TPLP13(4-5): Online Supplement, July 2013(C) 2013 [DAVIDE ANCONA and AGOSTINO DOVIER] 1

co-LP: Back to the Roots

Davide Ancona
University of Genova, DIBRIS, ITALY

Agostino Dovier
University of Udine, DIMI, ITALY

submitted 10 April 2013; accepted 23 May 2013

Abstract

Recently, several papers dealing with co-inductive logic programméwvg been proposed, dealing with
pure Prolog and constraint logic programming, with and without negdtichis paper we revisit and use,
as much as possible, some fundamental results developed in the Eiglatiedytoe the foundations, and to
clarify the possibilities but also the intrinsic theoretical limits of this programmizigdigm.

1 Introduction

When we attend our first courses in Mathematics and in Progmagwve learn a powerful, yet
intuitive, reasoning principle: induction. We use it foveml mathematical proofs, including
correctness proofs of our programs. Induction is at theshafsiecursive programming. We fix
the input/output behavior for some initial cases, whilgéarcases are defined upon the output
of smaller ones. It is not surprising, therefore, that thraaetics of programming languages, and
in particular of Prolog, is based on induction or, put it ih@twords, on the least fixpoint of an
operator.

On the other hand, there are mathematical and programminggxde where circular phe-
nomena arise naturally. For instance, in set theory thelpnolof establishing whether two ill-
founded sets are equivalent (Aczel 1988). The extensignaiinciple, that governs set equality
in standard set theory, is not adequate to prove the equélite sets that are solutions of the fol-
lowing equationsX = {X},Y ={Y,{Y}}, since it would lead to circularity. Aczel's AFA axiom
and the subsequent coinductive notion of bisimulatiorwaliocorrect solution to this problem.
Bisimulation and other similar coinductive definitions atehe basis of the analysis of circular
properties. Computing the maximum bisimulation betweeat&andS itself, that leads to the
minimum representation @, is implemented as a greatest fixpoint algorithm (Paige amhit
1987; Dovier et al. 2004).

In computer science maybe the most preeminent examplecofaiity are graphs, that are em-
ployed in many application domains; but there are also dtireralisms that permeate computer
science where the notion of circularity is dominant, likecawata (of several kinds), grammars,
process algebras, and temporal logics. Bisimulation iseabasis of the equivalence relations in
these formalisms.

Prolog has been chosen as a promising language to embed ctonedeasoning (Simon et al.
2006; Simon et al. 2007; Min et al. 2009) for at least threemmneasons: its incredibly clean se-
mantics, its natural support for rational terms, and itdatative nature. In imperative languages

2 Davide Ancona and Agostino Dovier

circular structures are implemented in the same way as fivéustructures through an explicit
use of references, whereas in purely declarative languaggsut a native support for circu-
larity and coinduction structures like graphs cannot belémented in a high level way (that is,
transparent to references), as happens for inductivelpetbftructures.

The basic idea of Coinductive Logic Programming (briefky;LP) is to keep the same syn-
tax, while the least fixpoint semantics is replaced by thatgst fixpoint semantics. Moreover,
since coinductive definitions are naturally used for deglirith infinite terms, the semantics is
computed over the universe of infinite trees rather than eutiual Herbrand universe.

In this paper we revisit and deepen some aspects of the faandafco-LP (Simon 2006) to
try to clarify what are the main properties of this kind of sertics in logic programming.

A first contribution of our study is a formulation of a coindive resolution rule which is sim-
pler than the corresponding one originally given by Guptal €6imon et al. 2006); the proof of
correctness we provide is simple, since it is mainly baseesults from Jaffar and Stuckey (Jaf-
far and Stuckey 1986). We also formally prove that no conegbebcedure can exist, in general,
for establishing whether a given atom belongs to the coitidkisemantics of a definite clause
program, even when only rational terms are considered.

The paper is organized as follows: in Section 2 we recall tammotions on finite and infinite
terms, in Section 3 we overview the main properties offfaeperator. In Section 4 we analyze
the computability of the sets relevant for the semantics ih Section 5 we prove the intrinsic
computational incompleteness of-LP and we propose a resolution rule able to approximate
the semantics. Finally, conclusions are drawn in Section 6.

2 Preliminaries

Terms and Formulas. A first-order signature is a 3-tuplgl,.%,7") wherell is a set of pre-
dicate symbols,# is a set of functional and constant symbols, aids a denumerable set of
variable symbols. For anyy € # U £, ar({) = 0 (arity) denotes the number of arguments of
the symbok}>. We also write>/n to meanar(<{») = n. For anyx € ¥, ar(x) =0. If f € & and
ar(f) =0, thenf is called a constant symbol.

A tree Tis a non-empty subset @&f* such that ifu-ne€ T thenue T and(Vme {0,...,n—
1})(u-me T). Theroot of the tree is identified by the empty string. The children of the
nodeu areu-0,u-1,..., from left to right. fuc T andu-0¢ T thenu is aleaf A term tis
a pair(T,p) whereT is a tree ang is a functionp : T — # U ¥ such that for eachhe T,
[{uxe T : xe N} | =ar(p(u)). Terms are trees with nodes labeleddwith signature symbols
in a way consistent with their arities. A terW, p) is finite if and only if T is a finite set.

Example 2.1 Let.# = {0/0,s/1, f /2}, and letX,Y be two variables. The,; = {€,0,1,0-0,0-
1,1.0,1-0-0} andp, = {(¢,), (0, f),(1,5),(0-0,0),(0-1,X),(1-0,s),(1-0-0,Y)} identify a
term, sayt, (t; = f(f(0,X),s(s(Y))) using the standard notation of finite terms).
T,={€,0,0-0,0-0-0,0-0-0-0,...} andp, defined agp,(x) = sfor all x € T, identify an infinite
term. We will refer to this term aQ in this paper. Using an extension of the standard notation
for finite terms,Q = s(s(s(s(--+)))). Y]
When clear from the context, we simply identify a term using $tandard notation (which al-
lows, of course, only an approximation of infinite terms).

