
TPLP13 (4-5): Online Supplement, July 2013.c© 2013 [DAVIDE ANCONA and AGOSTINO DOVIER] 1

co-LP: Back to the Roots

Davide Ancona
University of Genova, DIBRIS, ITALY

Agostino Dovier
University of Udine, DIMI, ITALY

submitted 10 April 2013; accepted 23 May 2013

Abstract

Recently, several papers dealing with co-inductive logic programming have been proposed, dealing with
pure Prolog and constraint logic programming, with and without negation.In this paper we revisit and use,
as much as possible, some fundamental results developed in the Eighties toanalyze the foundations, and to
clarify the possibilities but also the intrinsic theoretical limits of this programmingparadigm.

1 Introduction

When we attend our first courses in Mathematics and in Programming we learn a powerful, yet
intuitive, reasoning principle: induction. We use it for several mathematical proofs, including
correctness proofs of our programs. Induction is at the basis of recursive programming. We fix
the input/output behavior for some initial cases, while larger cases are defined upon the output
of smaller ones. It is not surprising, therefore, that the semantics of programming languages, and
in particular of Prolog, is based on induction or, put it in other words, on the least fixpoint of an
operator.

On the other hand, there are mathematical and programming contexts where circular phe-
nomena arise naturally. For instance, in set theory the problem of establishing whether two ill-
founded sets are equivalent (Aczel 1988). The extensionality principle, that governs set equality
in standard set theory, is not adequate to prove the equalityof the sets that are solutions of the fol-
lowing equations:X = {X}, Y = {Y,{Y}}, since it would lead to circularity. Aczel’s AFA axiom
and the subsequent coinductive notion of bisimulation allow a correct solution to this problem.
Bisimulation and other similar coinductive definitions areat the basis of the analysis of circular
properties. Computing the maximum bisimulation between a set SandS itself, that leads to the
minimum representation ofS, is implemented as a greatest fixpoint algorithm (Paige and Tarjan
1987; Dovier et al. 2004).

In computer science maybe the most preeminent example of circularity are graphs, that are em-
ployed in many application domains; but there are also otherformalisms that permeate computer
science where the notion of circularity is dominant, like automata (of several kinds), grammars,
process algebras, and temporal logics. Bisimulation is at the basis of the equivalence relations in
these formalisms.

Prolog has been chosen as a promising language to embed coinductive reasoning (Simon et al.
2006; Simon et al. 2007; Min et al. 2009) for at least three main reasons: its incredibly clean se-
mantics, its natural support for rational terms, and its declarative nature. In imperative languages

2 Davide Ancona and Agostino Dovier

circular structures are implemented in the same way as inductive structures through an explicit
use of references, whereas in purely declarative languages, without a native support for circu-
larity and coinduction structures like graphs cannot be implemented in a high level way (that is,
transparent to references), as happens for inductively defined structures.

The basic idea of Coinductive Logic Programming (briefly,co-LP) is to keep the same syn-
tax, while the least fixpoint semantics is replaced by the greatest fixpoint semantics. Moreover,
since coinductive definitions are naturally used for dealing with infinite terms, the semantics is
computed over the universe of infinite trees rather than on the usual Herbrand universe.

In this paper we revisit and deepen some aspects of the foundations ofco-LP (Simon 2006) to
try to clarify what are the main properties of this kind of semantics in logic programming.

A first contribution of our study is a formulation of a coinductive resolution rule which is sim-
pler than the corresponding one originally given by Gupta etal (Simon et al. 2006); the proof of
correctness we provide is simple, since it is mainly based onresults from Jaffar and Stuckey (Jaf-
far and Stuckey 1986). We also formally prove that no complete procedure can exist, in general,
for establishing whether a given atom belongs to the coinductive semantics of a definite clause
program, even when only rational terms are considered.

The paper is organized as follows: in Section 2 we recall the main notions on finite and infinite
terms, in Section 3 we overview the main properties of theTP operator. In Section 4 we analyze
the computability of the sets relevant for the semantics, then in Section 5 we prove the intrinsic
computational incompleteness ofco-LP and we propose a resolution rule able to approximate
the semantics. Finally, conclusions are drawn in Section 6.

2 Preliminaries

Terms and Formulas. A first-order signature is a 3-tuple〈Π,F ,V 〉 whereΠ is a set of pre-
dicate symbols,F is a set of functional and constant symbols, andV is a denumerable set of
variable symbols. For any♦ ∈F ∪P, ar(♦) > 0 (arity) denotes the number of arguments of
the symbol♦. We also write♦/n to meanar(♦) = n. For anyx∈ V , ar(x) = 0. If f ∈F and
ar(f) = 0, then f is called a constant symbol.

A tree T is a non-empty subset ofN∗ such that ifu ·n∈ T thenu∈ T and(∀m∈ {0, . . . ,n−
1})(u ·m∈ T). The root of the tree is identified by the empty string1 ε. The children of the
nodeu areu · 0,u · 1, . . ., from left to right. If u ∈ T andu · 0 /∈ T thenu is a leaf. A term t is
a pair〈T,ρ〉 whereT is a tree andρ is a functionρ : T −→F ∪V such that for eachu ∈ T,
|{ux∈ T : x∈N}|= ar(ρ(u)). Terms are trees with nodes labeled byρ with signature symbols
in a way consistent with their arities. A term〈T,ρ〉 is finite if and only if T is a finite set.

Example 2.1 LetF = {0/0,s/1, f/2}, and letX,Y be two variables. Then,T1 = {ε,0,1,0·0,0·
1,1 ·0,1 ·0 ·0} andρ1 = {(ε, f),(0, f),(1,s),(0 ·0,0),(0 ·1,X),(1 ·0,s),(1 ·0 ·0,Y)} identify a
term, sayt1 (t1 = f (f (0,X),s(s(Y))) using the standard notation of finite terms).
T2 = {ε,0,0·0,0·0·0,0·0·0·0, . . .} andρ2 defined asρ2(x) = s for all x∈ T2 identify an infinite
term. We will refer to this term asΩ in this paper. Using an extension of the standard notation
for finite terms,Ω = s(s(s(s(· · ·)))). �X

When clear from the context, we simply identify a term using the standard notation (which al-
lows, of course, only an approximation of infinite terms).

