
Soundness of object-oriented languages with
coinductive big-step semantics?

Davide Ancona

DISI, Università di Genova, Italy
davide@disi.unige.it

Abstract. It is well known that big-step operational semantics are not
suitable for proving soundness of type systems, because of their inability
to distinguish stuck from non-terminating computations. We show how
this problem can be solved by interpreting coinductively the rules for the
standard big-step operational semantics of a Java-like language, thus
making the claim of soundness more intuitive: whenever a program is
well-typed, its coinductive operational semantics returns a value.
Indeed, coinduction allows non-terminating computations to return val-
ues; this is proved by showing that the set of proof trees defining the
semantic judgment forms a complete metric space when equipped with
a proper distance function.
In this way, we are able to prove soundness of a nominal type system
w.r.t. the coinductive semantics. Since the coinductive semantics is sound
w.r.t. the usual small-step operational semantics, the standard claim of
soundness can be easily deduced.

1 Introduction

It is well known that standard big-step operational semantics are less amenable
to prove soundness of type systems than small-step semantics; several impor-
tant motivations for this statement can be found in the literature [12,13], but,
basically, the main source of all problems is the inability of big-step operational
semantics to distinguish stuck from non-terminating computations.

Besides addressing this problem, our work seeks to find simpler, and easy
to be automated, techniques for proving soundness of abstract compilation of
object-oriented languages [7,4,6,5], a novel approach which aims to reconcile type
analysis and symbolic execution, where programs are compiled into a constraint
logic program (CLP), and type analysis corresponds to solving a certain goal
w.r.t. the coinductive semantics of CLP.

The idea of using coinduction to allow big-step semantics to capture non-
terminating computations is not new (see the conclusion for a brief survey); Leroy
? This work has been partially supported by MIUR DISCO - Distribution, Interaction,

Specification, Composition for Object Systems. I would like to thank Erik Ernst for
his useful comments and suggestions; many thanks also to Sophia Drossopoulou,
Atsushi Igarashi, Alan Mycroft and Elena Zucca for all their useful suggestions and
questions.

and Grall [13] have investigated coinductive operational semantics in the con-
text of functional programming, with the main aim of elaborating techniques for
automatically proving the correctness of compilation. Among several approaches
considered by the authors, the simplest one consists in interpreting coinductively
the standard rules for the big-step operational semantics of lambda-calculus, and
then expressing the soundness claim in a very direct way: if an expression e has
type τ , then the coinductive semantics of e yields a value v of type τ . Unfor-
tunately, such a claim fails to hold, as shown by the authors themselves, since
there exist well-typed non-terminating expressions for which the coinductive se-
mantics is not defined. This happens because only finite values are considered,
whereas the values that should be returned by the coinductive semantics of such
counter-example expressions correspond to necessarily infinite limits of sequences
of finite (that is, inductively defined) values. More formally, if only finite values
are considered, then it is not possible to define a complete metric space over the
set of possibly infinite proof trees for the judgment of the coinductive semantics.

Interestingly enough, if the same approach is taken for a Java-like language,
and, more importantly, infinite values are considered as well, then the claim of
soundness holds when expressed in terms of a coinductive big-step semantics.

Figure 1 provides a road-map to the main defined judgments and proved
claims in this paper. Symbols ` and
 denote judgments defined inductively

Sect. 5 Sect. 6 Sect. 4

Γ ` e:τ ⇒ Γ
e:τ ⇒ ∃ v.Π
e ⇒ v ⇒ e diverges or ∃ v .e
∗→ v

Fig. 1. Relationship between the main judgments

and coinductively, respectively.
After having introduced the syntax and the standard small-step semantics

(abbreviated with ISS) of the language (Section 2), and the mathematical back-
ground (Section 3) needed for the proofs, in Section 4 we define the coinductive
big-step semantics (abbreviated with CBS) of the language, show, by means of
examples, its behavior in case of non-termination, and formalize its relationship
with the ISS (rightmost implication in Figure 1): if the CBS of e yields a value v,
then the ISS of e either returns a value v , or does not terminate; in other words,
whenever the CBS of e yields a value, the ISS of e cannot get stuck, hence, the
CBS is sound w.r.t. the ISS. Note the different nature of values (and hence the
use of different meta-variables) in the CBS, where they can be infinite, and in
the ISS, where they can only be finite.

In Section 5 a conventional inductive and nominal type system is defined
(judgment Γ ` e:τ), and a coinductive type system is derived from it (judgment
Γ
e:τ): such a coinductive system is closer to the CBS, indeed it can be regarded
as an abstraction of the CBS. Furthermore we prove that all judgments that

2

hold in the inductive type system can be derived in the coinductive one as well
(leftmost implication in Figure 1).

The core and most difficult part of the formalization concerns the proof of
the soundness of the coinductive type system w.r.t. the CBS (middle implication
in Figure 1, proved in Section 6). The overview in Figure 1 clearly shows that,
as expected, in the end we obtain the the standard soundness result expressed
in terms of the ISS. At the end of the section we propose a scheme for proving
soundness for a generic type system and language; the rightmost implication in
Figure 1 is needed only if one wants to relate the CBS to the ISS, and derive from
it a standard soundness claim expressed in terms of the ISS. Furthermore, such
an implication needs to be proved just once per programming language, since it
does not depend from the considered type system. We expect the definition of
the coinductive type system to be given in terms of the inductive one, and the
proof of the leftmost implication in Figure 1 to be standard, whereas the proof
given in Section 6, with the corresponding definitions of metric spaces, should
provide a template to be adapted for proving the middle implication in Figure 1.

Finally, in Section 7 we outline conclusions and related work.
This paper is an extension of a previous work by the same author [3], where

the following contributions have been added: The definition of the coinductive
type system and the corresponding proof of the leftmost implication in Figure 1
are new; the coinductive type system has been introduced to make the proof of
soundness simpler and more modular; it also reveals how coinduction is related
to the inductive type system.

While the justification for the introduction of infinite values in the CBS is
only informally motivated in the previous work, here it has been made rigorous
by means of the notion of complete metric space; in particular, the definition
of the metric space of proof trees for the CBS judgment, and the proof of its
properties, represent a non trivial task and an original contribution.

In Section 4 a new example has been added (case 2 (c)), showing that sound-
ness does not hold if only infinite but regular values are considered.

All main proofs have been detailed. All omitted proofs and definitions can
be found in the companion technical report1.

2 Definition of the language

In this section we present our simple Java-like language, which will be used as
reference language throughout the paper, together with its standard call-by-value
small-step operational semantics.

Syntax: The syntax of the language is defined in Figure 2.
The language is a modest variation of Featherweight Java (FJ) [11], where the

main differences concern the introduction of conditional expressions and boolean
values, and the omission of type casts.
1 Available at ftp://ftp.disi.unige.it/person/AnconaD/ecoop12long.pdf.

3

ftp://ftp.disi.unige.it/person/AnconaD/ecoop12long.pdf

p ::= cd
n

e

cd ::= class c1 extends c2 { fd
n

md
k } (c1 6= Object)

fd ::= τ f ;
md ::= τ0 m(τ xn) {e} xi 6= this ∀i = 1..n
τ ::= c | bool
e ::= new c(en) | x | e.f | e0.m(en) | if (e) e1 else e2

| false | true

Assumptions: n, k ≥ 0, inheritance is acyclic, names of declared classes in a program,
methods and fields in a class, and parameters in a method are distinct.

Fig. 2. Syntax of the language

Standard syntactic restrictions are implicitly imposed in the figure. Bars
denote sequences of n items, where n is the superscript of the bar and the first
index is 1. Sometimes this notation is abused, as in f

h
= e ′

h
; which is a shorthand

for f1 = e ′1; . . . fh = e ′h;.
A program consists of a sequence of class declarations and a main expression.

Types can only be class names and the primitive type bool; we assume that the
language supports boxing conversions, hence bool is a subtype2 of the predefined
class Object, which is the top type.

A class declaration contains field and method declarations; in contrast with
FJ, constructors are not declared, but every class is equipped with an implicit
constructor with parameters corresponding to all fields, in the same order as
they are inherited and declared. For instance, the classes defined below

c lass P extends Object{bool b; P p;}

c lass C extends P{C c;}

have the following implicit constructors:

P(bool b,P p){super(); this.b=b; this.p=p;}

C(bool b,P p,C c){super(b,p); this.c=c;}

Method declarations are standard; in the body, the target object can be accessed
via the implicit parameter this, therefore all explicitly declared formal parame-
ters must be different from this. Expressions include instance creation, variables,
field selection, method invocation, conditional expressions, and boolean literals.

