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ABSTRACT
Despite cyclic data structures occur often in many application do-
mains, object-oriented programming languages provide poor ab-
straction mechanisms for dealing with cyclic objects.

Such a deficiency is reflected also in the research on theoreti-
cal foundation of object-oriented languages; for instance, Feath-
erweigh Java (FJ), which is one of the most widespread object-
oriented calculi, does not allow creation and manipulation of cyclic
objects.

We propose an extension to Featherweight Java, called COFJ,
where it is possible to define cyclic objects, abstractly correspond-
ing to regular terms, and where an abstraction mechanism, called
regular corecursion, is provided for supporting implementation of
coinductive operations on cyclic objects.

We formally define the operational semantics of COFJ, and pro-
vide a handful of examples showing the expressive power of regu-
lar corecursion; such a mechanism promotes a novel programming
style particularly well-suited for implementing cyclic data struc-
tures, and for supporting coinductive reasoning.
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1. INTRODUCTION
In this section we motivate the introduction of regular corecur-

sion by some simple examples, and informally illustrate its opera-
tional semantics. All programs defined here manipulate cyclic lists.
In Section 2 we give the formal definition of COFJ and in Section 3
we consider more complex cyclic structures and programs. Finally,
in Section 4 we outline related and further work.

For the sake of clarity in the examples we use language features
not considered in the semantics defined in Section 2; adding such
features in the formalized language would be straightforward, with-
out being particularly interesting.

Let us consider the following class declaration:

class CycList extends Object {int el; CycList nx;}

In FJ such a class is completely useless, since no instance can be
created from it: the only available class constructor has two param-
eters of type int and CycList; because neither cyclic objects, nor
null are supported by FJ, there exist no well-typed expressions
denoting an instance of CycList, and, of course, such a problem
is shared by all possible subclasses of CycList. To be more pre-
cise, there exist well-typed expressions of type CycList, but their
evaluation never terminates in FJ.

class CycListFact extends Object {
CycList infOcc(int n) {new CycList(n,this.infOcc(n))}

}

The expression new CycListFact().infOcc(0) is well-typed,
but its evaluation does not terminate since method infOcc attempts
to create a list containing infinite occurrences of 0.

There are several solutions to this problem; the one adopted in all
mainstream object-oriented languages is the simplest, but also the
most primitive one; field nx is initialized with a default value (typ-
ically null), then a finite list is constructed, and, finally, a cycle is
introduced by reassigning the proper reference to the field. Such a
solution however cannot be adopted by FJ, where assignment is not
supported, neither works with final fields in mainstream object-
oriented languages (for exactly the same reason).

While mainstream object-oriented languages lack any abstrac-
tion suitable to manipulate cyclic objects, languages like Haskell
[10] exploit the expressive power of lazy evaluation [11] for defin-
ing potentially infinite data structures. However, adopting a lazy
evaluation strategy for supporting programming with cyclic ob-
jects, would be a too radical shift in the semantics of object-oriented
languages; indeed, cyclic objects are just a very particular case of
infinite objects: abstractly, they correspond to regular terms (or
trees), that is, finitely branching trees whose depth can be infinite,
but that can contain only a finite set of subtrees. For instance, the
list made of infinite occurrences of a given number n is regular,
whereas the list of all prime numbers is not: the former can be



represented by a cyclic object, the latter can only be implemented
indirectly by specific code, with the well-known limitations; for in-
stance, it is possible to check whether a certain predicate holds for
all element of a cyclic list, but the same is not feasible for the list
of all prime numbers.

What we propose here is a minimal extension to FJ to support
cyclic objects and to provide a suitable abstraction for defining
methods on them. Such a novel semantics is inspired by the recent
results concerning the operational semantics of coinductive Prolog
[15, 17, 16] and the implementation of regular corecursion on top
of the standard interpreter based on the inductive semantics of the
language [2]. The semantic model we consider differs from the
conventional FJ semantics in three main aspects:

• objects can be cyclic, hence values can take an equational
shape; for instance, X = new C (X) is an instance of class C
whose unique field contains the object itself.

• methods are regularly corecursive: if a recursive call v.m(v)
corresponds to a previous call which is still active on the
stack, then such a call terminates immediately, by returning
the same value that will be returned by the corresponding call
found on the stack.

