
Journal of Object Technology
Published by ETH Zurich, Chair of Software Engineering, c© JOT 2010

Online at http://www.jot.fm.

On sound and complete
axiomatization of coinductive
subtyping for object-oriented

languages

Davide Anconaa Giovanni Lagorioa

a. DISI, University of Genova, Italy

Acknowledgments This work has been partially supported by MIUR DISCO -
Distribution, Interaction, Specification, Composition for Object Systems.

Abstract Coinductive abstract compilation is a novel technique, which
has been recently introduced for defining precise type systems for object-
oriented languages. In this approach, type inference consists in translating
the program to be analyzed into a Horn formula f , and in resolving a
certain goal w.r.t. the coinductive (that is, the greatest) Herbrand model
of f .

Type systems defined in this way are idealized, since types and, con-
sequently, goal derivations, are not finitely representable. Hence, sound
implementable approximations have to rely on the notions of regular types
and derivations, and of subtyping and subsumption between types and
atoms, respectively.

In this paper we address the problem of defining a sound and complete
axiomatization of a subtyping relation between coinductive object and
union types, defined as set inclusion between type interpretations. Besides
being an important theoretical result, completeness is useful for reasoning
about possible implementations of the subtyping relation, when restricted
to regular types.

1 Introduction

Coinductive abstract compilation [6, 2] is a novel technique, which has been recently
introduced, for defining precise type systems for object-oriented languages. In this
approach, type inference consists in translating the program to be analyzed into a
Horn formula f , and in resolving a certain goal w.r.t. the coinductive (that is, the
greatest) Herbrand model of f . Furthermore, union types, besides coinduction and

Davide Ancona, Giovanni Lagorio. On sound and complete axiomatization of coinductive subtyping for
object-oriented languages. In Journal of Object Technology, vol. N, no. M, 2010, pages 1–0.
Available at http://www.jot.fm/contents/issue_2010_NN/articleNN.html

http://www.jot.fm/copyright.html
http://www.jot.fm
http://www.jot.fm/contents/issue_2010_NN/articleNN.html
http://www.jot.fm/contents/issue_2010_NN/articleNN.html

2 · Davide Ancona, Giovanni Lagorio

object types, play an important role for guaranteeing the high expressive power of
the type language.

This novel approach is quite general and modular, since it can be used for defining
quite different type systems for the same language, by simply devising different kinds
of translations into Horn formulas, without changing the core inference engine. In
contrast with this, most of the solutions to the problem of type analysis of object-
oriented programs which can be found in literature [16, 15, 1, 21, 20, 13] have their
own inference engine, and cannot be easily compared and specified.

Furthermore, defining type systems in terms of compilation into a logical language
eases reuse of all those static analysis techniques proposed for compiler optimization
which can be fruitfully adopted for enhancing precision of type analysis. For instance,
we have shown that a more precise type analysis can be obtained when abstract
compilation is performed on programs in Static Single Assignment intermediate form
[5].

Type systems defined by coinductive abstract compilation are idealized, since types
and, consequently, goal derivations, are not finitely representable. Hence, sound im-
plementable approximations have to rely on the notions of regular types and deriva-
tions, and of subtyping and subsumption between types and atoms, respectively. For
this reason, studying subtyping between coinductive union and object types is very
important to investigate on possible implementations of the inference engine based
on coinductive constraint logic programming [7, 18, 17]. Such approach is similar
to the work by Sulzmann and Stuckey [19] who have shown that the generalized
Hindley/Milner type inference problem HM(X) can be mapped to inductive CLP(X);
the main difference is that we consider coinductive (rather than inductive) Herbrand
models and types, and that we are focused on type inference for Java-like (rather than
functional) languages.

However, devising a sound definition of subtyping between coinductive types is
far from being intuitive, since a suitable notion of contractive [9, 10] derivation has
to be introduced to avoid unsound derivations. Furthermore, without an appropriate
interpretation of types and subtyping, one cannot easily reason on the completeness
of subtyping. In a previous work [3] we have proposed to interpret coinductive types
as sets of values defined by a quite intuitive coinductive relation of membership,
and proved that the proposed axiomatization of subtyping is sound w.r.t. subset
inclusion between type interpretations. This result allowed us to relax the condition
of contractiveness as previously defined [5], and to add a new typing rule for dealing
with a case previously uncovered.

In a more recent paper [4] we discovered that the previously proposed axiomati-
zation [3] was not complete and proposed to add a new rule (split) (which is actually
a generalization of previous rules). Despite we have shown that such an axiomatiza-
tion still fails to be complete in the idealized system where types and proofs can be
non regular, we have conjectured that it is complete in the more interesting case (for
obvious practical reasons) when one considers only regular types and proof trees.

This paper is an extended version of the above mentioned work [4], where the
main new contributions are the following:

• We show by means of a counter-example that the previously defined axiomati-
zation [4] is not complete, even when we restrict ourselves to regular types and
proofs, thus disproving the corresponding conjecture.

• Correspondingly, we add a new rule (merge) to overcome the problem found
with the counter-example; we prove that the new axiomatization is still sound

Journal of Object Technology, vol. N, no. M, 2010

http://www.jot.fm/contents/issue_2010_NN/articleNN.html

On sound and complete axiomatization of coinductive subtyping for object-oriented languages · 3

and is complete when one considers only regular types and proofs. Proof of
completeness relies on a conjecture which is weaker then the previously proposed
one.

• All the proof details have been added.

2 An introductory example

Let us consider the standard encoding of natural numbers with objects, written in
Java-like code where, however, all type annotations have been omitted.

class Zero { twice() { return this; } }

class Succ {

pred;

Succ(n) { this.pred=n; }

twice() {

return new Succ(new Succ(pred.twice()));

} }

For simplicity, we just consider method twice; class Succ represents all natural num-
bers greater than zero, that is, all numbers which are successors of a given natural
number, stored in the field pred.

In the abstract compilation approach a program, as the one shown above, is trans-
lated into a Horn formula where predicates encode the constructs of the language. For
instance, the predicate invoke corresponds to method invocation, and has four argu-
ments: the target object, the method name, the argument list, and the returned
result. Terms represent either types (that is, set of values) or names (of classes,
methods and fields). In this example we use type int , union types t1∨ t2, object types
obj (c, [f1:t1, . . . , fn:tn]), where c is the class of the object and f1, . . . , fn and t1, . . . , tn
its fields with their types. In the idealized abstract compilation framework, terms
can be also infinite and non regular1; a regular term is a term which can be infinite,
but can only contain a finite number of subterms or, equivalently, can be represented
as the solution of a unification problem, that is, a finite set of syntactic equations of
the form Xi = ti, where all variables Xi are distinct and terms ti may only contain
variables Xi [11, 18, 17]. For instance, the term t s.t. t = int ∨ t is regular since it
has only two subterms, namely, int and itself.

Let us see some examples of regular types, that is, regular terms representing set
of values.

zer = obj (zero, [])
nat = zer ∨ obj (succ, [pred :nat])
evn = zer ∨ obj (succ, [pred :obj (succ, [pred :evn])])

Type zer corresponds to all objects representing zero, while nat corresponds to all
objects representing natural numbers and, similarly, evn to all objects representing
even natural numbers. An example of non regular types is given by the infinite
sequence t0 ∨ (t1 ∨ (. . .∨ tn . . .)), where the term ti represents the natural number 2i.

Each method declaration is compiled into a single clause, defining a different case
for the predicate has meth, that takes four arguments: the class where the method
is declared, its name, the types of its arguments, including the special argument this
corresponding to the target object, and the type of the returned value. Predicate

1We refer to the author’s previous work [6, 2, 5] for more details.

Journal of Object Technology, vol. N, no. M, 2010

http://www.jot.fm/contents/issue_2010_NN/articleNN.html

4 · Davide Ancona, Giovanni Lagorio

has meth defines the usual method look-up: has meth(c,m, [this, t1, . . . , tn], t) suc-
ceeds if look-up of m from class c succeeds and returns a method that, when invoked
on target object and arguments this, t1, . . . , tn, returns values of type t .

For instance, the method declarations of the two classes defined above are compiled
as follows:

has_meth(zero,twice,[This],This).

has_meth(succ,twice,[This],R4) ←
field_acc(This,pred,R1),

invoke(R1,twice,[],R2),

new(succ,[R2],R3),

new(succ,[R3],R4).

Predicates field acc, new and invoke correspond to field access, constructor invocation
and method invocation, respectively. Similarly to what happens for methods, each
constructor declaration is also compiled into a clause. For instance, the following
clause is generated from the constructor of class Succ:

new(succ,[N],obj(succ,[pred:N|R])) ←
extends(succ,P),new(P,[],obj(P,R)).

Other generated clauses are common to all programs and depend on the semantics
of the language or on the meaning of types.

invoke(T1∨T2,M,A,R1∨R2) ←
invoke(T1,M,A,R1), invoke(T2,M,A,R2).

invoke(obj(C,R),M,A,Res) ←
has_meth(C,M,[obj(C,R)|A],Res).

The first clause specifies the behavior of invoke with union types. The invocation
must be correct for both target types T1 and T2 and the returned type is the union
of the returned types R1 and R2. When the target is an object type obj (C,R), then
invocation of M with arguments A is correct if look-up of M with first argument
obj (C,R), corresponding to this, and rest of arguments A succeeds when starting
from class C.

We show now that the goal invoke(nat , twice, [], R) is derivable for R = evn. This
means that, not only we can prove that by doubling any natural number we get an
even number, but we can also infer the thesis (that is, the result is an even number),
since the query corresponds to just asking which number is returned when doubling
any natural number.

We recall that the coinductive Herbrand model is obtained by considering also infi-
nite proof trees (a.k.a. derivations) [18]. Then, since nat = zer∨obj (succ, [pred :nat]),
by clause 1 for invoke the following atoms must be derivable:

invoke(zer , twice, [], zer)
invoke(succ(nat), twice, [], succ2(evn))

where succ(t) is an abbreviation for obj (succ, [pred :t]), and succ2(t) is an abbreviation
for succ(succ(t)).

