Automatic ontology extraction from Java libraries
for machine-readable API documentation

Davide Ancona

Viviana Mascardi

Ombretta Pavarino

DISI - University of Genova, Italy
{davide,mascardi}@disi.unige.it,ombretta.pavarinoQvirgilio.it

Abstract

While almost all programming languages are equipped with suit-
able tools for extracting human-readable documentation from soft-
ware, little effort has been devoted to generating machine-readable
information which could be fruitfully exploited by applications for
enhancing software development.

This paper is focused on ontology-based documentation, a topic
which opens up new interesting scenarios in the fields of code refac-
toring, software migration, and reverse engineering. More in de-
tails, we propose a Java framework for extracting OWL ontolo-
gies from Java libraries, based on Javadoc technology for auto-
matic documentation extraction, and on Jena, a Java framework for
building Semantic Web applications. In this way, programmers can
easily implement their own ontology extractor, and decide which
features of the library should be documented by the generated on-
tology, by extending the basic Semlet (a Doclet able to generate
semantic documentation) provided by our framework.

We have experimented the framework by defining a basic ontol-
ogy generator which allowed us to extract a valid OWL Lite ontol-
ogy from all java.* packages of the standard class library.

Keywords Ontology, machine-readable API documentation, Javadoc

1. Introduction

While almost all programming languages provide suitable tools for
extracting human-readable documentation from software, little ef-
fort has been devoted to generating machine-readable information
which could be fruitfully exploited by applications for enhancing
software development.

Most of the works (see Section 5 for a survey on related papers)
which use ontologies for representing relevant semantic informa-
tion extracted from software are mainly focused on Reverse Soft-
ware Engineering, that is, they aim at generating models which help
the programmers to understand the software and, therefore, mainly
cover disciplines as software requirements and design.

However, ontology-based documentation opens up new inter-
esting scenarios also for software development and maintenance:
in particular, tools for semi-automatic porting and migration of li-
braries, and also advanced web search engines for domain specific
libraries could fruitfully exploit automatic extraction of ontology-

[Copyright notice will appear here once ’preprint’ option is removed.]

based documentation from software, to assist programmers during
the software development and maintenance process.

Let us consider, for instance, the issue of modifying a program
p after that a library [has been replaced with a new library I’ which
is not completely compatible with the previous one. This scenario
may occur either when [is replaced with a library I’ independently
developed by a third party not concerned with compatibility w.r.t.
[(software porting), or when " is just a major upgrade of I (soft-
ware migration). Take for instance the JDK libraries; even though
full compatibility with older versions should be guaranteed by dep-
recated components, if one really wants to take advantage of the
features offered by the new versions, program p needs necessarily
to be modified and adapted to correctly use the new offered inter-
faces.

If one can easily extract the relevant semantic information out of
I and I’ in form of two corresponding ontologies o and o’, then the
needed modification on p could be generated in a semi-automatic
way by aligning o and o’ with a suitable ontology matching algo-
rithm mapping the elements of o to the corresponding ones in o'.

Our work is motivated by the fact that the few proposals which
use ontology extraction for software migration and porting rely
on ad hoc ontology extraction and ontology matching algorithms
which are hardwired in the application; as a consequence, since
these approaches are not modular, they cannot be easily adapted
to other kinds of ontology extraction and ontology matching algo-
rithms.

To overcome this problem, we have defined a framework, called
Semlet, for rapid development of tools for automatic ontology ex-
traction from Java libraries. The framework is quite simple, since it
is completely based on Javadoc (the standard Java tool for extract-
ing documentation from programs) and Jena, a widespread Java
library for developing semantic web applications based on RDF
and OWL, and processing ontology formalisms built on top of
RDF. Thanks to Javadoc, Jena, and the design of Semlet, users can
rapidly develop different ontology extraction algorithms, to exper-
iment with different ontology matching algorithms.

We have successfully experimented Semlet by developing a
plain ontology extractor in less than 400 lines of code; such an
extractor was able to quickly generate (less than one minute on a
dual-core laptop) the ontology corresponding to all standard java.x
packages, containing around 10K different entities.

The paper is structured as follows. Section 2 provides the nec-
essary background on the ontology language OWL, Jena, and
Javadoc. Section 3 is focused on the main design aspects of Semlet,
whereas Section 4 presents the plain extractor developed with our
framework. Finally, Section 5 is devoted to the related work and
the conclusion.

2010/5/9

2. Background
According to T. Gruber [9],

In the context of computer and information sciences, an
ontology defines a set of representational primitives with
which to model a domain of knowledge or discourse. The
representational primitives are typically classes (or sets),
attributes (or properties), and relationships (or relations
among class members). The definitions of the representa-
tional primitives include information about their meaning
and constraints on their logically consistent application.

In this section we introduce the OWL ontology language (Sec-
tion 2.1) and the Jena framework (Section 2.2) that we used for
modeling the ontology extracted from the source code of a Java li-
brary. Identification of relevant components from the Java library
given in input to our framework is performed via the Javadoc tool
presented in Section 2.3.

2.1 The Web Ontology Language (OWL) family

Among the languages for representing ontologies, OWL [19] is one
of the most widespread ones. OWL stands at the topmost layer
of the standardized technologies in the Semantic Web Stack (see
Figure 1). The Semantic Web Stack was introduced for the first time
by T. Berners-Lee, Director of the World Wide Web Consortium
(W3C), in a keynote session at XML 2000 [3]. It represents the
hierarchy of Semantic Web languages, where each layer grounds
on the layers below.

| User interface and applications ‘

‘ Trust ‘
‘ Proof ‘
[Unifying logic ‘
’ Ontologies: ‘ ‘ Rules:
Querying: OWL RIF/ISWRL S
SPARQL =1
‘ Taxonomies: RDFS ‘ {8‘
s
<
‘ Data interchange: RDF ‘
’ Syntax: XML ‘
‘ Identifiers: URI ‘ ‘ Character set: UNICODE ‘

Figure 1. The Semantic Web Stack [3].

The bottom layers contain hypertext web technologies: Interna-
tionalized Resource Identifier (IR]) is a generalization of URI and
provides means for uniquely identifying semantic web resources;
Unicode serves to represent and manipulate text in many languages;
XML is a markup language that enables creation of documents
composed of structured data [17]; XML Namespaces provide a way
to use markups from more sources [18].