• a new construct e.m(e) with e′ is introduced to provide a
default value, denoted by e′, in place of the value returned
by the corecursive call e.m(e) (see the examples below that
motivate its introduction).

Such a construct does not have a counterpart in corecursive
Prolog; due to the asymmetry introduced by the closed world
assumption, several predicates (for instance, the predicate
allPos analogous to the method defined below), do not need
a default value; however, the lack of a mechanism to provide
a default value in case of corecursion makes the definition of
other predicates trickier, as happens for the predicate member
[2] (the analogous of the method shown later).

Our proposed approach smoothly integrates standard recursion
and non cyclic (that is, inductively defined) objects, with corecur-
sion and cyclic (that is, coinductively defined) objects. For sim-
plicity, in the examples that follow, and in the semantics defined in
Section 2 we consider only corecursive methods, but in practice,
for both performance and semantic reasons, it is possible to adopt
a hybrid approach where the user can specify if a method has to
exhibit a corecursive behavior or not.

Consider as a first example the following class declarations:

class List extends Object { }
class EList extends List { }
class NEList extends List {int el; List nx;}
class CycListFact extends Object {

NEList infOcc(int n) {
new NEList(n,this.infOcc(n))}

NEList zeroOne() {
new NEList(0,this.oneZero())}

NEList oneZero() {
new NEList(1,this.zeroOne())}

}

As happens in FJ, one can construct finite lists in the usual way,
as in new NEList(2,new EList()), but also cyclic ones, as in
infOcc(0); such a call would not terminate with the standard se-
mantics, whereas it provides a well-defined value with our pro-
posed semantics: since the recursive call is the same as the initial
one, a cyclic object is returned, that is, L = new NEList(0,L).

Similarly, zeroOne(), and oneZero() return the cyclic lists
L = new NEList(0,new NEList(1,L)) and
L = new NEList(1,new NEList(0,L)), respectively.

We now consider the more involved method allPos which re-
turns true iff all the elements of the list on which it is invoked are
positive. The method works correctly for both non cyclic and cyclic
lists.

class EList extends List {
bool allPos() { true }

}
class NEList extends List {

int el; List nx;
bool allPos() {

if(this.el <= 0)
false

else
this.nx.allPos() with true}

}

If the list is finite, then no regular corecursion is involved, since the
same recursive call cannot occur more than once, therefore the de-
fault value true specified by the with clause is never used; if the
list is cyclic, but contains a non positive elements, then the method
invocation returns the value false and corecursion is not applied.
The only case where the default value specified by the with clause
is really needed occurs when the method is invoked on a cyclic
list with all positive elements; indeed, without specifying a default
value, the result of the method invocation would be the value “un-
defined”, that is, X = X.

The pattern used for defining method member is similar, but in
this case the with clause returns false which coincides (not by
coincidence, in this case) with the value returned by the base case
for non cyclic lists.

class EList extends List {
bool member(int i) { false }

}
class NEList extends List {

int el; List nx;
bool member(int i) {

if(this.el == i)
true

else
this.nx.member(i) with false}

}

From the examples above, one can be tempted to conclude that
the with clause is only needed to properly deal with primitive types
as bool for which recursive equations are not contractive, that is,
are not guarded by an instance creation expression, and, hence, the
existence of a unique solution is not guaranteed. To show that this
is not the case, we define the method noRep which, invoked on a
possibly infinite (that is, cyclic) list, returns the corresponding finite
(non cyclic) list with no repeated elements.

class EList extends List {
EList noRep() { new EList() }

}
class NEList extends List {

int el; List nx;
List noRep() {

let l = this.nx.noRep()
with new EList() in

if(l.member(this.el))
l

else
new NEList(this.el,l)}

}

For brevity (and efficiency, as well) we have used the let in con-
struct, with the standard obvious semantics. Note that, in case
noRep is invoked on the cyclic list L = new NEList(0,L), the
invocation this.nx.noRep() would be on exactly the same list,
hence, without the with clause, the result of this.nx.noRep()
would be the undefined value, hence l.member(this.el) could
not be computed (see the formalization in Section 2).