The first atom can be derived by applying clause 2 for invoke, and then the clause
for has meth generated from class Zero. For the second atom we apply clause 2 for

Journal of Object Technology, vol. N, no. M, 2010

http://www.jot.fm/contents/issue_2010_NN/articleNN.html

On sound and complete axiomatization of coinductive subtyping for object-oriented languages · 5

(int)
i ∈ int

(∨L)
v ∈ t1

v ∈ t1 ∨ t2
(∨R)

v ∈ t2
v ∈ t1 ∨ t2

(obj)
v1 ∈ t1, . . . , vn ∈ tn

obj (c, [f1 7→ v1, . . . , fn 7→ vn, . . .]) ∈ obj (c, [f1:t1, . . . , fn:tn])

Figure 1 – Rules defining membership

invoke, and then the clause for has meth generated from class Succ and get

field acc(succ(nat), pred ,nat),
invoke(nat , twice, [], evn), new(succ, [evn], succ(evn)),
new(succ, [succ(evn)], succ2(evn)).

All atoms are derivable, in particular invoke(nat , twice, [], evn) corresponds to our
initial goal, hence the derivation we obtain is infinite even though regular. Similarly,
it is possible to derive invoke(evn, twice, [], four), where four = zer ∨ succ4(four),
that is, by doubling an even number we get a multiple of four.

Surprisingly and regrettably, invoke(evn, twice, [], evn) is not derivable, since
new(succ, [t1], t2) is never derivable when t2 is a union type. To overcome these
problems, a subtyping relation has to be introduced together with a notion of sub-
sumption between atoms. The definition of the subtyping relation is postponed to the
next section, however the intuition suggests that four ≤ evn should hold, and since
subtyping is covariant w.r.t. the type returned by a method invocation, we expect
that invoke(evn, twice, [], evn) can be subsumed from invoke(evn, twice, [], four).

By introducing subtyping and subsumption it is possible to find regular derivations
for goals that would otherwise have infinite but not regular derivations (an example
can be found in another paper by the same authors [3]); in other words, subtyping
and subsumption are essential for implementing reasonable approximations of ideal-
ized coinductive type systems defined by abstract compilation. To do that, coSLD
resolution [18] is generalized by taking into account subtyping constraints between
terms, besides the usual unification constraints.

3 Definition and Axiomatization of Subtyping

In this section we define object and union coinductive types, and provide an intu-
itive interpretation of types as sets of values, and define subtyping as set inclusion
between type interpretations. Then we provide an axiomatization of subtyping based
on coinductive subtyping rules.

3.1 Interpretation of Types and Definition of Subtyping

The types we consider are all infinite terms coinductively defined as follows:

t ::= int | obj (c, [f1:t1, . . . , fn:tn]) | t1 ∨ t2

An object type obj (c, [f1:t1, . . . , fn:tn]) specifies the class c to which the object belongs,
together with the set of available fields with their corresponding types. The class name
is needed for typing method invocations. We assume that fields in an object type are

Journal of Object Technology, vol. N, no. M, 2010

http://www.jot.fm/contents/issue_2010_NN/articleNN.html

6 · Davide Ancona, Giovanni Lagorio

(∨R1)
t ≤ t1

t ≤ t1 ∨ t2
(∨R2)

t ≤ t2
t ≤ t1 ∨ t2

(split)
C[t1] ≤ t C[t2] ≤ t

C[t1 ∨ t2] ≤ t

(int)
int ≤ int

(obj)
t1 ≤ t ′1, . . . , tn ≤ t ′n

obj (c, [f1:t1, . . . , fn:tn, . . .]) ≤ obj (c, [f1:t ′1, . . . , fn:t ′n])

C[] ::= � | obj (c, [f :C[], f1:t1, . . . , fn:tn])

Figure 2 – Coinductive subtyping rules of system Sn

finite, distinct and that their order is immaterial. Union types t1∨t2 have the standard
meaning [8, 14].

We interpret types in a quite intuitive way, that is, as sets of values. Values are
all infinite terms coinductively defined by the following syntactic rules (where i ∈ Z).

v ::= i | obj (c, [f1 7→ v1, . . . , fn 7→ vn])

As it happens for object types, fields in object values are finite and distinct, and their
order is immaterial. Regular values correspond to finite, but cyclic, objects.

Membership of values to (the interpretation of) types is coinductively defined by
the rules of Figure 1.

All rules are intuitive. Note that an object value is allowed to belong to an object
type having less fields; this is expressed by the ellipsis at the end of the values in the
membership rule (obj).

A proof tree (or, simply, a proof) is a tree where each node is a pair consisting of a
judgment of the shape v ∈ t , and of a rule label2, and where each node, together with
its children, corresponds to a valid instantiation of a rule. For instance, the following
tree is a proof for obj (c, [f 7→ 1]) ∈ int ∨ obj (c, [f :int]).

(∨R)

(obj)

(int)
1 ∈ int

obj (c, [f 7→ 1]) ∈ obj (c, f :int)
obj (c, [f 7→ 1]) ∈ int ∨ obj (c, f :int)

Since values and types can be infinite, all rules must be interpreted coinductively,
therefore proofs are allowed to be infinite. However, not all infinite proofs can be
considered valid, but only those contractive (see the definition below). To see why we
need such a restriction, consider the regular type t s.t. t = t ∨ int , and the following
infinite proof containing just applications of rules (∨L):

(∨L)

(∨L)

...
obj (c, []) ∈ t

obj (c, []) ∈ t

We reject proofs built applying only rules (∨L) and (∨R), since they generate false
judgments, as obj (c, []) ∈ t derived above: t corresponds to an infinite union of int ,
and therefore its interpretation cannot contain object values. Intuitively, the problem
is due to the fact that rules (∨L) and (∨R) allow membership checking only on one
part of the type, therefore we may end up with an infinite proof which in fact does
not check anything. Following the terminology used by Brandt and Henglein [9, 10],
we say that rules (int) and (obj) are contractive, whereas (∨L) and (∨R) are not.

2This labeling is necessary for the notion of contractive proof, see below.

Journal of Object Technology, vol. N, no. M, 2010

http://www.jot.fm/contents/issue_2010_NN/articleNN.html

On sound and complete axiomatization of coinductive subtyping for object-oriented languages · 7

Def. 3.1 A proof for v ∈ t is contractive iff it contains no sub-proofs built only with
membership rules (∨R), and (∨L). The membership relation v ∈ t holds iff there is a
contractive proof for it.

The interpretation of type t is denoted by JtK and defined by {v | v ∈ t holds}.

In the following we use the term proof for contractive proofs, unless explicitly
specified.

Def. 3.2 Type t1 is a subtype of t2 iff Jt1K ⊆ Jt2K.

Example 1 If ⊥ is the regular type s.t. ⊥ = ⊥∨⊥, then J⊥K = ∅. Indeed, the only
applicable rules for v ∈ ⊥ are (∨L) and (∨R), hence only non contractive proofs can
be built, therefore no judgments of the shape v ∈ ⊥ can be proved, and J⊥K = ∅. A
type t s.t. JtK = ∅ is called an empty type.

Example 2 If t is s.t. t = t ∨ int , then JtK = JintK = Z. Indeed, all the contractive
proofs for v ∈ t are obtained by uselessly applying n times (n ≥ 0) rule (∨L), before
the decisive applications of rule (∨R) and (int):

(int)

(∨R)
i ∈ int

(∨L)
i ∈ int ∨ t

(∨L)

...
i ∈ int ∨ t

Other interesting examples of types and their interpretations can be found in
another paper [3].

Example 3 Let us consider the infinite (but not regular) type t1 defined by the
following infinite set of equations (where t1 corresponds to X0):

X0 = Y0 ∨X1

. . .

Xn = Yn ∨Xn+1

. . .

Y0 = obj (zero, [])

Y1 = obj (succ, [pred :Y0])

. . .

Yn+1 = obj (succ, [pred :Yn])

. . .

Let t2 be the term s.t. t2 = obj (zero, []) ∨ obj (succ, [pred :t2]). Then Jt1K (Jt2K;
indeed, it is easy to show that Jt1K is the set of all objects representing natural
numbers, and that such values belong to Jt2K as well (all proofs are finite, hence
trivially contractive), whereas the value v∞ s.t. v∞ = obj (succ, [pred 7→ v∞]) belongs
to t2, but not to t1. Indeed, the following contractive and regular proof can be built
by alternatively applying rules (∨R) and (obj) infinite times.

...
v∞ ∈ t2

v∞ ∈ obj (succ, [pred :t2])
v∞ ∈ t2

Journal of Object Technology, vol. N, no. M, 2010

http://www.jot.fm/contents/issue_2010_NN/articleNN.html

8 · Davide Ancona, Giovanni Lagorio

Finally, it is not difficult to prove that the only proof for v∞ ∈ t1 is not contractive,
since it can be obtained by infinitely applying rule (∨R); therefore v∞ 6∈ t1.

3.2 Subtyping rules

A possible axiomatization of the subtyping relation as defined in Section 3.1 is given
by the system Sn of coinductive rules in Figure 2. Such rules are conceived for a
purely functional setting [2]; an extension for dealing with imperative features can be
found in another paper [5] by the same authors.

All the previously proposed axiomatizations of the subtyping relation [6, 2, 3], are
not complete, although the most recent proposal S1 [3] has been proved sound.

In comparison to system Sn defined in Figure 2, system S1 defines rules (∨L) and
(distr) instead of rule (split), which is, in fact, a generalization of the former rules.

