
June 24, 2007 23:17 WSPC - Proceedings Trim Size: 9in x 6in main

1

Type inference for polymorphic methods
in Java-like languages∗

Davide Ancona and Giovanni Lagorio and Elena Zucca

DISI, Univ. of Genova, v. Dodecaneso 35, 16146 Genova, Italy
email: {davide,lagorio,zucca}@disi.unige.it

In languages like C++, Java and C#, typechecking algorithms require methods
to be annotated with their parameter and result types, which are either fixed

or constrained by a bound.

We show that, surprisingly enough, it is possible to infer the polymorphic
type of a method where parameter and result types are left unspecified, as

happens in most functional languages. These types intuitively capture the (less
restrictive) requirements on arguments needed to safely apply the method.

We formalize our ideas on a minimal Java subset, for which we define a

type system with polymorphic types and prove its soundness. We then describe
an algorithm for type inference and prove its soundness and completeness. A

prototype implementing inference of polymorphic types is available.

1. Introduction

Type inference is the process of automatically determining the types of ex-
pressions in a program. That is, when type inference is employed, program-
mers can avoid writing some (or all) type declarations in their programs.

At the source code level, the situation appears very similar to using
untyped (or dynamically typed) languages, as in both cases programmers
are not required to write type declarations. However, the similarities end
there: when type inference is used, types are statically found and checked
by the compiler so no “message not understood” errors can ever appear at
runtime (as it may happen when using dynamically typed languages).

To most people the idea of type inference is so tightly tied to functional
languages that hearing about one of them automatically springs to mind
the other. While it is conceivable to have one without the other, it is a fact
that all successful functional languages (like ML, CaML and Haskell) exploit

∗This work has been partially supported by MIUR EOS DUE - Extensible Object Sys-
tems for Dynamic and Umpredictable Environments.

June 24, 2007 23:17 WSPC - Proceedings Trim Size: 9in x 6in main

2

type inference. Type inference often goes hand in hand with another appeal-
ing concept: polymorphism. Indeed, even though type inference and poly-
morphism are independent concepts, in inferring a type for, say, a function
f , it comes quite naturally trying to express “the best” type for f . Indeed,
all above mentioned functional languages support both type inference and
polymorphism. Outside the world of functional languages, most works on
inferring type constraints for object-oriented languages6,7,14–16 have dealt
with structural types. However, in mainstream class-based object-oriented
languages with nominal types, typechecking algorithms require methods to
be annotated with their parameter types, which are either fixed or con-
strained by a (nominal) bound.

We show that, surprisingly enough, the approach of inferring the most
general function types works smoothly for Java-like languages too. That is,
we can define polymorphic types for methods and automatically infer these
types when type annotations are omitted. These polymorphic types intu-
itively express the (minimal) requirements on arguments needed to safely
apply the method.

The rest of the paper is organized as follows. In Section 2 we formally
define a type system with polymorphic method types for Featherweight
Java,8 in Section 3 we illustrate an algorithm for inferring polymorphic
method types, and, finally, in Section 4 we discuss related and further work.

A preliminary version of the ideas exploited in this paper is in a previous
work10 by two of the authors (see Section 4 for a comparison). A small
prototype that we have developed can be tried out using any Java-enabled
web browser†.

2. A type system with polymorphic method types

We formalize our approach on a minimal language, whose syntax is given in
Figure 1. This language is basically Featherweight Java,8 a tiny Java subset
which has become a standard example to illustrate extensions and new
technologies for Java-like languages. However, to focus on the key technical
issues and give a compact soundness proof, we do not even consider fields,
constructors, and casts, since these features do not pose substantial new
problems to our aim‡. The only new feature we introduce is the fact that
type annotations for parameters can be, besides class names, type variables
α (in the concrete syntax the user just omits these types and fresh variables

†Available at http://www.disi.unige.it/person/LagorioG/justII/.
‡They can be easily handled by considering new kinds of constraints, see the following.

June 24, 2007 23:17 WSPC - Proceedings Trim Size: 9in x 6in main

3

P ::= cd1 . . . cdn
cd ::= class C extends C′ { mds } (C 6= Object)

mds ::= md1 . . .mdn
md ::= mh {return e;}
mh ::= [C] m(t1 x1, . . . , tn xn)
t ::= C | α
e ::= new C() | x | e0.m(e1, . . . , en)

where class names declared in P, method names declared in mds, and parameter

names declared in mh are required to be distinct

Fig. 1. Syntax

are generated by the compiler). Correspondingly, the result type can be
omitted, as indicated by the notation [C].

