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Abstract. Corecursive FeatherWeight Java (COFJ) is a recently proposed exten-
sion of the calculus FeatherWeight Java (FJ), supporting cyclic objects and regu-
lar recursion, and explicitly designed to promote a novel programming paradigm
inspired by coinductive Logic Programming (coLP), based on coinductive, rather
than inductive, interpretation of recursive function definitions.
We present a slightly modified version of COFJ where the application of a coin-
ductive hypothesis can trigger the evaluation of a specific expression at declara-
tion, rather than at use site. Following an approach inspired by abstract compi-
lation, we then show how COFJ can be directly translated into coLP, when coin-
ductive SLD is extended with a similar feature for explicitly solving a goal when
a coinductive hypothesis is applied.
Such a translation is quite compact and, besides showing the direct relation be-
tween COFJ and coinductive Prolog, provides a first prototypical but simple and
effective implementation of COFJ.

1 Introduction

Despite cyclic data structures occur often in many application domains, object-oriented
programming languages provide poor abstraction mechanisms for dealing with cyclic
objects.

Such a deficiency is reflected also in the research on theoretical foundation of
object-oriented languages; for instance, FJ, which is one of the most widespread object-
oriented calculi, does not allow creation and manipulation of cyclic objects.

The COFJ calculus [7] is an extension of FJ where it is possible to define cyclic
objects, and where an abstraction mechanism, called regular corecursion, is provided
for supporting implementation of coinductive operations on cyclic objects. Its semantics
is inspired by the recent results concerning the operational semantics of coinductive
Prolog [9,11,10] and the implementation of regular corecursion on top of the standard
interpreter based on the inductive semantics of the language [1].

In comparison with the standard semantics of coinductive Prolog, COFJ has a pe-
culiar feature that allows programmers to execute specific code when a coinductive
hypothesis is applied; such a characteristic is useful to avoid boilerplate code for all
those definitions where the simplest coinductive approach would fail to be correct: a

? This work has been partially supported by MIUR DISCO - Distribution, Interaction, Specifi-
cation, Composition for Object Systems.



typical example consists in the definition of a member function working correctly on
cyclic lists.

While in previous work [7] such a feature requires programmers to specify at use
site (that is, at method invocation) the expression that will be finally executed when a
coinductive hypothesis is applied, here we propose the dual approach where the code
is specified at declaration site. Such an alternative design choice has the advantage of
making code simpler, without compromising the expressive power of the feature; we
have found several cases where the declaration site alternative turns out to be simpler,
whereas we were not able to devise examples where the use site approach turns out to
be more practical.

A very similar solution has been proposed and experimented with a prototype Pro-
log meta-interpreter for coinductive Prolog by one of the authors of this paper (see the
extended version of the published paper [1]): programmers can define special finally
clauses that are considered when a coinductive hypothesis for a specific predicate is
applied.

In this way, COFJ can be translated into coinductive Prolog (with finally clauses)
in a rather direct way, by exploiting the approach of abstract compilation [6,5,2,4,3], a
novel approach which aims to reconcile type analysis and symbolic execution, where
programs are compiled into a constraint logic program (CLP), and type analysis corre-
sponds to solving a certain goal w.r.t. the coinductive semantics of CLP. In a nutshell,
the approach consists in translating a COFJ program into a logic program and a goal,
where the goal is obtained by translating the main expression of the program; then, the
execution of the program is equivalent to the coSLD resolution of the goal extended
with finally clauses.

The paper is organized as follows: Section 2 presents coFJ, Section 3 shows the
semantics of coinductive Prolog with finally clauses, whereas Section 4 formalizes
the translation of COFJ.

2 COFJ

The COFJ calculus smoothly integrates standard recursion and non cyclic (that is, in-
ductively defined) objects, with corecursion and cyclic (that is, coinductively defined)
objects. For simplicity, in the examples, and in the formal semantics all methods are
implicitly assumed to be all corecursive.

The semantics of COFJ differs from the conventional FJ semantics in three main
aspects:

– objects can be cyclic, hence values can take an equational shape; for instance,
X=new C (X) is an instance of class C whose unique field contains the object
itself.