(∨L)
t1 ≤ t t2 ≤ t

t1 ∨ t2 ≤ t
(distr)

obj (c, [f :u1, f1:t1, . . . , fn:tn]) ≤ t
obj (c, [f :u2, f1:t1, . . . , fn:tn]) ≤ t

obj (c, [f :u1 ∨ u2, f1:t1, . . . , fn:tn]) ≤ t

Such a generalization has been devised to overcome the problem that rules (∨L) and
(distr) do not ensure completeness of subtyping even when the system is restricted to
regular types and proofs; e.g., obj (c, [f :obj (c′, [g :t1 ∨ t2])]) ≤obj (c, [f :obj (c′, [g :t1])])∨
obj (c, [f :obj (c′, [g :t2])]) cannot be proved without the more general rule (split).

The one hole context C (inductively defined on the depth of the hole; see the same
figure) is used for applying the rule when the type on the left-hand side of the relation
contains a union type; a context is either the empty one (consisting of just the hole),
or is an object type with a context inside (since the order of field is immaterial, the
hole can be contained in any field type). Note that there are no contexts which are
union types, since rule (split) is applied only to the outer union types; for instance, if
the judgement has shape t1 ∨ t2 ≤ t , then the rule can be instantiated only with the
empty context.

Rule (∨L) is simply obtained by instantiating (split) with the empty context. Rules
(∨R1), (∨R2) and (∨L) specify subtyping in the presence of union types: the union
type constructor is the join operator w.r.t. subtyping. Note also the strong analogy
with the left and right logical rules of the classical Gentzen sequent calculus for the
disjunction, when the subtyping relation is replaced with the provability relation.

Rule (obj) corresponds to standard width and depth subtyping between object
types: the type on the left-hand side may have more fields (represented by the ellipsis
at the end), while subtyping is covariant w.r.t. the fields belonging to both types.
Note that depth subtyping is allowed since we are considering a purely functional
setting [5]. Finally, subtyping between object types is allowed only when they refer
to the same class name.

Rule (distr) is obtained by instantiating (split) with contexts of shape obj (c, [f :�, f1:t1, . . . , fn:tn]),
where � is the empty context. The rule states that object types distribute over union
types, in the same way Cartesian product distributes over union.

For instance, if u1 = obj (c, [f :t1]) ∨ obj (c, [f :t2]) and u2 = obj (c, [f :t1 ∨ t2]), then
Ju1K = Ju2K, hence if completeness holds, one should be able to derive u1

∼= u2, that
is, u1 ≤ u2 and u2 ≤ u1. The relation u1 ≤ u2 can be derived by applying rules (∨L),
(obj), (∨R1) and (∨R2), and by reflexivity3. Rule (distr) is necessary for deriving the
opposite direction u2 ≤ u1 of the relation, since by applying rules (∨R1), (∨R2) and
(obj) we end up with t1 ∨ t2 ≤ t1 or t1 ∨ t2 ≤ t2 which in general do not hold.

3It is not difficult to prove that reflexivity of subtyping holds.

Journal of Object Technology, vol. N, no. M, 2010

http://www.jot.fm/contents/issue_2010_NN/articleNN.html

On sound and complete axiomatization of coinductive subtyping for object-oriented languages · 9

(split-0)

(split-0)

...

t ≤ int
(split-1)

(split-1)

...

obj (c, [f :t]) ≤ int
(split-2)

...

obj (c, [f :obj (c, [f :t])]) ≤ int

obj (c, [f :t]) ≤ int

t ≤ int

Figure 3 – A non contractive derivation for t ≤ int , with t = t ∨ obj (c, [f :t]).

For reasons similar to those explained in the previous section, proofs have to be
contractive, otherwise unsound judgments can be derived. For instance, if t = t ∨ int ,
then we could derive obj (c, []) ≤ t by only applying rule (∨R1). However, giving a
definition of contractive proof for subtyping which does not break soundness without
compromising completeness (at least when the system is restricted to regular types
and proofs) is not trivial. In this case Def. 3.1 alone does not ensure soundness. For
instance, if t is the term s.t. t = t ∨ obj (c, [f :t]), then we can build a proof for the
clearly unsound judgment t ≤ int by using only rule (split) as shown in Figure 3. We
have decorated the label of each rule application with a natural number corresponding
to the depth of the hole of the context used for applying rule (split); the problem with
the shown proof is that the hole depth of contexts used for applying rule (split) is
unbounded, hence types are never “consumed” as it happens in rules (int) and (obj).

Def. 3.3 The depth of a context C[] is inductively defined as follows:

depth(�) = 0
depth(obj (c, [f :C[], f1:t1, . . . , fn:tn])) = depth(C[]) + 1

An application of rule (split) has depth n iff the rule is applied with a context of depth
n.

Def. 3.4 A proof for t1 ≤ t2 is contractive iff it contains no sub-proofs built only with
subtyping rules (∨R), and (∨L), and the depth of the applications of rule (split) is
bounded.

The subtyping relation t1 ≤ t2 holds iff there is a contractive proof for it.

Given the definitions above, we have that applications of rules (∨L) and (distr)
are in fact applications of rule (split) having depth 0 and 1, respectively, hence any
subtyping proof in S1 corresponds to a subtyping proof in Sn where the depth of the
applications of rule (split) is bounded by 1. This is the meaning of the subscript 1 in
S1, whereas Sn means that applications of rule (split) can be bounded by any natural
number n. For this reason, the last condition on contractive definitions in Def. 3.4 is
always verified for proofs in system S1.

4 Soundness

Soundness holds in the most general case, when types and derivations are allowed
to be non regular. The proof is a non trivial adaptation of that given by the same
authors [3] for the less general system with rules (∨L) and (distr) instead of (split).

Journal of Object Technology, vol. N, no. M, 2010

http://www.jot.fm/contents/issue_2010_NN/articleNN.html

10 · Davide Ancona, Giovanni Lagorio

Def. 4.1 Let ∇ be a proof of v ∈ C[t]. Then, rank(∇, C[]) is inductively defined over
the depth of C[] as follows:

• If C[] = �, then rank(∇, C[]) is the number of consecutive applications of rules
(∨L) or (∨R) starting from the root of ∇. Such a number is always defined
since ∇ is contractive (Def. 3.1).

• If C[] = obj (c, [f :C′[], f1:t1, . . . , fn:tn]), then ∇ has shape ∇f ,∇f1 ,...,∇fn

v∈C[t] (obj),
where ∇f is the proof of vf ∈ C′[t] for an opportune vf , and rank(∇, C[]) =
rank(∇f , C′[]).

Lemma 4.1 v ∈ C[u1 ∨ u2] iff v ∈ C[u1] or v ∈ C[u2].

Proof: By induction over the depth of C[].
If the context has depth 0 (therefore C[] = �), then the only applicable rules are

(∨L) and (∨R), therefore v ∈ u1 ∨ u2 iff v ∈ u1 or v ∈ u2.
If the context has shape obj (c, [f :C′[], f1:t1, . . . , fn:tn]), then the only applicable

rule is (obj), therefore v ∈ obj (c, [f :C′[u1 ∨ u2], f1:t1, . . . , fn:tn]) iff v = obj (c, [f 7→ vf , f1 7→ v1, . . . , fn 7→ vn, . . .]),
and vf ∈ C′[u1 ∨ u2], v1 ∈ t1, . . . , vn ∈ tn. By inductive hypothesis vf ∈ C′[u1 ∨ u2] iff
vf ∈ C′[u1] or vf ∈ C′[u2], hence, since (obj) is the only applicable rule, we conclude
that v ∈ obj (c, [f :C′[u1 ∨ u2], f1:t1, . . . , fn:tn]) iff v ∈ obj (c, [f :C′[u1], f1:t1, . . . , fn:tn])
or v ∈ obj (c, [f :C′[u2], f1:t1, . . . , fn:tn]).

As a final remark, note that the proof ∇′ of v ∈ C[u1] or v ∈ C[u2] can be obtained
from the proof ∇ of v ∈ C[u1 ∨ u2] by just removing an application of rule (∨L) or
(∨R), respectively, corresponding to the node u1 ∨ u2 which fills in the hole of the
context C[]. That is, rank(∇′, C[]) = rank(∇, C[])− 1. �

Corollary 4.1 The following fact

v ∈ t1, and t1 ≤ t2 with a proof where the first applied rule is (split) with a context
C[] s.t. t1 = C[u1 ∨ u2]

is equivalent to

(v ∈ C[u1] or v ∈ C[u2]) and C[u1] ≤ t2, C[u2] ≤ t2.

Proof: A direct consequence of Lemma 4.1, rule (split) and the hypotheses. �

Lemma 4.2 If v ∈ t0 and t0 ≤ u, then any proof ∇ of t0 ≤ u cannot contain an
infinite sequence of terms t0 ≤ u, . . . , tn ≤ u, . . . starting from the root of ∇ and
obtained by applying only rule (split), where v ∈ ti for all i.

Proof: By contradiction, let us assume that there exists such a sequence where for
all i ≥ 0, ti+1 is obtained from ti by applying rule (split) with a certain context Ci[]
s.t. ti = Ci[ta ∨ tb] (for suitable ta and tb), ti+1 = Ci[t] with t = ta or t = tb, Ci[t] ≤ u,
and v ∈ ti for all i.

By Lemma 4.1, for all i we can associate with ti a proof ∇i for v ∈ ti, where ∇0 =
∇, and for all i ≥ 0,∇i+1 is derived from∇i and rank(∇i+1, Ci[]) = rank(∇i, Ci[])−1,
as noted in Lemma 4.1.

