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Abstract. This paper proposes a solution to the problem of semi-au-
tomatic porting of Java programs. In particular, our work aims at the
design of tools able to aid users to adapt Java code in a type-safe way,
when an application has to migrate to new libraries which are not fully
compatible with the legacy ones.
To achieve this, we propose an approach based on an integration of the
two type-theoretic notions of subtyping and type isomorphism with on-
tology matching. While the former notions are needed to ensure flexible
adaptation in the presence of type-safety, the latter supports the user to
preserve the semantics of the program to be adapted.

1 Introduction

Migrating a Java program p that uses library l into a corresponding program p′

that uses library l′ in a semi-automatic way is an open problem for which no
satisfying solution has been found yet.

One aspect that must be considered while facing this problem, and that
makes it hard to solve, is that migration must be type-safe. Replacing method
m defined by l and used in program p by m′ defined in l′, thus leading to a new
program p′, is a legitimate operation only if no type inconsistencies are raised by
this replacement. If the functionality of m and m′ is the same no type problems
will arise. But what should it happen in case of a difference in the type returned
by m and m′, or in the type of some of their parameters, or in their number and
order? The most conservative approach would be to give up, and to consider the
migration possible only if elements of l used by p have corresponding elements
in l′ whose type is identical or isomorphic.

However, this is a very restrictive choice with little motivation: type identity
or isomorphism between elements of l and the corresponding elements of l′ may
be relaxed by requiring that the type τ ′ of e′ in l′ is a subtype of the type τ of e
in l, for a suitable definition of the subtype relation. This requirement allows a
type-safe replacement of e in p with e′ in p′. In [9], R. Di Cosmo, F. Pottier and
D. Rémy propose an efficient decision algorithm for subtyping recursive types
modulo associative commutative products that demonstrates the feasibility of
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using subtyping instead of type isomorphism, when translating a program into
another.

The limitation of their work, that we want to overcome by introducing on-
tologies in our system, is that they abstract from the names of classes, methods
and attributes and just consider safe matching between types. There may be
a large number of type correspondences < τ , τ ′ > that preserve type-safety,
making their identification of little help to a user that wants to semi-automatize
the program translation process and needs correspondences between methods
and attributes names, and not just between types. We claim that re-introducing
names of classes, methods and attributes into the algorithm that matches li-
braries’ elements will help in removing those correspondences that, even if type
safe, are not “semantic-safe”. It will also allow the user to obtain a set of cor-
respondences between names of methods and attributes. These correspondences
are needed during the translation process where type correspondences are not
enough.

Assume that we would like to port p from l to l′. For simplicity, the problem
can be reduced to the following simple example scenario: p is the program

AttributeList atts;
String name = atts.getName (0);

and l is defined as follows:

c la s s AttributeList extends Object {
String getName( int i){...}

}

where Object and String are the usual predefined classes defined in the standard
package java.lang.

The library l′ to which p has to be ported contains the following class decla-
rations:

c la s s Attributes extends Object {
int getLength (){...}
String getLocalName( int index ){...}
String getAttributeType( int index ){...}

}

The approach discussed in [9] would tell us that the structural types of
AttributeList and Attributes are compliant because of a combination of iso-
morphism and subtyping. Or, in other words, would tell us that the correspon-
dence <AttributeList, Attributes> is type safe. This is a useful information,
but it does not help us in automatically translating p into p′ in order to use l′.

What we would like to have, instead, is the set of correspondences {<Attribu-
teList, Attributes>, <getName, getLocalName>}. This set cannot be ob-
tained by just checking the type compliance of String getName(int) with int
getLength(), String getLocalName(int), and String getAttributeType(int).

In fact, while getLength is not type compliant with getName, both getLocal-
Name and getAttributeType are. However, we expect that the right correspon-
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dence is that between getName and getLocalName, due to the intended semantics
of their names. And it is here that ontologies come into play.

According to T. Gruber, [12],

In the context of computer and information sciences, an ontology de-
fines a set of representational primitives with which to model a domain
of knowledge or discourse. The representational primitives are typically
classes (or sets), attributes (or properties), and relationships (or re-
lations among class members). The definitions of the representational
primitives include information about their meaning and constraints on
their logically consistent application.

Assuming that an “ontology matching algorithm” can devise the correspon-
dences between ontology elements (classes, properties, relationships, individuals)
that better respect their intended semantics, and assuming that from a Java li-
brary, an ontology carrying the intended semantics of the library elements can
be extracted, we propose to extract ontologies o and o′ from l and l′, and to run
a matching algorithm on them.

The output of the type and ontology matching algorithms will be combined
in order to produce a type- and semantic- safe matching relation. A human user
will disambiguate multiple possible matchings in order to identify a matching
function which will finally be used to translate p into p′.

Continuing the example above, p′ would be

Attributes atts;
String name = atts.getLocalName (0);

where Attributes = match(AttributeList) and getLocalName = match(get-
Name). Thanks to the match function, the translation from p to p′ can be fully
automatized.

The aim of this paper is to discuss a system that exploits type and ontology
matching techniques to make automatic migration of Java programs possible.
The paper is organized in the following way: Section 2 describes the architecture
of our system and Sections from 3 to 7 describe its components in detail. Section
8 concludes and highlights future directions of work.

2 Architecture

Our system, depicted in Figure 1, takes libraries l, l′ as input and returns amatch
function between their elements as output, if possible. The match function can
in turn be given in input to the translation module which, if fed with a program
p, returns a translation p′ of p driven by match.

The match function is obtained in the following way: ontologies o and o′ are
extracted from libraries l and l′ respectively. In a similar way, collections of types
t and t′ are extracted from l and l′.