– methods are regularly corecursive: if a recursive call v.m(v) corresponds to a previ-
ous call which is still active on the stack, then we say that a coinductive hypothesis
is applied and such a call terminates immediately, by returning the same value that
will be returned by the corresponding call found on the stack.

– method declarations have shape C m(C x ) {e with e′}, where the with clause
is introduced to provide a value e′ returned in place of the standard value e, when



a coinductive hypothesis is applied (see the examples below that motivate its in-
troduction). The standard behavior of regular corecursion is obtained when e′ is
the special variable res denoting the value that would be returned by corecursion;
hence, in the sequel the method body {e} is just a shortcut for {e with res}.

As a first example, let us consider the following class declarations:
class List extends Object { }
class EList extends List { }
class NEList extends List {int el; List nx;}
class CycListFact extends Object {

NEList infOcc(int n) {
new NEList(n,this.infOcc(n))}

}

FJ does not allow creation of cyclic objects. For instance, though well-typed, any invo-
cation of method infOcc does not terminate.

In mainstream object-oriented languages cyclic objects can be constructed and ma-
nipulated, but in a very primitive way; to create a cyclic list, field nx is initialized with
a default value (typically null), then a finite list is constructed, and, finally, a cycle
is introduced by reassigning the proper reference to the field. Such a solution however
cannot be adopted by FJ, where assignment is not supported; in mainstream object-
oriented languages as Java, it is still possible to create instances of CycList even when
both fields are final, but a considerable amount of boilerplate code could be required.1

In COFJ one can construct finite lists, as in new NEList(2,new EList()), but
also cyclic ones, as in new CycListFact().infOcc(0); such a call terminates in
COFJ and returns the intended value; since the recursive call is the same as the initial
one, a cyclic object is returned, that is, L = new NEList(0,L).

Similarly, we can add to CycListFact, method infAltOcc() defined as follows:
NEList infAltOcc(int n1,int n2) {

new NEList(n1,this.infAltOcc(n2,n1))}

Then, new CycListFact().infAltOcc(1,-1) returns the following cyclic lists

L = new NEList(1,new NEList(-1,L)).

Let us now try to define a method allPos, able to work correctly for both non cyclic
and cyclic lists, that returns true iff all the elements of the list on which it is invoked are
positive.
class EList extends List {

bool allPos() { true }
}
class NEList extends List {

int el; List nx;
bool allPos() {

if(this.el <= 0)
false

else
this.nx.allPos()}

}

If the list is not cyclic, then the behavior of the method is as expected in the standard
inductive case, since the same recursive call cannot occur more than once.

1 Consider, for instance, the problem of defining a constructor that takes a non cyclic list and
builds its corresponding cyclic version.



If the list is cyclic, but contains non positive elements, then the method invocation
returns the value false and no coinductive hypothesis is applied.

The only case where the coinductive hypothesis is applied occurs when the method
is invoked on a cyclic list with all positive elements; however, in this case the return
result is not correct, since it corresponds to the undetermined value X = X.

To overcome this problem, true in place of res is returned when a coinduc-
tive hypothesis is applied (recall that method body {e} is simply an abbreviation for
{e with res}).

bool allPos() {
if(this.el <= 0)

false
else

this.nx.allPos()}
with

true
}

A method body has shape {e with e′}, where e′ denotes the value returned when a
coinductive hypothesis is applied, whereas the value denoted by e is returned in all
other cases. Inside e′ the special variable res can be used to denote the standard value
that would be returned by corecursion.

The same pattern used for allPos can be adopted for defining method member,
but in this case false is returned when a coinductive hypothesis is applied, as happens
(not by coincidence, in this case) in the base case for non cyclic lists.
class EList extends List {

bool member(int i) { false }
}
class NEList extends List {

int el; List nx;
bool member(int i) {

if(this.el == i)
true

else
this.nx.member(i)

with
false}

}

From the examples above, one could conclude that, when a coinductive hypothesis is
applied, a value different from res has to be returned only in case of primitive types
as bool, that is, when recursive equations are not contractive, that is, are not guarded
by an instance creation expression, and, hence, the existence of a unique solution is
not guaranteed. To show that this is not the case, we define the method noRep which,
invoked on a possibly cyclic (that is, infinite) list, returns the corresponding non cyclic
(finite) list with no repeated elements.
class EList extends List {