Middle layers contain technologies standardized by W3C to
enable building semantic web applications.

e Resource Description Framework (RDF, [21]) allows to create
statements about resources in form of triples.

e RDF Schema (RDFS, [20]) provides basic vocabulary for RDF
and allows, for example, to create hierarchies of classes and
properties.

e Web Ontology Language (OWL) extends RDFS by adding
more advanced constructs to describe semantics of RDF state-
ments; since it is based on description logic [2], it empowers
the semantic web with reasoning capabilities.

OWL provides three increasingly expressive sub-languages:
OWL Lite, OWL DL, and OWL Full.
» OWL Lite supports those users primarily needing a clas-

sification hierarchy and simple constraints. It has a lower
formal complexity than OWL DL.

OWL DL gives the maximum expressiveness while retain-
ing computational completeness (all conclusions are guar-
anteed to be computable) and decidability (all computations
will finish in finite time). OWL DL includes all OWL lan-
guage constructs, but they can be used only under certain
restrictions (for example, a class cannot be an instance of
another class). The “OWL DL” name is due to its corre-
spondence with Description Logics.

* OWL Full gives the maximum expressiveness and the syn-
tactic freedom of RDF with no computational guarantees.

Each of these sub-languages is an extension of its simpler pre-
decessor, both in what can be legally expressed and in what can
be validly concluded.

In October 2009 the specification of OWL 2 was released [23].
OWL 2 is a conservative extension of OWL 1: all OWL 1 On-
tologies remain valid OWL 2 Ontologies, with identical infer-
ences in all practical cases. In our work we only consider OWL
1 ontologies because this is the language supported, at the time
of writing, by the Jena library (see Section 2.2).

e SPARQL [22] is a RDF query language and can be used to
query any RDF-based data, including statements involving
RDFS and OWL.

Top layers contain technologies that are not yet standardized or
contain just ideas what should be implemented in order to realize
Semantic Web.

Since giving an account of the complete OWL language is out
of the scope of this paper, we limit ourselves to summarize the few
aspects that are really necessary to understand how our framework
works.

Namespace. Namespaces are inherited by OWL from XML.
XML namespaces provide a simple method for qualifying ele-
ment and attribute names used in XML documents by associating
them with namespaces identified by URI references. A standard
initial component of an ontology includes a set of XML namespace
declarations that provide a means to unambiguously interpret iden-
tifiers and make the rest of the ontology presentation much more
readable.

Class. A class defines a group of individuals that belong together
because they share some common properties. The OWL class el-
ement, identified by owl:Class, is a subclass of the RDFS class el-
ement, rdfs : Class. The rationale for having a separate OWL class
construct lies in the restrictions on OWL DL (and thus also on OWL
Lite), which imply that not all RDFS classes are legal OWL DL
classes.

Subclass. Class hierarchies may be created by making one or
more statements that a class is a subclass of another class. This
can be achieved by using the rdfs:subClassOf element defined by
RDES. In OWL, each user-defined class is implicitly a subclass of
owl: Thing.

Property. Properties have originally being defined in RDF and
can be used to state relationships between individuals (object prop-

2010/5/9

erties, owl: ObjectProperty) or from individuals to data values (data
type properties, owl: DatatypeProperty). Both object and data type
OWL properties are subclasses of the RDF class rdf: Property. In
OWL properties are first-class objects that exist independently from
the existence of user-defined classes. Relationships between prop-
erty and classes depend on the property domain and range that may
be (must be, as far as the domain is concerned) classes. However, a
property can be defined specifying neither its domain nor its range,
which are then set to the default class Thing.

2.2 The Jena library

Jena (http://www.openjena.org/) is a Java framework for
building Semantic Web applications. It is an open source project
grown out of work with the HP Labs Semantic Web Programme
and includes the OWL API used for implementing the Extractor
described in Section 3.

One of the most useful feature that Jena provides for our pur-
pose is the ontology model created through the Jena ModelFactory
class. The createOntologyModel method that the factory provides
can be used to create an ontology model which implements the
OntModel interface and contains ontology data expressed in a given
ontology language:

OntModel myOntoModel =
ModelFactory . createOntologyModel (spec);

The spec parameter of type OntModelSpec specifies the ontology
model settings with respect to language, in-memory storage, infer-
ence capabilities.

Namespaces are set using the setNsPrefix (String prefix , String
URI) method that declares that the namespace URI may be abbrevi-
ated by prefix. Once serialized on file, the RDF/XML writer will
turn these prefix declarations into XML namespace declarations
and use them in its output.

All of the classes in the ontology API that represent ontology
entities have OntResource as a common super-class: OntClass and
OntProperty are two of them, with intuitive meaning.

An ontology model can be filled with resources and relation-
ships among them in many ways:

e the ontology can be read from a file or retrieved from a URL
representing the ontology URI using the read method :

myOntoModel . read (URI, “RDF/XML”);

new resources can be added to the ontology model using
createClass , createDatatypeProperty , createObjectProperty :

OntClass myClass =
myOntoModel . createClass ();

new relationships can be created; for example:

myClass.addSubClass (mySubClass);

states that mySubClass is in rdfs : subClassOf relation with myClass.

Once the ontology definition is completed, the write method with
its parameters can be used to serialize the ontology model on file
(for example, myOntoModel.write(str, "RDF/XML”) for writing all
the ontology data contained in myOntoModel on the file associated
with Stream str, in the RDF/XML format).

2.3 Javadoc and Doclet

Javadoc. Javadoc is a Java tool that parses declaration and docu-
mentation comments in a set of Java source files and packages and

produces, by default, a corresponding set of HTML pages describ-
ing the classes, inner classes (but not anonymous inner classes),
interfaces, constructors, methods and fields.

The input to Javadoc may be a list of .java files or package
names separated by space, or the —subpackage option followed
by package names that causes the recursive parsing of all the
subpackages of the given ones.

Javadoc produces one complete document each time it is run;
it cannot be used incrementally. It requires and relies on the Java
compiler to do its job. The Javadoc tool calls part of javac to
compile the declarations, ignoring the member implementation.