To obtain a contradiction, we associate with each type ti in the sequence an
element |ti| in a Noetherian poset and show that |ti+1| < |ti| for all i. Since ∇
is contractive (Def.3.4), the applications of (split) in ∇ are bounded by a natural
number k. Therefore we can associate with each ti a tuple (n0, . . . , nk+1) of length

Journal of Object Technology, vol. N, no. M, 2010

http://www.jot.fm/contents/issue_2010_NN/articleNN.html

On sound and complete axiomatization of coinductive subtyping for object-oriented languages · 11

k + 2 defined as follows: for all j ∈ 0, . . . , k, nj =| C∨ti,j |, where C∨ti,j = {C[] |
depth(C[]) = j,∃u ′, u ′′ C[u ′ ∨ u ′′] = ti}. Hence, j is the number of splittable terms
at depth j contained in ti, whereas nk+1 =

∑
C[]∈C≤ti,k

(rank(∇i, C[])), where C≤ti,j =

{C[] | depth(C[]) ≤ j,∃t C[t] = ti}.
The Noetherian poset we consider is the set Nk+2 equipped with lexicographical

order:

(n0, . . . , nk+1) < (n′0, . . . , n
′
k+1)⇔ ∃j ∈ 0, . . . , k+1∀m ∈ 0, . . . , j−1 nm = n′m∧nj < n′j

We prove now that |ti+1| = (n′0, . . . , n
′
k+1) < (n0, . . . , nk+1) = |ti| for all i. There

are two distinct cases.

Case 1 ti+1 = Ci[u ′], where u ′ is a union type. Hence, for all j ∈ 0, . . . , k,
n′j = nj , since C∨ti+1,j = C∨ti,j . Furthermore, since ∇i+1 is obtained from ∇i by just re-
moving an application of rule (∨L) or (∨R) (see Lemma 4.1), then rank(∇i+1, Ci[]) =
rank(∇i, Ci[]) − 1, while for all C[] 6= Ci[] in C≤ti,k = C≤ti+1,k, rank(∇i+1, C[]) =
rank(∇i, C[]). Therefore n′i+1 = n′i − 1, and |ti+1| < |ti|.

Case 2 ti+1 = Ci[u ′], where u ′ is not a union type. Let d = depth(Ci[]), then
for all j ∈ 0, . . . , d − 1, n′j = nj , whereas n′d = nd − 1, since the term in the hole of
Ci[] is no longer splittable, therefore |ti+1| < |ti|.

We finally note that if the sequence t0 ≤ u, . . . , tn ≤ u, . . . is infinite, then we
obtain the contradiction that there exists a infinite decreasing chain . . . , |tn+1| <
|tn|, . . . , |t1| < |t0| in a Noetherian poset. �

Corollary 4.2 If v ∈ t0 and t0 ≤ u, then any proof ∇ of t0 ≤ u cannot contain an
infinite sequence of terms t0 ≤ u0, . . . , tn ≤ un, . . . starting from the root of ∇ and
obtained by applying only rules (∨R1), (∨R2) and (split), where v ∈ ti for all i.

Proof: Since the proof is contractive, it cannot contain an infinite subsequence built
only with subtyping rules (∨R) and (∨L), hence the whole sequence must contain
infinite (though not necessarily contiguous) applications of rule (split). This is not
possible, otherwise we would have an infinite chain |t0| ≤ |t1| ≤ . . . ≤ |ti| ≤ . . . where
|ti| are elements of the Noetherian poset as defined in Lemma 4.2. Lemma 4.2 can be
reused since applications of rules (∨R) and (∨L) leave unchanged the terms on the
LHS of the subtyping relation. �

Lemma 4.3 If v ∈ t1 and t1 ≤ t2, then there exists a type u (not necessarily equal
to t1) s.t. v ∈ u and u ≤ t2 with a proof whose first applied rule is not (split).

Proof: If the first applied rule of the proof of t1 ≤ t2 is not (split), then the
Lemma trivially holds for u = t1. Otherwise by corollary 4.1 we can follow the path
up of one level to get the proofs of C[u ′] ≤ t2 and v ∈ C[u ′] for suitable u ′, and iterate
this process until we end up with a proof whose first applied rule is not (split). The
termination of this process is guaranteed by Lemma 4.2, since there cannot exist an
infinite path where only rule (split) is applied in the proof of t1 ≤ t2. Again, as noted
in Lemma 4.1 and 4.2, from any proof of v ∈ t1 we can deterministically build a proof
of v ∈ u. Furthermore, the proof of u ≤ t2 can be obtained by deterministically
selecting a subproof from the proof of t1 ≤ t2. �

Journal of Object Technology, vol. N, no. M, 2010

http://www.jot.fm/contents/issue_2010_NN/articleNN.html

12 · Davide Ancona, Giovanni Lagorio

To prove soundness we first define a total function F associating a pair of proof
trees for t1 ≤ t2 and v ∈ t1, respectively, with a proof for v ∈ t2.

The definition coinductive, and by cases on the first applied subtyping rule of such
a proof.

Rule (int) F
(

(int)
int ≤ int

, (int)
i ∈ int

)
= (int) i∈int .

Rule (∨R1) F
(

(∨R1)
∇1

t1 ≤ u1 ∨ u2
,∇2

)
= (∨L)

F(∇1,∇2)
v ∈ u1 ∨ u2

, where ∇1 is a proof for

t1 ≤ u1, and ∇2 is a proof for v ∈ t1.

Rule (∨R2) F
(

(∨R2)
∇1

t1 ≤ u1 ∨ u2
,∇2

)
= (∨R)

F(∇1,∇2)
v ∈ u1 ∨ u2

, where ∇1 is a proof for

t1 ≤ u2, and ∇2 is a proof for v ∈ t1.

Rule (obj)

F

(obj)

∇1, . . . ,∇n

obj (c, [f1:u1, . . . , fn:un, . . .]) ≤ obj (c, [f1:u ′1, . . . , fn:u ′n])
,

(obj)
∇′1, . . . ,∇′n, . . .

obj (c, [f1 7→ v1, . . . , fn 7→ vn, . . .]) ∈ obj (c, [f1:u1, . . . , fn:un, . . .])

 =

(obj)
F(∇1,∇′1), . . . ,F(∇n,∇′n)

obj (c, [f1 7→ v1, . . . , fn 7→ vn, . . .]) ∈ obj (c, [f1:u ′1, . . . , fn:u ′n])

where∇1, . . . ,∇n are proofs for u1 ≤ u ′1, . . . , un ≤ u ′n, respectively, whereas∇′1, . . . ,∇′n
are proofs for v1 ∈ u1, . . . , vn ∈ un, respectively.

The proof for obj (c, [f1 7→ v1, . . . , fn 7→ vn, . . .]) ∈ obj (c, [f1:u1, . . . , fn:un, . . .]) con-
tains ellipses in the right hand side of the subproofs ∇′1, . . . ,∇′n and of the fields of
both the value and the type, to mean that there are parts of the proof that may be
omitted since the definition of F is independent from them.

Rule (split) F (∇1,∇2) = F(∇′1,∇′2), where ∇1 = (split)
∇a ∇b

C[ua ∨ ub] ≤ t2
, ∇a, ∇b

are proofs of C[ua] ≤ t2 and C[ub] ≤ t2, respectively, ∇2 is a proof of v ∈ C[ua ∨ ub],
and by Lemma 4.3 ∇′1 and ∇′2 are the proofs of u ≤ t2 and v ∈ u (for a suitable u)
deterministically obtained from ∇1 and ∇2, where the first applied rule of ∇′1 is not
(split). Therefore the definition of F for case (split) is delegated to one of the other
cases.

Lemma 4.4 The function F is well-defined and for any contractive proofs ∇1 and
∇2 of t1 ≤ t2 and v ∈ t1, respectively, F(∇1,∇2) returns a contractive proof of v ∈ t2.

Proof: We first need to prove that F is well-defined. Since F is defined coinductively,
we have to prove that F is deterministic, that is, F(∇1,∇2) = ∇, F(∇1,∇2) = ∇′
implies ∇ = ∇′. This can be proved by coinduction over the definition of ∇ = ∇′,
and by noting that all cases defining F are disjoint and that case (split) can always
be reduced to one of the other cases, by virtue of Lemma 4.3.

Journal of Object Technology, vol. N, no. M, 2010

http://www.jot.fm/contents/issue_2010_NN/articleNN.html

On sound and complete axiomatization of coinductive subtyping for object-oriented languages · 13

We now prove that if ∇1 and ∇2 are proofs of t1 ≤ t2 and v ∈ t1, respectively,
then F(∇1,∇2) is defined and returns a proof of v ∈ t2 (for the moment we do not
assume that proofs are contractive).

The proof that F(∇1,∇2) is defined is by coinduction over the definition of F , and
is based on the facts that the cases defining F are exhaustive, and that case (split)
can always be reduced to one of the other cases, by virtue of Lemma 4.3.

The proof that F(∇1,∇2) returns a proof of v ∈ t2 is by coinduction over the
definition of proof, and is based on the definition of F and on the fact that case
(split) can always be reduced to one of the other cases, by virtue of Lemma 4.3.

Finally, we prove that if ∇1 and ∇2 are contractive, then F(∇1,∇2) is contractive
as well. By contradiction, if F(∇1,∇2) is not contractive, then it contains a subproof
built only with membership rules (∨R), and (∨L). By construction, this can only be
obtained if at a certain point only cases (∨R1), (∨R2), and (split) of the definition
of F are applied. By Lemmas 4.3 and 4.1, if ∇1 and ∇2 are contractive and case
(split) is applied (therefore F (∇1,∇2) = F(∇′1,∇′2)), then the proofs ∇′1 and ∇′2
are obtained from ∇1 and ∇2, respectively, by removing some rule applications, and,
therefore, ∇′1 and ∇′2 are contractive as well. Finally, we obtain a contradiction by
applying Corollary 4.2, since in case (split) ∇′1 is always a subproof of ∇1. �

Theorem 4.1 (Soundness) For all t1, t2, if t1 ≤ t2, then Jt1K ⊆ Jt2K.

Proof: This theorem is a corollary of Lemma 4.4, since the claim of the theorem
is equivalent to t1 ≤ t2, v ∈ t1 implies v ∈ t2, and a proof of v ∈ t2 is given by
F(∇1,∇2), where ∇1 and ∇2 are proofs of t1 ≤ t2 and v ∈ t1, respectively. �

5 Towards completeness

Although we discovered pretty soon that the axiomatization defined in Figure 2 is not
complete w.r.t. the idealized model where non regular types and proofs are allowed,
the case where one restrict the model to regular types and proofs was not so clear, and
initially we conjectured that the rules were complete. Unfortunately, completeness
does not hold also for the restricted model.