EList noRep() { new EList() }
}
class NEList extends List {

int el; List nx;
List noRep() {

let l = this.nx.noRep() in
if(l.member(this.el))

l
else

new NEList(this.el,l)



with
new EList()

}
}

For brevity we have used the let in construct, with the standard obvious semantics.
Note that, in case noRep is invoked on the cyclic list L = new NEList(0,L), the
invocation this.nx.noRep() would be on exactly the same list, hence, if the with
expression is omitted (hence, res is returned when a coinductive hypothesis is applied),
then the result of this.nx.noRep() is the undetermined value, hence the evaluation
of the expression l.member(this.el) that follows the corecursive invocation would
fail (that is, the semantics would be undefined, see the formalization below).

Finally, we end this section with two more examples: the former defines the method
isCyc, that returns true iff the list on which it is invoked is cyclic, to show an example
where the value returned in the inductive base case is different from the value returned
when a coinductive hypothesis is applied.
class EList extends List {

bool isCyc() { false }
}
class NEList extends List {

int el; List nx;
bool isCyc() {isCyc(this.nx) with true}

}

As a last example, we define a method for removing all positive integers occurring in a
list. In particular, if a list is cyclic and contains at least one non positive element, then
the method is expected to return a cyclic list. Let us consider the case for non empty
lists:

List wrongRemPos() {
if(this.el > 0)

this.nx.wrongRemPos()
else

new NEList(this.el,this.nx.wrongRemPos())
with

new EList()
}

This naive solution fails to behave correctly in some cases.
For instance, (L = new NEList(1,new NEList(-1,L))).wrongRemPos() re-

turns the non cyclic list new NEList(-1,new EList()), instead of the cyclic list
L = new NEList(-1,L) (representing the list of infinite occurrences of -1). Indeed,
if a list is cyclic, then res should be returned, except when the list contains only pos-
itive elements; in this last case the empty list has to be retuned. Hence, we can correct
the code above by using the previously defined method allPos.
class EList extends List {

List remPos() { new EList() }
}
class NEList extends List {

int el; List nx;
List remPos() {

if(this.el > 0)
this.nx.remPos()

else
new NEList(this.el,this.nx.remPos())

with
if(this.allPos())



new EList()
else

res
}

}

The check this.allPos() must be necessarily performed after the coinductive hy-
pothesis has been applied; any earlier attempt at inspecting the elements of the cyclic
part of the list is bound to fail, since the cycle may begin at any arbitrary position in the
list. For instance, if l=new NEList(-1,L=new NEList(1,L)), then l.allPos()

evaluates to false, while l.nx.allPos() evaluates to true; therefore, as expected,
l.remPos() returns new NEList(-1,new EList()).

The syntax of COFJ is given in Figure 1. We follow the usual FJ notations and
conventions, notably, we assume infinite sets of class names C , including the special
class name Object, field names f , method names m, and variables x , including the
special variables this and res, and we write cd as a shorthand for a possibly empty
sequence cd1 . . . cdn, and analogously for other sequences. The length of a sequence x
is denoted by #x , whereas dom and img represent the domain and image of a map,
respectively.

p ::= cd
cd ::= class C extends C ′ { fd md }
fd ::= C f ;
md ::= C m(C x ) {e with e′}
e ::= x | e.f | e.m(e) | new C (e)

u, v ::= new C (v) | X=v | X

Fig. 1. COFJ syntax

Every class has an implicit canonical constructor as in FJ, and we assume the stan-
dard FJ well-formedness conditions on a program p. That is: names of declared classes
are distinct and different from Object, hence p can be seen as a map from class names
into class declarations s.t. Object 6∈ dom(p). The inheritance relation (transitive clo-
sure of the extends relation) is acyclic. Method names and field names in a class, and
parameter names in a method, are distinct, and field names declared in a class are dis-
tinct from those declared in its superclasses (no field hiding). Furthermore, parameters
must be distinct from this and res. Finally, for every class name C (except Object)
occurring in p, we have C ∈ dom(p).

There are the following differences w.r.t. FJ: in addition to the basic sets mentioned
above, we assume an infinite set of labels X, we omit cast expressions for brevity,
method bodies have shape {e with e′}, and the definition of values is more general.