1 Non-emptiness and prefix closure ensure thatε ∈ T for all T.

co-LP: Back to the Roots 3

A term equationis an object of the formℓ = r whereℓ andr are finite terms. Asystem of term
equationsis a set of term equations. A finite system of term equationsE is in solved formif E =

{X1 = r1, . . . ,Xn = rn}, whereX1, . . . ,Xn are pairwise distinct variables, and for alli ∈ {1, . . . ,n},
Xi 6= r i and if r i is a variable, thenXi does not occur inr1, . . . , rn.

Given two treesT1 andT2 and a stringu∈ T2, T1 is a subtree ofT2 rooted atu (briefly,T1 Eu T2)
if T1 =

{

v∈N∗ : uv∈ T2

}

. A term〈T1,ρ1〉 is a subterm of a term〈T2,ρ2〉 rooted atu if T1 Eu T2,
and(∀v∈ T1)(ρ1(v) = ρ2(uv)). In this case we write〈T1,ρ1〉= 〈T2,ρ2〉|u.

A term is saidrational if it has a finite number of different subterms. All finite terms are
rational. It is well-known from unification theory that a given finite system of equations either
is unsatisfiable or it has (at least) one rational tree solution which can be expressed by a solved
form system. Also the converse is true, namely, ift = 〈T,ρ〉 is a rational term, and{t1, . . . , tn}
is the finite set of its different subterms (w.l.o.g., lett1 = t), there is a solved form system of
equations onn variables that admits the unique solutionθ such that fori = 1, . . . ,n θ(Xi) = ti .
For further reading on this material, we refer to (Martelli and Montanari 1982; Courcelle 1983).

An atomic formula, oratom, is a pair〈T,ρ〉 whereT is a tree andρ is a functionρ : T −→
Π∪V ∪F , andρ(ε) = p∈Π, ar(p) /∈ T, and(∀i ∈ {0, . . . ,ar(p)−1})(i ∈ T∧〈{v∈N∗ | i ·v∈
T},ρi〉 is a term), whereρi(u)

def
= ρ(i ·u). An atom isfinite if T is a finite set.

As implicitly admitted by Prolog, an atom can be simply viewed as a term whose root is
labeled by a predicate symbol. WithFV(t) we denote the set of variables occurring in a term or
in an atomt. A term/atom isgroundif FV(t) = /0.

A definite clauseis a disjunction of one finite atom with a finite number, possibly zero, of
negations of finite atoms. Adefinite clause programis a finite set of definite clauses.

Universes. Let P be a definite clause program. LetFP be the set of functional symbols inP;
if there exists nof/0 in FP, then 0/0 is added toFP. TheHerbrand Universe UP is the set of
finite (ground) terms one can build withFP. Such a set is finite (and isomorphic toFP) if and
only if for all f ∈FP ar(f) = 0.

The complete Herbrand Universeco-UP (Lloyd 1987,§25) is the set of finite and infinite
terms one can build withFP. The setco-UP contains finite terms, infinite rational terms, and non
rational terms.co-UP is finite (and equal toUP) if and only if for all f ∈FP ar(f) = 0.

Example 2.2 AssumeFP = {0/0,s/1}. As a shorthand, we will use 0for 0 andn+1 for s(n).
Therefore:UP = {0,s(0),s(s(0)),s(s(s(0))), . . .}= {0,1,2,3, . . .}. This signature allows just one
infinite term: the termΩ = s(s(s(· · ·))) (c.f. Example 2.1). This term is equal to any of its sub-
terms, in particularΩ = s(Ω), thereforeco-UP = {Ω,0,1,2,3, . . .}.

Assume nowFP = {λ/0, [· | ·]/2}. We will interpret[· | ·] as the usual Prolog list constructor
and adopt the usual shorthand, when possible. A partial viewof UP is the following:

UP =
{

λ , [λ], [λ ,λ], [λ ,λ ,λ], . . . , [[λ]], [λ , [λ]], [[λ],λ], . . .
}

co-UP contains either rational or non rational infinite terms. As ashorthand, let us use 0 for
λ and 1 for[λ] (i.e. [λ |λ]). Then, for instance, the infinite lists[0,0,0,0,0,0,0,0,0,0, . . .] and
[0,1,0,1,0,1,0,1,0,1, . . .] that are solutions to the term equationsX = [0|X] andX = [0,1|X],
respectively, are two rational terms inco-UP. Let b1.b2b3b4b5b6 . . . (1.01101. . .) be the (infin-
ite) binary representation of

√
2 (bi ∈ {0,1}). The infinite listsqrt2 = [b1,b2,b3,b4,b5,b6, . . .]

belongs toco-UP, and it has an infinite number of different subterms, otherwise
√

2 would be a
rational number inR. �X

4 Davide Ancona and Agostino Dovier

While UP is finite or denumerable, ifF contains at least two unary symbols or at least one
constant symbol and one symbol of arity greater than 1 (briefly, |F |> 2, ∑ f∈F

ar(f) > 2), then
co-UP is not denumerable (generalize the reasoning made in Example 2.2 for definingsqrt2).

A tree substitution(ground substitution in (Jaffar and Stuckey 1986))θ is a mapping from a
finite subset of variables,dom(θ) to co-U . The application ofθ replaces each leaf labeled by
X ∈ dom(θ) in t with the subtermθ(X) (we omit here a more formal definition). The notion of
application can be extended to atoms and formulas in the usual way.

Let P be a definite clause program. WithBP, theHerbrand baseof P we denote the sets of all
ground atoms, namely atoms based on the predicate symbols inP and on the terms inUP. Sets
I ⊆BP are calledinterpretations. 〈BP,⊆〉 is a complete lattice, where⊥= /0,⊤= BP, least upper
bound (lub) is computed by∪ and greatest lower bound (glb) is computed by∩. We define:

ground(P) = {(A← B1, . . . ,Bn)θ : A← B1, . . . ,Bn ∈ P, andθ is a tree substitution
θ : FV(A← B1, . . . ,Bn)−→UP}

In the context of the complete universe, an atom is a finite or an infinite tree whose root is
labeled by a predicate symbolp and itsar(p) children are the roots of (finite and infinite) terms
from co-UP. The complete Herbrand baseco-BP is the set of all ground atoms based on the
predicate symbols inP and the finite and infinite terms inco-UP. SetsI ⊆ co-BP are called
co-interpretations. Finally, we also define:

co-ground(P) = {(A← B1, . . . ,Bn)θ : A← B1, . . . ,Bn ∈ P, andθ is a tree substitution
θ : FV(A← B1, . . . ,Bn)−→ co-UP}

If S⊆ co-ground(P), with ϒ(S)⊆ Swe denote its subset built only on rational terms.