Finally, we end this section with two more examples: the former
defines the method isCyc, that returns true iff the list on which it
is invoked is cyclic, to show an example where the value returned
for the inductive base case is different from the default value of the
corresponding with clause.

class EList extends List {
bool isCyc() { false }

}
class NEList extends List {

int el; List nx;
bool isCyc() {

isCyc(this.nx) with true}
}

As a last example, we define a method for removing all negative
occurrences from a list. Let us consider the case for non empty
lists:

List wrongRemNeg() {
if(this.el < 0)

this.nx.wrongRemNeg() with new EList()
else

new NEList(this.el,this.nx.wrongRemNeg())}

This naive solution fails to behave correctly with cyclic lists con-
taining at least one non negative element.

For instance, (L = new NEList(1,L)).wrongRemNeg() re-
turns the non cyclic list new NEList(1,new EList()), instead
of the cyclic list itself.

To overcome this problem, remNeg for non empty lists can be
defined in terms of an auxiliary method taking a boolean parameter
guarded that indicates whether the returned expression is guarded.

class EList extends List {
EList remNeg() { new EList() }
EList auxRemNeg(bool guarded) { new EList() }

}
class NEList extends List {

int el; List nx;
List remNeg() { this.auxRemNeg(false) }
List auxRemNeg(bool guarded) {

if(this.el < 0)
if(guarded)

this.nx.auxRemNeg(true)
else

this.nx.auxRemNeg(false) with new EList()
else

new NEList(this.el,this.nx.auxRemNeg(true))}

Initially we assume that the returned expression is not guarded; the
condition remains false until a non negative element is encountered.
If this happens, then the returned expression is guarded, and, hence,
the condition is set permanently to true. If the list contains no non
negative elements, and is cyclic, then the condition remains false
and the with clause is finally executed to return the empty list, as
expected.

2. FORMAL DEFINITION
The syntax of COFJ is given in Figure 1. We follow usual FJ

notations and conventions, notably, we assume infinite sets of class
names C , field names f , method names m, and variables (param-
eter names) x , and we write cd as a shorthand for the sequence
cd1 . . . cdn, and analogously for other sequences.

There are the following differences w.r.t. FJ: in addition to the
basic sets mentioned above, we assume an infinite set of labels X,
we omit cast expressions for brevity, method invocations have an
optional with subexpression, and the definition of values is more
general.

Indeed, in FJ values and objects (instances of classes) coincide,
and have shape new C (v), that is, are (a concrete representation
of) inductive terms built by constructor invocations. Here, values

p ::= cd
cd ::= class C extends C ′ { fd md }
fd ::= C f ;
md ::= C m(C x ) {e;}
e ::= x | e.f | e.m(e) [with e′] | new C (e)

u, v ::= new C (v) | X = v | X

Figure 1: COFJ syntax

are generalized, that is, they can be annotated with labels, and a
(sub)value can be a (reference to a) label, expected to annotate an
enclosing value. Objects are values which are not labels, that is, of
form X1 = . . . Xn = new C (v), abbreviated X = new C (v) with
our convention. Values annotated with more than one label, like,
e.g., X = Y = new C(X), are obtained by reduction, see Figure 3.

We expect the result of evaluating a top-level expression to be
closed, that is, with all references bound to existing labels. Note
that there are values which are not expressions, since, to keep the
language minimal, a cyclic object can only be obtained as result of
a method invocation, as shown in the examples of previous section.

Closed values are a concrete representation of regular terms built
by constructor invocations and “undefined”. Note that the only
closed values which are not objects have shape X1 = . . . Xn = Xi,
with i ∈ 1..n, and are representations of “undefined”. All the
closed values representing the same regular term, as, for instance,
the following:
new C(Y=X=new C(new C(X)))
Y=new C(X=new C(Y))
Z=new C(Z)

are considered implicitly equal, and an analogous assumption holds
for open values as well. We expect that, if the results of two expres-
sions e and e′ are the same modulo this equality, then e and e′ can
replace each other in any context. For lack of space, we omit the
standard formal definition of value equality and the formal state-
ment and proof of this congruence result..

Note that values which are not objects (notably, representations
of “undefined” and labels) cannot be safely used as receivers in
field accesses and method invocations, but can be passed as argu-
ments and obtained as result of field access and method invocation.