Javadoc can run on .java source file that are pure stub files
with no method bodies. This allows the programmer to produce
documentation of software at the early stage of design, and also
for source files whose code contains errors and that could not be
compiled yet.

A recent project named Classdoc (http://classdoc.source-
forge.net/) aims at providing an alternative to Javadoc by work-
ing on .class files instead of on .java ones. Classdoc has some
limitations discussed in http://classdoc.sourceforge.net/
classdoc10/classdoc.html#limitations. The most severe
one is that it only works on bytecode of classes developed with
JDK up to 1.3.

Doclet. In order to generate its output, Javadoc calls a doclet,
namely a Java program which uses the Doclet API to specify the
format of the Javadoc output. By default, the Standard Doclet,
that generates a three-part browsable HTML documentation file for
each processed class, is used.

The programmer can define a doclet that extends the Standard
one, if she wants to generate an HTML documentation with a
different style. However, if she wants to generate a documentation
completely different form the HTML (standard or ad-hoc) one,
she can define her own brand new doclet by extending Doclet and
implementing the start method with a RootDoc parameter.

The Doclet API offers methods for navigating through classes,
their fields and their methods, and to collect any information about
them. Inheritance allows the programmer either to extend the be-
havior of the Standard Doclet or to redefine it in order to generate
an output that documents the input classes and packages in what-
ever user-defined format.

Classdoc implements the Java Doclet API so that any Doclet
can be used to generate output from bytecode.

3. An abstract doclet for ontology extraction

In this section we present Semlet, a customizable doclet for on-
tology extraction. Semlet has been designed with the main intent
of providing a framework for generating ontologies from Java li-
braries, allowing users to easily adapt the ontology extractor pro-
vided by Semlet to their specific needs.

The framework is based on the Doclet API com.sun.javadoc
which provides an easy mechanism for extracting out of a Java
program all those syntactic information useful for code documen-
tation, and on the Jena API library com.hp.hpl. jena which is a frame-
work for developing semantic web applications based on RDF and
OWL. In particular the API com.hp.hpl. jena.ontology is a toolkit for
processing ontology formalisms built on top of RDF (specifically
RDFS, OWL Lite and DL).

3.1 Basic assumptions

To simplify the design of the framework, Semlet has been con-
ceived for implementing only a specific subset of ontology extrac-
tion algorithms, complying with a number of reasonable assump-
tions that we have identified during the development of the project.
However, we strove for ensuring a right balance between simplicity

2010/5/9

and flexibility, and tried to exclude only the most esoteric ontology
extractors.

Ontology granularity. An ontology always corresponds to a set
of Java packages which must be explicitly specified by the user.
For what concerns the imported packages, Semlet recognizes the
standard Java API, and maps it to a set of predefined ontologies;
for non standard imported packages, the user has to provide an ex-
plicit mapping between imported packages and external ontologies
with all information needed by Semlet to create the required names-
paces.

A class is always a class. One of the main principles which has
driven our design is that a Java class' must always correspond to
an ontology class; furthermore, there must be a bijection between
the classes of a program and the classes of the corresponding ontol-
ogy. As a direct consequence of this principle, the inheritance re-
lation must coincide with the subtyping relation between ontology
classes. For instance, the ontology class extracted from the follow-
ing class declaration

class C7 extends C> implements Ii,...I, { ... }

must be a subclass of the ontology classes corresponding to C'> and
Li,...I.

Namespaces. In Java both packages and classes define names-
paces, therefore two classes with the same name, but declared in
different packages, must correspond to different ontology classes.
The same reasoning applies to nested classes as well: two nested
classes with the same name, but declared in different classes must
correspond to different ontology classes. For this reason, Semlet
always preserves the structure of Java namespaces in the ex-
tracted ontology. For instance, if class C is declared in package
pek. test, then the following namespaces are generated: pck. test
and pck. test .C corresponding to the directory ~/Java/pck. test and
the file */Java/pck/ test /C.java, respectively.

<rdf:RDF

xmlns:pck.test="file: "/ Java/pck. test#”
xmlns:pck.test .C="file: "/Java/pck/test/C.java#”

</rdf:RDF>

Recognized Java constructs. Since Semlet is based on the Javadoc
technology, ontology extraction may only depend on the parts of
the program which are parsed by Javadoc, which, roughly corre-
spond to all the program except the implementation (method bodies
and initializers). This means that for instance, it would not possible
to extract an ontology based on additional information retrieved
with any kind of program analysis on the implementation. To do
that, the standard behavior of Javadoc must be changed by redefin-
ing its core classes.

3.2 Design of the framework

The framework exploits the bridge design pattern [8] for decou-
pling inspection of Java code, performed by Semlet, from the con-
struction of the ontology, which is demanded to an Extractor (Fig-
ure 2). Method start (RootDoc root) in Semlet contains invocations
to the methods exposed by the Extractor interface with target
object ex. Semlet is responsible for the traversal of the input li-
brary (represented by root), whereas ex is a class variable of type
Extractor, containing the object with interacts with Jena and gen-
erates the entities of the ontology. Note that ex needs to be static,
since method start executed by Javadoc is required to be static,

! Unless specified, with class we mean also interfaces and enum types.

Semlet Extractor

static ex : Extractor
start(root:RootDoc) O

processPackage(p:PackageDoc)

‘ ex.processPackage(p) B‘

RefinedSemlet ConcreteExtractor

start(root:RootDoc)

processPackage(p:PackageDoc)

Figure 2. Design of the framework

hence can only access the class members of Semlet. To allow more
flexibility, Semlet communicates with the extractor by passing the
pertinent Doc objects which have to be processed. For instance, the
method for processing classes has a parameter of type ClassDoc;
in this way the extractor can easily retrieve all information needed
for generating the required ontology entities. Hence, the Jena API
is not visible to Semlet, whereas the Doclet API is used both by
Semlet and by the extractor classes.