1 Non-emptiness and prefix closure ensure thatT for all T.

co-LP: Back to the Roots 3

A term equations an object of the fornd = r wherel andr are finite terms. Asystem of term
equationds a set of term equations. A finite system of term equati®issin solved formf E =
{X;=rq,..., X =rn}, whereX,, ..., X, are pairwise distinct variables, and foriadt {1,...,n},

X; #r; and ifr; is a variable, thel; does not occur im,,...,ry.

Given two treed; andT, and a stringi € T,, T, is a subtree of, rooted au (briefly, T, <, T,)
if T, ={ve N* : uve T, }. Aterm(T,, p,) is a subterm of a terr{i,, p,) rooted auif T, <, T,
and(Yv e T;)(p;(V) = p,(uv)). In this case we writgT;, p;) = (T, P,)|u-

A term is saidrational if it has a finite number of different subterms. All finite tesrare
rational. It is well-known from unification theory that a giv finite system of equations either
is unsatisfiable or it has (at least) one rational tree smutthich can be expressed by a solved
form system. Also the converse is true, namely,=# (T,p) is a rational term, andt,, ...t}
is the finite set of its different subterms (w.l.0.g., lgt=t), there is a solved form system of
equations om variables that admits the unique solutirsuch that foi = 1,...,n (X)) =t;.
For further reading on this material, we refer to (MartefidaMontanari 1982; Courcelle 1983).

An atomic formula, ortom is a pair(T, p) whereT is a tree ang is a functionp : T —
NuyU.Z,andp(e) =pel,ar(p) ¢ T,and(Vi e {0,...,ar(p)—1})(i e TA({ve N*|i-ve
T}, p,) is aterm), wherep; (u) def p(i-u). An atom isfiniteif T is a finite set.

As implicitly admitted by Prolog, an atom can be simply vielvas a term whose root is
labeled by a predicate symbol. WiEV(t) we denote the set of variables occurring in a term or
in an atont. A term/atom isgroundif FV(t) = 0.

A definite clausas a disjunction of one finite atom with a finite number, polssitero, of
negations of finite atoms. Aefinite clause prograns a finite set of definite clauses.

Universes. Let P be a definite clause program. L&t be the set of functional symbols i
if there exists nof /0 in %, then /0 is added ta%,. TheHerbrand Universe Y is the set of
finite (ground) terms one can build witf. Such a set is finite (and isomorphic.%,) if and
only if forall f € .%p ar(f) =0.

The complete Herbrand Universeo-Up (Lloyd 1987,§25) is the set of finite and infinite
terms one can build witt#,. The seto-U, contains finite terms, infinite rational terms, and non
rational termsco-Uy, is finite (and equal td)p) if and only if for all f € .7 ar(f) = 0.

Example 2.2 Assume%, = {0/0,s/1}. As a shorthand, we will usefor 0 andn+-1 for s(n).
ThereforeUp = {0,5(0),s(s(0)),s(s(s(0))),...} ={0,1,2,3,...}. This signature allows just one
infinite term: the termQ = s(s(s(--))) (c.f. Example 2.1). This term is equal to any of its sub-
terms, in particulaf) = s(Q), thereforeco-Up, = {Q,0,1,2,3,...}.

Assume now¥#, = {A/0,[-|-]/2}. We will interpret[- | -] as the usual Prolog list constructor
and adopt the usual shorthand, when possible. A partial efevy, is the following:

Up={ AALIAALRAALIATL A AL (AL AL}

co-Up contains either rational or non rational infinite terms. Asharthand, let us use O for
A and 1 for[A] (i.e. [A | A]). Then, for instance, the infinite lis{§,0,0,0,0,0,0,0,0,0,...] and
[0,1,0,1,0,1,0,1,0,1,...] that are solutions to the term equatiods= [0]X] and X = [0, 1|X],
respectively, are two rational terms ¢o-Up. Let b;.b,bsb,bgb, ... (1.01101..) be the (infin-
ite) binary representation of2 (b, € {0,1}). The infinite listsqrt2 = [by,b,,bs,b,,bg, by, ..]
belongs taco-Up, and it has an infinite number of different subterms, otheewi2 would be a
rational number ifR. Y]

4 Davide Ancona and Agostino Dovier

While Uy is finite or denumerable, i contains at least two unary symbols or at least one
constant symbol and one symbol of arity greater than 1 (prieff [> 2,5 ;_; ar(f) > 2), then
co-Up is not denumerable (generalize the reasoning made in Exa2rplor definingsqrt2).

A tree substitutior(ground substitution in (Jaffar and Stuckey 1988) a mapping from a
finite subset of variablesiom(6) to co-U. The application oB replaces each leaf labeled by
X € dom(6) in t with the subterm®(X) (we omit here a more formal definition). The notion of
application can be extended to atoms and formulas in thd usya

Let P be a definite clause program. Wiy, theHerbrand basef P we denote the sets of all
ground atoms, namely atoms based on the predicate symbBlarid on the terms ip. Sets
| C By, are callednterpretations (Bp, C) is a complete lattice, where =0, T = By, least upper
bound (lub) is computed by and greatest lower bound (glb) is computed byVe define:

ground(P) = {(A<B,,...,Bn)0: A«<—B,,...,B,€P andf is atree substitution
0:FV(A—B,,...,Bn) — Up}

In the context of the complete universe, an atom is a finitenoinfinite tree whose root is
labeled by a predicate symbpland itsar(p) children are the roots of (finite and infinite) terms
from co-Up. The complete Herbrand baseo-B; is the set of all ground atoms based on the
predicate symbols i® and the finite and infinite terms ioo-Up. Setsl C co-B, are called
co-interpretations Finally, we also define:

co-ground(P) = {(A<B,,...,By)8: A—B,,...,Byc P andfis atree substitution
0 :FV(A—B,,...,By) — co-Up}

If SC co-ground(P), with Y(S) C Swe denote its subset built only on rational terms.