SLD derivation and its variants. In the classical definition of SLD derivation, given a def-
inite clause programP and a goalG = A1, . . . ,An,2 the rewriting rule⊢ that leadsG to G′ is
defined as follows: chooseAi = p(s1, . . . ,sk) in G, and p(t1, . . . , tk)← B1, . . . ,Bm a renaming
with fresh variables of a clause inP, if {s1 = t1, . . . ,sk = tk} is solvable and has m.g.u.θ , then
G′ = θ(A1, . . . ,Ai−1,B1, . . . ,Bm,Ai+1, . . . , An). This notion is generalized by the following one,
where system of equations are explicitly allowed to deal with (possibly infinite) rational terms.
The rewriting rule⊢∞ that leads a goalG = 〈E�A1, . . . ,An〉, whereE is a solvable set of equa-
tions andAi are atoms, to a goalG′ is defined as follows: chooseAi = p(s1, . . . ,sk) in G, and
p(t1, . . . , tk)← B1, . . . ,Bm a renaming with fresh variables of a clause inP, if E′ = E∪{s1 =

t1, . . . ,sk = tk} is solvable (inco-UP), thenG′ = 〈E′�A1, . . . ,Ai−1,B1, . . . ,Bm,Ai+1, . . . ,An〉.
Rule⊢∞ is a special case of the rule proposed in (Jaffar and Stuckey 1986) to deal with Prolog II

programs (Colmerauer 1984), where inE either equations or inequations are admitted. As such, it
inherits all the results from (Jaffar and Stuckey 1986), when inequations are not explicitly used in
the Program. Comparing⊢with ⊢∞ , sinceθ has exactly the same solutions of{s1 = t1, . . . ,sn = tn},
the two definitions are equivalent for definite programs (assuming to use or not use occurs-check
consistently in the two cases).

The notion of⊢∞ can be extended to derivations and trees as usual. Aderivationis a (finite or
infinite) sequence of application of⊢∞ ; a ground derivationis a (finite or infinite) sequence of
application of⊢∞ , where a ground instantiation of the program is considered at each step. A goal
is successful if it is of the form〈E�ε〉 (ε is the empty list of atoms). A derivation issuccessful

2 For the sake of simplicity, we simply consider the list of atoms of a goal, not its logical meaning.

co-LP: Back to the Roots 5

if it is finite and its last goal is successful. A derivation isfailing if it is finite, its last goal is
not successful, and rule⊢∞ is not applicable to it. A selection ruleR chooses the literalAi in a
goalG = 〈E�A1, . . . ,An〉 given the whole derivation that led toG. In Prolog,R simply selects
A1. Given a selection ruleR, theSLD tree for a goalG is the tree representing all the possible
derivations starting fromG according withR (choices are related to the different clauses defining
the predicate ofAi). If all derivations of theSLD tree forG are failing, then it is afinite failure
tree.

Example 2.3(SLD derivation with infinite terms)Let P be the following definite clause program:
num(0). num(s(X))← num(X). Using standard SLD rule we would have the successful

derivationnum(s(s(0))) ⊢ num(s(0)) ⊢ num(0) ⊢ ε. Using⊢∞ we would have the following equi-
valent successful derivation: 〈 /0�num(s(s(0)))〉⊢∞〈{X = s(0)}�num(X)〉⊢∞

〈{X = s(0),X = s(X1)}�num(X1)〉⊢∞〈{X = s(0),X = s(X1),X1 = 0}�ε〉

The system has mguX/s(0),X1/0. Using⊢∞ we could also look for a derivation fornum(ω):

〈{X = s(X)}�num(X)〉⊢∞〈{X = s(X),X = s(X1)}�num(X1)〉⊢∞
〈{X = s(X),X = s(X1),X1 = s(X2)}�num(X2)〉⊢∞ · · ·

The derivation is infinite. Observe that{X = s(X),X = s(X1),X1 = s(X2),X2 = s(X3), . . .} is
solvable and equivalent to{X = s(X),X1 = X,X2 = X,X3 = X, . . .}. �X

Some computability notions used in the paper.We assume basic computability notions (see
e.g., (Rogers 1987)). The relevant definitions and results are reported here for reader’s conveni-
ence. Let us denote, as usual,K = {x∈N : Mx(x) ↓} andK̄ = N\K, whereMx is thex-th Turing
machine andMx(x) ↓means that the computation of the Turing machineMx on inputx terminates
in a finite number of steps.K is recursively enumerable (r.e.) but not recursive andK̄ is product-
ive (hence, non r.e. in a very strong way).A 6 B (andĀ 6 B̄) if there is a total recursive function
f such that for allx ∈N x ∈ A iff f (x) ∈ B. A r.e. setB is r.e. completeif for all r.e. setA it
holds thatA 6 B (due to transitivity of6 and completeness ofK, it is sufficient to prove that
K 6 B). A is complete iffA is r.e. andĀ is productive (Myhill). If K̄ 6 A (or equivalentlyK 6 Ā)
thenA is productive, as well. The classΠ1

1 is one of the lower classes in the analytical hierarchy
of sets (Rogers 1987,§16). LetF be the set of total functions fromN to N. A setS is Π1

1 if
there is a recursive relationR⊆F×N2 such thatS= {x∈N : (∀ f)(∃y)(R(f ,(y,x)))}. Observe
thatS̄= {x∈N : (∃ f)(∀y)(¬R(f ,(y,x)))}. S is Π1

1 completeif any Π1
1 set can be reduced to it.

Clearly, if S is Π1
1 complete, neitherSnor S̄are r.e..

3 Least and Greatest Fixpoints

Finite Terms Universe. Given a definite clause programP, theTP :℘(BP)−→℘(BP) operator
between sets of ground atomic formulas is defined as follows.