Indeed, in FJ values and objects (instances of classes) coincide, and have shape
newC (v), that is, are (a concrete representation of) inductive terms, built by constructor
invocations. Here, values are generalized, that is, they can be annotated with labels,
and a (sub)value can be a (reference to a) label, expected to annotate an enclosing



value. Objects are values which are not labels, that is, of form X1= . . . Xn=new C (v),
abbreviated X = new C (v) with our convention.

We say that a value is closed if all references contained in it are bound to exist-
ing labels. Closed values are a concrete representation of either regular terms built by
constructor invocations, or the undetermined value. Note that the only closed values
which are not objects have shape X1= . . . Xn=Xi, with i ∈ 1..n, and are all equiva-
lent representations of the undetermined value. In the semantic rules, all closed values
representing the same regular term, as, for instance, the following:
new C(Y=X=new C(new C(X)))
Y=new C(X=new C(Y))
Z=new C(Z)

are considered equal, and an analogous assumption holds for open values as well.
Values which are not objects (notably, representations of the undetermined value

and labels) can be safely passed as arguments and obtained as result of field access and
method invocation, but the semantics is undefined when they are used as receivers in
field accesses and method invocations.

The big-step semantics e, σ, π ⇓ r returns the result r, if any, of evaluating an ex-
pression e in the context of an invocation stack σ keeping track of pending method in-
vocations, and of a frame π defining the values of all local variables (that is, all formal
parameters, and the special variables this and res). This relation should be indexed
over programs, however for brevity we leave implicit such an index in all judgments
defined in the paper. Formally, σ is a finite and injective map from expressions of the
form v.m(v), which we call (invocation) redexes, to labels X, whereas π is, as usual, a
finite map from variables to values.

Rules are given in Figure 2. For lack of space, we omit standard technical details,
notably, the formal definitions of stack update σ[v.m(v):X], and of parallel substitution
v1[v2/X], and the auxiliary functions fields , mbody . We write e, σ, π⇓v as a shorthand
for the set of judgments e1, σ, π⇓v1 . . . en, σ, π⇓vn.

(VAR)
x , σ, π⇓v

π(x) = v (FIELD)
e, σ, π⇓v

e.f , σ, π⇓vi[v/X]

v = X = new C (v)
fields(C ) = C f ;
f = fi, i ∈ 1..n

(INVK)
e, σ, π⇓v e, σ, π⇓v e′, σ[v.m(v):X], [this:v, x :v]⇓u

e.m(e), σ, π⇓X=u

v = X = new C ( )
mbody(C ,m) = (x , e′ with )
v.m(v) 6∈ dom(σ)
X fresh

(COREC)
e, σ, π⇓v e, σ, π⇓v e′, σ, [this:v,res:X, x :v]⇓u

e.m(e), σ, π⇓u

v = X = new C ( )
mbody(C ,m) = (x , with e′)
σ(v.m(v)) = X

(NEW)
e, σ, π⇓v

new C (e), σ, π⇓new C (v)
#fields(C ) = #e

Fig. 2. COFJ big-step rules



Rule (VAR) is straightforward.
Rule (FIELD) models field access. Recall that, with the FJ convention, C f ; stands

for C1 f1; . . .Cn fn;. The receiver expression is evaluated, and its result is expected
to be an object. The standard FJ function fields retrieves the sequence of the fields of
its class, starting from those inherited, and, if the selected field is actually a field of the
class, the corresponding value is returned as result. Note that this value could contain
references to the enclosing receiver object, which must be unfolded.

For instance, given the class
class C extends Object {
C f;

}

the field access v.f, with

v = X=new C(Y=new C(X)),

is reduced to

u = Y=new C(X=new C(Y=new C(X))),

since fields(C) = f and (Y=new C(X))[v/X] = u.
If a method invocation does not correspond to any redex on the invocation stack,

then the method invocation is handled as usual (rule (INVK)): the result of the receiver
expression is expected to be an object, and method look-up is performed, starting from
its class, by the standard function mbody , getting the corresponding method parameters
and body. Then, the result of the invocation is obtained by evaluating the method body in
the new frame where this and the formal parameters are associated with the receiver
object and the arguments, respectively. The evaluation of the method body is performed
by keeping track of the new redex (formally, adding in σ an association from this redex
to a fresh label X). In this way, method invocations leading to the same redex will be
no longer handled by this rule (hence avoiding non termination). Moreover, when the
evaluation of the method body is completed, references to X in the resulting value (due
to recursive method invocations leading to the same redex handled by rule (COREC))
are bound. This mechanism makes it possible to obtain a cyclic object as the result of a
method invocation.