We first provide a counter-example involving non regular types. Consider the
terms defined by the following infinite set of equations:

t1 = obj (c, [f :ta ∨ tb, g :t1])
t2 = ua ∨ ub

ua = obj (c, [f :ta, g :ua])
ub = u0 ∨ . . . ∨ un ∨ . . .
u0 = obj (c, [f :tb, g :t1])
. . .
un+1 = obj (c, [f :ta, g :un])
. . .

We assume that ta and tb are two non empty incomparable types (JtaK 6= ∅, JtbK 6= ∅,
JtaK ∩ JtbK = ∅). Types t1 and t2 correspond to all infinite lists where each element
has type ta or tb. Each un corresponds to the infinite lists where the n+ 1-th element
has type tb, all preceding n elements have type ta, and all remaining elements have
type ta ∨ tb. Let v be a value s.t. v ∈ Jt1K. If all fields f in v are associated with
values in JtaK, then v ∈ JuaK, but v 6∈ JunK for all n (hence v 6∈ JubK), since each

Journal of Object Technology, vol. N, no. M, 2010

http://www.jot.fm/contents/issue_2010_NN/articleNN.html

14 · Davide Ancona, Giovanni Lagorio

value in JunK must contain a subvalue in JtbK associated with the field f at position
n + 1. On the other hand, if v contain at least a subvalue in JtbK associated with a
field f , then v ∈ JuiK, where i+ 1 is the lowest position of a field f associated with a
value in JtbK. Therefore JubK = Jt1K \ JuaK. Even though Jt1K = Jt2K, the only proofs
for t1 ≤ t2 are not contractive since the depth of the applications of rule (split) is
necessarily unbounded. Indeed, by applying n (for n > 0 arbitrary) times rule (split)
at increasing depths we obtain 2n terms among which all are provably subtypes of
ub except for the one (let us call it t ′) which represents the lists where the first n
elements have type ta. Since Jt ′K 6⊆ JuaK and Jt ′K 6⊆ JubK t ′ ≤ ua and t ′ ≤ ub cannot
be derived by soundness. We conclude that all possible proofs are those which try to
split indefinitely t1, thus having an infinite path containing just applications of rule
(split) with an unbounded depth.

The counter-example shown above relies on the fact that t2 is not a regular term,
however it can be adapted as follows to work also with regular types.

t1 = obj (c, [f :ta ∨ tb]) ∨ obj (c, [f :ta ∨ tb, g :t1])
t2 = ua ∨ ub

ua = obj (c, [f :ta]) ∨ obj (c, [f :ta ∨ tb, g :ua])
ub = obj (c, [f :tb]) ∨ obj (c, [f :ta ∨ tb, g :ub])

Type t1 corresponds to the set of all finite (but not empty) and infinite lists with
elements of type ta∨ tb (where, again, JtaK 6= ∅, JtbK 6= ∅, JtaK∩ JtbK = ∅). Type ua and
ub correspond to the sets of all finite (but not empty) and infinite lists with elements
of type ta ∨ tb where, however, the last element (if the list is finite) has type ta and
tb, respectively. Therefore Jt1K = Jt2K, but t1 ≤ t2 is not provable. Indeed, since
Jt1K 6⊆ JuaK and Jt1K 6⊆ JubK, by soundness we have that t1 ≤ ua and t1 ≤ ub cannot
be proved, therefore a proof for t1 ≤ t2 can only be obtained by first applying rule
(split). Independently of the number of consecutive applications of rule (split), we
have always to prove t ′1 ≤ t2 for t ′1 obtained from t1 s.t. Jt ′1K 6⊆ JuaK and Jt ′1K 6⊆ JubK,
hence the only possible prove we obtain is not contractive, since the depth of the
applications of rule (split) is unbounded.

We overcome this problem by adding a new (merge) rule allowing to merge object
types in the LHS types of the subtyping relation.

5.1 Rule (merge)

Before defining rule (merge), we provide the coinductive definition of the function
∧(t1, t2) which returns the type corresponding to the intersection of t1 and t2. Note
that we are not introducing a new type constructior, but simply defining an auxiliary
function used in rule (merge). Except for the intersection of object types of the same
class, all other cases are trivial. The intersection of two object types, of the same
class c, corresponds to an object type containing the union of all the fields, whose
type is the intersection of the source types, for fields that are shared between the two

Journal of Object Technology, vol. N, no. M, 2010

http://www.jot.fm/contents/issue_2010_NN/articleNN.html

On sound and complete axiomatization of coinductive subtyping for object-oriented languages · 15

object types, and the (single) source type for the others.

∧(int , int) = int ∧(int , obj (,)) = ⊥ ∧(obj (,), int) = ⊥

∧(obj (c,), obj (c′,)) = ⊥ (if c 6= c′)

∧(t1, t2 ∨ t3) = ∧(t1, t2) ∨ ∧(t1, t3) ∧(t1 ∨ t2, t3) = ∧(t1, t3) ∨ ∧(t2, t3)

∧(obj (c, [f1:t1, . . . , fn:tn, g1:u1, . . . , gm:um]), obj (c, [f1:t ′1, . . . , fn:t ′n, h1:u ′1, . . . , hk:u ′k])) =
obj (c, [f1: ∧ (t1, t ′1), . . . , fn: ∧ (tn, t ′n), g1:u1, . . . , gm:um, h1:u ′1, . . . , hk:u ′k])

if {g1, . . . , gm} ∩ {h1, . . . , hk} = ∅

Lemma 5.1 For all types t1, t2, J∧(t1, t2)K ⊆ Jt1K and J∧(t1, t2)K ⊆ Jt2K.

Proof: (Sketch) The claim is equivalent to the following one: for all types t1, t2, and
value v , if v ∈ ∧(t1, t2) then v ∈ t1 and v ∈ t2. The proof uses the same technique
adopted in Theorem 4.1, even though in a much simpler way: first we coinductively
define a function which takes a proof for v ∈ ∧(t1, t2) and returns two proofs for v ∈ t1
and v ∈ t2, respectively. Then, we prove that that such a function is well-defined and
maps contractive proofs into contractive proofs. �

Rule (merge) allows merging two object types in the LHS type t2 having shape u1∨
. . .∨t1∨. . .∨t2∨. . .∨un (see the definition of the rule and of the two and one holes con-
textsM[,] andM[] in Figure 4), where t1 = obj (c, f :ta, f1:t1, . . . , fn:tn, g1:u1, . . . , gm:um)
and t2 = obj (c, f :tb, f1:t ′1, . . . , fn:t ′n, h1:u ′1, . . . , hk:u ′k), with {g1, . . . , gm}∩{h1, . . . , hk} =
∅. Of all the fields shared between these two object types, f f1 . . . fn, the field f (recall

M[] ::= � | M[] ∨ t | t ∨M[]
M[,] ::= M[] ∨M[]

(merge)

t ≤M[obj (c, [f :ta ∨ tb, f1: ∧ (t1, t ′1), . . . , fn: ∧ (tn, t ′n),
g1:u1, . . . , gm:um, h1:u ′1, . . . , hk:u ′k]),⊥]

t ≤M[obj (c, f :ta, f1:t1, . . . , fn:tn, g1:u1, . . . , gm:um),
obj (c, f :tb, f1:t ′1, . . . , fn:t ′n, h1:u ′1, . . . , hk:u ′k)]

{g1,...,gm}∩{h1,...,hk}=∅

Figure 4 – Definition of rule (merge) and contexts M[,] and M[]

that the order of fields is immaterial) is kept with a type that is the union of the
source types, ta and tb, while the other source types are pairwise intersected by using
the auxiliary function ∧.

Note that for making rule (merge) more readable, in the premise we keep both
holes of the context, even though the one replaced with the empty type ⊥ would be
deleted in practice; note also that replacing both holes with the same “merged” type
would not be equivalent, since in this case the rule could be applied infinitely many
times without “consuming” any type, hence, would not be contractive.

The following lemma is important for proving that the axiomatization remains
sound when adding the new rule (merge).

Lemma 5.2 The following inclusion holds:

JM[obj (c, [f :ta ∨ tb, f1: ∧ (t1, t
′
1), . . . , fn: ∧ (tn, t ′n), g1:u1, . . . , gm:um, h1:u ′1, . . . , hk:u ′k]),⊥]K

⊆
JM[obj (c, f :ta, f1:t1, . . . , fn:tn, g1:u1, . . . , gm:um), obj (c, f :tb, f1:t ′1, . . . , fn:t ′n, h1:u ′1, . . . , hk:u ′k)]K

Journal of Object Technology, vol. N, no. M, 2010

http://www.jot.fm/contents/issue_2010_NN/articleNN.html

16 · Davide Ancona, Giovanni Lagorio

Proof: (Sketch) The claim is equivalent to the following one:
if v ∈M[obj (c, [f :ta∨ tb, f1:∧ (t1, t

′
1), . . . , fn:∧ (tn, t ′n), g1:u1, . . . , gm:um, h1:u ′1, . . . , hk:u ′k]),⊥]

then v ∈M[obj (c, f :ta, f1:t1, . . . , fn:tn, g1:u1, . . . , gm:um), obj (c, f :tb, f1:t ′1, . . . , fn:t ′n, h1:u ′1, . . . , hk:u ′k)].
The proof is by induction on the sum of the depth of the two holes in the context.