TP(I) = {a : (a← b1, . . . ,bn) ∈ ground(P)∧{b1, . . . ,bn} ⊆ I} (1)

It is well-known thatI is a (Herbrand) model ofP if and only if TP(I) ⊆ I . In particular, this
holds for anyI which is a fixpoint ofTP, i.e., such thatTP(I) = I . It is also well-known that
TP is monotonic ((∀X,Y ∈℘(BP))(X ⊆Y→ TP(X)⊆ TP(Y))) and upward continuous (for each
infinite sequenceI0⊆ I1⊆ I2⊆ ·· ·: TP

(

⋃

i>0 Ii
)

=
⋃

i>0TP(Ii)) but not downward continuous (for

6 Davide Ancona and Agostino Dovier

each infinite sequenceI0⊇ I1⊇ I2⊇ ·· ·: TP

(

⋂

i>0 Ii
)

=
⋂

i>0TP(Ii)). Let us recall the definitions
of iteratedTP (we assume the notion of (successor/limit) ordinal (Lloyd 1987)):

TP ↑ 0 = /0 TP ↓ 0 = BP
TP ↑ α = TP(TP ↑ (α−1)) TP ↓ α = TP(TP ↓ (α−1)) if α is a successor ordinal
TP ↑ α =

⋃

β<α TP ↑ β TP ↓ α =
⋂

β<α TP ↓ β if α is a limit ordinal

Being monotonic, theKnaster-Tarksi theoremensures thatTP admits a least and a greatest
fixpoint, denoted aslfp(TP) andgfp(TP), respectively. Being upward continuous, fromKleene’s
fixpoint Theorem, it follows that: lfp(TP) = TP ↑ ω, whereω is the first limit ordinal.lfp(TP)

coincides with the minimum Herbrand model ofP, which itself is equal to the set of computed
answers. The equalitylfp(TP) = TP ↑ ω means that if an atom belongs to this set we are able to
prove this fact with a finite (although of a-priori unboundedlength) proof.

Instead,gfp(TP) = TP ↓ α for some ordinalα. The fact thatTP is not downward continuous
means thatα can be an ordinal “larger” thanω. “This asymmetry is one of the most curious
phenomena in the theory of logic programming” (Apt 1988). The asymmetry is clearly pointed
out by the following classical example (from (Lloyd 1987, page 37)):

Example 3.1 Let P be the following program:q(s(X))← q(X). p(0)← q(X).

We have thatTP ↓ ω = {p(0)} but it is not a fix-point. In fact,TP({p(0)}) = /0 = TP(/0). For
computinggfp(TP) = /0 a transfinite computationTP ↓ ω +1 is needed.

The example can be generalized to show thatω +1 can be not enough (c.f. Theorem 4.1).

Infinite Terms Universe. Let us analyze theco-Herbrand Universe. One can define theTP in the
same way as in Equation 1, providedBP is replaced byco-BP andco-ground(P) is considered.
To avoid ambiguity, let us refer to this operator asTco

P . Iteration ofTco
P is defined in the same

way as forTP.

The “pure Prolog” case.The properties ofTco
P are studied for definite clause programs in (Lloyd

1987,§26). In particular, it is stated that:lfp(Tco
P) = Tco

P ↑ ω and gfp(Tco
P) = Tco

P ↓ ω .

The second property can be derived from the compactness of〈co-UP,δ 〉.
Example 3.2 Let us consider again the program in Example 3.1. SinceΩ = s(Ω), assuming
q(Ω), thenq(s(Ω)) = q(Ω) is justified by the first clause. In this caseTco

P ↓ ω = {q(Ω), p(0)} is
also a fixpoint. �X

The Prolog II case.Let us assume a weak form of negation be allowed in the language: we allow
the use of a6= (constraint) predicate between terms. Let us analyze the following example.

Example 3.3 LetPbe the following program.p(0)← q(X). q(s(X))← q(X),X 6= s(X).

Being Ω = s(Ω), q(Ω) is no longer supported by the second clause, and therefore:Tco
P ↓ ω =

{p(0)}. SinceTco
P (Tco

P ↓ ω) = /0, again the fixpoint is not reached inω steps. �X

This means that as soon as the language has the capability of expressing inequality (as it hap-
pens in Constraint Logic Programming), the asymmetry between upward and downward compu-
tations emerges also considering infinite term universes.

Remark 3.1 In the standard minimum model semantics, onceF is known, the 6= predic-
ate above can be defined by a definite clause program without using negation. E.g., ifF =

{0/0,s/1}: 0 6= s(X). s(X) 6= 0. s(X) 6= s(Y)← X 6= Y. We can also state when two
terms are equal (using only one fact and unification):X = X. However, when computing
Tco

P ↓ α, Ω 6= Ω is supported by the last clause. Therefore, bothΩ = Ω and Ω 6= Ω belong
to gfp(Tco

P).

co-LP: Back to the Roots 7

4 Venn Diagrams

The setsBP andco-BP can be partitioned into four subsets, according to the properties of the
TP, Tco

P operators, respectively. Figure 1 shows this partition (the case ofco-BP is analogous
wheneverTP is replaced byTco

P —although for definite clause programsTco
P ↓ ω = gfp(Tco

P)). In
the remainder of the section we characterize these sets operationally and from the computability
point of view. For the finite tree case, see also (Apt 1988), for the infinite tree see (Jaffar and
Stuckey 1986,§6).

�� ��
#
"

!

'

&

$

%

'

&

$

%
lfp(TP) gfp(TP) TP ↓ ω BP

?

6

r.e.

r.e.

-� productive

-�
productive

-productive

-� productive

Fig. 1. Venn Diagram

The finite tree case.Let us focus on the⊢ derivation rule. It is well-known that:

• The setTP ↑ ω is the set of ground atoms that admit a successful SLD derivation. It is the
standard semantics of a logic program and coincides with theminimum Herbrand model.

• The setBP \TP ↓ ω, also called the finite failure set, is the set of ground atomsthat have
only failing derivations, and the number of these derivations is finite.

• IS = gfp(TP) \TP ↑ ω is the set of ground atoms that do not admit a successful ground
derivation but they admit (at least) one infinite ground derivation.

• IF = TP ↓ ω \gfp(TP) is the set of ground atoms for which there are no successful deriva-
tions, there are no infinite ground derivations, and there exist an infinite number of failing
(hence, finite) ground derivations.

We also recall that:BP \TP ↑ ω is the set of atomsA for which there is no successful derivation
(CWA rule for inferring¬A from P), andBP \gfp(TP) is the set of atomsA that belongs tono
Herbrand model of the completion ofP (Herbrand rule for inferring¬A from P).

Example 4.1 Let us consider the definite clause programP:

num(0). num(s(X))← num(X).

p(0)← num(X),q(X). p(s(X))← num(X),p(s(X)). q(s(X))← q(X).