We informally illustrate the approach on a simple example.

class A { A m(A anA) { return anA ; }}

class B { B m(B aB) { return aB ; }}

class Example {

polyM(x,y) { return x.m(y) ; }

Object okA() { return this.polyM(new A(), new A()) ; }

Object okB() { return this.polyM(new B(), new B()) ; }

Object notOk() { return this.polyM(new A(), new B()) ; }}

Polymorphic methods can be safely applied to arguments of different types;
however, their possible argument types are determined by a set of con-
straints, rather than by a single subtyping constraint as in Java generic
methods. Intuitively, the polymorphic type of polyM should express that
the method can be safely applied to arguments of any pair (α, β) s.t. α
has a method m applicable to β, and the result type is that of m. Formally,
polyM has the polymorphic type µ(δ α.m(β))⇒α β→δ, which means that
polyM has two parameters of type, respectively, α and β, and returns a
value of type δ (right-hand side of⇒), providing the constraint µ(δ α.m(β))
is satisfied (left-hand side of⇒). This happens whenever class α provides a
method m which can be safely applied to an argument of type β and returns
a value of type δ.

According to the type of polyM, typechecking of methods Example.okA
and Example.okB should succeed, while typechecking of Example.notOk

should fail because it invokes polyM with arguments of types A and B, so,
in turn, polyM requires a method m in A which can receive a B (and there
is no such method in the example).

June 24, 2007 23:17 WSPC - Proceedings Trim Size: 9in x 6in main

4

Type environments ∆ are sequences of class signatures cs, which are
triples consisting of a class name C, the name of the parent (that is, the
direct superclass) C′ and a sequence of method signatures mss. A method
signature ms is a tuple consisting of a set of constraints Γ, a result type t,
a method name m, and sequence of parameter types t1 . . . tn.

In the simple language we consider, there are only two forms of con-
straints: the standard subtyping constraint t ≤ t′, and µ(t t0.m(t1 . . . tn)),
meaning that type t0 must have a method named m§ which is applicable to
arguments of types t1 . . . tn and returns a result of type t. Fields, construc-
tors and casts can be easily handled, as done in another work,2 by adding
other form of constraints.

Clearly, a method type cannot be trivially extracted from the code as
happens in standard Java, but a non-trivial inference process is required
(see next section). Here we define the type system of the language (Fig-
ure 2) which checks that method types are consistent and that the program
conforms to them, without specifying how method types can be inferred in
practice.

(P)
∆ ` cdi � ∀i ∈ 1..n ` ∆�

∆ ` cd1 . . . cdn�
∆ = cs1 . . . csn

(cd)
∆; C ` mdi � ∀i ∈ 1..n

∆ ` class C extends C′ {md1 . . .mdn}�
(C, C′,ms1 . . .msn) ∈ ∆

(md)

∆; x1 : t1, . . . , xn : tn, this:C; Γ ` e : t′

∆; Γ`t′ ≤ t

∆; C ` [C0] m(t1 x1, . . . , tn xn) {return e;}�

mtype(∆, C,m) =
Γ⇒t1 . . . tn→t

[t = C0]

(call)
∆; Π; Γ ` ei : ti ∀i ∈ 0..n ∆; Γ`µ(t t0.m(t1 . . . tn))

∆; Π; Γ ` e0.m(e1, . . . , en) : t

(new)
∆; Γ`C ≤ C

∆; Π; Γ ` new C() : C
(x)

∆; Π; Γ ` x : t
Π(x) = t

Fig. 2. Rules for typechecking

§This method can be either directly declared or inherited.

June 24, 2007 23:17 WSPC - Proceedings Trim Size: 9in x 6in main

5

By rule (P), a program is well-typed in the type environment ∆ if ∆
is well-formed (see the comments below), and every class declaration is
well-typed in the type environment ∆.

A class declaration is well-formed in ∆ (rule (cd)), if all its method
declarations are well-formed in ∆ and C (needed to correctly type this).
The side condition ensures that the class extends the same class and declare
the same number of methods as asserted in ∆.

Rule (md) checks that a method declaration is well-typed in ∆ and C.
Actually, it is a schema that can be instantiated in two different ways: if the
return type is not declared (that is, [C0] is empty), then the corresponding
side conditions t = C0 must be removed (that is, [t = C0] must be empty as
well).