The traversal performed by Semlet corresponds to the following
simplified” Java code.

public class Semlet {
protected static Extractor ex;
public static boolean start(RootDoc root) {

for (PackageDoc pd:root.specifiedPackages ()) {
ex.processPackage (pd);

for (ClassDoc cd:pd.allClasses ()) {
if (cd.isInterface ())
ex.processlnterface (cd);

else if(cd.isError())
ex.processError(cd);

else if(cd.isException())
ex.processException(cd);

else ex.processClass(cd);
visitClassDoc (cd);

}

}

private static void visitClassDoc (ClassDoc cld) {
for (FieldDoc fd:cld. fields ())
ex.processField (fd);

for (ConstructorDoc cnd:cld.constructors ())
ex.processConstr(cnd);

for (MethodDoc md: cld . methods ())
ex.processMethod (md);

}
L

Method start processes all packages specified by the user as argu-
ments; for each package all included classes (those which are not
filtered by the access control Javadoc options —public, —protected,
—package, and —private) are processed, by taking into account the
different kinds of classes: interfaces, errors, exceptions and ordi-
nary classes (including enums). In this way the implementor of

2 We have omitted options, exceptions handling, and initialization of ex.

2010/5/9

Extractor can easily decide which kinds of class must be included
in the generated ontology and how; for instance, if one wants to ex-
clude exceptions and errors, then it suffices to provide an empty
body for methods processException and processError. Finally, all
constructors, fields and methods of each included class in the pack-
age are processed, with a corresponding method of Extractor inter-
face. Note that all nested classes are processed together with top-
level classes, accordingly to the behavior of method allClasses . If
for some reasons nested classes have to be visited after top-level
ones, the traversal of root defined in Semlet has to be redefined by
overriding method start in a subclass of Semlet.

As shown in the code of Semlet, interface Extractor exposes
eight different methods for processing the main elements of a
Java program. For avoiding proliferation of methods in Extractor,
the specialization of the behavior of such methods is left as a
responsibility of the implementor of Extractor . For instance, if one
wants to deal differently with class and instance methods, then the
check md. isStatic () must be inserted in the body of processMethod,
and the corresponding behavior has to be factored out in two new
methods. As already explained in Section 2.3, the Doclet API
provides a rich set of methods for checking all properties of a
program element; this gives a great amount of flexibility to the
programmer who can choose the desired level of implementation
refinement of the methods offered by Extractor.

3.3 Implementing a concrete extractor

As already explained, the class variable ex of Semlet is essential
for implementing the bridge design pattern as depicted in Figure 2.
However, ex is not initialized by Semlet, therefore running Javadoc
with Semlet will simply produce a NullPointerException .

To allow Javadoc generating an ontology from a Java program,
class Semlet needs to be subclassed and an implementation of in-
terface Extractor has to be provided. Subclassing of Semlet is
primarily required for correctly initializing class variable ex with
an instance of an extractor class, that is, an implementation of
Extractor. Note that simply adding a static initializer in the sub-
class of Semlet for defining ex does not work.

public class RefinedSemlet extends Semlet {
static { ex=new ConcreteExtractor (); }

}

Indeed, since the method start invoked by Javadoc is not de-
clared in RefinedSemlet, but simply inherited by Semlet, class
RefinedSemlet will not be initialized (see rules 12.4.1 of the Java
Language Specification [1]), and therefore the execution will throw
a NullPointerException. Therefore, the only practical solution is
overriding method start . Furthermore, initializing ex in method
start rather than in a static initializer allows more flexibility and
the implementation of the correct initialization sequence, where ex
is first initialized by Semlet, and then by its subclass. Here is a
simplified version of the pattern for subclasses of Semlet.

public class RefinedSemlet extends Semlet {

public static boolean start(RootDoc root) {
Conf conf=createConf(root.options ());
ex=new ConcreteExtractor(conf);

return Semlet. start(root);

}
}

An object of type Conf is first created by invoking the corresponding
method createConf inherited by Semlet; such an object contains
all option details needed for correctly creating an extractor (for
instance, the string of the base URI of the extracted ontology). After
initialization of ex, method start can execute the corresponding
overridden method of class Semlet, if one would like to reuse

the traversal of root as implemented by Semlet; otherwise, the
statement return Semlet. start (root); needs to be replaced with the
appropriate code for implementing a different traversal.

If RefinedSemlet introduces new options, then the pattern shown
above has to be refined. A subclass SubConf of Conf has to be
declared, to correctly deal with the new options; such a class will
contain a constructor SubConf(Conf conf ,...) where the ellipsis are
the arguments corresponding to the new options.

public SubConf(Conf conf,...) {
super(conf); // inherited options
... // added options

}

Consequently, we obtain the following pattern for class RefinedSemlet.

public static boolean start(RootDoc root) {
SubConf conf=createConf(root);

ex=new ConcreteExtractor(conf);

return Semlet. start (root);

}

protected static SubConf
createConf (String [][] opts) {
// handling of added options
return new SubConf(conf ,...);

}
}

4. PlainExtractor: an example of concrete
extractor

In this section we present a simple extractor, called PlainExtractor,
developed with our framework.

We used PlainExtractor to generate an ontology describing a
subset of the classes in the core Java API 1.6, namely those con-
tained in the java.x packages and subpackages. The generated on-
tology is available at the URL http://www.disi.unige.it/
person/AnconaD/JavaDocumentationOntology/java. This
URL was also used as the URI identifying the generated ontology
namespace. In the remaining of this section we will refer to this
ontology as “the Java ontology” and to its namespace as javaNS.

Part of the Java ontology visualized by opening it with the
Protégé 4.1 editor (http://protege.stanford.edu/) and us-
ing the “OWL Viz” visualizer is shown in Figure 3. The ontology
contains 1413 classes, 8331 object properties and 1516 datatype
properties according to the Protégé “OWL Model metrics” func-
tion.

Generating the Java ontology and serializing it on a file required
approximately 40 seconds on a Linux 2.6.31 based system with
Intel double core CPU 1.73GHz and 1GB of memory.

Besides defining all the relevant entities from the core Java API
1.6, the Java ontology also defines two special classes, Action and
Array, whose purpose is explained in Section 4.1.

4.1 PlainExtractor main features

In the sequel we discuss the basic features of our PlainExtractor by
means of a simple example of Java library dealing with bikes.