An ontology matching algorithm is run on o and o′ to get the alignment
(namely, the set of correspondences) a, and a type matching algorithm is run
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Fig. 1. The architecture of our system.

on t and t′ to get tm. The type match tm is used for selecting only those corre-
spondences in a that are type safe. We name this activity “filtering”.

Filtering still does not ensure that we obtain a set of correspondences that
is a function: it might still be a relation, because more than one correspondence
involving e ∈ l is both type- and semantic-safe.

The user is involved in the loop for making the relation output by the filtering
module turn out into a match function: if more correspondences are possible for
an element e ∈ l, the user will be asked to make his/her choice among them.
Another information must be integrated into the match function, namely, for
any method m ∈ l, which injection must be applied on its parameters p1, ..., pn
in order to obtain the tuple p1, ..., pk, k ≤ n whose ordered elements can be used
as parameters for m′ ∈ l′, where m′ = match(m). Also in this case, the user
may be required to make a choice if more injections are possible. For example
method m1(c1, int, String) in l might be type- and semantic-safely replaced
by m2(int, String, c1) in l, but a permutation of its parameters is required
when actually translating p that uses m into p′ that uses m′.

The match function (which is indeed a family of functions working either on
elements of l, or on tuples of elements of l) is needed by the automatic translation
module, the last component of our system.

Of course, it might also happen that the output of the filtering module cannot
become a function because there are some elements in l for which no correspond-
ing element in l′ has been found. The user will be involved even in this case:
he/she will be informed that no type and semantic-safe matching was possible
for some elements, and the result of the filtering stage will be shown to him/her.
Even if no automatic translation of p will be possible due to the impossibility to
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generate a match function, the user might find the result of the filtering module
useful for driving his/her hand-made translation.

If, thanks to the human intervention, a match function has been defined, the
automatic translation of p into p′ can take place leading to the desired output,
namely program p′.

The system consists of seven modules implementing the activities sketched
above: ontology and type extraction, ontology and type matching, filtering, as-
sisted extraction of a match function, and translation of p into p′ guided by
match.

In the sequel of this section, each activity is shortly presented.

Ontology extraction

The ontology extractor module takes one Java library as input and returns an
ontology that models the structure of the library in term of its classes, their
subclass relationships, their methods and attributes. The ontology extractor,
described in Section 3, is run on both l and l′ in order to obtain o and o′

respectively.

Type extraction

The type extractor module takes one Java library as input and returns a collec-
tion of types following S. Jha, J. Palsberg and T. Zhao’s proposal [17, 14]. Since
Java classes belonging to a library may mutually refer to one another, types in
the collection may be mutually recursive. In our system, the type extractor is
run on both l and l′ in order to extract the corresponding collections of types, t
and t′ respectively. We shortly discuss it in Section 5.

Ontology matching

The ontology matching module will return an alignment (namely, a set of corre-
spondences between elements) of the two ontologies taken in input. The compo-
nent devoted to ontology matching will be responsible for the “semantic-safety”
of the matching between elements of l and elements of l′; it will be fed with the
ontologies o and o′ extracted from l and l′ respectively and will return an ontol-
ogy alignment a between them. As we will discuss in Section 4, many ontology
matching algorithms and tools exists: we will integrate in our system the most
suitable one for our purposes, adapting it if needed.

Type matching

Once the collections of types induced by l and l′ have been extracted, a type-safe
matching between them must be computed. The algorithm we will use for this
activity is inspired by that proposed by R. Di Cosmo, F. Pottier and D. Rémy
in [9] and is briefly summarized in Section 5. It ensures the type-safety of the
matching.
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Filtering

In order to find a matching between the elements of l and those of l′ that is
both type-safe and that takes the semantics of names of methods, attributes
and classes into account, as well as their structural relationships, we need to
filter elements of a by taking the type-safe correspondences contained in tm into
account.

Extraction of the “match” function (assisted by the user)

In the general case the output of the filtering algorithm, tsa (for type safe align-
ment), will not be deterministic enough to be used for translating a program
p that uses l into the corresponding program p′ that uses l′. There might be
elements of l that can be matched to more than one element in l′ taking both
types and semantics into account, and no algorithm could automatically deter-
mine the right choice. Once most of the work has been done and the subset tsa
of elements(l) × elements(l′) has been generated, the user must enter in the
loop in order to complete the definition of the match function that will drive the
translation from p to p′. The task of the user mainly consists in making choices
among a set of possibilities provided by the system, in order to constrain a rela-
tion to become a function. The user is also asked to define the right operations
to be performed on parameters of m ∈ elements(l) in order to obtain a tuple of
parameters suitable for the corresponding method m′ ∈ elements(l′).

Of course there might be elements of l for which no type safe matching into
a corresponding element of l′ exist, and this would mean that tsa could never
become a function, and that the system has nothing left to do. The user can
benefit from knowing tsa, but he/she has to perform the translation from p to
p′ by hand.

Section 6 provides some details on both filtering and user-driven extraction
of the match function.

Translation

In case a the match function has successfully been extracted, the translator takes
a function match and a program p and returns a program p′ following the rules
defined in Section 7. The program p to migrate is given in input to the very last
component of the system. The matching function match only depends on l and l′:
it can be reused for any p developed for using l which must be updated for using
l′. The alternative of considering p from the earliest phases of the process has
been taken into consideration because of some advantages it would give. In fact,
knowing p since the beginning would allow the system to limit the extraction
and matching activities only to those elements of the library that are actually
used by p, as well as those that have some dependency relation with them. This
would restrict the search space, but would also cause a loss of generality of the
function match, which should become a matchp function depending on p and
might be used only for translating p and programs that use less elements of l
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than p. A program p2 that uses only one more element from l w.r.t p would
require the generation of a new matchp2 function.