Then: •num(n) ∈ TP ↑ ω for all n∈N •q(n) ∈ BP\TP ↓ ω for all n∈N

•p(n) ∈ gfp(TP)\TP ↑ ω for all n∈N, n > 0 •p(0) ∈ TP ↓ ω \gfp(TP). �X

Theorem 4.1((Blair 1982)) Given a definite clause programP, in general:

1. TP ↑ ω is r.e. complete
2. BP\TP ↓ ω is r.e. complete (andTP ↓ ω is a productive set)
3. BP\gfp(TP) is Π1

1 complete (thus,gfp(TP) andBP\gfp(TP) are not r.e.).

With “in general” we mean that there can be cases when the foursets are simpler (e.g., when there
are no function symbols in the programP), but that there are cases where the situation is hard. In
particular, as far as point (3) is concerned, Blair in (Blair1982) shows that there is a programP
such thatgfp(TP) is reached afterω +ω iterations and thatBP\gfp(TP) is Π1

1-complete.

8 Davide Ancona and Agostino Dovier

The infinite tree case.Let us focus now on the infinite term universe. The just given character-
ization of the subsets ofBP in terms of⊢-derivations is the same reported forco-BP by Jaffar
and Stuckey in (Jaffar and Stuckey 1986) in the universe of finite and infinite terms for their
derivation rule, which coincides with⊢∞ if 6= constraints between terms are not used. We recall
that, in the absence of6= constraints,Tco

P ↓ ω = gfp(Tco
P) (hence, the setIS is empty).

Example 4.2 Let us consider the programP of Example 4.1 and analyze the partition of the
complete Herbrand Base. We have thatTco

P ↑ω = TP ↑ω. Moreover,Tco
P ↓ω \gfp(Tco

P) = /0 and
gfp(Tco

P)\ lfp(Tco
P) = {num(Ω),p(0),p(Ω),q(Ω)}. �X

Example 4.3 An interesting and simple example is the following (the constant 0 is added toF):

p(X)← p(s(X)).

In this caseTco
P ↑ω = /0= BP\Tco

P ↓ω = Tco
P ↓ω \gfp(Tco

P). The only non-empty Venn region is
gfp(Tco

P)\ lfp(Tco
P) which coincides withgfp(Tco

P) = co-BP = {p(Ω), p(0), p(1), p(2), p(3), . . .}.
Note that in this caseϒ(co-BP) = co-BP, henceϒ(gfp(Tco

P)) = gfp(Tco
P) = gfp(Trat

P) (where
Trat

P denotesTP restricted toϒ(co-BP)); however, onlyp(Ω) has an infinite “rational” ground
derivation. �X

Example 4.4 Let us consider the programP

inf list(X, [X|L])← inf list(s(X),L). p(0)← inf list(0,L).

Obviously,lfp(Tco
P) = /0. We have that

〈 /0� p(0)〉⊢∞〈 /0�inf list(0,L)〉⊢∞〈{L = [0|L1]}�inf list(s(0),L1)〉⊢∞
〈{L = [0|L1],L1 = [s(0)|L2]}�inf list(s(s(0)),L2)〉⊢∞ · · ·⊢∞
〈{L = [0|L1],L1 = [1|L2], . . . ,Ln = [n|Ln+1]}�inf list(n+1,Ln+1)〉

The infinite, non rational atominf list(0, [0,1,2, . . .]), as well as the atomp(0) belong to
gfp(TP)\ lfp(TP). Similarly, for any termt of the signature, we have that
inf list(t, [t,s(t),s(s(t)),s(s(s(t))), . . .]) ∈ gfp(TP) \ lfp(TP). Being Ω = s(Ω), in particular,
inf list(Ω, [Ω,Ω, . . .]) ∈ gfp(TP) \ lfp(TP), hencep(0) and this one are the unique rational
atoms in that set. All other rational atoms belong toco-BP \ gfp(Tco ↓ ω). However, whereas
for inf list(Ω, [Ω,Ω, Ω, . . .]) there exists an infinite but “rational” ground derivation, for p(0)

there are no “rational” ground derivations; furthermoreinf list(Ω, [Ω,Ω, . . .])∈ gfp(Trat
P), but

p(0) 6∈ gfp(Trat
P). �X

Let us end this section with a computability result on the rational part of these sets.

Theorem 4.2 Given a definite clause programP, in general:

1. ϒ(Tco
P ↑ ω) is r.e. complete

2. ϒ(co-BP\gfp(Tco
P)) is r.e. complete (hence,ϒ(gfp(Tco

P)) is productive).

Proof The “positive” part of the theorem is a consequence of (Jaffar and Stuckey 1986): checking
whether a rational atomA belongs toTco

P ↑ ω or to co-BP \Tco
P ↓ ω are in fact semi decidable

properties. In the former case it is sufficient to detect a successful⊢∞-derivation; in the latter case
it amounts to verify that the number of its derivations is finite and all of them are failing. Starting
from a goal with rational terms, only rational terms are generated during a finite (successful or
not) computation. We omit theϒ symbol in the rest of the proof for readability.

co-LP: Back to the Roots 9

To prove the r.e. completeness of the two sets, we reduce the set K to each of them. Let us
consider the recursive total function:

ϕ(x,y) =

{

0 If Mx(x) 6 ↓ in 6 y steps
1 If Mx(x) ↓ in 6 y steps

By Turing completeness of definite clause programming underthe lfp semantics, we can write a
program defining a predicateh (halting) such that:

← h(x,y,z) has a finite successful derivation ifϕ(x,y) = z, z∈ {0,s(0)}
← h(x,y,z) has a finite failure tree if (z∈ {0,s(0)} andϕ(x,y) 6= z) or z /∈ {0,s(0)}

Let Pϕ be the program definingh and including the following predicate definition:

num(0). num(s(X))← num(X).

1) We define a programP1 and show thatK 6 Tco
P1
↑ ω. Let us extend the programPϕ with the

clause (assume, w.l.o.g., thatr does not appear inPϕ):

r(X)← num(N),h(X,N,s(0)).

Let P1 be the program obtained. We prove thatx∈ K iff r(x) ∈ Tco
P1
↑ ω.

If x∈K, then there is a numbert such that← h(x, t,s(0)) has a successful derivation. Therefore
← r(x) has a successful derivation, and hencer(x) ∈ Tco

P1
↑ ω.