The most interesting case is the proof of the basis. Obviously, v is an object of the
shape

obj (c, [f 7→ vf , f1 7→ v f
1 , . . . , fn 7→ v f

n, g1 7→ vg
1 , . . . , gm 7→ vg

m, h1 7→ vh
1 , . . . , hk 7→ vh

k])

By Lemma 5.1 we know that ∀v f
i ∈ J∧(ti, t ′i)K, with i ∈ {1, . . . , n}, v f

i ∈ JtiK ∩
Jt ′iK. Also, vf ∈ JtaK or vf ∈ JtbK. Let us assume the former (the other case is
symmetric), then v ∈ Jobj (c, f :ta, f1:t1, . . . , fn:tn, g1:u1, . . . , gm:um)K by applying rule
(obj), ignoring fields hi, with i ∈ {1, . . . , k}. �

5.2 Completeness

In the rest of the paper we restrict the subtyping relation to regular types and proofs,
and the interpretation of regular types to regular values and membership proofs.

Before investigating the completeness of our axiomatization of subtyping, we first
show that there is a sound and complete axiomatization for the notion of non empty
type (that is, t s.t. JtK 6= ∅). Such an axiomatization is given by the following
coinductive rules:

(↑ ∨L)
t1 ↑⊥

t1 ∨ t2 ↑⊥
(↑ ∨R)

t2 ↑⊥
t1 ∨ t2 ↑⊥

(↑ int)
int ↑⊥

(↑ obj)
t1 ↑⊥, . . . , tn ↑⊥

obj (c, [f1:t1, . . . , fn:tn]) ↑⊥

We say that t ↑⊥ holds iff there exists a contractive proof for t ↑⊥ build by instantiat-
ing the rules above. A proof is contractive if it does not contain a subproof obtained
by only applying rules (↑ ∨L) and (↑ ∨R).

Recall from Example 1 of Section 3 that ⊥ is an abbreviation for the type t s.t.
t = t ∨ t , and that J⊥K = ∅.

Proposition 5.1 For all types t, t ↑⊥ iff JtK 6= ∅.

Proof: The proof can be found in a companion paper (see Theorems 5.1 and 5.3
[3]). �

The following lemmas are instrumental to prove completeness.

Lemma 5.3 JC[t1]K ⊆ JC[t1 ∨ t2]K, JC[t2]K ⊆ JC[t1 ∨ t2]K.

Proof: By Def. 3.1 and Lemma 4.1, v ∈ C[t1] implies (v ∈ C[t1] or v ∈ C[t2]) which
implies v ∈ C[t1 ∨ t2] (and analogously for JC[t2]K ⊆ JC[t1 ∨ t2]K). �

Lemma 5.4 If JtK = ∅, then t contains ⊥ as a subterm.

Proof: By virtue of Proposition 5.1, the claim is equivalent to the following: if
t 6 ↑⊥, then t contains ⊥ as a subterm. For any type t , by direct coinduction, there
always exists a (not necessarily contractive) proof of t ↑⊥, therefore t 6 ↑⊥ implies that
all proofs of t ↑⊥ are not contractive, that is, contain a subproof obtained by only
applying rules (↑ ∨L) and (↑ ∨R). By induction on the depth of the node we have
that if t ′ ↑⊥ is a node of the proof of t ↑⊥, then t ′ is a subterm of t ; therefore all non
contractive proofs of t ↑⊥ contains a node t ′ ↑⊥ where t ′ is infinite and contains only
∨ nodes, hence t ′ = ⊥, and t ′ is a subterm of t . �

Journal of Object Technology, vol. N, no. M, 2010

http://www.jot.fm/contents/issue_2010_NN/articleNN.html

On sound and complete axiomatization of coinductive subtyping for object-oriented languages · 17

Lemma 5.5 If t = obj (c, [f1:t1, . . . , fn:tn+h]), JtK ⊆ Jobj (c, [f1:t ′1, . . . , fn:t ′n])K, and
JtK 6= ∅, then JtiK ⊆ Jt ′iK for all i = 1, . . . , n.

Proof: By Def. 3.1, if JtK 6= ∅, then JtiK 6= ∅ for all i = 1, . . . , n+h, hence there exists
vi s.t. vi ∈ JtiK for all i = 1, . . . , n+h. Then, for any k = 1, . . . , n, if v ∈ JtkK, then the
value v ′ = obj (c, [f1 7→ v1, . . . , fk−1 7→ vk−1, fk 7→ v , fk+1 7→ vk+1, . . . , fn+h 7→ vn+h])
is s.t. v ′ ∈ JtK, therefore, by hypothesis, v ′ ∈ Jobj (c, [f1:t ′1, . . . , fn:t ′n])K and, hence,
v ∈ Jt ′kK. �

For proving the main lemma 5.9 (given below) we first need some auxiliary defi-
nitions and lemmas. The following coinductive rules define an equivalence relation ∼
on values (which corresponds to bi-similarity between values w.r.t types):

(int)
i1 ∼ i2

(obj)
v1 ∼ v ′1, . . . , vn ∼ v ′n

obj (c, [f1 7→ v1, . . . , fn 7→ vn]) ∼
obj (c, [f1 7→ v ′1, . . . , fn 7→ v ′n])

Lemma 5.6 If v1 ∼ v2 and v1 ∈ t then v2 ∈ t.

Proof: By case analysis on t and coinduction on the membership rules. �
Field paths (or simply paths, when no ambiguity may arise) are finite and possibly

empty sequences of fields, inductively defined by the following productions:

p ::= ε | f .p

The prefix prefix (f .p) of a non-empty path f .p is inductively defined as follows:

prefix (f .p) =
{
ε if p = ε
f .prefix (p) otherwise

If v is a value, then the path selection v .p may either be undefined or denote a
particular subvalue v ′ of v ; in this case we write v .p v ′. The relation v .p v ′ is
inductively defined in the standard way:

(empty)
v .ε v

(not-empty)
vi.p v ′

obj (c, [f1 7→ v1, . . . , fn 7→ vn]).fi.p v ′
1≤i≤n

Each node v ′ ∈ t ′ in a contractive proof ∇ for v ∈ t can be uniquely associated
with a field path p s.t. v .p v ′. Intuitively, such a field path is determined by
the applications of rule (obj) in the path of the proof from its root v ∈ t up to the
node v ′ ∈ t ′. Note that, conversely, a field path can be associated with several nodes;
this happens when t contains union types. If t does not contain union types, then
there is a bijection between the field paths and the nodes of the proof. The set of
all field paths defined for a contractive proof ∇ is denoted by fp(∇), and defined by
{p | p ∈ ∇}, where p ∈ ∇ is coinductively (or inductively) defined as follows:

(empty)
ε ∈ ∇

(∨)
p ∈ ∇

p ∈ (r)
∇

v∈t
r=∨L or r=∨R

(obj)
p ∈ ∇i

fi.p ∈ (obj)
∇1,...,∇n

v∈obj (c,[f1:t1,...,fn:tn])

1≤i≤n,n>0

Rules (empty) and (obj) are contractive, whereas (∨) is not, however if ∇ is contrac-
tive, then there may exist only contractive proofs for p ∈ ∇. Note that, since field

Journal of Object Technology, vol. N, no. M, 2010

http://www.jot.fm/contents/issue_2010_NN/articleNN.html

18 · Davide Ancona, Giovanni Lagorio

paths are finite, in this case all proofs for p ∈ ∇ are finite, hence the rules above can
be indifferently interpreted coinductively or inductively.

Analogously, if v is a value, then fp(v) is the set of all field paths corresponding
to the subvalues of v (included itself), inductively defined by the following rules.

(empty)
ε ∈ v

(obj)
p ∈ vi

fi.p ∈ obj (c, [f1 7→ v1, . . . , fn 7→ vn])
1≤i≤n,n>0

Lemma 5.7

1. The sets fp(∇) and fp(v) are prefix-closed.

2. If ∇ is a proof for v ∈ t, then fp(∇) ⊆ fp(v).

Proof:

1. The proof that fp(v) is prefix-closed is by induction on the length of the path.
If f .ε ∈ v , then by definition ε ∈ v . If f .p ∈ v , with p 6= ε, then necessarily
v = obj (c, [f1 7→ v1, . . . , fn 7→ vn]), f = fi for 1 ≤ i ≤ n, and p ∈ vi. By
inductive hypothesis, prefix (p) ∈ vi, hence by rule(obj), f .prefix (p) ∈ v , but
f .prefix (p) = prefix (f .p).

The proof that fp(∇) is prefix-closed is by induction on the rules defining p ∈ ∇,
and case analysis on the first instantiated rule. The first instantiated rule cannot
be (empty), since p 6= ∅ (prefix is defined only for non empty paths). If the first
instantiated rule is (∨), then we can directly conclude by inductive hypothesis. If
the first instantiated rule is (obj), then f = fi for 1 ≤ i ≤ n, and we distinguish
two subcases: if p = f .ε, then we can conclude by virtue of rule (empty);
otherwise, p = f .p′ with p′ 6= ε, and by inductive hypothesis, prefix (p′) ∈ ∇i,
hence by rule(obj), f .prefix (p′) ∈ ∇, but f .prefix (p′) = prefix (f .p′).

2. The proof is by induction on the rules defining p ∈ ∇, and case analysis on
the first instantiated rule. If the first instantiated rule is (empty), then p = ∅
and we conclude by instantiating the corresponding rule to obtain ε ∈ v . If
the first instantiated rule is (∨), then by inductive hypothesis p ∈ v . Fi-
nally, if the first instantiated rule is (obj), then p = fi.p′ for 1 ≤ i ≤ n,
v = obj (c, [f1 7→ v1, . . . , fn 7→ vn, . . .]) and t = obj (c, [f1:t1, . . . , fn:tn]); by induc-
tive hypothesis, p′ ∈ vi, hence we conclude by instantiating the corresponding
rule to obtain fi.p′ ∈ v .

�

Lemma 5.8 If t does not contain union types and v1, v2 ∈ t, then:

1. there exists a unique proof ∇1 for v1 ∈ t and ∇2 for v2 ∈ t, and fp(∇1) =
fp(∇2);

2. if fp(v1) = fp(∇1) and fp(v2) = fp(∇2), then v1 ∼ v2.