SLD derivation and its variants. In the classical definition of SLD derivation, given a def-
inite clause progran® and a goalG = Al,...,An,2 the rewriting ruler- that leadsG to G’ is
defined as follows: choos& = p(s;,...,s) in G, andp(t,,...,t,) < By,...,Bn a renaming
with fresh variables of a clause i if {s; =t,,...,5 =t} is solvable and has m.g.4, then
G =06(A,,... A_1,B1,---,BmA1,- -, An). This notion is generalized by the following one,
where system of equations are explicitly allowed to deahwitossibly infinite) rational terms.
The rewriting rule; that leads a goab = (ECJA,,...,A,), whereE is a solvable set of equa-
tions andA, are atoms, to a god’ is defined as follows: choos& = p(s,,...,s,) in G, and
p(ty,....t) < By,...,Bm a renaming with fresh variables of a clausePnif E' = EU{s, =
ty,...,§ =1} is solvable (inco-Up), thenG' = (E'TIA,,...,A_1,By,...,Bm,A 4, An).

Rulel; is a special case of the rule proposed in (Jaffar and Stuck&§)o deal with Prolog Il
programs (Colmerauer 1984), wherdgmither equations or inequations are admitted. As such, it
inherits all the results from (Jaffar and Stuckey 1986), minequations are not explicitly used in
the Program. Comparintgwith -, sincef has exactly the same solutions{sf =t,,...,s =tn},
the two definitions are equivalent for definite programsu{asag to use or not use occurs-check
consistently in the two cases).

The notion oft; can be extended to derivations and trees as usudériationis a (finite or
infinite) sequence of application &f; a ground derivationis a (finite or infinite) sequence of
application oft;, where a ground instantiation of the program is considetedeh step. A goal
is successful if it is of the fordE O €) (¢ is the empty list of atoms). A derivation ssiccessful

2 For the sake of simplicity, we simply consider the list of atorha goal, not its logical meaning.

co-LP: Back to the Roots 5

if it is finite and its last goal is successful. A derivationfésling if it is finite, its last goal is
not successful, and rule is not applicable to it. A selection rulg chooses the literad; in a
goalG = (EOA,,...,Ay) given the whole derivation that led ®. In Prolog,R simply selects
A,. Given a selection rul®, the SLDtree for a goalG is the tree representing all the possible
derivations starting fron® according withR (choices are related to the different clauses defining
the predicate of,). If all derivations of theSLD tree forG are failing, then it is dinite failure
tree

Example 2.3SLD derivation with infinite termd)et P be the following definite clause program:

num(0). num(s(X)) < num(X). Using standard SLD rule we would have the successful
derivationnum(s(s(0))) F num(s(0)) F num(0) - €. Usingf; we would have the following equi-
valent successful derivation: (00num(s(s(0))))k ({X = s(0) } Onum(X))E

({X =5(0), X = s(X;) } Onum(Xy)5 ({X = 5(0), X = 5(X;), X, = 0})
The system has mgXi/s(0), X, /0. Usingt; we could also look for a derivation femum(w):

(X = S0} Dlnum(X))'5 ({X = S(X), X = 8(X,)} Omum(X,))f
({X'=5(X), X =5(X;), % = S(Xp) } Onum(X,))f; - -

The derivation is infinite. Observe th@i = s(X),X = s(X;),X; = s(X,),X, = s(X3),...} is
solvable and equivalent X = s(X), X; = X, X, = X, X3 =X,...}. i}

Some computability notions used in the paperWe assume basic computability notions (see
e.g., (Rogers 1987)). The relevant definitions and restdtseported here for reader’s conveni-
ence. Let us denote, as usuik= {x € N : My(x) |} andK = N\ K, whereMy is thex-th Turing
machine andy(x) | means that the computation of the Turing machien inputx terminates

in a finite number of stepK is recursively enumerable (r.e.) but not recursive Krid product-

ive (hence, nonr.e. in a very strong way)< B (andA_< B_) if there is a total recursive function

f such that for allk €« N x € Aiff f(x) € B. Ar.e. setB is r.e. completdf for all r.e. setA it
holds thatA < B (due to transitivity of< and completeness ¢, it is sufficient to prove that

K < B). Ais complete iffA is r.e. andA is productive (Myhill). IfK < A (or equivalentlyK < A)
thenA s productive, as well. The cla§‘s} is one of the lower classes in the analytical hierarchy
of sets (Rogers 198%16). LetIF be the set of total functions fro\ to IN. A setSis I'I% if
there is a recursive relatiddC IF x N? such thaS= {x € N : (vf)(3y)(R(f, (y,x)))}. Observe
thatS= {x e N : (3f)(¥y)(-R(f, (y,x)))}. Sis M} completef any M1 set can be reduced to it.
Clearly, if Sis I'I% complete, neithes norSarer.e..

3 Least and Greatest Fixpoints

Finite Terms Universe. Given a definite clause prograf the T, : [J(Bp) — [1(Bp) operator
between sets of ground atomic formulas is defined as follows.