Small-step operational semantics The definition of the conventional small-
step operational semantics of the language can be found in Figure 3. We follow
the approach of FJ, even though for simplicity we have preferred to restrict the
semantics to the deterministic call-by-value evaluation strategy.

2 This assumption ensures the existence of the join between types, without introducing
union types, to make the typing rule for conditional expressions simpler in the type
system defined in Section 5.

4

Values are either the literals false or true, or object expressions in normal
form having shape new c(vn). As happens for FJ, the semantics of object cre-
ation is more liberal than the expected one; indeed, new c(vn) is always a correct
expression which reduces to itself in zero steps, even when class c is not declared,
or the number of arguments does not match the number of fields of c. As we will
see, the big-step semantics follows a less liberal semantics, more in accordance
with the standard semantics of mainstream object-oriented languages.

As usual, the reduction relation → should be indexed over the collection of
all class declarations contained in the program (conventionally called class table),
however for brevity we leave implicit such an index in all judgments defined in
the paper. The reflexive and transitive closure of → is denoted by ∗→ .

The definition of the standard auxiliary functions fields and meth is straight-
forward (see the companion technical report). For compactness, such functions
provide semantic and type information at once, since they are instrumental for
the definition of both the semantics and the type system of the language. Func-
tion fields returns the list of all fields which are either inherited or declared in
the class, in the standard order and with the corresponding declared types. In
the case of the predefined class Object the returned list is empty (ε); field hiding
is not supported, hence fields is not defined if a class declares a field with the
same name of an inherited one. Function meth performs standard method look-
up: if meth(c,m) = τn xn.e:τ , then look-up of method m starting from class c
returns the corresponding declaration where τn xn are the formal parameters
with their declared types, and e and τ are the body and the declared returned
type, respectively. If meth(c,m) is undefined, then it means that look-up of m
from c fails.

In rule (fld), if fi is a field of the class, then the expression reduces to the
corresponding value passed to the implicit constructor. If the selected field is not
in such a list, then the evaluation of the expression gets stuck.

In rule (inv), if method look-up succeeds starting from the class of the target
object, then the corresponding body is executed, where the implicit parameter
this and the formal parameters are substituted with the target object and
the argument values, respectively. The notation ei[xn 7→ vn] denotes parallel
substitution of the distinct variables xn with values vn in the expression e.

Rules for conditional expressions (ift) and (iff), and for context closure (ctx)
are straightforward. Contexts are the standard ones corresponding to left-to-
right, call-by-value strategy.

3 Background

In the following, with the term tree over a set S we will mean a finitely branching
tree with nodes in S that is allowed to contain infinite paths. If t is a tree, we
denote with root(t) the root of t.

More rigorously, a tree with infinite paths can be defined in terms of partial
functions over finite paths of natural numbers (denoted by N

∗) [9,7].

5

v ::= new c(vn) | false | true

C[] ::= � | new c(vn,�, ek) | �.f | �.m(en) | v .m(vn,�, ek) | if (�) e1 else e2

(fld)
fields(c) = τn f

n
, 1 ≤ i ≤ n

new c(vn).fi → vi

(inv)
meth(c,m) = τn xn.e:τ

new c(vk).m(v ′
n
)→ e[this 7→ new c(vk), xn 7→ v ′

n
]

(ift)
if (true) e1 else e2 → e1

(iff)
if (false) e1 else e2 → e2

(ctx)
e → e ′

C[e]→ C[e ′]

Fig. 3. Call-by-value inductive small-step operational semantics

Definition 1. A tree over a set S is a partial function t : N∗ → S satisfying the
following properties:

1. its domain is not empty: dom(t) 6= ∅;
2. its domain is prefix-closed: p ·n ∈ dom(t) implies p ∈ dom(t), for all p ∈ N∗,

and n ∈ N;
3. if p · n ∈ dom(t) and k ≤ n, then p · k ∈ dom(t) for all p ∈ N∗ and n, k ∈ N;
4. there exists n ∈ N s.t. p · n 6∈ dom(t), for all p ∈ N∗.

Every path p ∈ dom(t) identifies a unique subtree t′ of t whose root is t(p):
dom(t′) = {p′ ∈ N∗ | p · p′ ∈ dom(t)}, and t′(p′) = t(p · p′) for all p′ ∈ dom(t′).

Definition 2. A regular (a.k.a. rational) tree is a tree whose set of subtrees is
finite.

Trivially, every finite tree (that is, tree with only finite paths) is regular, but
there exist also infinite trees that are regular.

Definition 3. A metric space (S, d) is a set S equipped with a function d:S ×
S → R, called metric or distance, satisfying the following properties, for all x,
y, and z in S:

– (identity) d(x, y) = 0 iff x = y;
– (symmetry) d(x, y) = d(y, x);
– (triangle inequality) d(x, z) ≤ d(x, y) + d(y, z).

Definition 4. Let (S, d) be a metric space.

– A sequence (xi)i∈N has limit l iff for all ε > 0 there exists k ∈ N s.t. d(xn, l) <
ε, for all n > k.

– A Cauchy sequence (xi)i∈N is a sequence s.t. for all ε > 0 there exists k ∈ N
s.t. d(xn, xm) < ε for all n,m > k.

– A metric space is complete iff all Cauchy sequences have a limit.

6

Proposition 1. Let TS be the set of all trees over S. Then, TS is a complete
metric space [8,2] with the following metric:

dT (t1, t2) = 2−c

where c = shtp(t1, t2) = min{n ∈ N | p ∈ N
n, t1(p) 6=⊥ t2(p)}, min ∅ = ∞,

2−∞ = 0, t1(p) =⊥ t2(p) iff either p 6∈ dom(t1) and p 6∈ dom(t2), or p ∈
dom(t1) ∩ dom(t2) and t1(p) = t2(p). That is, c is the length of a shortest path
that distinguishes t1 from t2, if t1 6= t2, or c =∞ if t1 = t2.

By definition, for all pairs of trees t1 and t2, dT (t1, t2) ∈ {0}∪{2−c | c ∈ N},
that is, 0 ≤ dT (t1, t2) ≤ 1. It can be proved that the set of finitely branching
trees with infinite paths, with the metric defined above, is the (unique up to
isometries) completion of the set of finitely branching trees with finite paths
with the same metric.

Definition 5. Let us consider a judgment where all possible instantiations range
over the set J .

A proof tree ∇ for an instantiation j ∈ J of the judgment is a tree ∇ over
J s.t. root(∇) = j.

A valid proof tree for an instantiation j ∈ J of the judgment is a proof tree
∇ s.t. for any node j in ∇, if j1, . . . , jk are the children of j, then j1,...,jk

j is a
correct instantiation of one of the meta-rules defining this kind of judgment.

We simply write that ∇ is a (valid) proof tree for the judgment, when we are
not interested in specifying the particular instantiation j ∈ J which is the root
of the tree.

We write ok(R)(∇) to indicate that the root of ∇ together with its children
are a correct instantiation of the meta-rule labeled by R. Hence, a valid proof
tree ∇ is a proof tree s.t. for all subtrees ∇′ of ∇ (including ∇), there exists a
meta-rule R s.t. ok(R)(∇′).

Definition 6. A complete lattice is a partially ordered set (L,≤) s.t. any subset
S of L has a supremum (a.k.a. least upper bound) denoted with supS.

Since, by definition of inf and sup, inf S = sup{x ∈ L|∀ y ∈ S.x ≤ y}, sup ∅ is
the least element ⊥ of L, and inf ∅ is the greatest element > of L, then every
subset of a complete lattice has an infimum (greatest lower bound) and every
complete lattice is bounded.

Definition 7. Let (L,≤) be a complete lattice. A (total) function f : L→ L is
continuous iff it preserves the supremum and infimum of every subset of L: for
all S ⊆ L, f(supS) = sup{f(x)|x ∈ S} and f(inf S) = inf{f(x)|x ∈ S}.

It is easy to prove that a continuous function is monotone.

Definition 8. Let (L,≤) be a partially ordered set, f a (total) function from L
to L, and x an element of L.

7

– x is a pre-fixed point of f (a.k.a. f -closed) iff f(x) ≤ x;
– x is a post-fixed point of f (a.k.a. f -dense or f -justified or f -consistent) iff
x ≤ f(x).