3 Extraction of an OWL ontology from a Java library

This section describes an algorithm for automatically extracting an OWL ontol-
ogy from a Java library. It first introduces the elements of the OWL language
that we use for representing ontologies (Section 3.1) and then describes the ex-
traction mechanism (Section 3.2).

3.1 OWL and the Semantic Web

OWL stands at the topmost layer of the standardized technologies in the Se-
mantic Web Stack (see Figure 2). The Semantic Web Stack was introduced for
the first time by T. Berners-Lee, Director of the World Wide Web Consortium
(W3C), in a keynote session at XML 2000 [2]. It represents the hierarchy of
Semantic Web languages, where each layer grounds on the layers below.

Fig. 2. The Semantic Web Stack [2].

The bottom layers contain hypertext web technologies: Internationalized Re-
source Identifier (IRI) is a generalization of URI and provides means for uniquely
identifying semantic web resources; Unicode serves to represent and manipulate
text in many languages; XML is a markup language that enables creation of
documents composed of structured data [22]; XML Namespaces provide a way
to use markups from more sources [23].
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Middle layers contain technologies standardized by W3C to enable building
semantic web applications.

– Resource Description Framework (RDF, [26]) allows to create statements
about resources in form of triples.

– RDF Schema (RDFS, [25]) provides basic vocabulary for RDF and allows,
for example, to create hierarchies of classes and properties.

– Web Ontology Language (OWL, [24]) extends RDFS by adding more ad-
vanced constructs to describe semantics of RDF statements; since it is based
on description logic [1], it empowers the semantic web with reasoning capa-
bilities.
OWL provides three increasingly expressive sublanguages: OWL Lite, OWL
DL, and OWL Full.
• OWL Lite supports those users primarily needing a classification hier-

archy and simple constraints. It has has a lower formal complexity than
OWL DL.

• OWL DL gives the maximum expressiveness while retaining computa-
tional completeness (all conclusions are guaranteed to be computable)
and decidability (all computations will finish in finite time). OWL DL
includes all OWL language constructs, but they can be used only un-
der certain restrictions (for example, a class cannot be an instance of
another class). The “OWL DL” name is due to its correspondence with
description logics.

• OWL Full gives the maximum expressiveness and the syntactic freedom
of RDF with no computational guarantees.

Each of these sublanguages is an extension of its simpler predecessor, both
in what can be legally expressed and in what can be validly concluded.

– SPARQL is a RDF query language and can be used to query any RDF-based
data, including statements involving RDFS and OWL.

Top layers contain technologies that are not yet standardized or contain just
ideas what should be implemented in order to realize Semantic Web. They are
out of the scope of this paper.

In order to explain how our extraction algorithm works, we need to provide
some details on the subset of OWL that we will use for representing ontologies
corresponding to Java libraries. We have designed the extraction in order to
make this subset as small as possible. In particular, it is a proper subset of OWL
Lite.

Data Types. Data Types used in OWL ontologies are those defined by the XML
Schema specification1:

– decimal represents the subset of the real numbers, which can be represented
by decimal numerals; integer is derived from decimal by fixing the number of

1 http://www.w3.org/TR/xmlschema-2/
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decimal digits to 0, and disallowing the trailing decimal point. This results in
the standard mathematical concept of the integer numbers. Neither decimal
nor integer have a direct counterpart in Java primitive data types.

– long is derived from integer by setting the maximum value to be 9,223,372,036,
854,775,807 and the minimum one to be -9,223,372,036,854,775,808 (both in-
cluded); it corresponds to the long Java primitive data type.

– int is derived from long by setting the maximum value to be 2,147,483,647
and the minimum value to be -2,147,483,648 (both included); it corresponds
to the int Java primitive data type.

– short is derived from int by setting the minimum admissible value to -32,768
and the maximum admissible value to 32,767 (both included); it corresponds
to the short Java primitive data type.

– byte is a short ranging between -128 and 127 (both included); it corresponds
to the byte Java primitive data type.

– float is patterned after the IEEE single-precision 32-bit floating point type;
it corresponds to the float Java primitive data type.

– double is patterned after the IEEE double-precision 64-bit floating point type
; it corresponds to the double Java primitive data type.

– boolean has the value space required to support the mathematical concept of
binary-valued logic: {true, false}; it corresponds to the boolean Java primitive
data type.

OWL primitive data types do not include char, which is the only Java primi-
tive data type with no direct correspondence. Instead, they include for example
string, date, time that correspond to some extent to the String, Date, Time
classes provided by java.lang and java.sql packages, respectively.

Since OWL provides no data type corresponding to void, we assume that an
OWL class named Void is defined in a namespace that we abbreviate with myns,
and that it corresponds to the void type specifier in Java.

Namespace. Namespaces are inherited by OWL from XML. XML namespaces
provide a simple method for qualifying element and attribute names used in XML
documents by associating them with namespaces identified by URI references.
A standard initial component of an ontology includes a set of XML namespace
declarations that provide a means to unambiguously interpret identifiers and
make the rest of the ontology presentation much more readable.

Class. A class defines a group of individuals that belong together because
they share some common properties. The OWL class element, identified by
owl:Class, is a subclass of the RDFS class element, rdfs:Class. The ratio-
nale for having a separate OWL class construct lies in the restrictions on OWL
DL (and thus also on OWL Lite), which imply that not all RDFS classes are
legal OWL DL classes.