T.() = {a:(a—by,...,by) €ground(P)A{b,,....bn} C 1} @)

It is well-known thatl is a (Herbrand) model d® if and only if To(l) C I. In particular, this
holds for anyl which is a fixpoint ofT, i.e., such thafp(l) = 1. It is also well-known that
Tp is monotonic (VX,Y € 0(%p))(X CY — Tp(X) C Tp(Y))) and upward continuous (for each
infinite sequence, C 1, C 1, C -+ Tp (Uisoli) = Uiso Tp(l;)) but not downward continuous (for

6 Davide Ancona and Agostino Dovier

each infinite sequendg 2 1, 21, 2 -+ Tp (Miso i) = Nizo Tp(l;))- Let us recall the definitions
of iteratedT, (we assume the notion of (successor/limit) ordinal (LIoga1)):

10 = 0 To10 = Bp
Tota = Tp(TpT(a—-1) Tpla = Tp(Tp] (a—1)) if aisasuccessor ordinal
ToTa = UB<GTPTB T la = ﬂB<aTPlB if ais alimit ordinal

Being monotonic, th&naster-Tarksi theoremensures thal, admits a least and a greatest
fixpoint, denoted afp(T,) andgfp(Tp), respectively. Being upward continuous, frdtteene’s
fixpoint Theoremit follows that: Ifp(T,) = Tp T w, wherew is the first limit ordinal.lfp(Tp)
coincides with the minimum Herbrand model®fwhich itself is equal to the set of computed
answers. The equalitfp(Tp) = T, T w means that if an atom belongs to this set we are able to
prove this fact with a finite (although of a-priori unboundedgth) proof.

Instead gfp(Tp) = Tp | a for some ordinalr. The fact thafl;, is not downward continuous
means thatr can be an ordinal “larger” thaw. “This asymmetry is one of the most curious
phenomena in the theory of logic programniifgpt 1988). The asymmetry is clearly pointed
out by the following classical example (from (Lloyd 1987 gpe37)):

Example 3.1 Let P be the following program:q(s(X)) < q(X). p(0) «— q(X).
We have thafl, | w = {p(0)} but it is not a fix-point. In factT,({p(0)}) = 0 = T5(0). For
computinggfp(T,) = 0 a transfinite computatiof, | w+ 1 is needed.

The example can be generalized to show that1 can be not enough (c.f. Theorem 4.1).

Infinite Terms Universe. Let us analyze theo-Herbrand Universe. One can define Then the
same way as in Equation 1, providBd is replaced byo-B, andco-ground(P) is considered.
To avoid ambiguity, let us refer to this operatorg. Iteration of T5° is defined in the same
way as forTp.

The “pure Prolog” caseThe properties of 5° are studied for definite clause programs in (Lloyd
1987,§26). In particular, it is stated thatifp(Ts°) =Ts° Tw and gfp(T5°) =Tg° | w.
The second property can be derived from the compactnegedd, 5).

Example 3.2 Let us consider again the program in Example 3.1. Siice s(Q), assuming
q(Q), thenq(s(Q2)) = q(Q) is justified by the first clause. In this ca§§® | w={q(Q),p(0)} is
also a fixpoint. i}
The Prolog Il caselet us assume a weak form of negation be allowed in the largyweg allow
the use of a# (constraint) predicate between terms. Let us analyze tleviog example.

Example 3.3 LetP be the following program.p(0) < q(X). g(s(X)) <« q(X),X # s(X).
Being Q = s(Q), q(Q) is no longer supported by the second clause, and theréfigte; w =
{p(0)}. SinceTS°(T5° | w) =0, again the fixpoint is not reacheddnsteps. i}

This means that as soon as the language has the capabilkpressing inequality (as it hap-
pens in Constraint Logic Programming), the asymmetry betweward and downward compu-
tations emerges also considering infinite term universes.

Remark 3.1 In the standard minimum model semantics, oeis known, the# predic-
ate above can be defined by a definite clause program withéug nggation. E.g., if# =
{0/0,s/1}: 0 s(X). s(X) #0. s(X) #s(Y) — X #£Y. We can also state when two
terms are equal (using only one fact and unificatiot§:= X. However, when computing
T5° | a, Q # Q is supported by the last clause. Therefore, bQth- Q and Q # Q belong
to gfp(Ts®).

co-LP: Back to the Roots 7

4 Venn Diagrams

The setsB, andco-B, can be partitioned into four subsets, according to the ptiggeof the
Tp, TS° operators, respectively. Figure 1 shows this partitioe {thse oto-B; is analogous
whenevefT; is replaced byf$°—although for definite clause program§® | w = gfp(Ts°)). In
the remainder of the section we characterize these setatapelly and from the computability
point of view. For the finite tree case, see also (Apt 1988)lie infinite tree see (Jaffar and
Stuckey 198656).

productive
re. productive

” N
productive @gfp To)| Tolw| Bp
(D) v)

productive re.

Fig. 1. Venn Diagram

The finite tree case.Let us focus on the derivation rule. It is well-known that:

e The sefl, T wis the set of ground atoms that admit a successful SLD deivalt is the
standard semantics of a logic program and coincides witimihenum Herbrand model.

e The setB, \ Ty | w, also called the finite failure set, is the set of ground attimas have
only failing derivations, and the number of these derivagics finite.

e IS=gfp(Tp) \ Tp T w is the set of ground atoms that do not admit a successful groun
derivation but they admit (at least) one infinite ground \eion.

e IF =T, | w\gfp(Tp) is the set of ground atoms for which there are no successfiviede
tions, there are no infinite ground derivations, and thergt @x infinite number of failing
(hence, finite) ground derivations.

We also recall thatB, \ T, T w is the set of atoma for which there is no successful derivation
(CWA rule for inferring—A from P), andBy, \ gfp(Tp) is the set of atomé that belongs tmo
Herbrand model of the completion Bf(Herbrand rule for inferring-A from P).