The big-step semantics e, σ ⇓ v returns the result v, if any, of
evaluating an expression e in the context of an environment σ keep-
ing track of pending method invocations. Formally, σ is a map from
expressions of the form v.m(v), which we call (invocation) redexes,
to labels X. We prefer a big-step style since small-step semantics
would require to explicitly handle stacks of environments, and we
are not considering (yet) the issue of detecting stuck expressions in
this paper (see the Conclusion).

The rules are given in Figure 2. For lack of space, we omit tech-
nical details which are exactly as in FJ, notably, the formal def-
initions of parallel substitution and auxiliary functions fields and
mbody .

Rule (FIELD) models field access. The receiver expression is
evaluated, and its result is expected to be an object. The standard
FJ function fields retrieves the sequence of the field names of its
class, and, if the selected field is actually a field of the class, the
corresponding value is returned as result. Note that this value could
contain references to the enclosing receiver object, which must be
unfolded.

For instance, given the class
class C {



(FIELD)
e, σ⇓v

e.f , σ⇓vi[v/X]

v = X = new C (v)
fields(C ) = f
f = fi, i ∈ 1..n

(INVK)
e, σ⇓v e, σ⇓v e[v/this][v/x ], σ ∪ {v.m(v) 7→ X}⇓u

e.m(e) [with _], σ⇓X = u

v = X = new C (_)
mbody(C ,m) = (x , e)
v.m(v) 6∈ dom(σ)
X fresh

(COREC)
e, σ⇓v e, σ⇓v

e.m(e), σ⇓X
σ(v.m(v)) = X (WITH)

e, σ⇓v e, σ⇓v e′, σ⇓u
e.m(e) with e′, σ⇓u

σ(v.m(v)) = X

(NEW)
e, σ⇓v

new C (e), σ⇓new C (v)
fields(C ) = f

Figure 2: COFJ big-step rules

C f;
}

the field access v.f, with

v = X=new C(Y=new C(X)),

is reduced to

u = Y=new C(X=new C(Y=new C(X))),

since fields(C) = f and (Y=new C(X))[v/X] = u.
There are three rules which model method invocation. In all of

them, the receiver and argument expressions are evaluated first, ob-
taining an invocation redex v.m(v). Then, the behaviour is different
depending whether this redex has been already encountered in the
current stack of method invocations (formally, is defined in σ).

If this is not the case, then the method invocation is handled as
usual, see rule (INVK), that is, the result of the receiver expres-
sion is expected to be an object, and method look-up is performed,
starting from its class, by the standard function mbody , getting the
corresponding method parameters and body. Then, the result of the
invocation is obtained by evaluating the method body where the re-
ceiver object replaces this and the arguments replace the param-
eters. However, there is a difference w.r.t. this standard FJ seman-
tics, that is, evaluation of the method body is performed keeping
track of the redex just encountered (formally, adding in σ an as-
sociation from this redex to a fresh label X). In this way, method
invocations leading to the same redex will be no longer handled
by this rule (hence avoiding non termination). Moreover, when the
evaluation of the method body is completed, references to X in the
resulting value (due to recursive method invocations leading to the
same redex handled by rule (COREC)) are bound. This mechanism
makes it possible to obtain a cyclic object as the result of a method
invocation.

Rules (COREC) and (WITH) handle the case of an invocation re-
dex which has been already encountered. In the former, no with
expression is provided in the method invocation, hence the result is
a reference to the label of the previous occurrence. In the latter, a
with expression is provided, hence is evaluated.

For instance, given the classes

class C {
Object f;

}
class A {
C m1() {this.m2()); }
C m2() {new C(this.m1()); }

}

the method invocation new A().m1() is reduced to the cyclic ob-
ject X=Y=new C(X) (equivalent to X=new C(X) ) as shown in Fig-
ure 3. If method m2 were, instead,

Object m2() {
new C(this.m1() with new A()); }

then the instantiation of rule (COREC) would be replaced by an in-
stantiation of rule (WITH), and the method invocation new A().m1()

would be reduced to the non cyclic object X=Y=new C(new A())

(equivalent to new C(new A())).
Finally, (NEW) is the standard rule for constructor invocation.

