we further extend the semantics defined in Section 4 to
make corecursion even more expressive. More precisely, the meta-interpreter
we present here allows the user to select only a part of the arguments of a
coinductive predicate on which regular corecursion is defined.

Let us consider again the definition of predicate max given in the previous
section.

:- use_module(cosldmeta2finally).

coinductive(max(_,_)).

coinductive(aux_max(_,_,_)).

max([N|L],M) :- aux_max(L,N,M).

aux_max ([],N,N).

aux_max ([N1|L],N2 ,M) :- (N1 > N2 -> N3 = N1; N3 = N2),

aux_max(L,N3 ,M).

finally(aux_max(_,N,N)).

As already noted, in the worst case, if a list is cyclic with period n, then 2n
elements have to be inspected to return the maximum of the list; indeed, to be
able to apply the coinductive hypothesis, the second argument to aux_max must
first become the maximum of the whole list.

This problem is due to the fact that all arguments of aux_max are involved
when a coinductive hypothesis is applied, whereas coinduction could be confined
to the first argument only.

To this aim, we allow the user to annotate the argument of a coinductive
predicate with n, if regular corecursion does not depend on such an argument;
for brevity, the arguments which are not annotated with n are called coinductive.

:- use_module(cosldmeta2annotated).

coinductive(max(n,n)).

coinductive(aux_max(_,n,n)).

max([N|L],M) :- aux_max(L,N,M).
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aux_max ([],N,N).

aux_max ([N1|L],N2 ,M) :- (N1 > N2 -> N3 = N1; N3 = N2),

aux_max(L,N3 ,M).

finally(aux_max(_,N,N),_).

Now, it is made explicit that the first argument of aux_max is the only one on
which regular corecursion depends on; all other arguments are annotated with
n. This allows the program to compute the maximum of a cyclic list in n steps,
where n is the period of the list.

Note that, differently from the examples in the previous section, here finally

has arity 2 instead of 1, even though in this example the second argument is
unused. We will explain its use in the last example of this section.

With annotations predicate max can be easily defined directly, without intro-
ducing an auxiliary predicate that uses an accumulator.

:- use_module(cosldmeta2annotated).

coinductive(max(_,n)).

max([N],N).

max([N|L],M) :- max(L,M1),(N > M1 -> M = N; M = M1).

finally(max([N|_],N),_).

Now that corecursion involves only the first argument of the predicate (recall
the same example without annotations in the previous section), the definition
of max works correctly:

?- L=[1,2,3,2,1|L],cosld(max(L,M)).

L = [1, 2, 3, 2, 1|L],

M = 3 .

The pruning meta-interpreter for dealing with argument annotations is de-
fined as follows (the non pruning version can be defined in a very similar way):

:- module(cosldmeta2annotated ,[ cosld /1]).

:- use_module(library(ordsets)).

cosld(G) :- ord_empty(E),solve(E,G).

solve(H, (G1 ,G2)) :- !,solve(H, G1), solve(H,G2).

solve(_,A) :- inductive(A),!,A.

solve(H,A):- found(A, H, MA),(clause(finally(A,MA),As) *->

solve(H,As);true).
solve(H,A):- !,clause(A,As),insert(H,A,NewH),solve(NewH ,As).

inductive(A) :- predicate_property(A,built_in) ,!.

inductive(A) :- predicate_property(A, f i l e (AbsPath)),

file_name_on_path(AbsPath ,library(_)) ,!.

inductive(A) :- !,\+ coinductive(A,_).

21



insert(L1 ,A,L2) :- filtered(A,FA),is_in(FA,L1) -> f a i l ;
ord_add_element(L1,A,L2).

is_in(A1 ,[A2|_]) :- filtered(A2 ,FA2),unifiable(A1 ,FA2 ,_) ,!.

is_in(A,[_|L]) :- is_in(A,L) ,!.

coinductive(A1,A2) :- !, functor(A1 ,N,A), functor(A2 ,N,A),
coinductive(A2).

filtered(T1,T2) :- !,coinductive(T1,AnnT1), T1 =.. L1, AnnT1

=.. AnnL1 , combine(L1 , AnnL1 , L2), T2 =.. L2.

combine ([F|Args1],[F|Anns],[F,N|Args2]) :- combine_args(

Args1 ,Anns ,Args2), length(Args1 ,N).

combine_args ([] ,[] ,[]) :- !.

combine_args ([Arg1|Args1],[Ann|Anns],Args) :- (Ann == n ->

Args = Args2; Args = [Arg1|Args2 ]), combine_args(Args1 ,

Anns ,Args2).

found(A,L,MA) :- filtered(A,FA),is_in(FA ,L,MA).

is_in(A1 ,[A2|_],A2) :- filtered(A2 ,FA2),A1=FA2 ,!.

is_in(A,[_|L],MA) :- is_in(A,L,MA) ,!.