Trivially, x is a fixed-point of f iff x is both a pre-fixed and a post-fixed point
of f .

Theorem 1 (Tarski-Knaster). Let (L,≤) be a complete lattice, and f : L→
L a monotone function. Then

1. f(inf{x ∈ L|x pre-fixed point of f}) = inf{x ∈ L|x pre-fixed point of f};
2. f(sup{x ∈ L|x post-fixed point of f}) = sup{x ∈ L|x post-fixed point of f}.

From Theorem 1 one can trivially deduce that a monotone function defined on a
complete lattice has always a least fixed-point (which is also the least pre-fixed
point), and a greatest fixed point (which is also the greatest post-fixed point).

Given a judgment defined by a set of meta-rules, with instantiations ranging
over J , it is possible to define the one step inference function F over the power-
set of J as follows: for any subset J of J , F(J) is the subset J ′ of J s.t.
for any j ∈ J ′, there exists a correct instantiation j1,...,jk

j of a meta-rule with
{j1, . . . , jk} ⊆ J .

Such a function is always trivially monotone, and it can be proved [7,5,13,17]
that its least fixed point is the set of j ∈ J s.t. there exists a finite valid proof
tree for j, whereas its greatest fixed point is the set of j ∈ J s.t. there exists a
(possibly infinite) valid proof tree for j.

We denote with fn(x) n iterated applications of f to x (with n ∈ N, f0(x) =
x).

Theorem 2 (Kleene). Let (L,≤) be a complete lattice, and f : L → L a
continuous function. Then

1. sup{fn(⊥)|n ∈ N} is the least fixed point of f ;
2. inf{fn(>)|n ∈ N} is the greatest fixed point of f .

Since f is monotone, we have that f0(⊥) ≤ f1(⊥) ≤ . . . fn(⊥) ≤ fn+1(⊥) ≤ . . .
is an ascending chain, and dually, f0(>) ≥ f1(>) ≥ . . . fn(>) ≥ fn+1(>) ≥ . . .
is a descending chain. Note that the two claims of Theorem 2 hold also under
the weaker assumption that f is a monotone function preserving suprema of
ascending chains (claim 1), or infima of descending chains (claim 2).

4 A coinductive semantics

In this section we define a call-by-value coinductive big-step operational seman-
tics for our language.

Such a semantics is obtained by simply interpreting coinductively the def-
inition of values and the rules of the standard inductive big-step operational
semantics (with no rules for error handling).

8

Definition of the semantics The CBS judgment uses value environments (see
below), just for uniformity with the type judgment defined in Section 5. Value
environments are not strictly necessary, since the rule for method invocation can
be equivalently defined with parallel substitution as in ISS. Values are separated
from expressions since they are infinite, while expressions are always finite. Such
a separation is further stressed by the fact that values belong to a different
syntactic category, that is, even finite values are different from expressions.

v, u ::= obj (c, [f
n 7→ v

n]) | false | true (coinductive def.)

We recall that false and true are expressions of our language, and values (de-
noted by the meta-variable v) in the ISS, whereas false and true are not expres-
sions, but just the corresponding values (denoted by the meta-variable v) in the
CBS. Similarly, new c(true) is both an expression and a value in ISS, whereas
obj (c, [f 7→ true]) is the corresponding value in CBS (assuming that the only
field of c is f), and is not an expression.

As an example of an infinite value, let us consider the object value v defined
by the equation

v = obj (List , [hd 7→ obj (Elem, []), tl 7→ v])

which represents an infinite list; in our language, such a value can only be re-
turned by an infinite computation. Of course in a lazy or imperative language,
this value could be returned also by a terminating computation; however, the
important point here is that type correct expressions which do not terminate
must always return a value in the CBS: as explained in case 2 in the second part
of this section, without infinite values the claim of soundness proved in Section 5
would not hold.

The CBS is defined in Figure 4. Thicker lines manifest that rules are in-
terpreted coinductively. A value environment Π is a finite sequence xin 7→ v

n,
where all variables xin are distinct, denoting a finite partial function mapping
variables to values (∅ denotes the empty environment, dom(Π) the domain of
Π). Environments model stack frames of method invocations.

Rules (var), (fal), and (tru) are straightforward. Evaluation of instance
creation (new) succeeds only if fields(c) is defined (that is, if c and its ancestors
are declared in the program and no field is hidden), and returns a list of fields
whose length must coincide with the number of arguments; then all arguments
are evaluated and the obtained values are associated with the corresponding
fields in the object value. For field selection (fld) the target expression is eval-
uated; then evaluation succeeds only if an object value is returned, and the
selected field is present in the object value; in this case the corresponding asso-
ciated value is returned. For method invocation (inv) all expressions denoting
the target object and the arguments are evaluated. If the value corresponding to
the target is an object of class c, method look-up starting from c succeeds and
returns a method declaration with a number of formal parameters coinciding
with the number of passed arguments, then the method body is evaluated in the
environment where this and the formal parameters are associated with their

9

corresponding values. If such an evaluation succeeds, then the returned value is
the value of the method invocation. Finally, rules (ift) and (iff) deal with the
straightforward evaluation of conditional expressions.

(var)

Π(x) = v

Π
x ⇒ v

(fal)

Π
false ⇒ false
(tru)

Π
true⇒ true

(new)

∀ i = 1..n.Π
ei ⇒ vi fields(c) = τn f
n

Π
new c(en)⇒ obj (c, [f
n 7→ v

n])

(ift)

Π
e ⇒ true Π
e1 ⇒ v

Π
 if (e) e1 else e2 ⇒ v

(iff)

Π
e ⇒ false Π
e2 ⇒ v

Π
 if (e) e1 else e2 ⇒ v

(fld)

Π
e ⇒ obj (c, [f
n 7→ v

n]) 1 ≤ i ≤ n

Π
e.fi ⇒ vi

(inv)

∀ i = 0..n.Π
ei ⇒ vi this 7→ v0, x
n 7→ v

n
e ⇒ v

v0 = obj (c, [. . .]) meth(c,m) = τn xn.e:τ

Π
e0.m(en)⇒ v

Fig. 4. Call-by-value coinductive big-step operational semantics

Note that in the CBS, object creation is less liberal than in the ISS: as an
example, new c() is a value in the ISS, whereas the same expression may not
evaluate to a value in the CBS; this happens if either c is not declared in the
program, or if c contains at least one field.

Coinductive semantics of non-terminating expressions We have already
observed that if the definition of values and the evaluation rules are interpreted
inductively, then we obtain a standard inductive big-step operational semantics.
Obviously, if an expression evaluates to a value in the inductive semantics, then
the same value is obtained in the coinductive one; however, this case concerns
terminating expressions, whereas what we do really care about here is the be-
havior of the CBS for non-terminating expressions. We show that three different
cases may occur. All expressions e considered in the examples below are well-
typed and do not terminate in the ISS, that is, there exists no normal form e ′

s.t. e ∗→ e ′.
Case 1: There exist many values v s.t. ∅
e ⇒ v

Let us consider the expression e = new C().m(), where C is the only class
declared in the program:

c lass C extends Object{bool m(){ this.m()}}

Then ∅
e ⇒ v for all values v, as shown in the valid proof tree of Figure 5.
Ellipsis means that such a tree is infinite (hence, it cannot be a valid proof
for an inductive system), although regular, that is, it can be folded into a fi-
nite graph, because of the repeated finite pattern originated from the judgment

10

Π
this.m() ⇒ v. Such non-determinism is naturally reflected in the conven-

∅
new C()⇒ u

Π
this⇒ u

...

Π
this.m()⇒ v

Π
this.m()⇒ v

∅
new C().m()⇒ v

Fig. 5. Proof tree for ∅
e ⇒ v, where u = obj (C, []), Π = this 7→ u

tional nominal type system (see Section 5) where the return type bool can in
fact be correctly replaced by any other type defined in the program.

