
Complete coinductive subtyping for abstract compilation
of object-oriented languages∗

Davide Ancona
DISI, University of Genova

Italy
davide@disi.unige.it

Giovanni Lagorio
DISI, University of Genova

Italy
lagorio@disi.unige.it

ABSTRACT
Coinductive abstract compilation is a novel technique, which
has been recently introduced, for defining precise type sys-
tems for object-oriented languages. In this approach, type
inference consists in translating the program to be analyzed
into a Horn formula f , and in resolving a certain goal w.r.t.
the coinductive (that is, the greatest) Herbrand model of f .

Type systems defined in this way are idealized, since types
and, consequently, goal derivations, are not finitely repre-
sentable. Hence, sound implementable approximations have
to rely on the notions of regular types and derivations, and
of subtyping and subsumption between types and atoms, re-
spectively.

In this paper we address the problem of defining a com-
plete subtyping relation ≤ between types built on object and
union type constructors: we interpret types as sets of values,
and investigate on a definition of subtyping such that t1 ≤ t2
is derivable whenever the interpretation of t1 is contained in
the interpretation of t2. Besides being an important the-
oretical result, completeness is useful for reasoning about
possible implementations of the subtyping relation, when
restricted to regular types.

1. INTRODUCTION
Coinductive abstract compilation [5, 2] is a novel tech-

nique, which has been recently introduced, for defining pre-
cise type systems for object-oriented languages. In this ap-
proach, type inference consists in translating the program to
be analyzed into a Horn formula f , and in resolving a certain
goal w.r.t. the coinductive (that is, the greatest) Herbrand
model of f . Furthermore, union types, besides coinduction
and object types, play an important role for guaranteeing
the high expressive power of the type language.

This novel approach is quite general and modular, since it
can be used for defining quite different type systems for the

∗This work has been partially supported by MIUR DISCO
- Distribution, Interaction, Specification, Composition for
Object Systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

same language, by simply devising different kinds of trans-
lations into Horn formulas, without changing the core in-
ference engine. In contrast with this, most of the solutions
to the problem of type analysis of object-oriented programs
which can be found in literature [14, 13, 1, 18, 17, 11] have
their own inference engine, and cannot be easily compared
and specified.

Furthermore, defining type systems in terms of compi-
lation into a logical language eases reuse of all those static
analysis techniques proposed for compiler optimization which
can be fruitfully adopted for enhancing precision of type
analysis. For instance, we have shown [4] that a more pre-
cise type analysis can be obtained when abstract compila-
tion is performed on programs in Static Single Assignment
intermediate form [10].

Type systems defined by coinductive abstract compilation
are idealized, since types and, consequently, goal derivations,
are not finitely representable. Hence, sound implementable
approximations have to rely on the notions of regular types
and derivations, and of subtyping and subsumption between
types and atoms, respectively. For this reason, studying
the definition of a suitable subtyping relation on coinduc-
tive union and object types is very important to investigate
on possible implementations of the inference engine of our
framework, based on previous work on coinductive SLD res-
olution [16, 15] extended with subtyping and subsumption.
However, devising a sound definition of subtyping on coin-
ductive types is far from being intuitive, since a suitable
notion of contractive [7, 8] derivation has to be introduced
to avoid unsound derivations. Furthermore, without an ap-
propriate interpretation of types and subtyping, one cannot
easily reason on the completeness of subtyping. In a pre-
vious work [3] we have proposed to interpret coinductive
types as sets of values defined by a quite intuitive coinduc-
tive relation of membership, and proved that the definition
of subtyping is sound w.r.t. subset inclusion between type
interpretations. This result allowed us to relax the condition
of contractiveness as previously defined [4], and to add a new
typing rule for dealing with a case previously uncovered.

In this paper we show that, despite the previous improve-
ments, we have not succeeded yet in obtaining completeness.
To this aim, we propose an extension of the previous defi-
nitions of subtyping which turns out to be more expressive.
We prove that such a definition is still sound, even though it
still fails to be complete. However, we conjecture that such
a definition is complete in the most interesting case from
the practical point of view: when one restricts the system
to regular types and derivations.

2. AN INTRODUCTORY EXAMPLE
Let us consider the standard encoding of natural numbers

with objects, written in Java-like code where, however, all
type annotations have been omitted.

class Zero { twice() { return this ; } }
class Succ {

pred;
Succ(n) { this .pred=n; }
twice() {

return new Succ(new Succ(pred.twice ()));
} }

For simplicity, we just consider method twice; class Succ

represents all natural numbers greater than zero, that is, all
numbers which are successors of a given natural number,
stored in the field pred.