Subclass. Class hierarchies may be created by making one or more statements
that a class is a subclass of another class. This can be achieved by using the
rdfs:subClassOf element defined by RDFS.
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Property. Properties have originally being defined in RDF and can be used to
state relationships between individuals (object properties, owl:ObjectProperty)
or from individuals to data values (data type properties, owl:DatatypeProperty).
Both object and data type OWL properties are subclasses of the RDF class
rdf:Property.

3.2 From a Java library to an OWL ontology

The algorithm that we describe in this section has been designed for working
under the assumption that names of methods and attributes of the classes in
a class library are all different. The absence of name clashes between classes is
given for granted, since a class library cannot include two classes with the same
name. Even under the assumption that different classes with no inheritance
relation among them define different methods, a preprocessing stage must be
performed on the library in order to deal with method overriding. In fact, we
cannot prevent subclasses from overriding methods defined in superclasses, but
this leads to a violation of our assumption on disjoint names of methods. We
deal with this situation by just removing the overridden method from al the
subclasses that override it. This gives us two advantages:

1. the assumption under which the algorithm works is respected;
2. we avoid that a method m defined by class c may be matched to m′, and

the same method m overridden by a subclass of c is matched to m′′ 6= m′.

The basic ideas underlying the extraction algorithm are:

– The Java library l corresponds to a single OWL ontology lo named after the
library name and defined in a namespace lns.

– Java classes belonging to l correspond to OWL classes belonging to lo; the
identifier of the OWL class coincides with the name of the Java class it
corresponds to.

– If the Java class sc extends c, then the OWL class corresponding to c (that
we name owl(c) for our convenience) is defined as a subclass of the OWL
class corresponding to sc.

– Since properties of an OWL class are inherited by its subclasses, the Java
methods and attributes of class c are translated into OWL properties with
identifier identical to their name and domain owl(c). This allows them to be
inherited by owl(c)’ subclasses for free. The range of a property correspond-
ing to a Java attribute is defined as the attribute’s type; that of a property
corresponding to a method is a pre-defined OWL class named myns:MethodF.

Our assumption of absence of clash names is very strong, but it allows us to
describe the basic ideas underlying the algorithm in a clear and understandable
way, discarding the technical details raised by name clashes. The reason for this
assumption is that we translate all the elements (classes, attributes, methods)
of the class library into corresponding elements of a unique OWL ontology.
Unfortunately, an OWL ontology cannot include properties with the same name,
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even if their domain and range are different as it should happen with methods,
parameters and attributes with the same name but different functionality.

In the real case, where name clashes between methods, parameters, and at-
tributes may occur, two solutions have been devised.

1. Instead of translating the entire Java library into an OWL ontology, each
Java class c should be translated into an OWL ontology o defined within a
namespace ns created starting from c in a way that ensures its uniqueness.
Methods and attributes of class c, as well as the methods’ parameters, should
be translated into properties of the ontology o within the namespace ns. The
usage of different ontologies defined in different namespaces should allow
us to identify each element of a Java class in a unique way, and thus to
overcome the problem of name clashes (using the same identifier in different
namespaces is, of course, admitted). The ontology corresponding to the Java
class c should import all the ontologies corresponding to translations of Java
classes referenced in c, and thus a pre-processing phase should be added
to the extraction algorithm. The Java library l should be translated into
an ontology that just imports all the ontologies corresponding to the Java
classes belonging to l.
The main drawback of this approach, besides a much more complex extrac-
tion algorithm, is that not all the implemented matching algorithms take
namespaces correctly into account.

2. The Java library should still be translated into a single OWL ontology, but
clashing names should be modified during their translation in order to obtain
an ontology “clash-free”.
Here, the drawback is that the modification of names would result into poorer
performances of the ontology matching algorithms. If, for example, method
m in the library l has been translated into m14 in ontology o because of
a name clash, and method m in library l′ has been translated into m37 in
ontology o′, again because of a name clash, the confidence in the correspon-
dence < m ∈ o,m ∈ o′ > would turn out to be lower than the confidence in
the correspondence < m14 ∈ o,m37 ∈ o′ > for most matching algorithms,
because of the syntactic difference between the two names.

The following paragraphs describe the extraction of the OWL elements start-
ing from the Java library elements and provide examples.

OWL elements corresponding to Java classes

A Java class c that extends no class corresponds to an OWL class c (Table 1).
A Java class sc that extends a class c different from Object corresponds to

an OWL class sc defined as a subclass of c (Table 2).

OWL elements corresponding to attributes of Java classes

An attribute a of class c whose type is a basic type t with a corresponding data
type in XML corresponds to an OWL datatype property whose ID is a, whose
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public class Bike <owl:Class rdf:ID="Bike"/>

Table 1. Java class c that extends no class.

public class MountainBike

extends Bike

<owl:Class rdf:ID="MountainBike">

<rdfs:subClassOf rdf:resource="Bike"/>

</owl:Class>

Table 2. Java class sc that extends class c.

domain is c, and whose range is the XML data type that corresponds to t (Table
3).

Attribute cadence of the class
Bike:

public int cadence;

<owl:DatatypeProperty rdf:ID="cadence">

<rdfs:domain rdf:resource="Bike"/>

<rdfs:range rdf:resource="xsd:int"/>

</owl:DatatypeProperty>

Table 3. Attribute with a basic type.

An attribute a of class c whose type is the class c′ defined in the Java library
corresponds to an OWL object property whose ID is a, whose domain is c, and
whose range is c′ (Table 4).