There are also cases where finitely many values are returned. For instance,

∅
 if(new C().m()) true else false⇒ true
∅
 if(new C().m()) true else false⇒ false

and no other values can be returned.
Case 2 (a), (b) and (c): There exists a unique value v s.t. ∅
e ⇒ v

We consider three possible cases (a), (b), and (c), where the returned value is
finite (a), or infinite but regular (b), or infinite and non regular (c). For case (a), if
C is the class of case 1, then the expression if(new C().m()) true else true triv-
ially evaluates to the unique value true (although with two different valid proof
trees). For case (b), let us consider a program with the following declarations
(where M, L, and n are abbreviations for Main, List, and next, respectively):

c lass M extends Object{L m(){new L(this.m())}}

c lass L extends Object{L n;}

The main expression new M().m() evaluates to a unique value which is an
infinite but regular object of class L; Figure 6 shows the unique valid proof tree
for ∅
new M().m() ⇒ obj (L, [n 7→ v]); such a tree is infinite, but regular. The
proof tree is valid if and only if the following proposition holds:

Π
new L(this.m())⇒ v iff Π
new L(this.m())⇒ obj (L, [n 7→ v])

with Π = this 7→ obj (M, []). Such a proposition cannot be satisfied by finite
values, but holds for the unique infinite regular value v s.t. v = obj (L, [n 7→ v]).

In the conventional nominal type system the return type τ of method m in M
must verify L ≤ τ , since the body of the method returns a new instance of class
L, but also τ ≤ L, since the formal parameter of the implicit constructor of L
has the same type as field n; therefore, similarly to what happens in the CBS,
there exists only one possible return type: L. This example shows that if rules
are interpreted coinductively, but values can only be finite, then the soundness
claim proved in Section 5, (that is, any well-typed expression evaluates to a
value) does not hold.

Finally, for case (c), let us consider the following class declarations:

11

∅
new M()⇒ obj (M, [])

Π
this⇒ obj (M, [])

...

Π
new L(this.m())⇒ v

Π
this.m()⇒ v

Π
new L(this.m())⇒ obj (L, [n 7→ v])

∅
new M().m()⇒ obj (L, [n 7→ v])

Fig. 6. Proof of ∅
new M().m() ⇒ obj (L, [n 7→ v]), with v = obj (L, [n 7→ v]), Π =
this 7→ obj (M, [])

c lass Nat extends Object{ }

c lass Z extends Nat{ }

c lass NZ extends Nat{Nat p;}

c lass M extends Object{L m(Nat e){new L(e,this.m(new NZ(e)))}}

c lass L extends Object{Nat e; L n;}

Then, the expression new M().m(new Z()) is well-typed and evaluates to the
unique infinite and non regular value v0 where

vi = obj (L, [e 7→ ui, n 7→ vi+1]) for all i ∈ N
u0 = obj (Z, []) ui = obj (NZ, [p 7→ ui−1]) for all i ∈ N \ {0}

Figure 7 shows the non regular valid proof tree for the judgment, defined in terms
of a countably infinite set of equations whose solutions are valid proof trees ⇒∇i,
for all i ∈ N. This example shows that if rules are interpreted coinductively, but
values can only be regular, then the soundness claim proved in Section 5, (that
is, any well-typed expression evaluates to a value) does not hold.

⇒∇i =
Πi
e⇒ ui

Πi
this⇒ obj (M, [])

Πi
e⇒ ui

Πi
new NZ(e)⇒ ui+1 ⇒∇i+1

Πi
this.m(new NZ(e))⇒ vi+1

Πi
new L(e,this.m(new NZ(e)))⇒ vi

∅
new M()⇒ obj (M, []) ∅
new Z()⇒ u0 ⇒∇0

∅
new M().m(new Z())⇒ v0

Fig. 7. Proof of ∅
new M().m(new Z())⇒ v0, with Πi = this 7→ obj (M, []), e 7→ ui

for all i ∈ N

12

Case 3: There exist no values v s.t. ∅
e ⇒ v

If C is as in case 1 (that is, new C().m() does not terminate), then the
expression if(new C().m()) true.m() else true.m() does not evaluate to any
value; this is a direct consequence of the fact that no rules are applicable for the
expression true.m() since true does not evaluate to an object value. The main
difference with the previous two cases is that here the expression to be evaluated
cannot be typed in any type system insensitive to non-termination. Indeed, in
the conventional nominal type system defined in Section 5 all examples except
for this are well-typed. This example shows the main difference between the ISS
and the CBS: in the former, there exist ill-typed expressions whose evaluation
does not terminate (that is, does not get stuck), whereas in the latter all ill-typed
expressions do not evaluate to a value.

Soundness of CBS w.r.t. ISS We prove now that the CBS is sound w.r.t.the
ISS. More precisely, if ∅
e ⇒ v, then in the ISS either e diverges (that is, e
does not reduce to a normal form), or e reduces in zero or more steps to a
value v s.t. ∅
v ⇒ v. In other words, we are guaranteed that the evaluation
of an expression will never get stuck in the ISS whenever it returns a value in
the CBS. Under this point of view the CBS plays a role similar to that of a
type system; indeed, to prove this property we use the standard proof technique
based on the progress and subject reduction properties. Such a property tells us
an important fact: type soundness of a type system can be equivalently proved
in terms of the CBS, instead of the ISS. If soundness holds in terms of the CBS,
then it holds in terms of the ISS as well, by virtue of the soundness property of
the CBS w.r.t. the ISS we are going to prove.

The progress and subject reduction properties can be proved routinely (see
the companion technical report), the former by induction on e, the latter by
induction on the rules defining ISS. Proof by coinduction is only needed for the
substitution lemma.

Theorem 3 (Progress). If ∅
e ⇒ v, then either e is a value, or there exists
e ′ s.t. e → e ′.

Subject reduction relies on the following restricted form of substitution lemma
which suffices for proving Theorem 4.

Lemma 1 (Substitution). If xn 7→ v
n
e ⇒ v, and for all i = 1..n ∅
vi ⇒ vi,

then ∅
e[xn 7→ vn]⇒ v.

Theorem 4 (Subject reduction). If ∅
e ⇒ v, and e → e ′, then ∅
e ′ ⇒ v.

Corollary 1. If ∅
e ⇒ v, e ∗→ e ′, and e ′ is a normal form, then e ′ is a value,
and ∅
e ′ ⇒ v.

Proof. By induction on the number n of steps needed to reduce e to e ′. If n = 0,
then e = e ′, and trivially ∅
e ′ ⇒ v; furthermore, since e ′ is a normal form, by
progress (Theorem 3) e ′ is a value. If n > 0, then there exists e ′′ s.t. e → e ′′, and
e ′′ reduces to e ′ in n − 1 steps. By subject reduction (Theorem 4) ∅
e ′′ ⇒ v,
then we conclude by inductive hypothesis.

13

5 Type systems

To make the proof of soundness simpler and more modular, we first define a
standard inductive nominal type system for our reference language, and then we
derive from it a coinductive nominal type system, and prove that if an expression
is well-typed in the inductive type system, than it is assigned the same type in
the coinductive one. In other words, the inductive type system is sound w.r.t. the
coinductive one; we conjecture that in fact the two systems are equivalent (hence,
the coinductive system is sound w.r.t. the inductive one as well), but here we
prove only the only implication we are interested in. In this way, soundness of the
inductive type system in terms of the CBS can be directly derived from soundness
of the coinductive type system in terms of the CBS (prove in Section 6).

Auxiliary definitions Besides functions fields and meth, already used for defining
both the ISS and the CBS, the typing rules are based on the following auxil-
iary functions/operators, whose definition is straightforward (see the companion
technical report). The standard subtyping relation ≤ between nominal types; the
override predicate s.t. override(c,m, τn, τ) holds iff meth(c′,m) is undefined or
meth(c′,m) = τ ′

n
xn.e:τ ′, τ ′

n ≤ τn, and τ ≤ τ ′, with c′ direct superclass of c;
the join operator ∨ which computes the least upper bound ∨(τ1, τ2) of two types
τ1 and τ2 (this is always defined since inheritance is single, and bool is a subtype
of the top type Object).

Typing rules The typing rules, which can be found in Figure 8, are quite stan-
dard. A type environment Γ is a finite sequence xin:τn, where all variables xin

are distinct, denoting a finite function mapping variables to types (∅ denotes
the empty type environment, dom(Γ) the domain of Γ). Rules (pro), (cla), and
(met) define well-typed programs, classes, and methods, respectively. The other
rules define well-typed expressions w.r.t. a given type environment. Let us recall
that, similarly to what happens for the operational semantics, all typing judg-
ments are implicitly indexed over a class table containing all needed information
on the classes declared in the program.