If x∈ K̄ the computation← r(x) has no successful derivations, hence,r(x) 6∈ Tco
P1
↑ ω.

2) We define a programP2 and show thatK̄ 6 gfp(Tco
P2

) (i.e., x ∈ K̄ iff gfp(Tco
P2

), equivalent to
K 6 co-BP2

\gfp(Tco
P2

)). P2 is Pϕ extended with the following definitions of the two predicates
p,q (assume, w.l.o.g., thatq andp do not appear inPϕ):

q(X) ← p(X,0). p(X,Y) ← h(X,Y,0), p(X,s(Y)).

If x ∈ K̄, h(x,y,0) has a successful derivation for ally∈N and therefore there is an infinite
ground derivation forq(x): q(x) ∈ gfp(Tco

P2
).

If x∈ K, let t be the number of steps such thatMx(x) terminates: the subgoal← h(x, t,0) fails,
hence all derivations for the overall goal are failing:q(x) 6∈ gfp(Tco

P2
). q

Let us observe that if the language includes the built-in6= predicate on terms, as in Prolog
II, then, in general,Tco

P ↓ ω 6= gfp(Tco
P) and the complement ofgfp is no longer r.e. (it follows

immediately from Blair’s result, Theorem 4.1).

Let us briefly reason on non-rational atoms. Their cardinality is more than denumerable. A
denumerable subset of them can be “defined” by a program (e.g., Example 4.4, where we have
only ground infinite computations forA = inf list(0, [0,1,2, . . .])): A∈ gfp(Tco

P) but there is
no way to verify it. In other cases all terms are implicitly referred, like when we have a fact
p(X). In general we are not able to formalize the testA∈ S for a non rational term. Notions of
computation on non rational terms require different starting points and are outside the scope of
this paper.

5 co-Logic Programming

Coinductive Logic Programming (or simplyco-LP) is introduced in (Simon et al. 2006). Aco-LP
program, syntactically, is adefinite clause program. The difference w.r.t. “standard” Logic Pro-
gramming is in the semantics. In “standard” Logic Programming, the semantics is based on

10 Davide Ancona and Agostino Dovier

lfp(TP) a r.e. complete set, in general (c.f. Theorem 4.1). For r.e. sets membership can be finitely
verified. This set coincides with the minimum Herbrand Model, which is, in turn, exactly the
set of logical consequences of the programP. The semantics ofco-LP, instead is based on the
gfp(Tco

P). Thus, we consider the complete Herbrand Universe and Base and the operatorTco
P :

Definition 5.1(co-LP model-theoretical semantics) Let P be a definite clause program.

• Let a∈ co-BP. We say thatP|=
co

a if and only if a∈ gfp(Tco
P).

• Let A be a finite atom. We say thatP|=
co

A if and only if for all tree substitutionsγ :
FV(A)−→ co-UP, it holds thatP|=

co
Aγ.

• |=
co

is extended to first-order formulas (¬,∨,∃) as usual.

Corollary 5.1(Inherent incompleteness ofco-LP)
Even restricting to rational terms, no completeprocedure exists for establishing whetherP|=

co
a.

Proof The rational part ofgfp(Tco
P) is, in general, productive (Theorem 4.2). This means that

there is no computable procedure capable of verifying whether an atom belongs toϒ(gfp(Tco
P))

that works for all atoms (otherwiseϒ(gfp(Tco
P)) would be r.e., a contradiction). q

Anyway, any productive set has an infinite r.e. subset. A procedure would aim to identify-
ing such a subset(s), thus computing an approximation ofgfp(Tco

P) (possibly, including strictly
lfp(Tco

P)). The procedure⊢
co

defined below and the procedure in (Simon et al. 2006) aim at
identify such a set. However, if the procedures finitely fails, they correctly state that the atom
does not belong togfp(Tco

P).

A computation procedure⊢
co

that approximates|=
co

should behave as follows. Given a goalG it
should return “no” or a non empty set of computed answer systems of equations (briefly, c.a.s.)
{θ1,θ2, . . .} for FV(G), such that for alli ∈ {1,2, . . .} P|=

co
Gθi . As for rule⊢∞ , since infinite trees

must be considered, the c.a.s. needs to be implicitly stored. Therefore, eachθi can be a finite set
of equations identifying some rational tree, or, theoretically, can be an infinite set of equations
identifying a possibly non rational tree, with variables init.

The procedure in (Simon et al. 2006) is based on a notion of rewriting between pairs of trees
and states, where trees are dynamic data structures resembling the execution of a resolution pro-
cedure (like SLD resolution) and a state is a set of equations. We re-formulate the same concept
with an alternative notion at a (slightly) higher level using a notion of goal with hypotheses (a
similar notion is introduced, in a different context in (Bonatti 2001; Bonatti et al. 2008)). An
hypothetical goalis a list of pairs(A�S) whereA is an atom andS is a set of atoms (hypo-
theses), together with a system of equations. Given a goalG = E�A1, . . . ,An, whereE is a set
of equations (needed to define rational terms) andAi are program defined atoms, we define the
corresponding hypothetical goalα(G) = 〈(A1, /0), . . . ,(An, /0)�E〉.

Definition 5.2(co-LP operational semantics (revisited)) Given a definite clause programP and
an hypothetical goalG = 〈(A1,S1), . . . ,(An,Sn)�E〉, the rewriting rule⊢

co
that leadsG to G′

(briefly G⊢
co

G′) is defined as follows: choose(Ai ,Si) in G, let Ai = p(s1, . . . ,sn). G′ is computed
in one of the two following ways:

1. let p(t1, . . . , tn)←B1, . . . ,Bm be a renaming of a clause inP with fresh variables, and
let E′ = E∪{s1 = t1, . . . ,sn = tn} be solvable. LetS′ = Si ∪{p(s1, . . . ,sn)}. Then:
G′ = 〈(A1,S1), . . . ,(Ai−1,Si−1),(B1,S

′), . . . ,(Bm,S′),(Ai+1,Si+1), . . . ,(An,Sn)�E′〉

co-LP: Back to the Roots 11

2. let p(t1, . . . , tn) ∈ Si be such thatE′ = E∪{s1 = t1, . . . ,sn = tn} is solvable. Then:
G′ = 〈(A1,S1), . . . ,(Ai−1,Si−1),(Ai+1,Si+1), . . . ,(An,Sn)�E′〉

In this case we say thatG⊢
co

G′. A derivation for a goalG is a maximal sequenceG1,G2,G3, . . . s.t.
G1 = α(G) andGi⊢coGi+1 for i > 0. A derivation issuccessfulif it is a finite sequenceG1, . . . ,Gk
s.t. Gk = 〈ε �E〉 andE is a solvable system of equations. In this case, the computedanswer
system is the part of the m.g.u. ofE relevant for the variables inG1. A derivation isfailing if it
is a finite sequenceG1, . . . ,Gk which is not successful (hence, there is noG′ such thatGk⊢coG′).