Note that with the FJ convention f stands for f1 . . . fn and v stands
for v1 . . . vn, hence the side condition ensures that the constructor
is invoked with the appropriate number of arguments.

We show the consistency of the calculus by the following two
theorems. The former states that the evaluation of an expression
in a given environment returns, if any, a value whose free labels
are used in the environment (hence in particular the evaluation in
the empty environment returns a closed value). The latter states that
COFJ semantics extends the standard recursive semantics, that is, if
we get a result by FJ semantics, then we get the same result by the
corecursive semantics. Of course the converse does not hold, since
corecursive semantics can return a value in cases where recursive
semantics does not terminate.

Let us denote by FL(v) the set of free labels in value v, defined
in the obvious way, and by img(σ) the image of σ.

THEOREM 2.1. If e, σ⇓v, then FL(v) ⊆ img(σ).
PROOF. By induction on the rules defining e, σ⇓v.

• (FIELD) By inductive hypothesis FL(v) ⊆ img(σ), hence
FL(vi[v/X]) ⊆ img(σ).

• (INVK) By inductive hypothesis FL(u) ⊆ img(σ) ∪ {X},
hence FL(X = u) ⊆ img(σ) .

• (COREC) Trivially by the side condition.

• (WITH) and (NEW): trivially by inductive hypothesis.

The standard syntax and recursive semantics of FJ in big-step
style are reported in Figure 4.

THEOREM 2.2. For e expression and v value in FJ, if e ⇓FJ v,
then e, σ⇓v for all σ.

PROOF. By induction on the rules defining e⇓FJ v.

• (FJ-FIELD) The premise of rule (FIELD) holds by inductive
hypothesis, hence the consequence as well, where, since X is
the empty sequence, vi[v/X] = vi.

• (FJ-INVK) By inductive hypothesis the premises of rule (INVK)
hold, hence the consequence as well, where, since u is an FJ
value, hence does not contain labels, X = u is equivalent to u.

• (FJ-NEW) is exactly analogous to (NEW) in COFJ, hence the
thesis trivially holds.



(INVK)

(NEW)
new A(), ∅⇓ new A()

(INVK)

(NEW)
new A(), {new A().m1() 7→ X}⇓ new A()

(NEW)

(COREC)
new A().m1(), {new A().m1() 7→ X, new A().m2() 7→ Y}⇓ X

new C(new A().m1()), {new A().m1() 7→ X, new A().m2() 7→ Y}⇓ new C(X)

new A().m2(), {new A().m1() 7→ X}⇓ Y=new C(X)

new A().m1(), ∅⇓ X=Y=new C(X)

Figure 3: Example of reduction

e ::= x | e.f | e.m(e) | new C (e)
u, v ::= new C (v)

(FJ-FIELD)
e⇓FJ v

e.f ⇓FJ vi

v = new C (v)
fields(C ) = f
f = fi, i ∈ 1..n

(FJ-INVK)
e⇓FJ v e⇓FJ v e[v/this][v/x ]⇓FJ u

e.m(e)⇓FJ u
v = new C (_)
mbody(C ,m) = (x , e)

(FJ-NEW)
e⇓FJ v

new C (e)⇓FJ new C (v)
fields(C ) = f

Figure 4: FJ syntax and big-step rules

S2S1

a

b

Figure 5: A deterministic finite automaton recognizing the lan-
guage a*b

3. PROGRAMMING WITH COFJ
In this section we present some more significant examples of

COFJ programming, that show the usefulness of regular terms and
corecursion.

3.1 Finite automata and regular languages
We now consider a classical application from formal languages,

by defining a method that succeeds if and only if the language gen-
erated by an extended right linear grammar is included in the lan-
guage recognized by a finite deterministic automaton. Cyclic ob-
jects can be exploited for representing automata and regular gram-
mars.