Rule (COREC) handles the case when a coinductive hypothesis is applied, hence,
the invocation redex is found on the invocation stack σ; the expression e′ specified
after with is evaluated in the new frame where this is associated with the receiver
object, res is associated with the label X found on the invocation stack, and the formal
parameters are associated with the arguments.

Finally, (NEW) is the standard rule for constructor invocation. The side condition
ensures that the constructor is invoked with the appropriate number of arguments.

3 Coinductive Prolog with finally clauses

It is known [9,1] that properties which are existentially quantified on cyclic data (as
membership for regular lists) cannot be defined easily in a coinductive way, and, hence,
rather involved and ad hoc solutions have to be devised.



In recent work ([1], see the extended version) we have proposed a new feature aim-
ing to solve this problem, by allowing the user to define the specific behavior of a
coinductive predicate when an atom is solved by coinductive hypothesis, by means of
finally clauses.

While facts are used in Prolog for defining the base cases for induction, finally
clauses specify the behavior in case of application of the coinductive hypothesis in
regular coinduction.

Let us first introduce finally clauses with the definition of predicate member.

:- use_module(cosldmeta2finally).

coinductive(member(_,_)).

member(N,[N|_]).
member(N,[_|L]) :- member(N,L).
finally(member(_,_)) :- fail.

In the case of member the coinductive hypothesis is applied when all the elements of
the cyclic list has been already inspected; this means that none of them was found
equal to the first argument, therefore in this case the goal must fail. The last clause with
finally is used for specifying such a behavior: when a coinductive hypothesis can be
applied for member (independently of the arguments), then the goal must fail.

We define the semantics of finally clauses with a Prolog meta-interpreter; while
meta-interpreters are not efficient to be suitable for practical uses, the meta-programming
facilities offered by Prolog are an ideal tool to experiment with new semantics and pro-
gramming abstractions: Prolog meta-interpreters are concise and abstract enough to
serve as a formal semantics, yet they provide prototype implementations to test new
language features.

The meta-interpreter defining the coinductive semantics of a logic program ex-
tended with finally clauses is given by the following Prolog program:

:- use_module(library(ordsets)).

cosld(G) :- ord_empty(E),solve(E,G).
solve(H, (G1,G2)) :- !,solve(H, G1), solve(H,G2).
solve(_,A) :- inductive(A),!,A.
solve(H,A):- found(A, H),(clause(finally(A),As) *-> solve(H,As);

true).
solve(H,A):- !,clause(A,As),insert(H,A,NewH),solve(NewH,As).

inductive(A) :- predicate_property(A,built_in),!.
inductive(A) :- predicate_property(A,file(AbsPath)),

file_name_on_path(AbsPath,library(_)),!.
inductive(A) :- !,\+ coinductive(A).

insert(L1,A,L2) :- is_in(A,L1) -> fail;ord_add_element(L1,A,L2).

is_in(A1,[A2|_]) :- unifiable(A1,A2,_),!.
is_in(A,[_|L]) :- is_in(A,L),!.



found(A,H) :- memberchk(A,H).

The meta-interpreter is a variation of the standard operational semantics of coinduc-
tive Prolog.

As usual, if an atom is inductive, then it is directly solved by the Prolog interpreter;
the cut allows the meta-interpreter to skip the clauses dealing with coinduction. Predi-
cates are inductive by default, those coinductive (and necessarily user-defined) have to
be explicitly specified by the user. Therefore the inductive predicates are either built-in
or imported from a standard library or they have not been declared coinductive.

This solution enforces a stratification between coinductive and inductive predicates:
while a coinductive predicate can be defined in terms of an inductive one, the opposite
is not allowed; this restriction avoids contradictions due to naive mixing of coinduction
and induction [10].