In the abstract compilation approach a program, as the
one shown above, is translated into a Horn formula where
predicates encode the constructs of the language. For in-
stance, the predicate invoke corresponds to method invoca-
tion, and has four arguments: the target object, the method
name, the argument list, and the returned result. Terms
represent either types (that is, set of values) or names (of
classes, methods and fields). In this example we use type
int , union types t1∨ t2, object types obj (c, [f1:t1, . . . , fn:tn]),
where c is the class of the object and f1, . . . , fn and t1, . . . , tn
its fields with their types. In the idealized abstract compila-
tion framework, terms can be also infinite and non regular1;
a regular term is a term which can be infinite, but can only
contain a finite number of subterms or, equivalently, can be
represented as the solution of a unification problem, that
is, a finite set of syntactic equations of the form Xi = ti,
where all variables Xi are distinct and terms ti may only
contain variables Xi [9, 16, 15]. For instance, the term t s.t.
t = int ∨ t is regular since it has only two subterms, namely,
int and itself.

Let us see some examples of regular types, that is, regular
terms representing set of values.

zer = obj (zero, [])
nat = zer ∨ obj (succ, [pred :nat])
evn = zer ∨ obj (succ, [pred :obj (succ, [pred :evn])])

Type zer corresponds to all objects representing zero, while
nat corresponds to all objects representing natural numbers
and, similarly, evn to all objects representing even natural
numbers. An example of non regular types is given by the
infinite sequence t0 ∨ (t1 ∨ (. . . ∨ tn . . .)), where the term ti
represents the natural number 2i.

Each method declaration is compiled into a single clause,
defining a different case for the predicate has meth, that
takes four arguments: the class where the method is de-
clared, its name, the types of its arguments, including the
special argument this corresponding to the target object,
and the type of the returned value. Predicate has meth de-
fines the usual method look-up: has meth(c, m, [this, t1, . . . ,
tn], t) succeeds if look-up of m from class c succeeds and re-
turns a method that, when invoked on target object and
arguments this, t1, . . . , tn, returns values of type t .

For instance, the method declarations of the two classes
defined above are compiled as follows:

has_meth(zero ,twice ,[This],This).

1We refer to the author’s previous work [5, 2, 4] for more
details.

has_meth(succ ,twice ,[This],R4) ←
field_acc(This ,pred ,R1),
invoke(R1,twice ,[],R2),
new(succ ,[R2],R3),
new(succ ,[R3],R4).

Predicates field acc, new and invoke correspond to field ac-
cess, constructor invocation and method invocation, respec-
tively. Similarly to what happens for methods, each con-
structor declaration is also compiled into a clause. For in-
stance, the following clause is generated from the constructor
of class Succ:

new(succ ,[N],obj(succ ,[pred:N|R])) ←
extends(succ ,P),new(P,[],obj(P,R)).

Other generated clauses are common to all programs and
depend on the semantics of the language or on the meaning
of types.

invoke(T1∨T2,M,A,R1∨R2) ←
invoke(T1,M,A,R1), invoke(T2,M,A,R2).

invoke(obj(C,R),M,A,Res) ←
has_meth(C,M,[obj(C,R)|A],Res).

The first clause specifies the behavior of invoke with union
types. The invocation must be correct for both target types
T1 and T2 and the returned type is the union of the re-
turned types R1 and R2. When the target is an object type
obj (C, R), then invocation of M with arguments A is correct
if look-up of M with first argument obj (C, R), correspond-
ing to this, and rest of arguments A succeeds when starting
from class C.

We show now that the goal invoke(nat , twice, [], R) is
derivable for R = evn. This means that, not only we can
prove that by doubling any natural number we get an even
number, but we can also infer the thesis (that is, the result
is an even number), since the query corresponds to just ask-
ing which number is returned when doubling any natural
number.

We recall that the coinductive Herbrand model is obtained
by considering also infinite derivations [16]. Then, since
nat = zer ∨ obj (succ, [pred :nat]), by clause 1 for invoke the
following atoms must be derivable:

invoke(zer , twice, [], zer)
invoke(succ(nat), twice, [], succ2(evn))

where succ(t) is an abbreviation for obj (succ, [pred :t]), and
succ2(t) is an abbreviation for succ(succ(t)).