Membership relation To prove soundness of the type system w.r.t. the CBS,
we first define a relation v ∈ τ between the CBS values and nominal types:
intuitively, such a relation defines the intended semantics of types as set of
values [6]. Such a relation is coinductively defined by the following rules:

(top)

v ∈ Object
(bool)

v = false or v = true

v ∈ bool

(obj)

∀ i = 1..n.vi ∈ τi c ≤ c′ fields(c) = τn f
n

obj (c, [f
n 7→ v

n]) ∈ c′

The membership relation is easily extended to environments and type environ-
ments:

Π ∈ Γ ⇔ dom(Γ) ⊆ dom(Π) and ∀ x ∈ dom(Γ).Π(x) ∈ Γ (x).

14

(pro)
∀ i = 1..n. ` cd i:� ∅ ` e:τ

` cd
n

e:�
(cla)
∀ i = 1..k.c ` md i:� fields(c) defined

` class c extends c′ { fd
n

md
k }:�

(met)
this:c, xn:τn ` e:τ τ ≤ τ0 override(c,m, τn, τ0)

c ` τ0 m(τn xn) {e}:�

(var)
Γ (x) = τ

Γ ` x :τ
(fal)

Γ ` false:bool
(tru)

Γ ` true:bool

(new)
∀ i = 1..n.Γ ` ei:τi fields(c) = τ ′

n
f

n ∀ i = 1..n.τi ≤ τ ′i
Γ ` new c(en):c

(fld)
Γ ` e:c fields(c) = τn f

n
1 ≤ i ≤ n

Γ ` e.fi:τi
(if)

Γ ` e:bool Γ ` e1:τ1 Γ ` e2:τ2
Γ ` if (e) e1 else e2:∨(τ1, τ2)

(inv)
∀ i = 0..n.Γ ` ei:τi meth(τ0,m) = τ ′

n
xn.e:τ ∀ i = 1..n.τi ≤ τ ′i

Γ ` e0.m(en):τ

Fig. 8. Nominal type system

Coinductive type system The coinductive type system is derived from the induc-
tive one defined in Figure 8 as follows:

– all rules for typing expressions are interpreted coinductively (rules for well-
typed programs, classes, and methods can be indifferently interpreted induc-
tively or coinductively, since they are not recursive);

– all rules are unchanged, except for rule (inv) which is modified in (co-inv):

(co-inv)

∀ i = 0..n.Γ
ei:τi this:τ0, x
n:τn
e:τ ′

meth(τ0,m) = τ ′
n

xn.e:τ ∀ i = 1..n.τi ≤ τ ′i , τ ′ ≤ τ

Γ
e0.m(en):τ

Rule (co-inv) is clearly not compositional: instead of type checking a method
once for all, and using subtyping and type safe overriding (as happens in the
inductive system), the coinductive type system checks a method body, not only
when it is declared (rule (cla)), but also whenever it is called. However, from a
more theoretical point of view, the coinductive type system is a step closer to
the CBS. Of course the type system must be interpreted coinductively, otherwise
typechecking of recursive methods would always fail. Consider for instance case
2 (b) presented in Section 4. The judgment ∅
new M().m():L can be derived
only with an infinite proof tree, as depicted in Figure 9. Note that the proof tree
is isomorphic to the proof tree for ∅
new M().m()⇒ obj (L, [n 7→ v]) shown in
Figure 6.

We can now prove soundness of the inductive type system w.r.t. the coinduc-
tive one.

15

∅
new M():M

this:M
this:M

...

this:M
new L(this.m()):L

this:M
this.m():L

this:M
new L(this.m()):L

∅
new M().m():L

Fig. 9. Proof for ∅
new M().m():L

The following lemmas are instrumental to the proof of the theorem 5 that
follows; in the claims of all lemmas we implicitly assume that judgments refer
to a well-typed program. All omitted proofs can be found in the companion
technical report.

Lemma 2. If τ ′1 ≤ τ1 and τ ′2 ≤ τ2 then ∨(τ ′1, τ
′
2) ≤ ∨(τ1, τ2).

Lemma 3. If fields(c) = τn f
n

, and c′ ≤ c, then fields(c′) = τm f
m

with
n ≤ m.

Lemma 4. If meth(c,m) = τn xn.e:τ , then there exist c′, τ ′ s.t. c ≤ c′, τ ′ ≤ τ
and this:c′, xn:τn ` e:τ ′.

Lemma 5. If xn:τn ` e:τ and for all i = 1..n τ ′i ≤ τi, then there exists τ ′ s.t.
τ ′ ≤ τ , and xn:τ ′

n ` e:τ ′.

Lemma 6. The subtyping relation is transitive: if τ1 ≤ τ2 and τ2 ≤ τ3, then
τ1 ≤ τ3.

Theorem 5. Let cd
n

be well-typed class declarations. If Γ ` e:τ in cd
n

, then
Γ
e:τ in cd

n
.

Proof. By coinduction on the rules defining the judgment
 : , and case analysis
on e. The only interesting case is when e is a method invocation e0.m(en), since
for all other cases the rules of the two type systems coincide. If Γ ` e:τ , then by
definition of rule (inv) we have ∀ i = 0..n.Γ ` ei:τi, meth(τ0,m) = τ ′

n
xn.e:τ ,

and ∀ i = 1..n.τi ≤ τ ′i . By lemma 4 there exists τ ′0, τ
′ s.t. τ0 ≤ τ ′0, τ ′ ≤ τ , and

this:τ ′0, x
n:τ ′

n ` e:τ ′; therefore, by lemma 5 there exists τ ′′ s.t. τ ′′ ≤ τ ′, and
hence by transitivity (lemma 6) τ ′′ ≤ τ , and this:τ0, xn:τn ` e:τ ′′. We conclude
by coinductive hypothesis and by definition of rule (co-inv).

6 Proof of soundness

In this section we prove the middle implication shown in Figure 1, which is the
core of our result: soundness of the coinductive type system in terms of the
CBS. Finally, by virtue of the soundness of the inductive type system w.r.t. the

16

coinductive one (proved in Section 5), and of the soundness of the CBS w.r.t. the
ISS (proved in Section 4), we can state soundness of the inductive type system
in terms of the ISS as a simple corollary.

The following lemmas are instrumental to the proof of the theorem 6 that
follows; in the claims of all lemmas we implicitly assume that judgments refer
to a well-typed program. All omitted proofs can be found in the companion
technical report.

Lemma 7. τ1 ≤ ∨(τ1, τ2) and τ2 ≤ ∨(τ1, τ2).

Lemma 8. If fields(c) = τn f
n

, and c ≤ c′, then fields(c′) = τm f
m

with
m ≤ n.

Lemma 9 (Soundness of subtyping). If v ∈ τ and τ ≤ τ ′, then v ∈ τ ′.

Lemma 10. If meth(c,m) = τn xn.e:τ and c′ ≤ c, then meth(c′,m) = τ ′
n

x ′
n
.

e ′:τ ′ where for all i = 1..n τi ≤ τ ′i and τ ′ ≤ τ .

To prove that the coinductive type system is sound w.r.t. the CBS, we coin-
ductively define a concretization relation Rγ between valid proof trees
∇ ∈
VPT : for Γ
e:τ and (possibly non valid) proof trees ⇒∇ ∈ PT⇒ for Π
e ⇒ v,
and show that for any valid proof tree
∇ for Γ
e:τ and any Π ∈ Γ , there exists
a value v and a valid proof tree ⇒∇ for Π
e ⇒ v s.t.
∇ Rγ ⇒∇, and v ∈ τ .

Definition 9. A relation R ⊆ VPT :×PT⇒ is a concretization iff the following
constraints are satisfied:

–
Γ
x :τ

R
Π
x ⇒ v

iff Π ∈ Γ , and ok(var)

„
Π
x ⇒ v

«
–
Γ
false:bool

R
Π
false ⇒ false

iff Π ∈ Γ

–
Γ
true:bool

R
Π
true⇒ true

iff Π ∈ Γ

–

∇

n

Γ
new c(en):c
R

⇒∇
n

Π
new c(en)⇒ v

iff for all i = 1..n
∇i R ⇒∇i, Π ∈ Γ , and

ok(new)

0@ ⇒∇
n

Π
new c(en)⇒ v

1A
–

∇

Γ
e.f :τ
R

⇒∇

Π
e.f ⇒ v

iff
∇ R ⇒∇, v ∈ τ , Π ∈ Γ , and ok(fld)

⇒∇

Π
e.f ⇒ v

!