OWL elements corresponding to methods of Java classes

Since we are not interested in representing the functionality of a method m in the
ontology, we treat methods in the same way as attributes with the only difference
that their range is always an OWL class defined in our namespace, and named
"myns:MethodF". The domain of a method is the OWL class representing the
Java class it belongs to (Table 5).
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Attribute ft of the class Bike:

public BikeFeatr ft;

<owl:ObjectProperty rdf:ID="ft">

<rdfs:domain rdf:resource="Bike"/>

<rdfs:range rdf:resource="BikeFeatr"/>

</owl:ObjectProperty>

Table 4. Attribute with type c.

Methods setFeatr and
getFeatr of the class Bike:

public void setFeatr

(BikeFeatr newFeatr,

String newOwnerName,

int newOwnersNum)

{

...

}

public BikeFeatr getFeatr()

{

...

}

<owl:ObjectProperty rdf:ID="setFeatr">

<rdfs:domain rdf:resource="Bike"/>

<rdfs:range rdf:resource="myns:MethodF"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="getFeatr">

<rdfs:domain rdf:resource="Bike" />

<rdfs:range rdf:resource="myns:MethodF"/>

</owl:ObjectProperty>

Table 5. Methods.

4 Ontology matching algorithms and tools

The ontology matching module of our system will integrate available solutions:
as it will become clear in the sequel of this section, implementing a new ontology
matching algorithm makes no sense since many proposals are around.

However, we will have to carefully choose the algorithm/tool to integrate,
since different algorithms lead to very different results. As an example, some
algorithms do not take the structure of the ontology into account, whereas others
do.

The ontologies that we match have been built in order to have a meaningful
structure: subclasses in the Java library are modeled by subclasses in the on-
tology; membership of methods and attributes to a Java class c is modeled by
setting the range of the properties that represent these methods and attributes
in OWL equal to the OWL class corresponding to c; inheritance of Java meth-
ods and attributes from superclasses comes for free by having defined methods
and attributes as OWL properties. Thus, selecting an algorithm that performs
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a matching that takes the ontology structure into account would be the most
reasonable solution.

The content of this section is based on the recent book “Ontology Matching”
by J. Euzenat and P. Shvaiko, 2007 [11].

Following the terminology proposed there, a correspondence between an en-
tity e belonging to ontology o and an entity e′ belonging to ontology o′ is a
5-tuple < id, e, e′, R, conf > where:

• id is a unique identifier of the correspondence;
• e and e′ are the entities (e.g. properties, classes, individuals) of o and o′

respectively;
• R is a relation such as “equivalence”, “more general”, “disjointness”, “over-

lapping”, holding between the entities e and e′.
• conf is a confidence measure (typically in the [0, 1] range) holding for the

correspondence between the entities e and e′;

An alignment of ontologies o and o′ is a set of correspondences between
entities of o and o′, and a matching process is a function f which takes two
ontologies o and o′, a set of parameters p and a set of oracles and resources r,
and returns an alignment A between o and o′.

Two of the dimensions according to which matching techniques can be clas-
sified are the level (element vs structure) and the way input information is in-
terpreted (syntactic vs external vs semantic).

Level: element vs structure

Element-level matching techniques compute alignments by analyzing entities in
isolation, ignoring their relations with other entities. Structure-level techniques
compute alignments by analyzing how entities appear together in a structure.

Element-level techniques include, among others:

– String-based techniques, that measure the similarity of two entities just look-
ing at the strings (seen as mere sequences of characters) that label them.
They include substring distance, Jaro measure [13], n-gram distance [5],
Levenshtein distance [16], SMOA measure [20].

– Language-based techniques, that consider entity names as words in some
natural language and exploit Natural Language Processing techniques to
measure their similarity.

– Constraint-based techniques, that deal with the internal constraints being
applied to the definitions of entities, such as types, cardinality of attributes,
and keys.

Structure-level techniques include:

– Graph-based techniques that the input ontology as a labeled graph.
– Taxonomy-based techniques, that are also graph algorithms which consider

only the specialization relation.
– Model-based techniques that handle the input based on its semantic interpre-

tation (e.g., model-theoretic semantics). Examples are propositional satisfi-
ability (SAT) and description logics (DL) reasoning techniques.
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Interpretation of input information: syntactic vs external vs semantic

Syntactic techniques interpret the input in function of its sole structure following
some clearly stated algorithm.

External techniques exploit auxiliary (external) resources of a domain and
common knowledge in order to interpret the input.

Semantic techniques use some formal semantics (e.g., model-theoretic seman-
tics) to interpret the input and justify their results. In case of a semantic based
matching system, a further distinction between exact algorithms (that guaran-
tee a discovery of all the possible correspondences) and approximate algorithms
(that tend to be incomplete) may be done.

Implemented matching systems and infrastructures

Many implemented matching systems and algorithms exist. If we just consider
those listed in the “Project” section of the Ontology Matching portal, http:
//www.ontologymatching.org/projects.html, we may count about thirty of
them. These systems and infrastructures are very different one from another.
Many of them have been carefully analyzed and compared in [11], as well as in
previous works by the same authors [19, 18] and by other researchers [8].

Just to cite some very recent systems, HMatch [7, 6] is an automated on-
tology matching system able to handle ontologies specified in OWL. Given two
concepts, HMatch calculates a semantic affinity value as the linear combination
of a linguistic affinity value and a contextual affinity value. For the linguistic
affinity evaluation, HMatch relies on a thesaurus of terms and terminological re-
lationships automatically extracted from the WordNet lexical system. The con-
textual affinity function of HMatch provides a measure of similarity by taking
into account the contextual features of the ontology concepts.

CtxMatch [3, 4] is a sequential system that translates the ontology matching
problem into the logical validity problem and computes logical relations, such as
equivalence, subsumption between concepts and properties.