Example 4.1 Let us consider the definite clause program

num(0). num(S(X)) < num(X).
P(0) — nun(X), q(X). P(S(X)) — nun(X), p(S(X))- q(s(X)) = q(X).
Then: enum(n)e T Twforallne N oq(n) €Bp\Tp | wforallne N

op(n) € gfp(Tp)\Tp T wforallne N,n>0 ep(0) € T, | w\gfp(Tp). M
Theorem 4.1(Blair 1982) Given a definite clause progra in general.:

1. Tp T wis r.e. complete
2. Bo\Tp | wisr.e. complete (and, | w is a productive set)
3. B\ gfp(Tp) is M} complete (thusyfp(T,) andBp \ gfp(T,) are notr.e.).

With “in general” we mean that there can be cases when thestdarare simpler (e.g., when there
are no function symbols in the progrd®, but that there are cases where the situation is hard. In
particular, as far as point (3) is concerned, Blair in (BIEB2) shows that there is a progr&m
such thagfp(Tp) is reached aftew + w iterations and tha, \ gfp(Tp) is Mi-complete.

8 Davide Ancona and Agostino Dovier

The infinite tree case. Let us focus now on the infinite term universe. The just giviearacter-
ization of the subsets d&, in terms of--derivations is the same reported tw-B, by Jaffar
and Stuckey in (Jaffar and Stuckey 1986) in the universe dkfeind infinite terms for their
derivation rule, which coincides with if # constraints between terms are not used. We recall
that, in the absence ef constraintsTs® | w = gfp(Ts°) (hence, the sdSis empty).

Example 4.2 Let us consider the prograf of Example 4.1 and analyze the partition of the
complete Herbrand Base. We have thsft T w =Ty T w. Moreover,75° | w\ gfp(T5°) =0 and

gfp(Ts°) \ Ifp(Ts°) = {nun(Q),p(0),p(Q),q(Q)}- v
Example 4.3 An interesting and simple example is the following (the ¢ans0 is added to#):

P(X) — p(s(X)).

Inthis casd§® T w=0=Bp\Ts° | w=T5° | w\gfp(TS°). The only non-empty Venn region is
gfp(Tg?) \ Ifp(Ts®) which coincides withgfp(Ts®) = co-Bp = {p(Q), p(0), (1), P(2), P(3), . -}

Note that in this cas&{co-Bp) = co-Bp, henceY(gfp(TS°)) = gfp(TS°) = gfp(TE!) (where
Tsat denotesT,, restricted toY{(co-Bp)); however, onlyp(Q) has an infinite “rational” ground
derivation. Y]

Example 4.4 Let us consider the prograf
inf list(X,[X|L]) « inf_list(S(X),L). p(0) < inf 1ist(O,L).
Obviously,Ifp(TS°) = 0. We have that

(00 p(0))E (0 inf 1ist(0, L))k ({L = [O]L,]} Dinf 1ist(s(0),L,))E
({L=1[0lL,],L, =[s(0)|L,]} O inf 1ist(s(s(0)),L,))5 -5
({L=[0lL,],L; =[1L,],....Ln=[n]L

nea)Odinf list(n+1,L)

The infinite, non rational atomnf 1ist(0,[0,1,2,...]), as well as the atonp(0) belong to
afp(Tp) \ Ifp(Tp). Similarly, for any ternt of the signature, we have that

inf list(t,[t,s(t),s(s(t)),s(s(s(t))),...]) € afp(Tp) \ Ifp(Tp). Being Q = s(Q), in particular,
inf 1ist(Q,[Q,Q,...]) € gfp(Tp) \ Ifp(Tp), hencep(0) and this one are the unique rational
atoms in that set. All other rational atoms belongteB; \ gfp(T° | w). However, whereas
for inf 1ist(Q,[Q,Q, Q,...]) there exists an infinite but “rational” ground derivatioar p(0)
there are no “rational” ground derivations; furthermong 1ist(Q,[Q,Q,...]) € gfp(Tg), but

p(0) ¢ gfp(T§™). M
Let us end this section with a computability result on thersd! part of these sets.
Theorem 4.2 Given a definite clause progra® in general:

1. Y(T5° T w) is r.e. complete
2. Y(co-Bp \ gfp(T5°)) is r.e. complete (henc&|gfp(TS°)) is productive).

Proof The “positive” part of the theorem is a consequence of (dafid Stuckey 1986): checking
whether a rational atorA belongs toT$° T w or to co-B, \ T§° | w are in fact semi decidable
properties. In the former case it is sufficient to detect @sssful-derivation; in the latter case
it amounts to verify that the number of its derivations istérand all of them are failing. Starting
from a goal with rational terms, only rational terms are gatexl during a finite (successful or
not) computation. We omit thg€ symbol in the rest of the proof for readability.

co-LP: Back to the Roots 9

To prove the r.e. completeness of the two sets, we reduceethe t® each of them. Let us
consider the recursive total function:
0 If Mx(X) /in <y steps
X = .
¢ () { 1 If Mx(X) | in <y steps

By Turing completeness of definite clause programming uttdelfp semantics, we can write a
program defining a predicate(halting) such that:

—h(x,y,2) has afinite successful derivationdifx,y) =z z< {0,5(0)}
—h(x,y,z) has afinite failure tree ifAc {0,5(0)} and¢(x,y) # 2) orz¢ {0,s(0)}

Let Py be the program defininlgand including the following predicate definition:

num(0). num(s(X)) « num(X).

1) We define a prograr®, and show thaK < T,§l° T w. Let us extend the prografy with the
clause (assume, w.l.0.g., thadloes not appear IRy):

r(X) < num(N),h(X,N,s(0)).

Let P, be the program obtained. We prove that K iff r(x) € TF?lO T w.

If x e K, then there is a numbesuch that— h(x,t,s(0)) has a successful derivation. Therefore
«— r(x) has a successful derivation, and henge € TF?lo 1 w.

If x € K the computation— r(x) has no successful derivations, hende) ¢ TF?lo 1 w.