Access level modifiers. PlainExtractor considers access level
modifiers only with respect to the selection of the elements to be
processed by Javadoc. In our implementation we do not consider
the modifiers in any other way and we just ignore them during
the ontology construction. By setting the —public, —protected or
—private Javadoc tool command line parameters we assert which
elements participate in the construction of the resulting ontology,
namely those whose visibility is greater than the one stated by the
command line.

2010/5/9

Classes and interfaces. A Java class ¢ generates a correspond-
ing OWL class c; interfaces are treated as classes (we recall that in
OWL a class can be subclass of more classes). If ¢ extends or im-
plements c; . . ., ¢y, then the OWL class c is a subclass of the OWL
classes ci . . ., cn. Generic classes are treated as simple classes, that
is, their parameters are not considered. Tables 1 and 2 show two
simple examples of class extraction. In the examples, bikeNS and
mntBikeNS represent the namespace automatically assigned by the
PlainExtractor to the Bike and MntBike classes respectively, as ex-
plained in Section 3.

<owl:Class rdf:about=
”bikeNS:Bike”>
<rdfs:subClassOf
rdf:resource=
”java.lang:Object” />
</owl:Class>

public class Bike

Table 1. Java class c that extends no class.

<owl:Class rdf:about=
"mntBikeNS:MntBike”>
<rdfs:subClassOf
rdf:resource=
”bikeNS:Bike” />
</owl:Class>

public class
MntBike
extends Bike

Table 2. Java class sc that extends class c.

Methods. All methods correspond to an OWL owl: ObjectProperty .
This plain extractor does not consider method parameters and re-
turn type, but consider a method declared in a class ¢ as a prop-
erty (that is, a relation) whose domain is ¢, and whose range is the
special class named Action. Overriding methods do not generate a
new property, whereas abstract, class and instance methods are all
treated in the same way; indeed, modifiers do not affect the trans-
lation.
Table 3 shows a simple example of translation of a method.

public BikeFeatr getFeatr ()

{
}

<owl:ObjectProperty rdf:about="bikeNS:getFeatr”>
<rdfs:domain rdf:resource="bikeNS:Bike” />
<rdfs:range rdf:resource="javaNS:Action”/>
</owl:ObjectProperty>

Table 3. Methods.

Fields. All fields are translated into either DatatypeProperty or
ObjectProperty, depending on their types: a field whose type is
primitive corresponds to a DatatypeProperty, otherwise is trans-
lated into an ObjectProperty. Class and instance fields are treated
in the same way: modifiers do not affect the translation.

A field f of class ¢ whose type is a basic type ¢ with a corre-
sponding data type in XML corresponds to an OWL datatype prop-
erty whose identifier is f, whose domain is ¢, and whose range is

the XML data type that corresponds to ¢ (all prefixed by the proper
namespace). Table 4 shows the OWL property corresponding to
field cadence of the class Bike.

<owl:DatatypeProperty
rdf:about="bikeNS:cadence”™>
<rdfs:domain
rdf:resource="bikeNS:Bike” />
<rdfs:range
rdf:resource="xsd:int”/>
</owl:DatatypeProperty>

public int
cadence ;

Table 4. Field with a basic type.

A field f of class c whose type is the class ¢’ defined in the Java
library corresponds to an OWL object property whose identifier is
f, whose domain is ¢, and whose range is ¢’ (all prefixed by the
proper namespace). Table 5 shows the OWL counterpart of the field
ft of class Bike, with type BikeFeatr. The namespace associated with
BikeFeatr in the ontology is bikeFeatrNS.

<owl:ObjectProperty
rdf:about="bikeNS:ft”>
<rdfs:domain
rdf:resource="bikeNS:Bike” />
<rdfs:range rdf:resource=
"bikeFeatrNS:BikeFeatr” />
</owl:ObjectProperty>

public
BikeFeatr ft;

Table 5. Field with type c.

Arrays. We translate fields defined as arrays of any dimension
into properties whose domain is the class to which the field belongs
to, and whose range is the special Array class defined in the Java
ontology. Table 6 shows the OWL counterpart of a log array field
of class Bike used for logging rides made with a bike.

<owl:ObjectProperty
rdf:about="bikeNS:log”>
<rdfs:domain
rdf:resource="bikeNS:Bike” />
<rdfs:range
rdf:resource="javaNS:Array” />
</owl:ObjectProperty>

public
String [] log;

Table 6. Arrays.

4.2 Implementation of PlainExtractor

The constructor of the PlainExtractor concrete class initializes
some instance variables designed to contain information about base
URI, about importing external ontologies or just referencing them
in the to-be-generated ontology, and the directory where the OWL
output file will be stored. The values for all these variables are
passed to the constructor with an instance of class Conf created by
method createConf of Semlet. which processes the custom command
line options.

The instance variable that represents the OntModel is instantiated
using the OntModelSpec. OWL_DL_MEM value, which configures the
OntModel to use the OWL DL language profile, no reasoner, and the
in memory storage mode.

2010/5/9

The predefined Action and Array OntClass classes are also added
to the OntModel.

Construction of the ontology model. PlainExtractor processes all
the packages provided by the Semlet by simply creating a new
namespace that corresponds to the base URI of the ontology con-
catenated to the full name of the package. A namespace, con-
structed in the same way, is also added for each class contained
in each package.

Field processing. Each field of a Java class is translated into one
OntModel Object or Datatype property, depending on the declared
type of the field, and the resulting property is added to the OntModel.
The property range is defined as discussed in the Fields paragraph
of Section 4.1. Array fields are Object properties whose range is
the predefined Array OntClass.

In case of Object properties, the namespace corresponding to
the declared type of the field is also added to the OntoModel.

The logical reference to the Java class ¢ defining the field is
obtained by setting the domain of the property to the OntClass
corresponding to c.

Method processing. For each method an ObjectProperty having
its range in the Action OntClass (as stated above) is added to the
OntModel.

As in the case of the field, the logical reference to the Java
class ¢ defining the method is obtained by setting the domain of
the property to the OntClass corresponding to c.