The Alignment API [10] is an API and implementation for expressing and
sharing ontology alignments. It operates on ontologies implemented in OWL
and uses an RDF-based format for expressing alignments in a uniform way. The
Alignment API offers services for storing, finding, and sharing alignments; piping
alignment algorithms; manipulating (thresholding and hardening); generating
processing output (transformations, axioms, rules); comparing alignments. The
last release, Version 3.5, dates back to October, 21th, 2008.

Finally, AUTOMS-F [21] is a framework implemented as a Java API which
aims to facilitate the rapid development of tools for automatic mapping of on-
tologies by synthesizing several individual ontology mapping methods. Towards
this goal, AUTOMS-F provides a highly extensible and customizable applica-
tion programming interface. AUTOMS [15] is a case study ontology mapping
tool that has been implemented using the AUTOMS-F framework.
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5 Type extraction and matching

In two papers [17, 14] Jha, Palsberg and Zhao observe that a more expressive
notion of structural type equivalence between Java classes and interfaces can be
defined by abstracting record types with products and by allowing isomorphism
of associative and commutative types.

By following this approach, interfaces and classes can be represented as re-
cursive types using n-ary products and arrow types. For instance, the following
class declarations

c la s s C1 {
f l oa t m1(C1 a){...}
int m2 (C2 a){...}

}

and

c la s s C2 {
C1 m3( f l oa t a){...}
C2 m4( f l oa t a){...}

}

can be abstracted by the mutually recursive types C1 = (C1→ float)× (C2→
int) and C2 = (float → C1) × (float → C2), where method names are disre-
garded. Our type extraction module performs the extraction of mutually recur-
sive types in a way similar as shown by the above example. However, product
types corresponding to collection of methods and fields (that is, classes and in-
terfaces) are distinguished from product types corresponding to parameters of
methods, for the technical reason explained below.

Type isomorphism based on commutativity and associativity of products can
be extended with the usual notion of structural subtyping, as done by Di Cosmo
[9], yielding the more permissive notion of AC-equality, which allows matching
of a class with another having more methods and fields.

To filter the outcome of the ontology matching algorithm, in order to guar-
antee the type safety of the translation, the general algorithm proposed by Di
Cosmo et al. can be reused. It exhibits a reasonable time complexity and can be
easily adapted to our notion of subtyping.

As already mentioned, we need to distinguish between two different kinds of
products, one for encoding classes and the other for parameters. Subtyping for
classes is the usual width and depth subtyping, whereas subtyping for parameters
is non standard. To see this, let us consider the usual rules for subtyping between
arrow types: τ1 → τ2 is a subtype of τ ′

1 → τ ′
2 iff τ ′

1 is a subtype of τ1 and τ2
is a subtype of τ ′

2. However, the translation defined in Section 7 works properly
only if a method of type τ1 × . . . × τn → τ is mapped into a method of type
τ ′
1 × . . .× τ ′

m → τ ′ s.t. τ ′ is a subtype of τ , and there exists an injection π from
{1, . . . ,m} to {1, . . . , n} (hence m ≤ n) s.t. for all i = 1, . . . ,m τ ′

i is a subtype
of τπ(i).
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The output of the type matching algorithm is a set of couples of classes
< c, c′ > such that c ∈ l, c′ ∈ l, and the type of c′ is a subtype of the type of c
according to the definition above.

6 Filtering and extraction of the “match” function

The output of the ontology matching algorithm is an alignment a, namely, ac-
cording to the definition given in Section 4, a set of a 5-tuples< id, e, e′, R, conf >.
Since the semantic relation we are mainly interested in is equivalence, and since
we do not need to identify tuples in a unique way, we may rework the align-
ment in order to discard 5-tuples where R is different from equivalence, and we
may transform the tuples obtained in this way into triples by discarding id and
R. Also, we may discard those triples whose confidence is lower than a certain
threshold th decided by the user. Let us name ref(a) the refined alignment
obtained in this way.

Elements e and e′ appearing in triples of ref(a) belong to o and o′ respec-
tively, and, because of the way o and o′ have been built, they may be either class
names, or attribute names, or method names of elements of l and l′, respectively.

On the other hand, the output tm of the type matching algorithm is a set
of couples < c, c′ > such that c ∈ l and c′ ∈ l′, and c′ ≤ c according to the
AC-subtyping relation defined in [9] and shortly summarized in Section 5.

In order to filter the triples < e, e′, conf >∈ ref(a) to discard those not
type-safe, the filtering module implements the following algorithm:

Filtering algorithm

tsa = ∅

begin
for each < e, e′, conf >∈ ref(a)
if < e, e′ >∈ tm (that is, e, e′ are classes) then tsa = tsa∪ < e, e′, conf >
else if e, e′ are names of attributes

begin
retrieve the type τ of e
retrieve the type τ ′ of e′

if τ ′ ≤ τ then tsa = tsa ∪ < e, e′, conf >
end

else if e, e′ are names of methods
begin
retrieve the type of e, τ1 × . . .× τn → τ
retrieve the type of e′, τ ′

1 × . . .× τ ′
m → τ ′

if τ ′ ≤ τ and there exists an injection π:{1, . . . ,m} → {1, . . . , n} s.t. for
all i = 1, . . . ,m τ ′

i ≤ τπ(i) then tsa = tsa∪ < e, e′, conf >
end

end

17



After the filtering algorithm has completed its execution, tsa contains a type-
safe subset of the correspondences initially contained in a.

Two situations may take place: either the domain of tsa (namely, the set of
e such that < e, e′, conf >∈ tsa) contains all the elements of l, or not.