2) We define a prograrR, and show thak < gfp(T,S;) (i.e.,x € K iff gfp(T,SZO), equivalent to
K< co-BF>2 \gfp(T,§2°)). P, is Py extended with the following definitions of the two predicate
p,q (assume, w.l.0.g., thatand p do not appear ii):

gX) < p(X,0). p(X,Y) «— h(X,Y,0),p(X,s(Y)).

If x € K, h(x,y,0) has a successful derivation for gl IN and therefore there is an infinite
ground derivation fog(x): q(x) € gfp(TF?z").

If x e K, lett be the number of steps such tihat(x) terminates: the subgoat h(x,t, 0) fails,
hence all derivations for the overall goal are failiggx) ¢ gfp(TP°2°). O

Let us observe that if the language includes the buili«ipredicate on terms, as in Prolog
1, then, in generalT$° | w # gfp(TS°) and the complement a@jfp is no longer r.e. (it follows
immediately from Blair’s result, Theorem 4.1).

Let us briefly reason on non-rational atoms. Their cardinad more than denumerable. A
denumerable subset of them can be “defined” by a program Exgmple 4.4, where we have
only ground infinite computations f&k = inf 1ist(0,[0,1,2,...])): A € ofp(Ts°) but there is
no way to verify it. In other cases all terms are implicitlyfeeed, like when we have a fact
p(X). In general we are not able to formalize the t&st Sfor a non rational term. Notions of
computation on non rational terms require different stgrfpoints and are outside the scope of
this paper.

5 co-Logic Programming

Coinductive Logic Programming (or simpdp-LP) is introduced in (Simon et al. 2006).0%-LP
program, syntactically, is definite clause progranThe difference w.r.t. “standard” Logic Pro-
gramming is in the semantics. In “standard” Logic Prograngnithe semantics is based on

10 Davide Ancona and Agostino Dovier

Ifp(Tp) ar.e. complete set, in general (c.f. Theorem 4.1). Forets.raembership can be finitely
verified. This set coincides with the minimum Herbrand Modhhich is, in turn, exactly the
set of logical consequences of the progBnThe semantics ofo-LP, instead is based on the
gfp(T$°). Thus, we consider the complete Herbrand Universe and Babtha operators°:

Definition 5.1(co-LP model-theoretical semantics et P be a definite clause program.

e Letac co-Bp. We say thaPk aif and only if a € gfp(Ts®).

e Let A be a finite atom. We say th&= A if and only if for all tree substitutiony :
FV(A) — co-Up, it holds thatP|= Ay.

e | is extended to first-order formulas,(v, 3) as usual.

Corollary 5.1(Inherent incompleteness ¢6-LP)
Even restricting to rational terms, no complgtecedure exists for establishing whetReg a.

Proof The rational part ofjfp(TS°) is, in general, productive (Theorem 4.2). This means that
there is no computable procedure capable of verifying wéredh atom belongs t6(gfp(Ts°))
that works for all atoms (otherwisggfp(Ts°)) would be r.e., a contradiction). O

Anyway, any productive set has an infinite r.e. subset. A gulace would aim to identify-
ing such a subset(s), thus computing an approximatiafffis°®) (possibly, including strictly
Ifp(TS°)). The procedure; defined below and the procedure in (Simon et al. 2006) aim at
identify such a set. However, if the procedures finitelysfathey correctly state that the atom
does not belong tgfp(T5°).

A computation procedure that approximateg- should behave as follows. Given a g@ait
should return “no” or a non empty set of computed answer Byst& equations (briefly, c.a.s.)
{6,,6,,...} for FV(G), such that for all € {1,2,...} P=G8.. As for rule;, since infinite trees
must be considered, the c.a.s. needs to be implicitly stdieerefore, each, can be a finite set
of equations identifying some rational tree, or, theosdljc can be an infinite set of equations
identifying a possibly non rational tree, with variablestin

The procedure in (Simon et al. 2006) is based on a notion dfitiegy between pairs of trees
and states, where trees are dynamic data structures reésgriiia execution of a resolution pro-
cedure (like SLD resolution) and a state is a set of equatMesre-formulate the same concept
with an alternative notion at a (slightly) higher level ugia notion of goal with hypotheses (a
similar notion is introduced, in a different context in (Bdti 2001; Bonatti et al. 2008)). An
hypothetical goals a list of pairs(AOS) whereA is an atom an®is a set of atoms (hypo-
theses), together with a system of equations. Given a@eaEL[lA,,...,A,, whereE is a set
of equations (needed to define rational terms) Andre program defined atoms, we define the
corresponding hypothetical goalG) = ((A;,0),..., (A, 0)OE).

Definition 5.2(co-LP operational semantics (revisitgd)Given a definite clause prografrand
an hypothetical goaG = ((A;,S,),..., (A, S))OE), the rewriting rulef; that leadsG to G’
(briefly G, G') is defined as follows: choogé,S) in G, let A = p(s,,...,s). G’ is computed
in one of the two following ways:

1. letp(t,,...,tn) < By,...,Bm be arenaming of a clauseRwith fresh variables, and
letE'=EU{s, =t;,...,sn =tn} be solvable. Le8 = SU{p(s,,...,s)}. Then:

G, = <(Alvs_]_)v"'v(Ai—1’S—1)a (Blag)v' . '7(Bmag)a (Ai+17§+1)’ IR} (Anvsn)DE/>

co-LP: Back to the Roots 11

2. letp(ty,....tn) € § be suchthaE’ = EU{s, =t,,...,5, =t,} is solvable. Then:
G/ = <(A1a 81)7 R} (Aifla 371)7 (Ai+l7 S+1)7 DR (Am S’]) D E/>

In this case we say th@, G'. A derivation for a goaG is a maximal sequendg,, G,,G;, . .. S.t.
G, = a(G) andGjl, G, fori > 0. A derivation issuccessfuf it is a finite sequencé,, ..., G,
s.t. G, = (¢0JE) andE is a solvable system of equations. In this case, the comgarieder
system is the part of the m.g.u. Bfrelevant for the variables i®,. A derivation isfailing if it

is a finite sequenc@y, ..., G, which is not successful (hence, there isGlsuch thaG, - G').