The notation mtype(∆, C,m) denotes the type of method m of class C

as specified in ∆. The body e must be well-typed in ∆ and Π, the local
environment assigning the proper types to the parameters and to this;
furthermore, e is typechecked assuming that the type constraints in Γ hold.
Finally, in ∆ it should be derivable from Γ (see the comments below) that
the type of e is a subtype of the return type declared for the method.

The last three rules define the typing judgment for expressions, which
has form ∆; Π; Γ ` e : t, and checks that expression e has type t in the class
environment ∆, in the local environment Π, assuming that the constraints
in Γ hold.

Rule (call) checks that the expressions denoting the receiver
and the arguments are well-typed; furthermore, in ∆ the constraint
µ(t t0.m(t1 . . . tn)) must be derivable from Γ, to ensure that the static
type t0 of the receiver has a method m compatible with the static types
t1 . . . tn of the arguments.

Rule (new) is standard, except for the constraint C ≤ C, which ensures
that a definition for C is available.

For space limitations we have omitted the formal definition of the judg-
ments ` ∆� and ∆; Γ` γ (where γ denotes a single constraint) which can
be found in an extended version3 of this paper.

A type environment is well-formed only if it satisfies a number of con-
ditions, including those inherited from FJ: names of declared classes and
methods are, respectively, unique in a program and a class declaration,
all used class names are declared, and there are no cycles in the inheri-
tance hierarchy. Furthermore, type variables appearing in a list of parameter
types must be distinct, and constraints in method types must be consistent.
Consistency of set of constraints is checked by a normalization procedure

June 24, 2007 23:17 WSPC - Proceedings Trim Size: 9in x 6in main

6

described in the next section. If the procedure succeeds, then the set of
constraints is consistent and is transformed into an equivalent but simpli-
fied set where constraints are of the form α ≤ t or µ(t α.m(t1 . . . tn)).
Finally, a type environment is well-formed if overriding of methods is safe.
The following rule defines the overriding judgment.

(overriding)

∆; Γ`σ(Γ′)
{∆; Γ`ti ≤ Ci | t′i = Ci}
∆; Γ`σ(t′) ≤ t

∆ ` mt← mt′

mt = Γ⇒t1 . . . tn→t,

mt′ = Γ′⇒t′1 . . . t
′
n→t′

t′i = αi =⇒ σ(αi) = ti

This rule states that a method type safely overrides another if the con-
straints in the heir can be derived from those of its parent, modulo a sub-
stitution that maps type variables used as parameter types in the heir into
the corresponding parameter types in the parent. This condition intuitively
guarantees that the method body of the heir (which has been typechecked
under the heir constraints) can be safely executed under its parent con-
straints. Moreover, parameter types in the heir which are classes must be
more generic, and return type more specific. Note that on monomorphic
methods the definition reduces to contravariance for parameter types and
covariance for return type, hence to a more liberal condition than in stan-
dard FJ and Java.

The entailment judgment ∆; Γ ` γ is valid if in ∆ the constraint γ is
entailed by Γ. We will also write ∆`γ for ∆; ∅`γ (this means that γ hold
in ∆).

The rules are available in the extended version3 and are pretty straight-
forward, except that for constraints of the form µ(t C0.m(t1 . . . tn)):

(µ)

{∆; Γ`ti ≤ Ci | t′i = Ci}
∆; Γ, µ(t C0.m(t1 . . . tn))`σ(Γ′)

∆; Γ`µ(t C0.m(t1 . . . tn))

tvars(σ(Γ′)) ⊆
tvars(µ(t C0.m(t1 . . . tn)))

mtype(∆, C0,m) =Γ′⇒t′1 . . . t
′
n→t′

t′i = αi =⇒ σ(αi) = ti
σ(t′) = t

Here the substitution σ ensures that the types of the arguments and
of the returned value of the constraint matches the corresponding
declaration of the method in ∆. The side condition tvars(σ(Γ′)) ⊆
tvars(µ(t C0.m(t1 . . . tn))) ensures that the type variables of σ(Γ′) are in-
cluded in those of µ(t C0.m(t1 . . . tn)), in order to avoid unwanted clashes
with the variables in Γ. This condition can be always satisfied either by a

June 24, 2007 23:17 WSPC - Proceedings Trim Size: 9in x 6in main

7

proper α-renaming of variables, or by substituting with ground terms the
variables in Γ′ which do not appear in t′1 . . . t

′
n → t′.