In the first case it is possible to extract a function match : elements(l) →
elements(l′) from tsa, whereas in the second case this is not possible. We have
just discussed this second case in Section 2: the user must perform the translation
from p to p′ by hand exploiting the information contained in tsa if useful, but
our system cannot help him/her any longer.

In the first case, instead, the user is required to define all the elements of
the match that will make the automatic translation from p to p′ possible; the
first activity of the algorithm consists in asking the user to make some choices
on elements of tsa:

Extraction of the “match” function

match = ∅
if element e ∈ elements(l) appears only in one triple < e, e′, conf >∈ tsa,
no choice is required and match = match∪ < e, e′ >, else
for each e ∈ elements(l) such that there are more e′ ∈ elements(l′) such
that < e, e′, conf >∈ tsa,

begin
reorder those < e, e′, conf > in such a way that triples with higher
confidence come first
show them to the user following this order and ask the user to choose
one
in case the choice involves an e′ that already appears in the range of
match, inform the user that this choice would lead to the loss of injec-
tivity of match
if < e, e′, conf > is the final choice of the user, then match = match∪ <
e, e′ >,

end

The second activity of the algorithm consists in defining the injections that
match should use for making parameters on m and m′ compliant. If class c is
declared in l and has a method with n parameters, whereas m′ = match(m) has
k parameters, the user must choose the right πc,m that denotes the injection
from {1, . . . , k} to {1, . . . , n} (hence k ≤ n), specifying how the parameters of
method m declared in c are matched with those of method m′. The same applies
for constructors. Such injections will be integrated into the match function.

Here, we do not go into the details on how this part of the algorithm may be
implemented. While checking type-safety, the algorithm of Di Cosmo et al. that
we integrate in the type matching module must find at least one such injection
(they name it σ) for any couple of methods m and m′ that are type-compliant.
We may recording all such σ(m,m′)s and propose them to the user as the first
possible choice. However, since usually more than one σ(m,m′) will be acceptable
for matching m to m′ we must extend the algorithm in order to give more
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choices to the user, if the σ(m,m′) found by the type matching algorithm should
not satisfy his/her needs.

7 Translation

In this section we formalize a translation of programs in a simple language very
similar to FeatherWeight Java. The translation is driven by the match function
computed by the algorithm presented in the previous section. In the sequel, for
presentation reasons, we will indicate match(e) with [[e]]mtch with subscripts if
needed. User-chosen injections from tuples of parameters to tuples of parameters
are part of the match function too, and are denoted with π in the sequel.

7.1 Language definition

cds ::= cd1 . . . cdn

cd ::= class c1 extends c2 { fd1 . . . fdn kd md1 . . .mdm } (c1 6= Object)
fd ::= c f ;
kd ::= c(c1 x1, . . . , cn xn){super(e1, . . . , em); f1 = e ′

1; . . . fk = e ′
k; }

md ::= c0 m(c1 x1, . . . , cn xn) {e}
e ::= x | new c(e1, . . . , en) | e.f | e0.m(e1, .., en) | (c) e

Assumptions: n, m, k ≥ 0, inheritance is not cyclic, names of declared classes in a
program, methods and fields in a class, and parameters in a method are distinct.

Fig. 3. Syntax of the language

7.2 Definition of the translation

The translation which allows a program to be ported from library cds lib to cds ′
lib

is induced by a matching from cds lib to cds ′
lib . Such a matching is specified as

follows:

– Every class c declared in cds lib is matched by a class [[c]]mtch declared in
cds ′

lib .
– For every class c declared in cds lib , there is an injection mapping every field

f of c in a field [[f ]]mtch
c of [[c]]mtch .

– For every class c declared in cds lib , there is an injection mapping every
method m of c in a method [[m]]mtch

c of [[c]]mtch .
– If class c is declared in cds lib and has a constructor with n parameters,

whereas [[c]]mtch has a constructor with k parameters, then πc denotes the
injection from {1, . . . , k} to {1, . . . , n} (hence k ≤ n), specifying how the
parameters of the constructor of c are matched with those of the constructor
of [[c]]mtch .
We denote with πc [[(e1, . . . , en)]] the k-tuple (eπc(1), . . . , eπc(k)).
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– If class c is declared in cds lib and has a method with n parameters, whereas
[[m]]mtch

c has k parameters, then πc,m denotes the injection from {1, . . . , k}
to {1, . . . , n} (hence k ≤ n), specifying how the parameters of method m
declared in c are matched with those of method [[m]]mtch

c . The notation
πc,m [[(e1, . . . , en)]] is analogous to that used for constructors.

Note that in principle a translation preserving typings could also be induced
by a matching where functions mapping fields, methods, and parameters are not
injective. However, injectivity has been imposed for the following two reasons:

– A more efficient algorithm can be implemented for finding all possible can-
didate classes in cds ′

lib matching a class in cds lib .
– It is very unlikely that a matching based on non injective maps could be

a good choice, since it would imply that library cds lib contains redundant
fields or methods, or methods with redundant parameters.