–

∇
∇1
∇2

Γ
 if (e) e1 else e2:τ
R

⇒∇ ⇒∇1

Π
 if (e) e1 else e2 ⇒ v

iff
∇ R ⇒∇,
∇1 R ⇒∇1,

root(⇒∇) = Π
e ⇒ true, v ∈ τ , Π ∈ Γ , and ok(ift)

⇒∇ ⇒∇1

Π
 if (e) e1 else e2 ⇒ v

!

17

–

∇
∇1
∇2

Γ
 if (e) e1 else e2:τ
R

⇒∇ ⇒∇2

Π
 if (e) e1 else e2 ⇒ v

iff
∇ R ⇒∇,
∇2 R ⇒∇2,

root(⇒∇) = Π
e ⇒ false, v ∈ τ , Π ∈ Γ , and ok(iff)

⇒∇ ⇒∇2

Π
 if (e) e1 else e2 ⇒ v

!

–

∇0
∇

n

∇

Γ
e0.m(en):τ
R

⇒∇0 ⇒∇
n

⇒∇

Π
e0.m(en)⇒ v

iff for all i = 0..n
∇iR⇒∇i,
∇R⇒∇, v ∈ τ ,

Π ∈ Γ , and ok(inv)

0@ ⇒∇0 ⇒∇
n

⇒∇

Π
e0.m(en)⇒ v

1A.

The function F corresponding to the recursive definition of concretization
relation is trivially monotone on the complete lattice defined by the power set of
VPT :×PT⇒, therefore by the Tarski-Knaster theorem there exists the greatest
concretization relation, denoted by Rγ . However, the Tarski-Knaster theorem
does not provide any guarantee that for any valid proof tree
∇ for Γ
e:τ and any
Π ∈ Γ , there exists a value v and a valid proof tree ⇒∇ for Π
e ⇒ v s.t.
∇Rγ ⇒∇,
and v ∈ τ . To prove such a property we need to apply the Kleene theorem; indeed,
F also preserves infima of descending chains in the same complete lattice, hence,
the concretization relationRγ is defined by inf{Fn(>) | n ∈ N}, where> denotes
the top element of the lattice defined by the power set of VPT : × PT⇒, that
is, the relation associating any valid proof tree for the judgment
 : , with any
proof tree for the judgment
 ⇒ . We abbreviate Fn(>) with Rnγ , hence
R0
γ = >.

As an example, we have that
∇
eRγ⇒∇

e, where
∇
e and ⇒∇

e are the proof
trees defined in Figure 9 and 6, respectively. The easiest way to prove this fact
is to show that there exists a concretization relation R s.t.
∇

e R ⇒∇
e; this can

be achieved by considering the finite relation that associates each subtree of

∇
e (including
∇

e itself), with the corresponding subtree3 of ⇒∇
e (including ⇒∇

e

itself); it is immediate to verify that such a relation is a concretization.
However, when proving soundness the proof tree for the CBS is unknown,

and therefore its existence is proved by showing that it can be obtained as the
limit of a Cauchy sequence in a complete metric space. Therefore, to better
understand the proof that will follow, it is instructive to show how the proof
tree ⇒∇

e can actually be built from
∇
e by using the Kleene construction. We

assume that the expression is evaluated in a program where the only available
classes are M and L as declared for case 2 (b) in Section 4, and we use ellipses . . .
as a wildcard.

–
∇
eR0

γ⇒∇ for any ⇒∇ ∈ PT⇒.
–
∇

eR1
γ⇒∇ for any ⇒∇ ∈ PT⇒ s.t. ⇒∇ =

3 We recall that the two trees are isomorphic; furthermore, they have a finite number
of subtrees, since they are regular.

18

. . .

Π
new M()⇒ v

. . .

this 7→ v
new L(this.m())⇒ v0

Π
new M().m()⇒ v0

where Π ∈ ∅ (hence, Π can be any value environment), v can be any value,
and v0 ∈ L, hence for all i ∈ N, vi = obj (L, [n 7→ vi+1]), therefore v0 is
the unique value s.t. v0 = obj (L, [n 7→ v0]) and vi = vi+1, for all i ∈ N. Note
that, since we have assumed that M and L are the only available classes of the
program, there exists only one possible subtype of L, namely L itself, and
the equations above can be directly derived by applying membership rule
obj. Therefore, for this particular case we get the returned value (in this
particular case it is unique) just at the first iteration; however, for getting
the corresponding valid proof tree all iterations have to be considered.
We proceed with the next iteration, to show how at each step the obtained
proof trees are better approximations of a valid proof tree.

–
∇
eR2

γ⇒∇ for any ⇒∇ ∈ PT⇒ s.t. ⇒∇ =

Π
new M()⇒ obj (M, [])

. . .

this 7→ obj (M, [])
this.m()⇒ v0

this 7→ obj (M, [])
new L(this.m())⇒ v0

Π
new M().m()⇒ v0

where Π ∈ ∅ (hence, Π can be any value environment). Note that, by virtue
of the equation v0 = obj (L, [n 7→ v0]), the evaluation of new L(this.m())
and of this.m() returns the same vale v0.

It can be easily proved by standard induction over n that
∇
eRnγ⇒∇

e, for all
n ∈ N, where ⇒∇

e is the valid proof tree defined in Figure 6; since Rγ is the
greatest lower bound of {Rnγ |n ∈ N}, we obtain that
∇

eRγ⇒∇
e.

To prove the main claim from which soundness of the coinductive type system
w.r.t. the CBS can be derived, we need to define a complete metric space of proof
trees for the CBS.

We first define the metric of value environment. We recall that a value envi-
ronment is a finite partial function mapping variables to values, and that values
are finitely branching trees with infinite paths (hence, they form a complete
metric space with the distance dT of Definition 1).

Proposition 2. The set of value environments forms a complete metric space
when equipped with the distance dΠ defined as follows:

dΠ (Π1, Π2) =
{

1 if dom(Π1) 6= dom(Π2)
max({0, dT (Π1(x), Π2(x)) | x ∈ D}) if D = dom(Π1) = dom(Π2)

Proof. See the companion technical report.

Proposition 3. The set of pairs of value environments and values forms a com-
plete metric space when equipped with the distance dΠ ,v defined as follows:

dΠ ,v((Π1, v1), (Π2, v2)) = max{dΠ (Π1, Π2), dT (v1, v2)}

19

Proof. A well known property of product metric spaces that can be easily checked.
From Proposition 2 one can easily deduce that 0 ≤ dΠ ,v((Π1, v1), (Π2, v2)) ≤ 1,
since dΠ ,v((Π1, v1), (Π2, v2)) ∈ {0} ∪ {2−c | c ∈ N}.

Let j be the judgment Π
e ⇒ v, then ev(j) and exp(j) denote (Π, v) and
e, respectively; furthermore, exp(⇒∇) denotes the tree t over expressions s.t.
dom(t) = dom(⇒∇), and for all p ∈ dom(t) t(p) = exp(⇒∇(p)).

Proposition 4. The set PT⇒ of proof trees for Π
e ⇒ v forms a complete
metric space when equipped with the distance d∇ defined as follows:

d∇(⇒∇1,⇒∇2) = max({2−c} ∪ S) where

S = {2−k · dΠ ,v(ev(⇒∇1(p)), ev(⇒∇2(p))) | p ∈ Nk ∩ dom(⇒∇1), 0 ≤ k < c}
c = shtp(exp(⇒∇1), exp(⇒∇2)), that is, c = min{n ∈ N | p ∈ Nn, exp(⇒∇1(p)) 6=⊥
exp(⇒∇2(p))} (see Proposition 1 for the definition of shtp and the related nota-
tion).

Proof. See the companion technical report.

Let us consider the Kleene approximations Riγ (i ∈ N) of the concretization
relation Rγ . Then the following lemma holds, where we assume that judgments
are indexed over a class table corresponding to a sequence of well-typed classes
cd
n
.

Lemma 11 (Substitution). Let
∇ be a valid proof tree for Γ
e:τ , and ⇒∇ a
(not necessarily valid) proof tree for Π
e ⇒ v. For all n ∈ N, if the following
facts hold:

1.
∇Rnγ⇒∇
2. Π,Π ′ ∈ Γ , dΠ (Π,Π ′) ≤ 2−n

3. there exists ⇒∇
′ s.t.
∇Rn+1

γ ⇒∇
′ and d∇(⇒∇,⇒∇

′) ≤ 2−n

then there exists a proof tree ⇒∇
′′ for Π ′
e ⇒ v

′ s.t.
∇Rn+1
γ ⇒∇

′′ and d∇(⇒∇,⇒∇
′′)

≤ 2−n.