We will write £, (L) if the first (second) rule is applied. The first rule is thenstard resol-
ution rule; moreover, the atom removed by resolution is ddde¢he hypotheses of the subgoal.
The second rule exploits previous hypotheses for justifyargoal by co-induction. In a sense,
rule (1) leads tdfp(Tp), rule (2) aim to capture (some) atoms belongingfgT,) \ Ifp(Tp) that
are co-inductively supported.

Example 5.1 Let us consider the program of Example 3.1 and the gogd(0). The following
is a successful derivation: ((p(0),0) D0 1((a(Xy), {P(0)}) DO)E ,

{(a(%0), {P(0),a(X0) 1) D {Xo = S(X1) g 2(E L {Xo = S(X0), %o = X4 }) -
E={Xy=5s(X;),X, =X, } is solvable and its m.g.u. B= {X, = X;, X; =s(X;) }. The computed
answer system is simply the empty set, being the initial goalind. i}
Example 5.2 Let P, consist of the following clausp([0,1|X]) < p(X) and let us analyze the
following two successful derivations for the geal p(X).

((P(X),0)BI0), 1 {(P(Xy), {POX) }) BI{X = [0, 1X,]}, o (€D {X = Xq, X = [0, 1]X,]})
which yields the computed answer systé= [0, 1|X]}.
((P(X),0)BI0), 1 {(P(Xy), {P(X)}) B{X = [0, 1X]})E,

((p(%), {P(X), POX)}) D{X = [0,11,], X, = [0,1],]}
(e0{X =X, X =0,1/X,],X; = [0,1|X,]})

which yields the computed answer systék= [0,1,0,1|X]}. An infinite number of successful
computations (actually, with the same answer, in this speeise) can be computed. Vi)

1
>toZ

Theorem 5.1Correctnesy Let P be a definite clause program. If there ig aderivation for
((A,0)JE) with c.a.s.0, thenPi= Ay for every term substitutiop solution ofE®.

Proof If in the derivation only rule;_, is applied, themAEy € T5° T w by correctness of Prolog
Il procedure (Jaffar and Stuckey 1986).

If, instead, rule;_, is employed at least once, the proof is similar to that oftis@ping lemma
we show that from a finite successful derivation we are algpedduce an infinite derivation using
only rulef_,, that, again by (Jaffar and Stuckey 1986) would prove > € T5° | w.

Let us consider a successfyl derivation for((A,0) JE) in which , is employed at least
once. Let us split the derivation in three parts:

1. Afirst part of the proof (possibly of length zero), stagtinom ((A, 0) JE) in which onlyt-_ ,
is used that ends where the atg(t), later used for the first co-inductive hypothesis, is selct
Namely, we havé(A,0)E)L ;- 1((p(f),H),... OE).

2. A part of the proof starting from the previous describedlgo which onlyt_, rule is applied
until the first occurrence of rulg , is applied:

((p(®),H),... OB, 1 (B, HU{p®)}), ... (Bo,HU{p(D)})... OF U{f=a}),,
- ((p(8),HU{p(f)} UH’),BOE, U{t =&} UE')L ,(BOE, U{T=4&38=T}UE)

12 Davide Ancona and Agostino Dovier

where in the first derivation step the (renamed) clgp(@® — B,,...,By is used.
3. The rest of the proof, that leads teCJE, U {tf = & 5=t} UE'UE”). In this last part of the
proof, eithert_, or -, can be used.

Let us focus on the part (2) of the derivation. For simplicgifynotation, let us assume that it is of
length 2, namely that the atoBj is of the formq(J) and that at the first derivation the renamed
ruleq(g) < p(3),... is used. This means that the above part of the derivationttsedform:

-

((p(®),H),... OB, (p(@) < q(d),...)
<Q()HUW®DK;D@UWZQHE1ﬁ (a(8) < p(s),--)
< p(s) HU{p_) q(d)})v"'DEKU{f:é’d:é}>lg02

(-

OE U{f=4d=858=T})

We prove that the application of tie, rule can be replaced by the application of rijle with
a renamed version qi(a) — q(d),... and thert_ , with a renamed version cq‘(é) — p(s),..

and so on forever. Lef be the renaming substltutlon that transforpis) < q(d),... into |ts
new renamed versiorf(introduces fresh variables). We know from apphcatlon déiy , that
{f=ad=g8s=f}u E, is solvable, therefore, by equality axioms, a{Sb= &, d=g § ? is
solvable. Sincé is a variable renaming with fresh variables, we have filsat 80, = a,d =
8} UE, is solvable. Therefore rulg , can be applied again (and the new selected at(qmé)
Again, sinced = &, a renaming Wlth fresh variables of the ryeg) — p(3),... can be applied
and this can be repeated forever.

This proof schema can be repeated for any length of the ietgiate part of the derivation. []

We have already proved tfiecompletenessf any procedure for computing: , even restrict-
ing to rational terms. Let us see a typical example of ratiat@m that is not computed. From
Example 4.3 we learned that0) € gfp(TS°). However, no finite derivation exists for it, even
though all involved goals are rational (the infinite sequeaantains rational terms that are all
distinct, hence:_, rule can never be applied).

A meta-interpreter consistent with the definition is reported in (Ancona 2012).