Besides finally clauses, the meta-interpreter departs from the standard opera-
tional semantics of coinductive Prolog also because if performs a pruning of the search
tree to avoid some kinds of non terminating failures. A pruning of the search trees can
be performed by applying a clause only if the atom to be solved does not unify with a
coinductive hypothesis, after it has been unified with the head of the clause. Predicate
insert fails if the atom to be inserted in the list of coinductive hypotheses unifies with
some coinductive hypothesis already contained in the list.

Let us show now how finally clauses affect the semantics of a logic program. For
keeping the treatment simple, finally is managed as a predicate symbol. finally
clauses are managed by the third clause for solve/2, which deals with the application
of the coinductive hypothesis. If the current atom A unifies with some coinductive hy-
pothesis in H (that is, found(A,H) succeeds), then the meta-interpreter checks whether
there exists a finally clause applicable for A, with the atom clause(finally(A),As);
if it is the case, then the body of the corresponding finally clause is solved; if no
finally clause is found, then the default behavior is implemented: the atom A suc-
ceeds.

The built-in predicate *-> has been used instead of ->, to allow backtracking for
the resolution of clause(finally(A),As).

4 Encoding of COFJ

The translation of COFJ is inspired by the abstract compilation approach [6,5,2,4,3],
where type analysis of an object-oriented program is performed by translating it in a
suitable logic program, and by solving a goal (corresponding to the translation of the
main expression) according to the coinductive interpretation of the logic program.

In this case the compilation is not abstract, but faithfully respect the operational
semantics of COFJ.

We first explain the meaning of all predicates used in the translation.

– extends(C ,C ′): class C extends class C ′;
– dec field(C , f ): class C declares field f ;
– dec fields(C , [f1, . . . , fn]): f1, . . . , fn are all fields declared in class C ;



– dec meth(C ,m): class C declares method m;
– merge(lf , lv, l(f,v), l′v): the list of fields lf is merged with the list of values lv to

constitute the list of pairs (field,value) l(f,v). Lists are processed from left to right,
and lv is allowed to contain more elements than lf ; l′v contains the list of values
that have not been associated with a corresponding field in lf ;

– new(C , [v1, . . . , vn], v): invoking the constructor of C with arguments v1, . . . , vn
returns the value v;

– field acc(v1, f , v2): accessing field f of v1 yields value v2;
– invoke(v0,m, [v1, . . . , vn], v): invoking method m on v0 with arguments v1, . . . , vn

returns the value v;
– has meth(C ,m, [v0, . . . , vn], v): if no corecursive hypothesis is applicable, then

invoking method m looked up from class C with target object v0 and arguments
v1, . . . , vn returns the value v;

– with meth(C ,m, [v0, . . . , vn], v): if a corecursive hypothesis is applicable, then
invoking method m looked up from class C with target object v0 and arguments
v1, . . . , vn returns the value v.

Figure 3 defines the syntax-directed translation of a COFJ program into a corresponding
logic program. A part of the generated Horn clauses, denoted by Ptr , are independent
from the input program, and, hence, are specified separately (see Figure 4).

• tr(cd) = Ptr

S
cd∈cd tr(cd)

• tr(class C extends C ′ { fd md }) =
{extends(C , C ′)}

S
fd∈fd tr(C , fd)

S
md∈md tr(C , md)

• tr(C , C ′ f ;) = {dec field(C , f )}
• tr(C , C0 m(C x ) {e with e′}) =8><>:

dec meth(C , m)
has meth(C , m, [This, var(x )], V )← B

with meth(C , m, [This, var(x )], Res)← B′, Res = V ′

9>=>;
if tr(e) = (B, V ) and tr(e′) = (B′, V ′)

• tr(x ) = (true, var(x ))
• tr(e.f ) = ((B, field acc(V, f , V ′)), V ′) if tr(e) = (B, V ), and V ′ fresh logical variable
• tr(e0.m(e)) = ((B0, B, invoke(V0, m, [V1, . . . , Vn], V )), V )

if tr(e0) = (B0, V0), tr(e) = (B, V ), and V fresh logical variable
• tr(new C (e)) = ((B, new(C , [V1, . . . , Vn])), V )

if tr(e) = (B, V ), and V fresh logical variable

Fig. 3. Translation of COFJ

The function tr is overloaded and applied to different syntactic categories; for field
and method declarations the function takes a first additional argument corresponding to
the class where the declaration is contained. For class, method and field declarations,
the function returns a set of clauses, whereas for expressions it returns a pair consisting
of a conjunction of atoms B, and a logical variable V , where V occurs in B (if B is



not empty) and represents the value returned by the evaluation of the expression. The
empty conjunction of atoms is denoted by true .