Writing the model. A dedicated method of PlainExtractor writes
the obtained OntModel to a file, whose name is defined in the Conf
object passed by Semlet. Several languages can be selected when
writing an ontology: PlainExtractor uses "RDF/XML-ABBREV”
which corresponds to using OWL abbreviations in order to obtain
a more readable XML document.

5. Related work and conclusion

Very few proposals for extracting ontologies from software arti-
facts exist. Those we are aware of were born inside research groups
working in the Software Engineering — an, in particular, Reverse
Software Engineering — field. In the summary given by Table 7,
contents written in bold italic refer to those features that our pro-
posal shares with other ones.

Welty [25] describes a manual method for generating a CLAS-
SIC [5] ontology that represents all the data- and instruction-level
features of a SmallTalk source code fragment including value as-
signments, method creation and calls, switch and returns. Welty’s
proposal is the only one placed at this level of granularity: in the
other proposals the implementation of classes is not considered.

Yang, Cui, and O’Brien [26] extract an RWSL [27] ontology
from legacy systems by (i) capturing information by means of a Re-
engineering Assistant [28], (ii) analysing the obtained information
to construct classes, relations, functions and instances, (iii) form the
ontology, and (iv) evaluate, validate, and document it. The process
is fully automatic and is demonstrated on a COBOL program.

Many Sabou’s papers deal with ontology extraction from soft-
ware artifacts. In [14], she describes a semi-automatic approach for
extracting a single domain ontology from the Javadoc documenta-
tion of multiple Java libraries (that form the “corpus”) in the same
domain. The extraction of parts of speech and of verb-noun pairs
from the corpus is automatic using an existing Part Of Speech tag-
ger, while the identification of relevant pairs and the ontology con-
struction are manual. The paper says nothing on the format of the
resulting ontology. In [4] that approach is extended to take mul-
tiple sources (source code, software manuals, discussion forums)
as input for generating OWL ontologies, and the process is fully
automatic.

Jin and Cordy [11] describe the OASIS methodology for re-
engineering tools to share services and assist maintainers in car-
rying out software analysis and program comprehension tasks. A
manually built domain ontology, represented in English as a cross-
referenced compilation of representational concepts and services,
is used by conceptual services adapters to share and filter services.

Zhang, Witte, Rilling, Haarslev [29] developed the SOUND
(Software Ontology for UNDerstanding) environment to support
ontology-based program comprehension. A Software Ontology is
divided into the Source Code Ontology and the Documentation
Ontology. The OWL-DL Source Code Ontology has been designed
by hand to formally specify major concepts of Object-Oriented
Programming languages, and has been populated in an automatic
way.

Zhou, Kang, Chen, Yang propose OPTIMA, an Ontology-based
PlaTform-speclfic software Migration Approach [30]. The OWL-
DL ontology integrated in OPTIMA has been designed and im-
plemented by hand, following a well defined 8-steps methodology.
Feature location techniques are used to build the links between on-
tology concepts and related source code. Based on proposed do-
main ontology, program transformation rules are defined for soft-
ware migration between different platforms.

OntoNaviERP by Hepp and Wechselberger [10] uses ontologies
and automatic annotation of large HTML software documentation
of Enterprise Research Planning (ERP) systems in order to improve
their usability and accessibility. The OWL skeleton ontology is
generated in a semi-automatic way and the Wordnet plug-in for
Protégé has been used to augment the concepts by synonyms and
lexical variants.

The proposal by Ratiu, Feilkas, and Jiitjens [13] shares with
Sabou’s one [14] the same aim of building domain ontologies from
APIs that target the same domain. In order to identify domain
concepts based on similarities of several APIs, possibly written
in different OO languages, a graph-based representation of the
program elements from the public interface of the APIs is used
and names of program elements are explicitly modeled. A graph-
matching algorithm that uses the similarity of program element
names and the similarity of paths is then run on the graphs extracted
from APIs to produce a single RDF-like ontology.

Wang, Gibbins, Payne, Saleh, Li [24] abstract a formal speci-
fication in Z [15] from procedural program code (languages men-
tioned in their paper include Pascal, COBOL, FORTRAN, C), ver-
ify and validate the formal model, and automatically generate do-
main ontology and semantic Web service markup from specifica-
tions.

Finally, it is worth mentioning the EU-funded “Transition-
ing Applications to Ontologies” TAO project (IST-2004-026460)
whose goal is to make transitioning existing legacy applications
to ontologies fast and effective, thus allowing companies to build
a reusable transitioning process; minimize consulting time during
migration and integration; minimize costs; reduce integration over-
heads and limit risk. Two of the papers mentioned above [4, 24] are
tightly related to this project.

Besides the evident shallow differences between the proposals
discussed above and ours regarding the extraction method (auto-
matic, semi-automatic, manual), the granularity of the extracted
ontology, the source software artifact, and the target ontology lan-
guage, there are even deeper differences in the aim of the work and
in the followed engineering approach.

e Aim. We implemented a flexible and customizable framework
for extracting OWL ontologies from Java libraries. Concerns
about the library features that the extracted OWL ontology will
represent and about the final application where it will be em-
ployed are left to the user of our framework. By extending the

2010/5/9

Year | Authors Meth.,, Gran, From To For
1997 | Welty [25] M Instr. | SmallTalk code CLASSIC [5] Program understanding and maintainance
1999 Yang, Cui, O’Brien A API | Procedural code (runn. ex. COBOL) | RWSL [27] Program'understandlng and legacy system
[26] engineering
2004 | Sabou [14] SA | API | Java, Javadoc RDF.S, owg, | Building domain ontologies from APIs that
target the same domain
2005 | Jin, Cordy [11] M Serv. | Services offered by SW tools English Re—‘engm.eerlhng tools to share services and
assist maintainers
Zhang, Witte, Rilling, Source code and documentation of . .
2006 Haarslev [29] SA API Java-like lang. (runn. ex. Java) OWL Program understanding and maintenance
2006 | Bontcheva, Sabou [4] A API Multiple sources (sour_ce code, soft- OWL Software artifacts maintenance and re-use
ware manuals, discussion forums)
2007 Zhou, Kang, Chen, M API | Procedural code (runn. ex. C) OWL Software migration
Yang [30]
2008 It;{eer?e’r [TES Wechsel- SA API | Documentation of the ERP software | OWL ERP software documentation annotation
Ratiu, Feilkas, Jiirjens Java-like code (runn. ex. Java, . Building domain ontologies from APIs that
2008 [13] A API .NET, Eclipse) RDF-like target the same domain
Wang, Gibbins, Z model and languages for which “Z Transitioning legacy applications to se-
2008 Payne, Saleh, Li [24] A API model extractors’ exist OWL mantic Web Services
Ancona. Mascardi Providing a customizable framework for
8 N + g
2010 Pavarino A APL | Java code, bytecode OWL machine-readable API documentation

Meth.: ontology extraction method (M, manual; SA, semiautomatic; A, automatic).
Gran.: granularity level of the created ontology (instr, the ontology represents each single instruction in a piece of code; serv., service offered by a software

application; API, Application Programming Interface).