6 Conclusions

co-LP is an interesting emerging sub-paradigm of logic prognamg which is suitable for nat-

urally modeling circularity and which can be fruitfully agx to several kinds of applications
ranging over type inference and, more in general, statitysiseand symbolic execution of pro-
grams (Ancona and Lagorio 2009; Ancona et al. 2011; AncowiaLagorio 2011; Ancona and

Lagorio 2012), verification of real time systems (Saeedéwel Gupta 2010), model checking,
and SAT solvers (Min and Gupta 2009).

In this paper we revisit and deepen some aspects of the faand@afco-LP (Simon 2006); in
particular, we provide a simpler but equivalent operatiseanantics, whose proof of correctness
can be directly derived from early results from Jaffar anatBey (Jaffar and Stuckey 1986).

Furthermore, some intrinsic computability and expresgilfimits of pure co-LP have been
formally proved. Concerning computability, there existsaomplete procedure for computing
=, even when only rational terms are considered (that(igfp(Ts®)) is productive).

co-LP: Back to the Roots 13

References

AczeL, P. 1988 Non-well-founded set€SLI Lecture Notes, 14. Stanford University, Center for the Study
of Language and Information.

ANCONA, D. 2012. Regular corecursion in prolog. MG S. Ossowski and P. Lecca, Eds. ACM, 1897—
1902.

ANCONA, D., CORRADI, A., LAGORIO, G., AND DAMIANI, F. 2011. Abstract compilation of object-
oriented languages into coinductive CLP(X): can type inference neeiication? InFormal Verification
of Object-Oriented Software International Conference, FoVeOOS Ry, France, June 28-30, 2010,
Revised Selected PapeBs Beckert and C. Mar@h Eds. Lecture Notes in Computer Science, vol. 6528.
Springer.

ANCONA, D. AND LAGORIO, G. 2009. Coinductive type systems for object-oriented languages. In
ECOOP 2009 - Object-Oriented Programmijrfs. Drossopoulou, Ed. Lecture Notes in Computer Sci-
ence, vol. 5653. Springer, 2-26.

ANCONA, D. AND LAGORIO, G. 2011. Idealized coinductive type systems for imperative objéetmd
programs RAIRO - Theoretical Informatics and Applications 453-33.

ANCONA, D. AND LAGORIO, G. 2012. Static single information form for abstract compilationT theor-
etical Computer Science (IFIP TCS 2012)C. Baeten, T. Ball, and F. S. de Boer, Eds. Lecture Notes in
Computer Science, vol. 7604. Springer, 10-27.

APT, K. R. 1988. Introduction to Logic Programming. Tech. Rep. TR-87Bepartment of Computer
Sciences, The University of Texas at Austin.

BLAIR, H. A. 1982. The recursion-theoretic complexity of the semantics afipaée logic as a program-
ming language.

BONATTI, P. A. 2001. Resolution for skeptical stable model semanficdutom. Reasoning 24, 391—
421.

BONATTI, P. A., FONTELLI, E.,AND SON, T. C. 2008. Credulous resolution for answer set programming.
In AAA|, D. Fox and C. P. Gomes, Eds. AAAI Press, 418-423.

COLMERAUER, A. 1984. Equations and inequations on finite and infinite treeBEAES 85—-99.
COURCELLE, B. 1983. Fundamental properties of infinite tre€keor. Comput. Sci. 295-169.

DOVIER, A., PiIazza, C.,AND PoOLICRITI, A. 2004. An efficient algorithm for computing bisimulation
equivalenceTheor. Comput. Sci. 311;3, 221-256.

JAFFAR, J.AND STUCKEY, P. J. 1986. Semantics of infinite tree logic programmiFigeoretica Computer
Science 46141-158.

LLovyp, J. W. 1987.Foundations of Logic Programming, 2nd Editio8pringer.

MARTELLI, A. AND MONTANARI, U. 1982. An efficient unification algorithmACM Trans. Program.
Lang. Syst. 42, 258-282.

MIN, R., BANSAL, A., AND GUPTA, G. 2009. Towards predicate answer set programming via coineuctiv
logic programming. IRAIAL L. S. lliadis, I. Maglogiannis, G. Tsoumakas, |. P. Vlahavas, an8idmer,
Eds. IFIP Advances in Information and Communication Technolody286. Springer, 499-508.

MIN, R. AND GUPTA, G. 2009. Coinductive logic programming and its application to booleanIgat.
FLAIRS Conference

PAaIGE, R. AND TARJAN, R. E. 1987. Three partition refinement algorithnrSIAM J. Comput. 166,
973-989.

ROGERS Jr, H. 1987.Theory of Recursive Functions and Effective Computabilitye MIT Press.

SAEEDLOEI, N. AND GUPTA, G. 2010. Verifying complex continuous real-time systems with coindectiv
CLP(R). InProc. of LATA 2010Lecture Notes in Computer Science. Springer.

SIMON, L. 2006. Extending logic programming with coinduction. Ph.D. thesidyé&fsity of Texas at
Dallas.

SIMON, L., BANSAL, A., MALLYA, A., AND GUPTA, G. 2007. Co-logic programming: Extending logic

14 Davide Ancona and Agostino Dovier

programming with coinduction. IhCALP, L. Arge, C. Cachin, T. Jurdzinski, and A. Tarlecki, Eds.
Lecture Notes in Computer Science, vol. 4596. 472—-483.

SIMON, L., MALLYA , A., BANSAL, A., AND GUPTA, G. 2006. Coinductive logic programming. iaLP,
S. Etalle and M. Truszczynski, Eds. Lecture Notes in Computer Scigacel079. Springer, 330-345.

Acknowledgments

The authors wish to thank Andrea Formisano, Alberto Paijand Peter Stuckey for the useful
discussions on the research pursued in this paper. Therawbknowledge the ICLP reviewers
who provided constructive comments.