The predicate filtered has been implemented to filter out the arguments that
are not coinductive; furthermore, a first argument corresponding to the arity of
the predicate is added, to correctly deal with overloaded predicate symbols: one
might declare two coinductive predicates with the same name, different arity,
but the same number of coinductive arguments.

For instance, given the annotation aux_max(_,n,n) in the previous example,
the goal ?- filtered(aux_max([], 1, X), A) succeeds with A=aux_max(3, []),
since only the first argument is coinductive.

Predicate filtered is used for correctly managing the list of coinductive
hypotheses (predicates insert/3, is_in/2, found/3, and is_in/3); note that the
list of coinductive hypotheses still contains the unfiltered atoms; filtering is
needed for finding a coinductive hypothesis which unifies (modulo filtering of
non coinductive arguments) with a given atom.

In comparison with all previous versions of the meta-interpreter, the arity
of predicates found and finally has been incremented by 1. If the current
atom p(t1, . . . , tn) to be solved unifies with a coinductive hypothesis, and all
arguments of p are coinductive, then they are all involved in the unification
process. However, if some argument is not coinductive, then it is possible to keep
distinct the corresponding term in the atom to be solved, and the corresponding
term in the coinductive hypothesis, since they will not be unified.

For instance, consider the following goal resolution:

?- L1=[1,2|L1],L2=[2|L1],found(aux_max(L2 ,2,R1),[aux_max(L2

,1,R2),aux_max(L1 ,2,R3)],A).
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L1 = [1,2|L1],

L2 = [2|L1],

A = aux_max(L2 , 1, R2).

The first argument of found (aux_max(L2,2,R1)) is the atom to be found in the
list of coinductive hypotheses, whereas the third one (aux_max(L2, 1, R2)) is
the found coinductive hypothesis (after unification): the only argument which
is the same in both atoms is the coinductive one.

In the third clause defining solve/2, if a coinductive hypothesis is found
that can be unified (modulo filtering of non coinductive arguments) with the
current atom A, then such a coinductive hypothesis MA is returned (containing
also its non coinductive arguments); then, the finally clause can mention both
the atom A and the coinductive hypothesis MA; that is why predicate finally has
arity 2.

To show the usefulness of the second argument of finally, we implement a
predicate for testing bipartiness of a graph. We recall that a bipartite undirected
graph is a graph whose set of vertices can be partitioned in two sets such that
the two vertices of every edge belong to different sets.

In a similar way shown for automata, a graph can be represented by one of
its vertices, together with its adjacency list.

:- use_module(cosldmeta2annotated).

coinductive(bipartite(n)).

coinductive(no_odd_cyc(_,n)).

bipartite(V) :- no_odd_cyc(V,0).

no_odd_cyc(vertex(_,L),N1) :- N2 i s (N1 + 1) mod 2,

no_odd_cyc(L,N2).

no_odd_cyc ([],_).

no_odd_cyc ([V|L],N) :- no_odd_cyc(V,N),no_odd_cyc(L,N).

finally(no_odd_cyc(_,N1),no_odd_cyc(_,N2)) :- N1 == N2.

The implementation of predicate bipartite is based on the well-known property
that states that a graph is bipartite if and only if it does not contain an odd
cycle (that is, a cycle containing an odd number of vertices). The predicate
uses the auxiliary coinductive predicate no_odd_cyc which takes the graph and
a parity bit (initially set to 0), and succeeds only if the graph does not contain
an odd cycle.

If the graph does not contain a cycle, then predicate no_odd_cyc trivially
succeeds. For every cycle, the finally clause is applied: the parity bit N1 of
the current atom no_odd_cyc(_,N1) must be equal to the parity bit N2 of the
corresponding coinductive hypothesis no_odd_cyc(_,N2), otherwise an odd cycle
has been detected, and the predicate fails.
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6. Conclusion

We have proposed several meta-interpreters to study better semantics and
program abstractions supporting regular corecursion in Prolog.

This paper is an extended version of a previous work by the same author [1];
in particular, both Section 4 and 5 are new, and contain original contributions.

In Section 4, finally clauses have been introduced, to enhance the expres-
sive power of regular corecursion; such a feature allows a simpler definition for
some coinductive predicates (for instance, those that correspond to existentially
quantified properties).

In Section 5 we have introduced another program abstraction with the aim
of making regular corecursion even more expressive and flexible to be used: the
user can select the arguments that have to be considered in the coinductive
definition of a predicate.

For future developments we envisage at least two different interesting direc-
tions.

The first direction is to investigate on efficient implementations of coin-
ductive Prolog able to avoid non terminating failures as the pruning vanilla
meta-interpreter presented here; for instance, one could use DRA tabling [8] to
implement efficient meta-interpreters supporting effective regular corecursion
in Prolog. Another interesting research direction consists in studying regular
corecursion for non logical programming languages [5].
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