For simplicity we assume that class, field and method names need not to be trans-
lated (this assumption is reasonable if the standard Java convention is followed for field
and method names, whereas for class names the first letter of class names should be
turned into the corresponding lowercase), whereas we assume the existence of a suit-
able auxiliary injective function var mapping COFJ variables to logical variables (for
instance, by capitalizing them) such that var(this)=This , and var(res)=Res .

The translation of a sequence of class declarations cd returns all clauses obtained
by translating each single class declaration, together with the clauses Ptr which do not
depend on a particular input COFJ (see Figure 4 below).

A class declaration class C extends C ′ { fd md } is translated into a set of
clauses consisting of the fact recording that C is a class declared in the program and
extends C ′, and of the clauses obtained by translating all field and method declarations
in fd and md w.r.t. C .

Translating a declaration of field f in class C simply produces a fact specifying that
f is declared in C .

The translation of a method declaration C0 m(C x ) {e with e′} in class C pro-
duces three different clauses. The first is a fact that simply states that m is declared in
C .

The second clause has meth(C ,m, [This, var(x )], V )← B specifies the behavior
of the method when no coinductive hypothesis is applied: when invoked on object This
and arguments var(x ), method m of class C returns the value V ; the body B and the
logical variable V are obtained by translating the expression e in the body of the method.

The last clause with meth(C ,m, [This, var(x )],Res) ← B′,Res = V ′ specifies
the behavior of the method when a coinductive hypothesis is applied: in this case, if
the receiver and the arguments are This and var(x ), respectively, then method m of
class C returns the result Res that equals the logical variable V ′ corresponding to the
returned value of expression e′; the body B′ and the logical variable V ′ are obtained
by translating the expression e′. Recall that we assume that the special variable res is
translated to Res by var .

The translation of a variable is straightforward.
Field access e.f is translated to the pair ((B,field acc(V, f , V ′)), V ′), where the

conjunction of atoms B and the logical variable V are obtained by translating the ex-
pression e; the atom field acc(V, f , V ′) states that the value of field f of V is V ′, where
V ′ is a fresh variable not occurring in B, corresponding to the value of e.f .

The pair ((B0, B, invoke(V0,m, [V1, . . . , Vn], V )), V ) is returned by the translation
of expression e0.m(e); the conjunctions of atoms B0 and B, and the logical variables
V0 and V are obtained by translating the expressions e0 and e, respectively. The atom
invoke(V0,m, [V1, . . . , Vn], V )) states that, when invoked on object V0 and arguments
V , method m returns value V , where V is a fresh variable not occurring in B0 and B,
corresponding to the value of e0.m(e).

Expression newC (e) is translated to the pair ((B,new(C , [V1, . . . , Vn]), V ), where
the conjunctions of atoms B, and the logical variables V are obtained by translating the
expressions e. The atom ((B,new(C , [V1, . . . , Vn]), V ) states that invocation of the



constructor of C with arguments V returns value V , where V is a fresh variable not
occurring in B, corresponding to the value of new C (e).

Figure 4 contains the clauses Ptr , emitted by the translation, that do not depend on
a particular input.

coinductive(invoke( , , , )).
coinductive(has meth( , , , )).
coinductive(with meth( , , , )).

dec fields(C, L)← setof (F, dec field(C, F ), L), !.
dec fields( , [ ]).

new(object , [ ], obj (object , [ ])).
new(C, Args, obj (C, FVL))← dec fields(C, FL), merge(FL, Args, CFVL, PArgs),

extends(C, P ), new(P, PArgs, obj (P, PFVL)), append(CFVL, PFVL, FVL).

field acc(obj ( , FVL), F, V )← member((F, V ), FVL).

invoke(TO , M, Args, RV )← TO = obj (C, ), has meth(C, M, [TO |Args], RV ).
finally(invoke(TO , M, Args, RV ))← TO = obj (C, ), with meth(C, M, [TO |Args], RV ).

has meth(C, M, Args, RV )←
¬dec meth(C, M), extends(C, P ), has meth(P, M, Args, RV ).

with meth(C, M, Args, RV )←
¬dec meth(C, M), extends(C, P ), with meth(P, M, Args, RV ).