An automaton is represented by its unique initial state.

class State extends Object {
bool isFinal; AdjList trans;

}
class AdjList extends Object { }
class EAdjList extends AdjList{ }
class NEAdjList extends AdjList{

char sym; State st; AdjList nx;
}

Let us consider the automaton depicted in Figure 5, where S1 (pointed
by the straight arrow in the picture) is the initial state, and S2 (with
a thicker circle) is final. Such an automaton can be represented by
the following instance of State:

S = new State(false,
new NEAdjList(’a’,S,
new NEAdjList(’b’,new State(true,new EAdjList()),

new EAdjList())))

The instance variable isFinal indicates whether a state is final or
not, whereas trans corresponds to the list of possible transitions,
that is, the adjacency list of the current state: each item of the list
consists of a symbol (represented by char) and of the correspond-
ing target state. Class AdjList represents adjacency lists, where
the subclasses EAdjList and NEAdjList represent empty and non
empty lists, respectively.

We recall that an extended right linear grammar is a grammar
where all productions have shape either N1 ::= a, or N1 ::= ε,
or N1 ::= wN2, where N1 and N2 are two non-terminal symbols,
a is a terminal symbol, w is a (possibly empty) string of terminal
symbols, and ε is the empty string.

A grammar is represented by its main non-terminal symbol.
class NonTermDef extends Object { }
class EmptyString extends NonTermDef { }
class Concat extends NonTermDef{

char sym; NonTermDef nx; }
class Union extends NonTermDef {

NonTermDef nt1; NonTermDef nt2; }

The encoding of the definition of a non-terminal symbol (that is,
all its productions) is based on the conventional mapping to set
expressions built on top of the singleton set containing the empty
string (EmptyString), and the concatenation (Concat) and union
(Union) operator. For instance, let us consider the following right
linear grammar:
A ::= b | aA

Such a grammar can be encoded by the following cyclic object:
N = new Union(new Concat(’b’,new EmptyString()),

new Concat(’a’,N))

Given the encoding of automata and grammars as described above,
it is possible to define the method included for NonTermDef ob-
jects that takes as parameter an automaton (that is, an instance of
class State), and returns true iff the language generated by the
grammar is included in the language recognized by the automaton.
class EmptyString extends NonTermDef {

bool included(State s) { s.isFinal }}
class Concat extends NonTermDef {

char sym; NonTermDef nx;
bool included(State s) {

let ns = s.trans.getState(this.sym)
in if (ns == null) false

else this.nx.included(ns)
with true

}}
class Union extends NonTermDef {

NonTermDef nt1; NonTermDef nt2;
bool included(State s) {

this.nt1.included(s) with true
&&
this.nt2.included(s) with true

}}

The case for the empty string is straightforward: the empty string
is accepted only if the initial state of the automaton is also final.

For concatenation, the auxiliary method getState (whose defi-
nition has been omitted) is employed: it is invoked on an adjacency



list with an argument sym of type char, to find an outgoing edge la-
beled with sym; if found, the corresponding target state is returned,
otherwise null is returned.1

The case for union is simple: the union of two languages is con-
tained in the automaton iff both are contained in it.

For all corecursive invocations (both in Concat and Union) the
default value true is specified by the with clause. This corre-
sponds to the intuition that if an active invocation of included is
encountered again, then a cyclic path in the automaton has been
detected corresponding to the acceptance of the language.

The careful reader will notice that the definition of included is
not completely correct, since it fails to correctly deal with gram-
mars that generate the empty set. Consider for instance the gram-
mar A ::= aA: its generated language is the empty set, that is rec-
ognized by any automaton; however, method included in Concat
does not succeed if there are no outgoing edges labeled with a (in
other words the presented solution works correctly when grammars
are interpreted coinductively, rather than inductively). To over-
come this problem, we introduce the method emptySet that checks
whether a grammar generates the empty set; then we extend meth-
ods included, to first check whether the grammar corresponding
to the object this generates the empty set; if so, true is returned.

class EmptyString extends NonTermDef {
bool included(State s) { this.emptySet() || ... }
bool emptySet() { false }

}
class Concat extends NonTermDef {

char sym; NonTermDef nx;
bool included(State s) { this.emptySet() || ... }
bool emptySet() {

this.nx.emptySet() with true;
}

}
class Union extends NonTermDef {

NonTermDef nt1; NonTermDef nt2;
bool included(State s) { this.emptySet() || ... }
bool emptySet() {

this.nt1.emptySet() with true
&&
this.nt2.emptySet() with true

}
}

3.2 Repeating decimals
It is well-known that every rational number can be represented by

a repeating decimal, that is, a cyclic lists of digits. For simplicity
we only consider the interval [0, 1], although the code presented
below can be easily extended to work with the whole set of rational
numbers.