Let us consider an instantiation of the rule above in the typecheck-
ing of the invocation this.polyM(new A(), new A()) in method Object

okA() in our initial code example; such an invocation typechecks since the
judgment ∆`µ(A Example.polyM(A A)) is valid, with ∆ the type environ-
ment corresponding to the program. Indeed, mtype(∆, Example, polyM) =
µ(γ α.m(β)) ⇒ α β → γ and, by substituting α, β and γ with A we get
µ(A A.m(A)) which holds in ∆.

Note that in the premise of the rule we add µ(t C0.m(t1 . . . tn)) to Γ.
This is necessary to avoid infinite proof trees when typechecking recursive
methods, as in the following example:

class C {

m (x) { return x.m(x);}

Object test () { return this.m(this); }

}

Here, polymorphic method m has type µ(β α.m(α)) ⇒ α → β. The in-
vocation this.m(this) in method test typechecks since the judgment
∆`µ(C C.m(C)) holds, with ∆ the type environment corresponding to the
program. Indeed, mtype(∆, C, m) = µ(β α.m(α))⇒α→β and, by substitut-
ing α and β with C we get the constraint µ(C C.m(C)) which do not need to
be proved again.

The type system with polymorphic method types we have defined is
sound, that is, expressions which can be typed by using (the type infor-
mation corresponding to) a well-formed program P can be safely executed
w.r.t. this program, where reduction rules for →P are standard. For lack of
space we omit them here, but they can be found in the extended version3

of this paper. This means in particular that these expressions are ground
and do not require type constraints. The proof is given by the standard
subject reduction and progress properties. The proof schema is similar to
that given for Featherweight GJ;9 roughly, in Featherweight GJ only a kind
of constraints on type variables is considered, that is, that they satisfy their
(recursive) upper bound. The details of these proofs can be found in the
aforementioned technical report.

Theorem 2.1 (Progress). If ∆ ` P� and ∆; ∅; ∅ ` e : t, then either
e = new C() or e→P e′ for some e′.

Theorem 2.2 (Subject reduction). If ∆ ` P� and ∆; Π; ∅ ` e : t, e→P
e′, then ∆; Π; ∅ ` e : t′, ∆`t′ ≤ t.

June 24, 2007 23:17 WSPC - Proceedings Trim Size: 9in x 6in main

8

3. Inferring polymorphic method types

In this section we show how the typechecking defined in Section 2 can be
made effective by defining an algorithm for generating method types and
another for checking consistency, by normalization, of type constraints of
method types.

The first algorithm can be derived in a straightforward way by a set of
rules3 which have been omitted here for space limitations. Rules are defined
by following an approach similar to that adopted2 for achieving principality
in Java: each rule just records all constraints necessary to successfully type-
check a certain kind of expression, without performing any check; hence,
generation of method types always succeeds.

For instance, the rule for generating constraints for a method invocation
is as follows:

(call)
Π ` ei : Γi ⇒ ti ∀i ∈ 0..n

Π ` e0.m(e1, . . . , en) : Γ0, . . . ,Γn, µ(α t0.m(t1 . . . tn))⇒ α
α fresh

The judgment for constraint generation has form Π ` e : Γ⇒ t where the
local variable environment Π and the expression e are the input values,
whereas the set of constraints Γ and the type t are the output values
of the generation process. Note that the type t of the expression is only
needed for generating type constraints and is not used for performing a real
typechecking.

The algorithm that normalizes a set of constraints is described in pseu-
docode in Figure 3, together with its pre- and postcondition. If normaliza-
tion fails, then the corresponding set of constraints is not consistent. The
variable all contains the current set of constraints, and the variable done

keeps track of those which have already been checked. Termination of the
process is guaranteed by the use of done and by the fact that, given a certain
program, the set of all possible constraints which can be generated from all

is finite.
We write ∆`Γ ∼ Γ′ to denote that ∆; Γ`Γ′ and ∆; Γ′`Γ hold.

Theorem 3.1 (Correctness of the algorithm). The algorithm in Fig-
ure 3 is correct w.r.t. the given pre- and postcondition.

Theorem 3.2 (Soundness of type inference). If ` cd1 . . . cdn : ∆,
then ∆ ` cd1 . . . cdn�.

Theorem 3.3 (Completeness of type inference). If P = cd1 . . . cdn,
` cdi : csi for all i ∈ 1..n and the simplification algorithm fails on cs1 . . . csn,
then there exists no ∆ s.t. ∆ ` cd1 . . . cdn�.