We will write ⊢
co1 (⊢

co2) if the first (second) rule is applied. The first rule is the standard resol-
ution rule; moreover, the atom removed by resolution is added to the hypotheses of the subgoal.
The second rule exploits previous hypotheses for justifying a goal by co-induction. In a sense,
rule (1) leads tolfp(TP), rule (2) aim to capture (some) atoms belonging togfp(TP)\ lfp(TP) that
are co-inductively supported.

Example 5.1 Let us consider the program of Example 3.1 and the goal← p(0). The following
is a successful derivation: 〈(p(0), /0)� /0〉⊢

co1〈(q(X0),{p(0)})� /0〉⊢
co1

〈(q(X1),{p(0),q(X0)})�{X0 = s(X1)}〉⊢co2〈ε �{X0 = s(X1),X0 = X1}〉 .
E = {X0 = s(X1),X0 = X1} is solvable and its m.g.u. isθ = {X0 = X1,X1 = s(X1)}. The computed
answer system is simply the empty set, being the initial goalground. �X

Example 5.2 Let P1 consist of the following clausep([0,1|X])← p(X) and let us analyze the
following two successful derivations for the goal← p(X).

〈(p(X), /0)� /0〉⊢
co1〈(p(X1),{p(X)})�{X = [0,1|X1]}⊢co2〈(ε �{X = X1,X = [0,1|X1]}〉

which yields the computed answer system{X = [0,1|X]}.
〈(p(X), /0)� /0〉⊢

co1〈(p(X1),{p(X)})�{X = [0,1|X1]}〉⊢co1
〈(p(X2),{p(X), p(X1)})�{X = [0,1|X1],X1 = [0,1|X2]}〉⊢co2
〈ε �{X = X2,X = [0,1|X1],X1 = [0,1|X2]}〉

which yields the computed answer system{X = [0,1,0,1|X]}. An infinite number of successful
computations (actually, with the same answer, in this special case) can be computed. �X

Theorem 5.1(Correctness) Let P be a definite clause program. If there is a⊢
co

derivation for
〈(A, /0)�E〉 with c.a.s.θ , thenP|=

co
Aγ for every term substitutionγ solution ofEθ .

Proof If in the derivation only rule⊢
co1 is applied, thenAEγ ∈ Tco

P ↑ ω by correctness of Prolog
II procedure (Jaffar and Stuckey 1986).

If, instead, rule⊢
co2 is employed at least once, the proof is similar to that of thepumping lemma:

we show that from a finite successful derivation we are able toproduce an infinite derivation using
only rule⊢

co1, that, again by (Jaffar and Stuckey 1986) would prove thatAEγ ∈ Tco
P ↓ ω.

Let us consider a successful⊢
co

derivation for〈(A, /0)�E〉 in which ⊢
co2 is employed at least

once. Let us split the derivation in three parts:
1. A first part of the proof (possibly of length zero), starting from 〈(A, /0)�E〉 in which only⊢

co1
is used that ends where the atomp(~t), later used for the first co-inductive hypothesis, is selected.
Namely, we have〈(A, /0)�E〉⊢

co1 · · ·⊢co1〈(p(~t),H), . . . �Ek〉.
2. A part of the proof starting from the previous described goal in which only⊢

co1 rule is applied
until the first occurrence of rule⊢

co2 is applied:

〈(p(~t),H), . . . �Ek〉⊢co1〈(B1,H ∪{p(~t)}), . . . ,(Bn,H ∪{p(~t)}) . . . �Ek∪{~t =~a}〉⊢
co1

· · ·⊢
co1〈(p(~s),H ∪{p(~t)}∪H ′),~B�Ek∪{~t =~a}∪E′〉⊢

co2〈~B�Ek∪{~t =~a,~s=~t}∪E′〉

12 Davide Ancona and Agostino Dovier

where in the first derivation step the (renamed) clausep(~a)← B1, . . . ,Bn is used.
3. The rest of the proof, that leads to〈ε �Ek∪{~t =~a,~s=~t}∪E′ ∪E′′〉. In this last part of the
proof, either⊢

co1 or ⊢
co2 can be used.

Let us focus on the part (2) of the derivation. For simplicityof notation, let us assume that it is of
length 2, namely that the atomB1 is of the formq(~d) and that at the first derivation the renamed
ruleq(~e)← p(~s), . . . is used. This means that the above part of the derivation is ofthe form:

〈(p(~t),H), . . . �Ek〉⊢co1 (p(~a)← q(~d), . . .)

〈(q(~d),H ∪{p(~t)}), . . . �Ek∪{~t =~a}〉⊢
co1 (q(~e)← p(~s), . . .)

〈(p(~s),H ∪{p(~t),q(~d)}), . . . �Ek∪{~t =~a, ~d =~e}〉⊢
co2

〈. . . �Ek∪{~t =~a, ~d =~e,~s=~t}〉

We prove that the application of the⊢
co2 rule can be replaced by the application of rule⊢

co1 with
a renamed version ofp(~a)← q(~d), . . . and then⊢

co1 with a renamed version ofq(~e)← p(~s), . . .
and so on forever. Letθ be the renaming substitution that transformsp(~a)← q(~d), . . . into its
new renamed version (θ introduces fresh variables). We know from application of rule ⊢

co2 that
{~t =~a, ~d =~e,~s=~t}∪Ek is solvable, therefore, by equality axioms, also{~s=~a, ~d =~e,~s=~t} is
solvable. Sinceθ is a variable renaming with fresh variables, we have that{~s= ~aθ ,~t = ~a, ~d =

~e}∪Ek is solvable. Therefore rule⊢
co1 can be applied again (and the new selected atom isq(~dθ).

Again, since~d =~e, a renaming with fresh variables of the ruleq(~e)← p(~s), . . . can be applied
and this can be repeated forever.