Fig. 4. Definition of Ptr

The only predicates that are required to be corecursive are invoke , has meth and
with meth dealing with method invocation.

An object value is represented by the term obj (C , [(f1, v1), . . . , (fn, vn)]), where C
is the class of the object, whereas [(f1, v1), . . . , (fn, vn)] is the list of pairs associating
a value with each field of the object.

Predicates member and append are the standard library predicates on lists.
The clause for invoke defines the behavior of method invocation when no coinduc-

tive hypothesis is applied; the class C of the target object TO is retrieved, and then the
returned value is that specified by predicate has meth .

The finally clause for invoke defines the behavior of method invocation when a
coinductive hypothesis is applied; analogously to the previous case, the class C of the
target object TO is retrieved, and then the returned value is that specified by predicate
with meth .

The two clauses for has meth and with meth propagate method look up to the
parent class, when the searched method is not found in the current class; both clauses
use a simple form of negation, since predicate dec meth is defined by a collection of
ground atoms.



5 Conclusive remarks

Corecursive definitions can become simpler if programmers are allowed to specify
through an expression the value that has to be returned in case a coinductive hypothesis
is applied. The usefulness of such a feature has been investigated both in coinductive
Prolog [1] (by means of finally clauses), and in COFJ [7].

In this paper we exploit the approach of abstract compilation to translate COFJ in
coinductive Prolog with finally clauses. The defined translation is quite compact and,
besides showing the direct relation between COFJ and coinductive Prolog, provides a
first prototypical but simple and effective implementation of COFJ; by employing an
experimental implementation of coinductive Prolog with finally clauses, by means
of a Prolog meta-interpreter, the semantics of COFJ can be implemented almost for free
with a syntax directed translation.

Regular corecursion versus lazy evaluation

Corecursion [8] has been used in some contexts to denote the ability, supported by
lazy evaluation, of defining a function that produces some infinite data in terms of the
function and the data itself.

As an example, let us consider the following Haskell code defining the infinite
stream !0 : 1! : 2! : . . . of the factorials of all natural numbers.

fact_stream = 1:gen_fact 1 1
gen_fact n m = let k = n*m in k:gen_fact k (m+1)

The stream fact_stream is defined in terms of the corecursive function gen_fact.
After having defined fact_stream, one can get the factorial of n by simply select-

ing the element at position n in fact_stream:

*Main> fact_stream !! 10
3628800

Though the stream is infinite, it is possible to access any arbitrary element because the
list constructor ‘:’ is non-strict and, hence, the call to function gen_fact is computed
lazily. More abstractly, the data returned by gen_fact corresponds to a tree whose
depth is infinite, and that is not regular.

Now let us try to check whether all elements in the stream are greater than 0, with
the predefined function all.

*Main> all (\x -> x>0) fact_stream
-- does not terminate

Checking that an arbitrary predicate holds on all the factorials of natural numbers is
only semi-decidable: termination is guaranteed only if the predicate does not hold for
some element, as in all (\x -> x<100) fact_stream.

Let us now consider this other stream declaration:

ones = 1:ones



Differently from fact_stream, stream ones is regular. Such a stream is defined as
a cyclic data structure, and no lazy evaluation is required: it is recursively defined by
using just the list constructor.

Despite the regularity of ones, the evaluation of all (\x -> x>0) ones does
not terminate in Haskell, because the logical conjunction && is strict in its second argu-
ment (when the first argument evaluates to True), and all is defined in the standard
inductive way.

This problem does not occur in COFJ, as shown in Section 2 with method allPos.
Adopting a lazy evaluation strategy for supporting programming with cyclic objects
would be a too radical shift in the semantics of object-oriented languages. Indeed, cyclic
objects are just regular values, that is, a very particular case of infinite objects.
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