June 24, 2007 23:17 WSPC - Proceedings Trim Size: 9in x 6in main

9

{all==Γ && done==∅ &&!failure}
while (∃γ ∈ (all \ done not in normal form)&&!failure) {

done = done ∪ {γ};
switch γ

case C ≤ C′:
if (∆ 6`C ≤ C′) failure = true;

case µ(α C.m(t1 . . . tn)):
mt = mtype(∆, C,m);
if (mt undefined) failure = true;

else

let mt = Γ′⇒t′1 . . . t
′
m→t′ in

if (m!=n) failure = true;

else

substι = {αi 7→ ti | t′i = αi};
substo = {α 7→ substι(t

′)};
all = substo(all) ∪ substι(Γ

′ ∪ {ti ≤ Ci | t′i = Ci});
done = subst(done);

default:

failure = true

}
{!failure==(∃Γnf in normal form and σ s.t. ∆`Γnf ∼ σ(Γ))};

Fig. 3. Simplification of constraints

More details on these results and their proofs can be found in the afore-
mentioned extended technical report.

Extension to full FJ When considering full FJ, the other forms of con-
straints which come out can be easily accommodated in the schema. For
instance, constraints of the form φ(t′ t.f) (type t must have a field named
f of type t′) and t ∼ t′ (t must be a subtype of t′ or conversely) can
be handled as the t ≤ t′ constraints, in the sense that they must be just
checked, whereas constraints of the form κ(t(t1 . . . tn)), meaning that type
t must have a constructor applicable to arguments of types t1 . . . tn, are
a simpler version of the µ(t′ t.m(t1 . . . tn)) constraints, in the sense that
they can generate new constraints when checked.

4. Related and further work

As mentioned, the idea of omitting type annotations in method parameters
has been preliminarily investigated in a previous work.10 However, the key
problem of solving recursive constraint sets is avoided there by imposing a

June 24, 2007 23:17 WSPC - Proceedings Trim Size: 9in x 6in main

10

rather severe restriction on polymorphic methods.
The type inference algorithm presented here can be seen as a generaliza-

tion of that for compositional compilation of Java-like languages.2 Indeed,
the idea leading to the work in this paper came out very nicely by realizing
that the constraint inference algorithm adopted there for compiling classes
in isolation extends smoothly to the case where parameter types are type
variables as well.

However, there are two main differences: first, the compositional compi-
lation algorithm2 only eliminates constraints, whereas here new constraints
can be added since other methods can be invoked in a method’s body,
thus making termination more an issue. Secondly, since we may also have
type variables as method parameter types, substitutions are not necessarily
ground.

Type inference in object oriented languages has been studied before; in
particular, an algorithm for a basic language with inheritance, assignments
and late-binding has been described.13,15 An improved version of the algo-
rithm is called CPA (Cartesian Product Algorithm).1 In these approaches
types are set of classes, like in Strongtalk,4 a typechecker for Smalltalk.
More recently, a modified CPA16 has been designed which introduces con-
ditional constraints and resolves the constraints by least fixed-point deriva-
tion rather than unification. Whereas the technical treatment based on con-
straints is similar to ours, their aim is analyzing standard Java programs (in
order to statically verify some properties as downcasts correctness) rather
than proposing a polymorphic extension of Java.

As already pointed out, while in Java the only available constraint on
type variables is subtyping, in our approach we can take advantage of a
richer set of constraints, thus making method types more expressive; fur-
thermore, while our system is based on type inference, in Java the type
variables and the constraints associated with a generic method are not in-
ferred, but have to be explicitly provided by the user.

Our type constraints are more reminiscent of where-clauses5,12 used
in the PolyJ language. In PolyJ programmers can write parameterized
classes and interfaces where the parameter has to satisfy constraints (the
where-clauses) which state the signatures of methods and constructors that
objects of the actual parameter type must support. The fact that our type
constraints are related to methods rather than classes poses the additional
problem of handling recursion. Moreover, our constraints for a method may
involve type variables which correspond not only to the parameters, but also
to intermediate result types of method calls.

June 24, 2007 23:17 WSPC - Proceedings Trim Size: 9in x 6in main

11

Type inference has been deeply investigated in the context of functional
languages since the early 80s, where many systems proposed in literature
are based on the Hindley/Milner system11 with constraints; the relation
between our approach and that system deserves further investigation.

We have shown how to infer the polymorphic type of a method where
parameter and result types are left unspecified, as it happens in most func-
tional languages. Polymorphic method types are expressed by a set of con-
straints which intuitively correspond to the minimal requirements on argu-
ment types needed to safely apply the method. In this way the type system
proposed here turns out to be very flexible.