class RepDec extends Object { int dig; RepDec nx; }

As an example, the object

N = new RepDec(5,P = new RepDec(7,new RepDec(2,P)))

corresponds to the repeating decimal N = 0.572. In terms of frac-
tions, N equals 63

110
. Indeed, 10 ∗ N = 5 + 0.72, and 100 ∗ 0.72 =

72 + 0.72 (multiplying a repeating decimal by 10e, with e > 0, is
equivalent to a left shift of e positions). The above gives rise to the
following equations: 10N=5+P,100P=72+P . Therefore P= 8

11
,

and N= 5
10

+ 4
55

= 55+8
110

= 63
110

. A terminating decimal can be uni-
formly represented by a repeating decimal as well; for instance, 0.3
is represented by the object

D = new RepDec(3,Z = new RepDec(0,Z))

1The null reference has been introduced just to make the example
code more compact.

We now define a method to compute the addition between two re-
peating decimals d1 and d2. Since the operands have infinite digits,
we cannot simply mimic the conventional algorithm for addition,
because the notion of least significant digit does not make sense in
this case. We first define the following two auxiliary methods that
compute the repeating decimal corresponding to the results and car-
ries, respectively, of digit-wise addition of the digits of d1 and d2.

class RepDec extends Object {
int dig; RepDec nx;
RepDec res(RepDec d) {

new RepDec((this.dig+d.dig)%10,this.nx.res(d.nx))}
RepDec carry(RepDec d) {

new RepDec((this.dig+d.dig)/10,this.nx.carry(d.nx))}
}

The two methods res and carry take an argument d, compute the
addition and the carry, respectively, for the two most significant
digits of this and d, and then continue corecursively for the rest
of the digits of this and d. No with clause is required, because
the recursive equations corresponding to the result are always con-
tractive.

The method add is defined in terms of res and carry.

class Pair extends Object { RepDec res; int carry; }
class RepDec extends Object {

int dig; RepDec nx;
bool isZero() {

if(this.dig > 0)
false

else
this.nx.isZero() with true}

Pair add(RepDec d) {
if(this.isZero())

new Pair(d,0)
else

let r = this.res(d) in
let c = this.carry(d) in
let p = r.add(c.nx) in
new Pair(p.res,p.carry+c.dig)}

}

The auxiliary method isZero checks whether this is the repeat-
ing decimal corresponding to 0.

Method add returns a pair, where the first component is the re-
peating decimal corresponding to the result, and the second is the
carry for the next more significant position. If this is 0, then the
result is d, and the carry is 0. Otherwise, the auxiliary methods res
and carry are invoked; then the carry digits have to be considered:
first a left shift of one position is required (this is obtained by sim-
ply selecting field nx); then the shifted carry is corecursively added
to r; indeed, the carry digit generated at position i (corresponding
to the power 10−i) must be added to the digit of r at position i−1.
Finally, the carry p.carry obtained by such an addition has to be
added to the most significant digit c.dig of c, to properly compute
the carry digit for the next more significant position.

The computation terminates because of cyclicity, and because
each position can yield a carry of 1 just once.

We finally recall that repeating decimals provide no unique rep-
resentation for some rational numbers: for instance 0.49 equals 0.5;
however, method add works correctly independently of the repre-
sentation of operands. A practical way for defining the equality test
is to implement it in terms of subtraction (that can be defined in a
very similar way as addition); however, one may also consider a
normalization procedure that, for instance, prefers 0.5 over 0.49.

3.3 Graphs
Last but not least, we end this section by showing how a clas-

sical graph algorithm can be concisely implemented with regular
corecursion. Graphs are perhaps the most interesting application
domain of regular corecursion: they are the prototypical example



of cyclic structure, and arise in so many important areas of com-
puter science.

The depth-first search algorithm, which is at the basis of sev-
eral other graph algorithms, can be conveniently implemented with
regular corecursion. The following example shows the implemen-
tation of method connectedTo for testing connectivity of a (either
directed or undirected) graph.