Proof:

1. This is a direct consequence of the fact that membership rules (int) and (obj)
are disjointly applicable.

Journal of Object Technology, vol. N, no. M, 2010

http://www.jot.fm/contents/issue_2010_NN/articleNN.html

On sound and complete axiomatization of coinductive subtyping for object-oriented languages · 19

2. The proof is by case analysis on t and coinduction on the rules defining v1 ∼ v2.
If t = int , then v1, v2 ∈ Z and we conclude v1 ∼ v2 by rule (int). Other-
wise t = obj (c, [f1:t1, . . . , fn:tn]), and by the hypothesis fp(v1) = fp(∇1) and
fp(v2) = fp(∇2) we deduce that v1 and v2 are object values containing ex-
actly the same fields as those in t , hence, v1 = obj (c, [f1 7→ v1

1 , . . . , fn 7→ v1
n]),

v2 = obj (c, [f1 7→ v2
1 , . . . , fn 7→ v2

n]). Since fp(v1) = fp(∇1) and fp(v2) = fp(∇2),
then fp(v1

i) = fp(∇1
i) and fp(v2

i) = fp(∇2
i) for all i = 1, . . . , n; indeed, by con-

tradiction, if there exists p ∈ vk
i s.t. p 6∈ ∇k

i (for any i = 1, . . . , n, k = 1, 2), then
fi.p ∈ vk, but fi.p 6∈ ∇k, and hence fp(vk) 6= fp(∇k). Therefore we can conclude
by applying the coinductive hypothesis to rule (obj) to obtain v1 ∼ v2.

�
If ∇ is a proof of v ∈ t and fp(∇) = fp(v), then v is minimal w.r.t. t : any subvalue

of v is essential for proving v ∈ t , if we remove any of them we obtain a value v ′ s.t.
v ′ ∈ t is no longer provable.

If P is a (possibly empty) set of non empty paths, then P ↓ f denotes the set
{p | f .p ∈ P}. If v is a value, and P ⊆ fp(v), then the restriction v \ P is the value
coinductively defined as follows:

i \ P = i if i ∈ Z
v \ P = obj (c, [fk1 7→ vk1 \ (P ↓ fk1), . . . , fkm

7→ vkm
\ (P ↓ fkm

)]) if
v = obj (c, [f1 7→ v1, . . . , fn 7→ vn]) and {f1.ε, . . . , fn.ε} \ P = {fk1 .ε, . . . , fkm .ε}

Intuitively, v \P is the value v ′ obtained by removing from v all subvalues determined
by the non empty paths in P .

Lemma 5.9 Jt1K ⊆ Ju1 ∨ u2K, Jt1K 6⊆ Ju1K, Jt1K 6⊆ Ju2K⇒ t1 contains a union type.

Proof: We arrange the claim in the following equivalent form: if Jt1K ⊆ Ju1 ∨ u2K,
and t1 does not contain union types, then Jt1K ⊆ Ju1K or Jt1K ⊆ Ju2K.

We first observe that by Lemma 5.4, Jt1K 6= ∅, and that by definition of J K and
of membership, Ju1 ∨ u2K = Ju1K ∪ Ju2K. If Ju1K = ∅ or Ju2K = ∅, then the claim
trivially holds. The proof is less simple when Ju1K 6= ∅ and Ju2K 6= ∅. Let us assume
by contradiction that Jt1K 6⊆ Ju1K and Jt1K 6⊆ Ju2K, that is, there exist v1, v2 ∈ Jt1K s.t.
v1 ∈ Ju1K \ Ju2K, v2 ∈ Ju2K \ Ju1K.

Since t1 does not contain union types, by Lemma 5.8(1) there exists a unique proof
∇1 for v1 ∈ t1 and ∇2 for v2 ∈ t1, and fp(∇1) = fp(∇2) = P ; however, in general
fp(v1) 6= P 6= fp(v2), but rather P ⊆ fp(v1), fp(v2). Nevertheless, it is possible to
find v ′1, v ′2 s.t. v ′1, v

′
2 ∈ Jt1K, v ′1 ∈ Ju1K \ Ju2K, v ′2 ∈ Ju2K \ Ju1K, fp(v ′1) = fp(v ′2) = P .

Indeed, v ′1 (and analogously v ′2) can be obtained by removing from v1 all subvalues
determined by the paths p ∈ fp(v1) \ P s.t. prefix (p) ∈ P . More precisely, v ′1 =
v1 \ {p ∈ fp(v1) \ P | prefix (p) ∈ P} and v ′2 = v2 \ {p ∈ fp(v2) \ P | prefix (p) ∈ P}.
Since removed fields are not checked in the proof ∇1 for v1 ∈ t1, then there exists
a valid proof for v ′1 ∈ t1. Furthermore, since v1 6∈ Ju2K, then v ′1 6∈ Ju2K, therefore
v ′1 ∈ Ju1K, since Jt1K ⊆ Ju1K∪ Ju2K. Similar considerations apply for v ′2 as well. Hence,
by Lemma 5.8(2) v ′1 ∼ v ′2 and by Lemma 5.6 we obtain the contradiction v ′1 ∈ Ju2K
and v ′2 ∈ Ju1K. �

Theorem 5.1 (Completeness, step one) For all regular types t1, t2, if Jt1K ⊆ Jt2K,
then there exists a (not necessarily contractive) proof of t1 ≤ t2.

Journal of Object Technology, vol. N, no. M, 2010

http://www.jot.fm/contents/issue_2010_NN/articleNN.html

20 · Davide Ancona, Giovanni Lagorio

t1\t2 int ∨ obj

int (int) (∨R1) or (∨R2) vacuousLemma 5.9

∨ (split) (split), (∨R1), (∨R2) or (merge) (split)
Lemma 5.3 Lemma 5.3 Lemma 5.3

obj (split) (split), (∨R1), (∨R2) or (merge) (split) or (obj)
Lemma 5.4 Lemma 5.3, 5.9 and 5.4 Lemma 5.4 and 5.5

Table 1 – Applied rules

Proof: The proof is by coinduction on the definition of ≤ and by case analysis on
the top level type constructors of both t1 and t2. Table 1 summarizes the rules which
can be applied for each case, and the needed auxiliary lemmas.

1. t1 = int , t2 = int : one can conclude by trivially applying rule (int).

2. t1 = int , t2 = u1 ∨ u2: since t1 does not contain union types, by Lemma 5.9
we deduce that either Jt1K ⊆ Ju1K or Jt1K ⊆ Ju2K. If only Jt1K ⊆ Ju1K holds,
then we conclude by coinductive hypothesis and rule (∨R1); conversely, if only
Jt1K ⊆ Ju2K holds, then we conclude by coinductive hypothesis and rule (∨R2).
If both Jt1K ⊆ Ju1K and Jt1K ⊆ Ju2K hold, then not always rules (∨R1) and (∨R2)
are applicable interchangeably. Consider for instance the case where t2 = t2∨int ;
if rule (∨R1) were always be chosen when both rules are applicable, then we
would end up with a non contractive proof obtained by only applying rule
(∨R1). To solve this problem, we need to avoid applying rule (∨R1) or (∨R2)
if u1 or u2, respectively, have the following shape: all paths either contain only
constructor ∨ or lead to t2 through only constructor ∨. More precisely, we
need to avoid applying rule (∨R1) or (∨R2) if cyclic(u1) or cyclic(u2) holds,
respectively, where cyclic is defined by the following pseudo-code (we assume
that initially all the nodes of the term are not marked):

cyclic(u) {

if (marked(u) || u==t2)
return true;

else if (u==u ′ ∨ u ′′) {

mark(u);
return cyclic(u ′) && cyclic(u ′′);

}

else
return false;

}

Note that since JintK 6= ∅, and cyclic(u1) and cyclic(u2) implies u1 ∨ u2 = ⊥,
then it can never happen that cyclic holds on both u1 and u2.

3. t1 = int , t2 = obj (c, [f1 7→ u1, . . . , fn 7→ un]): this case is vacuous since Jt1K 6⊆
Jt2K.

4. t1 = u1 ∨ u2, t2 = int : by Lemma 5.3 (applied when C[] = �) we have Ju1K ⊆
Jt1K, Ju2K ⊆ Jt1K, hence, by transitivity, Ju1K ⊆ Jt2K, Ju2K ⊆ Jt2K, therefore
we conclude by coinductive hypothesis and by rule (split) (instantiated with
C[] = �).

Journal of Object Technology, vol. N, no. M, 2010

http://www.jot.fm/contents/issue_2010_NN/articleNN.html

On sound and complete axiomatization of coinductive subtyping for object-oriented languages · 21

(merge-0)

(merge-1)

(split-0)

(∨ R1)

obj (c, [f :ta ∨ tb]) ≤
obj (c, [f :ta ∨ tb])

obj (c, [f :ta ∨ tb]) ≤ t3
(∨ R2)

(obj)
ta ∨ tb ≤ ta ∨ tb t1 ≤ t2

obj (c, [f :ta ∨ tb, g :t1]) ≤
obj (c, [f :ta ∨ tb, g :t2])

obj (c, [f :ta ∨ tb, g :t1]) ≤ t3
t1 ≤ obj (c, [f :ta ∨ tb]) ∨ obj (c, [f :ta ∨ tb, g :t2]) ≡ t3

t1 ≤ obj (c, [f :ta ∨ tb]) ∨ obj (c, [f :ta ∨ tb, g :ua]) ∨ obj (c, [f :ta ∨ tb, g :ub])

t1 ≤ t2

Figure 5 – Regular proof tree for the counter-example using (merge)

5. t1 = u1 ∨ u2, t2 = u ′1 ∨ u ′2: if Jt1K = ∅, then we proceed as for case 4 by applying
rule (split). If Jt1K 6= ∅ and Jt1K ⊆ Ju ′1K or Jt1K ⊆ Ju ′2K, then we can proceed
as for case 2 by applying rules (∨R1) or (∨R2). If Jt1K 6= ∅, Jt1K 6⊆ Ju ′1K, and
Jt1K 6⊆ Ju ′2K, then there are two possible cases:

(a) if rule (merge) is applicable with premise t1 ≤ t ′2 (where t ′2 is the term
obtained from t2 by applying (merge)) with t ′2 s.t. Jt1K ⊆ Jt ′2K, then we
conclude by coinductive hypothesis.