From: types of the documents from which the ontology is extracted; when a running example is provided by the referenced paper, we report the running

example language (runn. ex.) .
To: format of the extracted ontology.
For: purpose of the system.

1 Bytecode can be used as an input to our framework if Classdoc is used instead of Javadoc, and with the same limitations that hold for the Classdoc usage.

Table 7. Systems that extract ontologies form software artifacts

basic Semlet and implementing the Extractor interface that the
framework provides, users can easily implement their own on-
tology extractor, and decide which details of the library should
be documented. All the proposal reviewed in this section are in-
stead driven by very specific goals and application constraints,
and hard-wire the ontology extraction method in the imple-
mented or suggested algorithm.

Reuse of results achieved inside the Java community. Coher-
ently with our aim, we developed a framework easy to maintain
and to evolve thanks to the reuse of widely adopted open-source
Java libraries and tools (Javadoc, Doclet, and Jena).

Reuse of results achieved inside the ontology community.
Names of the ontology concepts and properties that we gen-
erate are the class and method names as they appear in the
source code, whereas in most proposals mentioned above, they
are meaningful words derived by means of a natural language
processing stage from the names of source code entities.

As far as the last point is concerned, our choice is intentional
and can be explained by comparing the proposal by Ratiu, Feilkas,
and Jiirjens to ours. In that paper, the authors take many APIs as
input and generate one ontology whose concepts match the main
concepts available in all the APIs. Ratiu et al. 1) extract one graph
from each API, where the labels of graph nodes are the strings
that appear in the API and 2) implement from scratch an ad-hoc
graph matching algorithm that takes names and graph structure into
account, for generating a single ontology from many graphs. The
graph matching algorithm uses a string-based similarity measure
for understanding in which cases two nodes of two graphs represent
the same concept, and also exploits structural similarity between
graphs.

Let us suppose that a programmer wants to use our framework
for reaching the same goal. She should 1) use our framework for
extracting one ontology from each API, where the labels of the
ontology elements are just the strings that appear in the API, and 2)
use one of the hundreds of available ontology matching algorithms
[7] for generating the resulting merged ontology.

We claim that our approach is much more flexible that Ratiu et
al.’s one: according to the reference web site for ontology match-
ing projects, http://www.ontologymatching.org/, almost 70
papers on ontology matching algorithms were published in con-
ferences and journals only in 2009 and 2010, and more than 30
systems are available to the research community. Among those on-
tology matching algorithms and systems, any researcher can find
the right solution for her needs, from algorithms that use simple
string-based approaches, to those that look at ontology concepts as
pieces of information and hence exploit natural language process-
ing techniques and WordNet to cope with their semantics, to those
that look at the ontology structure induced by the isA relation, to
those that exploit DL reasoners for checking the matching consis-
tency, and many others.

Given this bunch of choice, we think that extracting a raw
ontology from the API and deferring the ontology matching to a
successive stage is a winning choice in order to take advantage
of the more and more valuable results that the ontology matching
community is producing.

Similar considerations hold in case the extracted ontology
should be used for other purposes: ontology merging and fusion
methods [6, 12] could be used to help creating a unified library
from different existing ones whereas multilingual ontology map-
ping [16] could be exploited to suggest correspondences between
classes and methods labeled using different languages. Due to the
liveliness of the research in the ontology field, it is likely to find

2010/5/9

some already implemented software that meets the user’s require-
ments.

Because of the promising and still almost unexplored scenarios
that ontology-based documentation opens, we hope that our step in
this direction may be the first one of a long and profitable journey:
the main future development of our research work will consist
in extending and consolidating our working prototype in order to
make it a fully-fledged framework suitable for the needs of a large
community of users.

References

[1] K. Arnold and J. Gosling. The Java™ Programming Language, Third
Edition. Addison-Wesley, 2000.

[2] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F.
Patel-Schneider, editors. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

[3] T. Berners-Lee. Semantic Web - XML2000, 2000. http://www.w3.
org/2000/Talks/1206-xm12k-tbl/s1lide10-0.html.

[4] K. Bontcheva and M. Sabou. Learning ontologies from software
artifacts: Exploring and combining multiple sources. In 2nd Inter-
national Workshop on Semantic Web Enabled Software Engineering,
SWESE’06, Proceedings, 2006.

[5] R. J. Brachman, D. L. McGuinness, P. F. Patel-Schneider, L. A.
Resnick, and A. Borgida. Living with CLASSIC: When and how to
use a KL-ONE-like language. In Principles of Semantic Networks,
pages 401-456. Morgan Kaufmann, 1991.

[6] D. Dou, D. Mcdermott, and P. Qi. Ontology translation by ontology
merging and automated reasoning. In EKAW Workshop on Ontologies
for Multi-Agent Systems, EKAW’02, Proceedings, pages 3—18, 2002.

[7] J. Euzenat and P. Shvaiko. Ontology Matching. Springer, 2007.

[8] E. Gamma, R. Helm, R. E. Johnson, and J. M. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional Computing Series. Addison-Wesley, 1995.

[9] T. Gruber. Definition of ontology. In Encyclopedia of Database
Systems. Springer, 2008. To appear.

[10] M. Hepp and A. Wechselberger. OntonaviERP: Ontology-supported
navigation in ERP software documentation. In A. P. Sheth, S. Staab,
M. Dean, M. Paolucci, D. Maynard, T. W. Finin, and K. Thirunarayan,
editors, 7th International Semantic Web Conference, ISWC 2008, Pro-
ceedings, volume 5318 of LNCS, pages 764—776. Springer, 2008.