In a similar way as that shown for automata, a graph can be rep-
resented by one of its vertices, together with its adjacency list.
class Vertex extends Object {

int id; AdjList adjVerts;
}
class AdjList extends Object { }
class EAdjList extends AdjList{ }
class NEAdjList extends AdjList{

Vertex vert; AdjList next;
}

Every vertex is represented by its id (assumed to be unique) and
its list adjVerts of adjacent vertices.

The method invocation v.isConnected(id) returns true if and
only if there exists a (possibly empty) path from v to the vertex
identified by id. The method is defined for both vertices and adja-
cency lists.
class Vertex extends Object {

int nodeId; AdjList adjVerts;
bool isConnected(int id) {

this.id == id || this.adjVerts.isConnected()
}

}
class EAdjList extends AdjList{

bool isConnected(int id) { false }
}
class NEAdjList extends AdjList{

Vertex vert; AdjList next;
bool isConnected(int id) {

this.vert.isConnected(id) with false
||
this.next.isConnected(id)

}
}

While the definition of isConnected for the empty adjacency list
is obvious, the remaining cases deserve some explanation.

In Vertex method isConnected checks whether the identity
of the current vertex (bound to this) equals the identity of the
searched vertex, or whether there exists a path connecting the two
vertices that contains one of the adjacent vertices of this.

In NEAdjList method isConnected has to check that there ex-
ists a path connecting one of the vertices in the adjacency list with
the vertex specified by id. Since the algorithm implicitly assumes
that adjacency lists are not cyclic, the only invocation that can de-
tect a cycle is this.vert.isConnected(id); therefore, this is
also the only invocation where the with clause is required. If a
cycle is encountered, then the corresponding path is assumed not to
contain the vertex specified by id, therefore false is returned by
the method invocation.

A short-circuit evaluation for the or operator is not required for
the correctness of the implementation, even though it makes it more
efficient.

4. RELATED WORK AND CONCLUSION
As already mentioned, this paper is inspired by recent work on

coinductive logic programming and regular recursion in Prolog. Si-
mon et al. [15, 17, 16] have proposed coinductive SLD resolution
(abbreviated by coSLD) as an operational semantics for logic pro-
grams interpreted coinductively: the coinductive Herbrand model
is the greatest fixed-point of the one-step inference operator. This
can be proved equivalent to the set of all ground atoms for which

there exists either a finite or an infinite SLD derivation [17]. Coin-
ductive logic programming has proved to be useful for formal ver-
ification [12, 13], static analysis and symbolic evaluation of pro-
grams [5, 4, 6].

Regular corecursion in Prolog has been investigated by one of the
authors of this paper as a useful abstraction for programming with
cyclic data structures. To our knowledge, no similar approaches
have been considered for functional programming; although the
problem has been already considered [19, 9], the proposed solu-
tions are based on the use of specific and complex datatypes, but
no new programming abstraction is proposed.

A related stream of work is that on initialization of circular data
structures [18, 8, 14].

The calculus presented in this paper introduces a novel program-
ming style, which smoothly incorporates support for cyclic data
structures and coinductive reasoning in the object-oriented ; such
a style could be conveniently integrated with proof assistants, as
Coq [7], that provide built-in support for coinductive definitions
and proofs by coinduction, to formally proof the correctness of al-
gorithms on cyclic data structures.

In comparison with the more foundational studies [1, 3] on the
use of coinductive big-step operational semantics of Java-like lan-
guages for proving type soundness properties, the main contribu-
tion and aim of this paper is to propose a novel programming para-
digm to support useful abstractions for the convenient creation and
manipulation of cyclic data structures.

The current work is intended as a first step, devoted to present
the novelties of the approach, and there is plenty of interesting di-
rections for further research. The most obvious question is how to
guarantee type soundness. The standard FJ type system should be
enriched to avoid stuck reductions due to non-object values (that is,
“undefined” or labels) in receiver position, likely in a similar way to
techniques used to avoid null in receiver position. On the founda-
tional side, we plan to explore the relation between our operational
semantics and the more abstract semantics of corecursive defini-
tions as greatest fixed points. On the more practical side, we also
plan to investigate implementation techniques and the portability of
this new programming paradigm to mainstream languages.
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