The first atom can be derived by applying clause 2 for
invoke, and then the clause for has meth generated from
class Zero. For the second atom we apply clause 2 for invoke,
and then the clause for has meth generated from class Succ
and get

field acc(succ(nat), pred , nat),
invoke(nat , twice, [], evn), new(succ, [evn], succ(evn)),
new(succ, [succ(evn)], succ2(evn)).

All atoms are derivable, in particular invoke(nat , twice, [],
evn) corresponds to our initial goal, hence the derivation
we obtain is infinite even though regular. Similarly, it is
possible to derive invoke(evn, twice, [], four), where four =
zer ∨ succ4(four), that is, by doubling an even number we
get a multiple of four.

Surprisingly and regrettably, invoke(evn, twice, [], evn) is
not derivable, since new(succ, [t1], t2) is never derivable when
t2 is a union type. To overcome these problems, a subtyp-
ing relation has to be introduced together with a notion of

(int)
i ∈ int

(∨L)
v ∈ t1

v ∈ t1 ∨ t2
(∨R)

v ∈ t2

v ∈ t1 ∨ t2
(obj)

v1 ∈ t1, . . . , vn ∈ tn

obj (c, [f1 7→ v1, . . . , fn 7→ vn, . . .]) ∈ obj (c, [f1:t1, . . . , fn:tn])

Figure 1: Rules defining membership

subsumption between atoms. The definition of the subtyp-
ing relation is postponed to the next section, however the
intuition suggests that four ≤ evn should hold, and since
subtyping is covariant w.r.t. the type returned by a method
invocation, we expect that invoke(evn, twice, [], evn) can be
subsumed from invoke(evn, twice, [], four).

By introducing subtyping and subsumption it is possible
to find regular derivations for goals that would otherwise
have infinite but not regular derivations (an example can be
found in another paper by the same authors [3]); in other
words, subtyping and subsumption are essential for imple-
menting reasonable approximations of idealized coinductive
type systems defined by abstract compilation. To do that,
coSLD resolution [16] is generalized by taking into account
subtyping constraints between terms, besides the usual uni-
fication constraints.

3. TYPE INTERPRETATION AND
SUBTYPING

In this section we define object and union coinductive
types, and provide an intuitive interpretation of types as sets
of values. Then we define subtyping as a syntactic relation
between types, and prove that such a relation is complete2

w.r.t. containment between type interpretations.

3.1 Interpretation of types
The types we consider are all infinite terms coinductively

defined as follows:

t ::= int | obj (c, [f1:t1, . . . , fn:tn]) | t1 ∨ t2

An object type obj (c, [f1:t1, . . . , fn:tn]) specifies the class c
to which the object belongs, together with the set of avail-
able fields with their corresponding types. The class name
is needed for typing method invocations. We assume that
fields in an object type are finite, distinct and that their
order is immaterial. Union types t1 ∨ t2 have the standard
meaning [6, 12].

We interpret types in a quite intuitive way, that is, as sets
of values. Values are all infinite terms coinductively defined
by the following syntactic rules (where i ∈ Z).

v ::= i | obj (c, [f1 7→ v1, . . . , fn 7→ vn])

As it happens for object types, fields in object values are
finite and distinct, and their order is immaterial. Regular
values correspond to finite, but cyclic, objects.

Membership of values to (the interpretation of) types is
coinductively defined by the rules of Figure 1.

All rules are intuitive. Note that an object value is al-
lowed to belong to an object type having less fields; this
is expressed by the ellipsis at the end of the values in the
membership rule (obj).

2Soundness can be obtained by a simple generalization of
the proof [3] provided for a previous non complete definition
of the subtyping relation.

A derivation is a tree where each node is a pair consisting
of a judgment of the shape v ∈ t , and of a rule label3, and
where each node, together with its children, corresponds to
a valid instantiation of a rule. For instance, the following
tree is a derivation for obj (c, [f 7→ 1]) ∈ int ∨ obj (c, [f :int]).