D. Jin and J. R. Cordy. Ontology-based software analysis and reengi-
neering tool integration: The OASIS service-sharing methodology. In
21st IEEE International Conference on Software Maintenance, ICSM
2005, Proceedings, pages 613—-616. IEEE Computer Society, 2005.

[12] N. FE. Noy and M. A. Musen. PROMPT: Algorithm and tool for auto-
mated ontology merging and alignment. In 7th National Conference
on Artificial Intelligence and 12th Conference on on Innovative Appli-
cations of Artificial Intelligence, AAAI/IAAI 2000, Proceedings, pages
450-455. AAAI Press / The MIT Press, 2000.

[13] D. Ratiu, M. Feilkas, and J. Jiirjens. Extracting domain ontologies
from domain specific APIs. In 12th European Conference on Software
Maintenance and Reengineering, CSMR 2008, Proceedings, pages
203-212. IEEE, 2008.

[14] M. Sabou. From software APIs to web service ontologies: A semi-
automatic extraction method. In S. A. Mcllraith, D. Plexousakis, and
F. van Harmelen, editors, 3rd International Semantic Web Conference,
ISWC 2004, Proceedings, volume 3298 of LNCS, pages 410-424.
Springer, 2004.

[15] J. M. Spivey. The Z notation: a reference manual. Prentice-Hall, Inc.,
1989.

[16] C. Trojahn, P. Quaresma, and R. Vieira. A framework for multilin-
gual ontology mapping. In N. Calzolari, K. Choukri, B. Maegaard,
J. Mariani, J. Odjik, S. Piperidis, and D. Tapias, editors, 6th Inter-
national Language Resources and Evaluation, LREC’08, Proceed-
ings. European Language Resources Association (ELRA), may 2008.
http://www.Irec-conf.org/proceedings/lrec2008/.

[11

[17] W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition) - W3C
Recommendation 26 November 2008, 2004.

[18] W3C. Namespaces in XML 1.0 (Second Edition) — W3C Recommen-
dation 16 August 2006, 2004.

[19] W3C. OWL Web Ontology Language Overview — W3C Recommen-
dation 10 February 2004, 2004.

[20] W3C. RDF Vocabulary Description Language 1.0: RDF Schema —
W3C Recommendation 10 February 2004, 2004.

[21] W3C. RDF/XML Syntax Specification (Revised) — W3C Recommen-
dation 10 February 2004, 2004.

[22] W3C. SPARQL Query Language for RDF — W3C Recommendation
15 January 2008, 2008.

[23] W3C. OWL 2 Web Ontology Language Document Overview — W3C
Recommendation 27 October 2009, 2009.

[24] H. H. Wang, N. Gibbins, T. Payne, A. Saleh, and Y. Li. Transitioning
applications to semantic web services: An automated formal approach.
International Journal of Interoperability in Business Information Sys-
tems, IBIS, 2008.

[25] C. A. Welty. Augmenting abstract syntax trees for program under-
standing. In International Conference on Automated Software Engi-
neering, ASE’97, Proceedings, pages 126—133. IEEE Computer Soci-
ety, 1997.

[26] H. Yang, Z. Cui, and P. O’Brien. Extracting ontologies from legacy
systems for understanding and re-engineering. In 23rd International
Computer Software and Applications Conference, COMPSAC’99,
Proceedings, pages 21-26. IEEE Computer Society, 1999.

[27] H. Yang, X. Liu, and H. Zedan. Tackling the abstraction problem for
reverse engineering in a system re-engineering approach. In Interna-
tional Conference on Software Maintenance, ICSM’98, Proceedings,
pages 284-293. IEEE Computer Society, 1998.

[28] H. Yang, P. Luker, and W. C. Chu. Measuring abstractness for reverse
engineering in a re-engineering tool. In International Conference
on Software Maintenance, ICSM’97, Proceedings. IEEE Computer
Society, 1997.

[29] Y. Zhang, R. Witte, J. Rilling, and V. Haarslev. Ontology-based pro-
gram comprehension tool supporting website architectural evolution.
In 8th IEEE International Symposium on Web Site Evolution, WSE’06,
Proceedings, pages 41-49. IEEE Computer Society, 2006.

[30] H. Zhou, J. Kang, F. Chen, and H. Yang. OPTIMA: An Ontology-
based PlaTform-speclfic software Migration Approach. In 7th In-
ternational Conference on Quality Software, QSIC’07, Proceedings,
pages 143-152. IEEE Computer Society, 2007.

2010/5/9

Class hierarchy: AbstractCollection DEEE OWLViz: AbstractCollection =]

(%] 3] s (o] A v]Es[o] A x/E [<[=] [=][=]

¥-@Thing _ =/ [Asserted model [inferred madel |
© AWTEventListener :

© AWTEventMulticaster ml
O AWTKeyStroke
AbstractCollection
@ AbstractExecutorService
@ AbstractinterruptibleChannel
AbstractMap
© AbstractMap.SimpleEntry
© AbstractMap.SimplelmmutableEn
© AbstractOwnableSynchronizer
@ AbstractQueuedLongSynchroniz
@ AbstractQueuedSynchronizer.Co
@ AbstractStringBuilder
@ AccessControlContext
@ AccessController
@ AccessibleObject
Dacl
- AclEntry
@ Action
ActionListener
@ ActivationDesc
@ ActivationGroupDesc g
@ ActivationGroupDesc.CommandE e
@ ActivationGrouplD
- @ ActivationID
Activationinstantiator
@ ActivationMonitor
@ ActivationSystem
- @ Activator

@ ActiveEvent

@ Adjustable
AdjustmentListener
@ Aadler3z
@ AffineTransform
AffineTransformOp —

.. £ Alnnri atarCanaratar |7

4l o 1 Twl

 LinkedBlockingDeque

o~ ~
D

bstractCollection

™

\f’ﬁ;fm;' B

Figure 3. Part of the Java ontology generated by the PlainExtractor from the core Java API 1.6 library

10 2010/5/9