Proof. The proof is by induction on n, and by case analysis on the expression e.

Lemma 12. For all n ∈ N,
∇ ∈ VPT :, and ⇒∇ ∈ PT⇒, if
∇Rnγ⇒∇, then there
exists ⇒∇

′ s.t.
∇Rn+1
γ ⇒∇

′, and d∇(⇒∇,⇒∇
′) ≤ 2−n.

Proof. The proof is by induction on n, and by case analysis on the expression e.

Basis: If n = 0, then by definition R0
γ = >, and, hence,
∇R0

γ⇒∇ for all

∇ ∈ VPT :, and ⇒∇ ∈ PT⇒; therefore we have to show that there exists ⇒∇
′

s.t.
∇R1
γ⇒∇

′. Let us consider the case where e = e0.m(en) (for all other cases
the proof is analogous). If
∇ is a proof tree for Γ
e0.m(en):τ , then by rule
(co-inv) we have that Γ
e0:τ0 and meth(τ0,m) = τ ′

n
xn.e:τ . By definition of

membership, there always exist Π and v s.t. Π ∈ Γ , and v ∈ τ , hence we can

20

pick any Π and v s.t. Π ∈ Γ , and v ∈ τ , and build the following (not necessarily
valid) proof tree:

⇒∇
′ =

∀ i = 0..n.
Π
ei ⇒ vi this 7→ v0, xn 7→ v

n
e ⇒ v

Π
e0.m(en)⇒ v

with v0 = obj (τ0, [. . .]) and meth(τ0,m) = τ ′
n

xn.e:τ . Clearly,
∇R1
γ⇒∇

′, since
by definition 9, and by definition of R1

γ ,

∇0
∇
n

∇

Γ
e0.m(en):τ
R1
γ

⇒∇0 ⇒∇
n

⇒∇

Π
e0.m(en)⇒ v

iff for all i = 0..n
∇iR0
γ⇒∇i,
∇R0

γ⇒∇,

v ∈ τ , Π ∈ Γ , and ok(inv)

 ⇒∇0 ⇒∇
n

⇒∇

Π
e0.m(en)⇒ v

.

Finally, by Proposition 4 we have that d∇(⇒∇,⇒∇
′) ≤ 2−0 = 1 for all ⇒∇,⇒∇

′ ∈
PT⇒.

Inductive step: we have to prove that for all n ≥ 1,
∇Rn−1
γ ⇒∇ ⇒ ∃⇒∇

′ s.t.

∇Rnγ⇒∇
′, and d∇(⇒∇,⇒∇

′) ≤ 2−n+1 implies
∇Rnγ⇒∇ ⇒ ∃⇒∇
′ s.t.
∇Rn+1

γ ⇒∇
′, and

d∇(⇒∇,⇒∇
′) ≤ 2−n.

As for the basis, we consider the case where e = e0.m(en) (for all other cases
the proof is analogous). Therefore let us assume that
∇Rnγ⇒∇, where
∇ is a valid
proof tree for Γ
e0.m(en):τ . By rule (co-inv) we have

∇ =

∇0
∇

n

∇
′

Γ
e0.m(en):τ

with meth(τ0,m) = τ ′
n

xn.e:τ , ∀ i = 1..n.τi ≤ τ ′i , τ
′ ≤ τ , and where ∀ i =

1..n.root(
∇i) =

...

Γ
ei:τi
, root(
∇

′) =

...

this:τ0, xn:τn
e:τ ′
.

Since
∇Rnγ⇒∇, by Definition 9 and by definition of Rnγ we have

⇒∇ =
⇒∇0 ⇒∇

n

⇒∇
′

Π
e0.m(en)⇒ v

and for all i = 0..n
∇iRn−1
γ ⇒∇i,
∇

′Rn−1
γ ⇒∇

′, v ∈ τ , Π ∈ Γ , and ok(inv)(⇒∇).
Then by inductive hypothesis we have that there exist ⇒∇

′
0, . . . ,⇒∇

′
n and ⇒∇

′′ s.t.
for all i = 0..n
∇iRnγ⇒∇

′
i, d∇(⇒∇i,⇒∇

′
i) ≤ 2−n+1,
∇

′Rnγ⇒∇
′′, d∇(⇒∇

′,⇒∇
′′) ≤

2−n+1. Therefore we have that for all i = 0..n root(⇒∇
′
i) = Πi
ei ⇒ vi,

root(⇒∇
′′) = Π ′
e ⇒ v

′, with Πi ∈ Γ , Π ′ ∈ (this:τ0, xn:τn), vi ∈ τi (hence,
v0 = obj (τ0, [. . .])) and v′ ∈ τ . By lemma 11 we can derive from ⇒∇

′
i (i = 0..n) and

from ⇒∇
′′ the proof trees ⇒∇

′′
i (i = 0..n) and ⇒∇

′′′ s.t. for all i = 0..n
∇iRnγ⇒∇
′′
i ,

21

d∇(⇒∇i,⇒∇
′′
i) ≤ 2−n+1,
∇

′Rnγ⇒∇
′′′, d∇(⇒∇

′,⇒∇
′′′) ≤ 2−n+1, and root(⇒∇

′′
i) =

Π
ei ⇒ v
′
i, root(⇒∇

′′′) = this 7→ v
′
0, x

n 7→ v′
n

e ⇒ v

′′

Finally, the proof tree

̄∇ =

∇
′′
0
∇

′′n

∇
′′′

Γ
e0.m(en):τ

is s.t.
∇Rn+1
γ ⇒̄∇, and d∇(⇒∇, ⇒̄∇) ≤ 2−n, by definition of Rn+1

γ and d∇.

We can now state the main result.

Theorem 6. Let cd
n

be well-typed class declarations. If Γ
e:τ and Π ∈ Γ in
cd
n

, then there exists v s.t. Π
e ⇒ v and v ∈ τ in cd
n

.

Proof. Let
∇ be a proof tree for Γ
e:τ ; directly from lemma 12 we deduce that
it is possible to build a Cauchy sequence (⇒∇i)i∈N of proof trees s.t.
∇Riγ⇒∇i for
all i ∈ N; by Proposition 4, such a sequence has a certain limit ⇒∇, s.t.
∇Rγ⇒∇,
which is a valid proof tree for Π
e ⇒ v, with v ∈ τ . Note that, if the metric
space of proof trees is not complete, then we could not deduce that the sequence
(⇒∇i)i∈N has a limit; indeed, if we restrict the CBS to finite or regular values,
then it is not possible to define a complete metric space, and, therefore, the
sequence (⇒∇i)i∈N has no limit, and the claim of soundness does not hold, as
already observed in the examples 2 (b) and (c) in Section 4.

Soundness of the inductive type system in terms of the CBS and of the ISS
can be derived as two simple corollaries.

Corollary 2. Let cd
n

be well-typed class declarations. If Γ ` e:τ , and Π ∈ Γ
in cd

n
, then there exists v s.t. Π
e ⇒ v and v ∈ τ in cd

n
.

Proof. The theorem is a straightforward corollary of Theorems 5 and 6.

Corollary 3. If ∅ ` e:τ , e ∗→ e ′, and e ′ is a normal form, then e ′ is a value.

Proof. Direct from corollaries 2 and 1.

Such a corollary is sufficient for guaranteeing the soundness of the type system
in terms of the ISS: a well-typed expression can never get stuck in the ISS.
However, by adding the following property (that can be proved easily), we can
also deduce that the value e ′ is s.t. ∅ ` e ′:τ ′ with τ ′ ≤ τ .

Proposition 5. If ∅
v ⇒ v, and v ∈ τ , then ∅ ` v :τ ′, with τ ′ ≤ τ .

We can now prove the generalization of Corollary 3.

Corollary 4. If ∅ ` e:τ , e ∗→ e ′, and e ′ is a normal form, then e ′ is a value
and ∅ ` e ′:τ ′ with τ ′ ≤ τ .

Proof. By Corollary 2 we know also that v ∈ τ , and by Corollary 1 we know
that ∅
e ′ ⇒ v, hence we can conclude by Proposition 5.

22

We end this section by providing a generic scheme to be adopted for proving
soundness of a type system in terms of the CBS of a language. We consider the
case where one would like also to relate the CBS to the ISS, and derive from
such a relation a standard soundness claim expressed in terms of the ISS.