This proof schema can be repeated for any length of the intermediate part of the derivation. q

We have already proved theincompletenessof any procedure for computing|=
co

, even restrict-
ing to rational terms. Let us see a typical example of rational atom that is not computed. From
Example 4.3 we learned thatp(0) ∈ gfp(Tco

P). However, no finite derivation exists for it, even
though all involved goals are rational (the infinite sequence contains rational terms that are all
distinct, hence⊢

co2 rule can never be applied).
A meta-interpreter consistent with the⊢

co
definition is reported in (Ancona 2012).

6 Conclusions

co-LP is an interesting emerging sub-paradigm of logic programming which is suitable for nat-
urally modeling circularity and which can be fruitfully applied to several kinds of applications
ranging over type inference and, more in general, static analysis and symbolic execution of pro-
grams (Ancona and Lagorio 2009; Ancona et al. 2011; Ancona and Lagorio 2011; Ancona and
Lagorio 2012), verification of real time systems (Saeedloeiand Gupta 2010), model checking,
and SAT solvers (Min and Gupta 2009).

In this paper we revisit and deepen some aspects of the foundations ofco-LP (Simon 2006); in
particular, we provide a simpler but equivalent operational semantics, whose proof of correctness
can be directly derived from early results from Jaffar and Stuckey (Jaffar and Stuckey 1986).

Furthermore, some intrinsic computability and expressivity limits of pureco-LP have been
formally proved. Concerning computability, there exists no complete procedure for computing
|=
co

, even when only rational terms are considered (that is,ϒ(gfp(Tco
P)) is productive).

co-LP: Back to the Roots 13

References

ACZEL, P. 1988.Non-well-founded sets. CSLI Lecture Notes, 14. Stanford University, Center for the Study
of Language and Information.

ANCONA, D. 2012. Regular corecursion in prolog. InSAC, S. Ossowski and P. Lecca, Eds. ACM, 1897–
1902.

ANCONA, D., CORRADI, A., LAGORIO, G., AND DAMIANI , F. 2011. Abstract compilation of object-
oriented languages into coinductive CLP(X): can type inference meet verification? InFormal Verification
of Object-Oriented Software International Conference, FoVeOOS 2010,Paris, France, June 28-30, 2010,
Revised Selected Papers, B. Beckert and C. March́e, Eds. Lecture Notes in Computer Science, vol. 6528.
Springer.

ANCONA, D. AND LAGORIO, G. 2009. Coinductive type systems for object-oriented languages. In
ECOOP 2009 - Object-Oriented Programming, S. Drossopoulou, Ed. Lecture Notes in Computer Sci-
ence, vol. 5653. Springer, 2–26.

ANCONA, D. AND LAGORIO, G. 2011. Idealized coinductive type systems for imperative object-oriented
programs.RAIRO - Theoretical Informatics and Applications 45,1, 3–33.

ANCONA, D. AND LAGORIO, G. 2012. Static single information form for abstract compilation. InTheor-
etical Computer Science (IFIP TCS 2012), J. C. Baeten, T. Ball, and F. S. de Boer, Eds. Lecture Notes in
Computer Science, vol. 7604. Springer, 10–27.

APT, K. R. 1988. Introduction to Logic Programming. Tech. Rep. TR-87-35, Department of Computer
Sciences, The University of Texas at Austin.

BLAIR , H. A. 1982. The recursion-theoretic complexity of the semantics of predicate logic as a program-
ming language.

BONATTI , P. A. 2001. Resolution for skeptical stable model semantics.J. Autom. Reasoning 27,4, 391–
421.

BONATTI , P. A., PONTELLI , E.,AND SON, T. C. 2008. Credulous resolution for answer set programming.
In AAAI, D. Fox and C. P. Gomes, Eds. AAAI Press, 418–423.

COLMERAUER, A. 1984. Equations and inequations on finite and infinite trees. InFGCS. 85–99.

COURCELLE, B. 1983. Fundamental properties of infinite trees.Theor. Comput. Sci. 25, 95–169.

DOVIER, A., PIAZZA , C., AND POLICRITI , A. 2004. An efficient algorithm for computing bisimulation
equivalence.Theor. Comput. Sci. 311,1-3, 221–256.

JAFFAR, J.AND STUCKEY, P. J. 1986. Semantics of infinite tree logic programming.Theoretica Computer
Science 46, 141–158.

LLOYD , J. W. 1987.Foundations of Logic Programming, 2nd Edition. Springer.

MARTELLI , A. AND MONTANARI , U. 1982. An efficient unification algorithm.ACM Trans. Program.
Lang. Syst. 4,2, 258–282.

M IN , R., BANSAL , A., AND GUPTA, G. 2009. Towards predicate answer set programming via coinductive
logic programming. InAIAI, L. S. Iliadis, I. Maglogiannis, G. Tsoumakas, I. P. Vlahavas, and M.Bramer,
Eds. IFIP Advances in Information and Communication Technology, vol. 296. Springer, 499–508.

M IN , R. AND GUPTA, G. 2009. Coinductive logic programming and its application to boolean sat.In
FLAIRS Conference.

PAIGE, R. AND TARJAN, R. E. 1987. Three partition refinement algorithms.SIAM J. Comput. 16,6,
973–989.

ROGERS, JR, H. 1987.Theory of Recursive Functions and Effective Computability. The MIT Press.

SAEEDLOEI, N. AND GUPTA, G. 2010. Verifying complex continuous real-time systems with coinductive
CLP(R). InProc. of LATA 2010. Lecture Notes in Computer Science. Springer.

SIMON , L. 2006. Extending logic programming with coinduction. Ph.D. thesis, University of Texas at
Dallas.

SIMON , L., BANSAL , A., MALLYA , A., AND GUPTA, G. 2007. Co-logic programming: Extending logic

14 Davide Ancona and Agostino Dovier

programming with coinduction. InICALP, L. Arge, C. Cachin, T. Jurdzinski, and A. Tarlecki, Eds.
Lecture Notes in Computer Science, vol. 4596. 472–483.

SIMON , L., MALLYA , A., BANSAL , A., AND GUPTA, G. 2006. Coinductive logic programming. InICLP,
S. Etalle and M. Truszczynski, Eds. Lecture Notes in Computer Science,vol. 4079. Springer, 330–345.

Acknowledgments

The authors wish to thank Andrea Formisano, Alberto Policriti, and Peter Stuckey for the useful
discussions on the research pursued in this paper. The authors acknowledge the ICLP reviewers
who provided constructive comments.