We have also developed a small prototype that implements the described
type inference and simplification of constraints (though the implemented
overriding rule is simpler, so less liberal, than the one described here). This
prototype, written in Java, can be tried out using any web browser¶.

We believe this is a nice result, which bridges the world of type inference
for polymorphic functions and the one of object-oriented languages with
nominal types, showing a relation which deserves further investigation.

On the more practical side, our work can serve as basis for developing
extensions of Java-like languages which allow developers to forget about
(some) type annotations as happens in scripting languages, gaining some
flexibility without losing static typing. A different design alternative is to
let programmers to specify (some) requirements on arguments.

Finally, the system presented here is not complete w.r.t. the type system
defined in Section 2, but we are planning to investigate whether complete-
ness can be achieved.

References

1. Ole Agesen. The cartesian product algorithm. In W. Olthoff, editor,
ECOOP’05 - Object-Oriented Programming, volume 952 of Lecture Notes
in Computer Science, pages 2–26. Springer, 1995.

2. Davide Ancona, Ferruccio Damiani, Sophia Drossopoulou, and Elena Zucca.
Polymorphic bytecode: Compositional compilation for Java-like languages.
In ACM Symp. on Principles of Programming Languages 2005. ACM Press,
January 2005.

3. Davide Ancona, Giovanni Lagorio, and Elena Zucca. Type inference for poly-
morphic methods in Java-like languages. Technical report, Dipartimento di
Informatica e Scienze dell’Informazione, Università di Genova, 2007. Submit-
ted for journal publication.

¶Available at http://www.disi.unige.it/person/LagorioG/justII/.

June 24, 2007 23:17 WSPC - Proceedings Trim Size: 9in x 6in main

12

4. Gilad Bracha and David Griswold. Strongtalk: Typechecking Smalltalk in a
production environment. In ACM Symp. on Object-Oriented Programming:
Systems, Languages and Applications 1993, pages 215–230, 1993.

5. Mark Day, Robert Gruber, Barbara Liskov, and Andrew C. Myers. Subtypes
vs. where clauses: Constraining parametric polymorphism. In ACM Symp. on
Object-Oriented Programming: Systems, Languages and Applications 1995,
volume 30(10) of SIGPLAN Notices, pages 156–168, 1995.

6. Jonathan Eifrig, Scott F. Smith, and Valery Trifonov. Sound polymorphic
type inference for objects. In ACM Symp. on Object-Oriented Programming:
Systems, Languages and Applications 1995, volume 30(10) of SIGPLAN No-
tices, pages 169–184, 1995.

7. Jonathan Eifrig, Scott F. Smith, and Valery Trifonov. Type inference for
recursively constrained types and its application to OOP. In Mathematical
Foundations of Programming Semantics, volume 1 of Electronic Notes in
Theoretical Computer Science. Elsevier Science, 1995.

8. Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java:
A minimal core calculus for Java and GJ. In ACM Symp. on Object-Oriented
Programming: Systems, Languages and Applications 1999, pages 132–146,
November 1999.

9. Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java:
a minimal core calculus for Java and GJ. ACM Transactions on Programming
Languages and Systems, 23(3):396–450, 2001.

10. Giovanni Lagorio and Elena Zucca. Introducing safe unknown types in Java-
like languages. In L.M. Liebrock, editor, OOPS’06 - Object-Oriented Pro-
gramming Languages and Systems, Special Track at SAC’06 - 21st ACM
Symp. on Applied Computing, pages 1429–1434. ACM Press, 2006.

11. Robin Milner. A theory of type polymorphism in programming. Journ. of
Computer and System Sciences, 17(3):348–375, 1978.

12. Andrew C. Myers, Joseph A. Bank, and Barbara Liskov. Parameterized types
for Java. In ACM Symp. on Principles of Programming Languages 1997,
pages 132–145. ACM Press, 1997.

13. J. Palsberg and M. I. Schwartzbach. Object-Oriented Type Systems. John
Wiley & Sons, 1994.

14. Jens Palsberg. Type inference for objects. ACM Comput. Surv., 28(2):358–
359, 1996.

15. Jens Palsberg and Michael I. Schwartzbach. Object-oriented type inference.
In ACM Symp. on Object-Oriented Programming: Systems, Languages and
Applications 1991, pages 146–161, 1991.

16. Tiejun Wang and Scott F. Smith. Precise constraint-based type inference
for Java. In ECOOP’01 - European Conference on Object-Oriented Program-
ming, volume 2072, pages 99–117. Springer, 2001.