[[class c1 extends c2 { fd1 . . . fdn kd md1 . . .mdm }]]tr =
class c1 extends [[c2]]tr { [[fd1]]tr . . . [[fdn]]tr [[kd ]]tr [[md1]]tr . . . [[mdm]]tr }

[[c(c1 x1, . . . , cn xn){super(e1, . . . , em); f1 = e ′
1; . . . fk = e ′

k; }]]tr =
c([[c1]]tr x1, . . . , [[cn]]tr xn){super([[e1]]tr , . . . , [[em]]tr ); f1 = [[e ′

1]]tr ; . . . fk = [[e ′
k]]tr ; }

[[c f ;]]tr = [[c]]tr f ;
[[c0 m(c1 x1, . . . , cn xn) {e}]]tr = [[c0]]tr m([[c1]]tr x1, . . . , [[cn]]tr xn) {[[e]]tr}

[[x ]]tr = x
[[new c(e1, . . . , en)]]tr = new [[c]]mtch πc [[([[e1]]tr , . . . , [[en]]tr )]]

[[e:c.f ]]tr = [[e]]tr .[[f ]]mtch
c

[[e0:c.m(e1, .., en)]]tr = [[e0]]tr .[[m]]mtch
c πc,m [[([[e1]]tr , . . . , [[en]]tr )]]

[[(c) e]]tr = ([[c]]mtch) [[e]]tr

7.3 Preservation of typings

We assume that the matching computed from cds lib to cds ′
lib satisfies the follow-

ing properties:

1. If class c1 extends c2 {. . .} is in cds lib , then [[c1]]mtch is declared in cds ′
lib ,

and either c2 = Object, or [[c2]]mtch is declared in cds ′
lib and is an ancestor

of [[c1]]mtch .
2. If c1 is declared in cds lib and declares field f of type c2, then [[c1]]mtch either

declares or inherits field [[f ]]mtch
c1

of type [[c2]]mtch .
3. If c is declared in cds lib and declares constructor c(c1 . . . cn), then [[c]]mtch de-

clares constructor [[c]]mtch(c′
1, . . . , c

′
m) s.t. for all i = 1, . . . ,m c′

i = [[cπc(i)]]
mtch .

4. If c is declared in cds lib and declares method c0 m(c1 . . . cn), then [[c]]mtch

either declares or inherits method [[c0]]mtch [[m]]mtch
c (c′

1, . . . , c
′
m) s.t. for all

i = 1, . . . ,m c′
i = [[cπc,m(i)]]mtch .

5. If c is declared in cds lib and declares method m which correctly overrides
method m declared in superclass c′, then either [[m]]mtch

c correctly overrides
[[m]]mtch

c′ , or the conversely.
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Lemma 1. If ` ∆lib , ∆�, then ` ∆′
lib , [[∆]]tr�.

Theorem 1. If ∆lib , ∆;Γ ` e:c, then ∆′
lib , [[∆]]tr ; [[Γ ]]tr ` [[e]]tr :[[c]]tr .

Theorem 2. If ∆lib , ∆ ` cds lib cds� then ∆′
lib , [[∆]]tr ` cds ′

lib [[cds]]tr�

8 Conclusion and future work

In this paper we have described a system that should allow a user to semi-
automatically porting a Java program p that uses library l to a program p′ that
uses l′ in a type-safe and “semantic-safe” way. To the best of our knowledge,
no previous attempts of exploiting ontologies for facing porting and migration
problems exist.

The contribution of this paper is twofold. On the one hand, we have designed
the system’s architecture; on the other hand, we have either identified existing
algorithms to integrate in the system’s modules when possible, or designed new
ones (the ontology extraction algorithm, the filtering and user-assisted activities,
and the translation algorithm are original contributions of this paper).

The first activity we will carry out in the very near future is the imple-
mentation of the algorithms that, at this stage, are only designed. Besides our
algorithms for ontology extraction, alignment filtering, user involvement and
program translation discussed in Sections 3, 6, 7, also the type extraction and
matching algorithms are, to the best of our knowledge, still to be implemented.
In parallel to the implementation of these algorithms, the choice of the most
suitable solution for ontology matching will be made.

Once all these components will be available and tests will be performed over
them, a prototype demonstrating the feasibility of our approach will be created.

The work to carry out in order to obtain a running prototype is heavy and we
will not be able to obtain experimental results in a short time. However we foresee
that, by complementing existing proposals for type-safe program translation with
the integration of ontology-based semantics of the library elements, our system
will provide a valid help to the user in his/her program porting activities.

References

1. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, 2003.

2. T. Berners-Lee. Semantic Web - XML2000, 2000. http://www.w3.org/2000/

Talks/1206-xml2k-tbl/slide10-0.html.

3. P. Bouquet, B. Magnini, L. Serafini, and S. Zanobini. A SAT-based algorithm for
context matching. In P. Blackburn, C. Ghidini, R. M. Turner, and F. Giunchiglia,
editors, Modeling and Using Context, 4th International and Interdisciplinary Con-
ference, CONTEXT 2003, 2003, Proceedings, volume 2680 of Lecture Notes in
Computer Science, pages 66–79. Springer, 2003.

21



4. P. Bouquet, L. Serafini, S. Zanobini, and S. Sceffer. Bootstrapping semantics on
the web: meaning elicitation from schemas. In L. Carr, D. De Roure, A. Iyengar,
C. A. Goble, and M. Dahlin, editors, 15th International Conference on World Wide
Web, WWW 2006, Proceedings, pages 505–512. ACM, 2006.

5. E. Brill, S. Dumais, and M. Banko. An analysis of the askmsr question-answering
system. In Conference on Empirical Methods in Natural Language Processing,
EMNLP 2002, Proceedings, 2002.

6. S. Castano, A. Ferrara, and G. Messa. ISLab HMatch Results for OAEI 2006. In In-
ternational Workshop on Ontology Matching, collocated with the 5th International
Semantic Web Conference, ISWC-2006, Proceedings, 2006.

7. S. Castano, A. Ferrara, and S. Montanelli. Matching ontologies in open networked
systems: Techniques and applications. J. Data Semantics V, pages 25–63, 2006.

8. N. Choi, I.-Y. Song, and H. Han. A survey on ontology mapping. SIGMOD Record,
35(3):34–41, 2006.
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