(b) if the previous condition is not satisfied, then we proceed as for case 4 by
applying rule (split).

6. t1 = u1 ∨ u2, t2 = obj (c, [f1 7→ u ′1, . . . , fn 7→ u ′n]): we proceed as for case 4 by
applying rule (split).

7. t1 = obj (c, [f1 7→ u1, . . . , fn 7→ un]), t2 = int : in this case Jt1K ⊆ Jt2K only if
Jt1K = ∅. By Lemma 5.4 t1 contains ⊥ as a subterm, hence rule (split) is
applicable and we proceed as in the subcase of 5 when Jt1K = ∅.

8. t1 = obj (c, [f1 7→ u1, . . . , fn 7→ un]), t2 = u ′1 ∨ u ′2: this case is almost the same
as 5, except for the subcase (b), for which one has to prove that rule (split) is
applicable; this is the case, by virtue of Lemma 5.9.

9. t1 = obj (c, [f1 7→ u1, . . . , fn 7→ un]), t2 = obj (c′, [f ′1 7→ u ′1, . . . , f
′
k 7→ u ′k]): if Jt1K =

∅, then we proceed as in case 7; otherwise, by definition of JtK for object types,
we have that c = c′, and {f ′1 , . . . , f ′k} ⊆ {f1, . . . , fn}; finally, by Lemma 5.5 we
can conclude by coinductive hypothesis and rule (obj).

The second step of the proof is the most awkward and consists in showing that
the proof built in Theorem 5.1 is always contractive, The proof relies on the following
conjecture.

Conjecture 5.1 (Final decomposition) If u1∨u2 is a regular type, JtK ⊆ Ju1 ∨ u2K,
JtK 6⊆ Ju1K, JtK 6⊆ Ju2K, no merge can be performed on u1 ∨ u2 to obtain a type u s.t.
JtK ⊆ JuK, then it is possible to decompose t, by iterative splits, into t1, . . . , tn s.t.
JtK =

⋃
i=1,...,n JtiK and for all i = 1, . . . , n JtiK ⊆ Ju1K or JtiK ⊆ Ju2K.

Theorem 5.2 (Completeness, step two) For all regular types t1, t2, if Jt1K ⊆ Jt2K,
then the proof of t1 ≤ t2 built as in Theorem 5.1 is contractive.

Journal of Object Technology, vol. N, no. M, 2010

http://www.jot.fm/contents/issue_2010_NN/articleNN.html

22 · Davide Ancona, Giovanni Lagorio

Figure 5 shows that our second counter-example, explained on page 14, ceases to
be a counter-example if we add rule (merge), described in Section 5.1, to our system.

In the example, in trying to derive t1 ≤ t2, we can apply rule (merge) only twice,
because if we applied (merge) three times, that is, if we merged the two operands of
the outer union of t3, we would obtain the type t4 ≡ obj (c, [f :ta ∨ tb, g :t2]) that is not
a supertype of t1; indeed, if we consider v = obj (c, [f 7→ va]), with va ∈ JtaK, it is easy
to see that v ∈ Jt1K but v 6∈ Jt4K, so t1 ≤ t4 cannot be deduced because it would not
be sound.

After having applied (merge) twice we are in the situation described in Conjec-
ture 5.1, in fact, we can iteratively split t1 and conclude by using rules (∨R1), (∨R2),
(obj) and the reflexivity of the subtype relation (that can be trivially proved).

6 Conclusion

We have addressed the problem of defining a sound and complete axiomatization
of a subtyping relation between coinductive object and union types, defined as set
inclusion between type interpretations.

We have shown that the axiomatization of subtyping proposed in our previous
work [4] is not complete even when regular types and proofs are considered. To
overcome this problem, we have extended the axiomatization by adding a new rule
(merge), we have proved that the new axiomatization is still sound and is complete
when one considers only regular types and proofs. Proof of completeness relies on
a conjecture which is weaker then the one previously proposed [4] and disproven in
this paper. Interestingly enough, if such a conjecture is correct, then one can easily
devise a semi-computable procedure which returns a contractive and regular proof
tree for t1 ≤ t2 whenever Jt1K ⊆ Jt2K. However when Jt1K 6⊆ Jt2K, the procedure may
terminate with a correct failure, but may also diverge. Besides trying to prove such
a conjecture, we leave open for future work the question whether complete subtyping
between regular types is decidable. An interesting approach to investigate could be
the one proposed by Damm [12] for proving decidability of recursive types (with
intersection, union, and function types, but without record types), based on inclusion
between regular tree expressions.

References

[1] O. Agesen. The cartesian product algorithm. In W. Olthoff, editor, ECOOP’05
- Object-Oriented Programming, volume 952 of Lecture Notes in Computer Sci-
ence, pages 2–26. Springer, 1995.

[2] D. Ancona and G. Lagorio. Coinductive type systems for object-oriented
languages. In S. Drossopoulou, editor, ECOOP’09 - Object-Oriented Pro-
gramming, volume 5653 of Lecture Notes in Computer Science, pages 2–26.
Springer, 2009.

[3] D. Ancona and G. Lagorio. Coinductive subtyping for abstract compilation of
object-oriented languages into Horn formulas. In Montanari A., Napoli M., and
Parente M., editors, Proceedings of GandALF 2010, volume 25 of Electronic
Proceedings in Theoretical Computer Science, pages 214–223, 2010.

Journal of Object Technology, vol. N, no. M, 2010

http://www.jot.fm/contents/issue_2010_NN/articleNN.html

On sound and complete axiomatization of coinductive subtyping for object-oriented languages · 23

[4] D. Ancona and G. Lagorio. Complete coinductive subtyping for abstract com-
pilation of object-oriented languages. In Formal Techniques for Java-like Pro-
grams (FTfJP10), ACM Digital Library, 2010.

[5] D. Ancona and G. Lagorio. Idealized coinductive type systems for imperative
object-oriented programs. RAIRO - Theoretical Informatics and Applications,
2010. To appear.

[6] D. Ancona, G. Lagorio, and E. Zucca. Type inference by coinductive logic pro-
gramming. In Post-Proceedings of TYPES’08, number 5497 in Lecture Notes in
Computer Science. Springer, 2009.

[7] Davide Ancona, Andrea Corradi, Giovanni Lagorio, and Ferruccio Damiani.
Abstract compilation of object-oriented languages into coinductive CLP(X):
can type inference meet verification? In B. Beckert and C. Marché, editors,
Formal Verification of Object-Oriented Software (FoVeOOS 2010), Lecture
Notes in Computer Science. Springer, 2010. Selected paper to appear in the
post-proceedings.

[8] F. Barbanera, M. Dezani-Cincaglini, and U. de’Liguoro. Intersection and union
types: Syntax and semantics. Information and Computation, 119(2):202–230,
1995.

[9] Michael Brandt and Fritz Henglein. Coinductive axiomatization of recursive
type equality and subtyping. In TLCA ’97 - Typed Lambda Calculi and Appli-
cations, pages 63–81, 1997.

[10] Michael Brandt and Fritz Henglein. Coinductive axiomatization of recursive
type equality and subtyping. Fundam. Inform., 33(4):309–338, 1998.

[11] B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer
Science, 25:95–169, 1983.

[12] Flemming Damm. Subtyping with union types, intersection types and recursive
types. In Theoretical Aspects of Computer Software (TACS’94), pages 687–706.
Springer-Verlag, 1994.

[13] M. Furr, J. An, J. S. Foster, and M. Hicks. Static type inference for Ruby.
In SAC ’09: Proceedings of the 2009 ACM symposium on Applied computing.
ACM Press, 2009.

[14] Atsushi Igarashi and Hideshi Nagira. Union types for object-oriented program-
ming. Journ. of Object Technology, 6(2):47–68, 2007.

[15] N.Oxhøj, J. Palsberg, and M. I. Schwartzbach. Making type inference practi-
cal. In ECOOP’92 - European Conference on Object-Oriented Programming,
pages 329–349, 1992.

[16] J. Palsberg and M. I. Schwartzbach. Object-oriented type inference. In ACM
Symp. on Object-Oriented Programming: Systems, Languages and Applications
1991, pages 146–161. ACM Press, 1991.

[17] L. Simon, A. Bansal, A. Mallya, and G. Gupta. Co-logic programming: Ex-
tending logic programming with coinduction. In Automata, Languages and
Programming, 34th International Colloquium, ICALP 2007, pages 472–483,
2007.

[18] L. Simon, A. Mallya, A. Bansal, and G. Gupta. Coinductive logic program-
ming. In Logic Programming, 22nd International Conference, ICLP 2006,
pages 330–345, 2006.

Journal of Object Technology, vol. N, no. M, 2010

http://www.jot.fm/contents/issue_2010_NN/articleNN.html

24 · Davide Ancona, Giovanni Lagorio

[19] M. Sulzmann and P. J. Stuckey. HM(X) type inference is CLP(X) solving.
Journ. of Functional Programming, 18(2):251–283, 2008.

[20] T. Wang and S. Smith. Polymorphic constraint-based type inference for ob-
jects. Technical report, The Johns Hopkins University, 2008. Submitted for
publication.

[21] Tiejun Wang and Scott F. Smith. Precise constraint-based type inference for
Java. In ECOOP’01 - European Conference on Object-Oriented Programming,
volume 2072, pages 99–117. Springer, 2001.

Journal of Object Technology, vol. N, no. M, 2010

http://www.jot.fm/contents/issue_2010_NN/articleNN.html

	Introduction
	An introductory example
	Definition and Axiomatization of Subtyping
	Interpretation of Types and Definition of Subtyping
	Subtyping rules

	Soundness
	Towards completeness
	Rule (merge)
	Completeness

	Conclusion
	References