We assume that the ISS is defined by a reduction relation e1 → e2, and a
set of values v (which are a subset of expressions in normal form), and the CBS
is defined by a judgment Π
e ⇒ v, where Π is an environment associating
variables with values, and v is a value (all definitions are expected to be coin-
ductive). The type system is defined by a judgment Γ ` e:τ , where Γ is a type
environment associating variables with types, and τ is a type, and subtyping
τ1 ≤ τ2 and membership v ∈ τ (which is easily extended to environments) are
defined. Finally, a coinductive type system, defined by a judgment Γ
e:τ , can
be routinely defined from the inductive one.

Then the following properties have to be proved:

1. If ∅
e ⇒ v, then either e is a value, or there exists e ′ s.t. e → e ′.
2. If ∅
e ⇒ v, and e → e ′, then ∅
e ′ ⇒ v.
3. If Γ ` e:τ , then Γ
e:τ .
4. If Γ
e:τ , and Π ∈ Γ , then there exists v s.t. Π
e ⇒ v and v ∈ τ .
5. If ∅
v ⇒ v, and v ∈ τ , then ∅ ` v :τ ′, with τ ′ ≤ τ .

We stress again that primitive properties 1 and 2 involve ISS and CBS only and,
hence, can be proved once per each language, and reused for any type system.

From the claim above one can derive the following properties:

– If ∅ ` e:τ , e ∗→ e ′, and e ′ is a normal form, then e ′ is a value. Derivable from
claims 1,2, 3, and 4.

– If ∅ ` e:τ , e ∗→ e ′, and e ′ is a normal form, then e ′ is a value and ∅ ` e:τ ′

with τ ′ ≤ τ . Derivable if claim 5 holds as well.

7 Conclusion and related work

We have shown that it is possible to prove soundness of a conventional inductive
and nominal type system for a Java-like language in terms of a coinductive
big-step operational semantics obtained by interpreting coinductively the rules
of the standard big-step semantics. We have also suggested a generic scheme,
where parts of the proofs can be reused, to be adopted for proving soundness of
a type system in terms of the CBS of a language. The key point of the result is
that infinite (including non regular) values have to be considered, otherwise the
claim fails. Infinite values allow the definition of a complete metric space of proof
trees for the CBS, which ensures that every well-typed expression evaluates into
a value in the CBS, even in case of non-termination.

We have also shown that the CBS can be regarded as the concretization of a
coinductive type system that can be directly derived from the standard inductive
type system. Beside making the proof of soundness clearer, this fact also reveals
how coinduction is related to the inductive type system.

23

With respect to the traditional one, the proposed approach may seem overly
more complex, although big-step operational semantics tend to be simpler than
small-step ones, especially when one wants to model more significant subsets of a
real language. The main source of complexity comes from the proofs in Section 6,
and from the fact that coinduction is less intuitive than induction. It would
be worth investigating whether coalgebraic techniques could be used, to avoid
using complete metric spaces. However, we hope that the provided definitions
and proofs can be easily adapted for other type systems and languages.

The pioneering work of Milner and Tofte [14] is one of the first where coinduc-
tion is used for proving consistency of the type system and the big-step semantics
of a simple functional language; however rules are interpreted inductively, and
the semantics does not capture diverging evaluations.

In their work Leroy and Grall [13] analyze two kinds of coinductive big-step
operational semantics for the call-by-value λ-calculus, study their relationships
with the small-step and denotational semantics, and their suitability for compiler
correctness proofs. Besides the fact that here we consider a Java-like language,
the main contribution of this paper w.r.t. Leroy and Grall’s work is showing
that by interpreting coinductively a standard big-step operational semantics,
soundness of a standard nominal type system can be proved. We could prove such
a result because (1) in our semantics not only evaluation rules are interpreted
coinductively, but also the definition of values, and (2) the absence of first-class
functions in our language makes the treatment simpler. Leroy and Grall show
that a similar soundness claim does not hold in their setting; we conjecture that
the only reason for that consists in the fact that in their coinductive semantics
values are defined inductively (hence are finite), rather than coinductively (that
is, infinite). It would be interesting to investigate whether soundness holds for
the λ-calculus when values are defined coinductively.

Kusmierek and Bono propose a different approach and prove type soundness
w.r.t. an inductive big-step operational semantics; their proposal is centered on
the idea of tracing the intermediate steps of a program execution with a partial
derivation-search algorithm which deterministically computes the value and the
proof tree of evaluation judgments. Similar approaches, although their corre-
sponding semantics are not deterministic, are those of Ager [1] and Stoughton
[18].

Nakata and Uustalu [16,15] define a coinductive trace-based semantics, whose
main aim, however, is formal verification of non-terminating programs.

Finally we would like to mention the work by Ernst et al. [10] where a sound-
ness result w.r.t. a big-step operational semantics is proved thanks to a coverage
lemma ensuring that errors do not prevent expressions from evaluating to a re-
sult. Such a result is achieved by introducing a finite evaluation relation indexed
over natural numbers. A terminating expression is one for which there exists a
natural number n such that the finite evaluation indexed by n returns a value
(which may include also the usual runtime errors). However, in our approach
type soundness can be proved without introducing extra rules for dealing with
runtime errors generation and propagation, and finite evaluations.

24

References

1. M. S. Ager. From natural semantics to abstract machines. In LOPSTR, pages
245–261, 2004.

2. R. Amadio and L. Cardelli. Subtyping recursive types. ACM Transactions on
Programming Languages and Systems, 15(4):575–631, 1993.

3. D. Ancona. Coinductive big-step operational semantics for type soundness of Java-
like languages. In Formal Techniques for Java-like Programs, FTfJP ’11, pages
5:1–5:6. ACM, 2011.

4. D. Ancona, A. Corradi, G. Lagorio, and F. Damiani. Abstract compilation of
object-oriented languages into coinductive CLP(X): can type inference meet verifi-
cation? In B. Beckert and C. Marché, editors, Post-proceedings of Formal Verifica-
tion of Object-Oriented Software (FoVeOOS 2010), volume 6528 of Lecture Notes
in Computer Science. Springer Verlag, 2011. Selected paper.

5. D. Ancona and G. Lagorio. Coinductive type systems for object-oriented languages.
In S. Drossopoulou, editor, ECOOP’09 - Object-Oriented Programming, volume
5653 of Lecture Notes in Computer Science, pages 2–26. Springer Verlag, 2009.
Best paper prize.

6. D. Ancona and G. Lagorio. Coinductive subtyping for abstract compilation of
object-oriented languages into Horn formulas. In Montanari A., Napoli M., and
Parente M., editors, Proceedings of GandALF 2010, volume 25 of Electronic Pro-
ceedings in Theoretical Computer Science, pages 214–223, 2010.

7. D. Ancona and G. Lagorio. Idealized coinductive type systems for imperative
object-oriented programs. RAIRO - Theoretical Informatics and Applications,
45(1):3–33, 2011.

8. A. Arnold and M. Nivat. The metric space of infinite trees. Algebraic and topo-
logical properties. Fundamenta Informaticae, 3:445–476, 1980.

9. B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer Sci-
ence, 25:95–169, 1983.

10. E. Ernst, K. Ostermann, and W.R. Cook. A virtual class calculus. In POPL, pages
270–282, 2006.

11. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core
calculus for Java and GJ. ACM Transactions on Programming Languages and
Systems, 23(3):396–450, 2001.

12. J. D. M. Kusmierek and V. Bono. Big-step operational semantics revisited. Fun-
dam. Inform., 103(1-4):137–172, 2010.

13. X. Leroy and H. Grall. Coinductive big-step operational semantics. Information
and Computation, 207:284–304, 2009.

14. Tofte M. Milner R. Co-induction in relational semantics. Theoretical Computer
Science, 87(1):209–220, 1990.

15. K. Nakata and T. Uustalu. Trace-based coinductive operational semantics for
while. In TPHOLs 2009, pages 375–390, 2009.

16. K. Nakata and T. Uustalu. A Hoare logic for the coinductive trace-based big-step
semantics of while. In ESOP 2010, pages 488–506, 2010.

17. L. Simon, A. Mallya, A. Bansal, and G. Gupta. Coinductive logic programming.
In Logic Programming, 22nd International Conference, ICLP 2006, pages 330–345,
2006.

18. A. Stoughton. An operational semantics framework supporting the incremental
construction of derivation trees. Electr. Notes Theor. Comput. Sci., 10, 1997.

25

	Soundness of object-oriented languages with coinductive big-step semantics