(∨R)

(obj)

(int)
1 ∈ int

obj (c, [f 7→ 1]) ∈ obj (c, f :int)

obj (c, [f 7→ 1]) ∈ int ∨ obj (c, f :int)

Since values and types can be infinite, all rules must be
interpreted coinductively, therefore derivations are allowed
to be infinite. However, not all infinite derivations can be
considered valid, but only those contractive (see the defini-
tion below). To see why we need such a restriction, consider
the regular type t s.t. t = t ∨ int , and the following infinite
derivation containing just applications of rules (∨L):

(∨L)

(∨L)

...

obj (c, []) ∈ t

obj (c, []) ∈ t

We reject derivations built applying only rules (∨L) and
(∨R), since they allow unsound judgments, as obj (c, []) ∈
t derived above, since t corresponds to an infinite union
of int , and therefore its interpretations should only contain
integer values. Intuitively, the problem is due to the fact that
rules (∨L) and (∨R) allow membership checking only on one
part of the type, therefore we may end up with an infinite
proof which in fact does not check anything. Following the
terminology used by Brandt and Henglein [7, 8], we say that
rules (int) and (obj) are contractive, whereas (∨L) and (∨R)
are not.

Def. 3.1. A derivation for v ∈ t is contractive iff it con-
tains no sub-derivations built only with membership rules
(∨R), and (∨L). The membership relation v ∈ t holds iff
there is a contractive derivation for it.

The interpretation of type t is denoted by JtK and defined
by {v | v ∈ t holds}.

In the following we use the term derivation for contractive
derivations, unless explicitly specified.

Example 1.
If ⊥ is the regular type s.t. ⊥ = ⊥ ∨ ⊥, then J⊥K = ∅.

Indeed, the only applicable rules for v ∈ ⊥ are (∨L) and
(∨R), hence only non contractive derivations can be built,
therefore no judgments of the shape v ∈ ⊥ can be derived.

Example 2.
If t is s.t. t = t ∨ int , then JtK = JintK = Z. Indeed,

all the contractive derivations for v ∈ t are obtained by
uselessly applying n times (n ≥ 0) rule (∨L), before the

3This labeling is necessary for the notion of contractive
proof, see below.

(∨R1)
t ≤ t1

t ≤ t1 ∨ t2
(∨R2)

t ≤ t2

t ≤ t1 ∨ t2
(split)

C[t1] ≤ t C[t2] ≤ t

C[t1 ∨ t2] ≤ t

(int)
int ≤ int

(obj)
t1 ≤ t ′1, . . . , tn ≤ t ′n

obj (c, [f1:t1, . . . , fn:tn, . . .]) ≤ obj (c, [f1:t ′1, . . . , fn:t ′n])

C[] ::= 2 |
obj (c, [f :C[], f1:t1, . . . , fn:tn])

Figure 2: Rules defining the subtyping relation

decisive applications of rule (∨R) and (int):

(int)

(∨R)
i ∈ int

(∨L)
i ∈ int ∨ t

(∨L)

...

i ∈ int ∨ t

Other interesting examples of types and their interpreta-
tions can be found in another paper [3].

3.2 Definition of subtyping
The subtyping relation is coinductively defined by the

rules in Figure 2, conceived for a purely functional setting
[2]; an extension for dealing with imperative features can be
found in another paper [4] by the same authors.

All the previous definitions of the subtyping relation [5,
2, 3], are not complete w.r.t. containment between type
interpretations, though the weakest, and also most recent,
definition [3] has been proved to be sound.

The difference with the last previous attempt is in rule
(split) which is, in fact, a generalization with contexts of
rules (∨L) and (distr) defined in the previous system [3].

(∨L)
t1 ≤ t t2 ≤ t

t1 ∨ t2 ≤ t
(distr)

obj (c, [f :u1, f1:t1, . . . , fn:tn]) ≤ t
obj (c, [f :u2, f1:t1, . . . , fn:tn]) ≤ t

obj (c, [f :u1 ∨ u2, f1:t1, . . . , fn:tn]) ≤ t

Such a generalization has been devised to overcome the
problem that rules (∨L) and (distr) do not ensure complete-
ness of subtyping even when the system is restricted to reg-
ular types and derivations; e.g., obj (c, [f :obj (c′, [g :t1 ∨ t2])])
≤obj (c, [f :obj (c′, [g :t1])]) ∨ obj (c, [f :obj (c′, [g :t2])]), hence,
the equivalence between the two types, cannot be proved
without the more general rule (split).

The one hole context (inductively defined on the depth of
the hole; see the same figure) is used for applying the rule
when the type on the left-hand side of the relation contains
at least one union type; a context is either the empty one
(consisting of just the hole), or is an object type with a
context inside (since the order of field is immaterial, the hole
can be contained in any field type). Note that there are no
contexts which are union types, since rule (split) is applied
only to the outer union types; for instance, if the judgement
has shape t1 ∨ t2 ≤ t , then the rule can be instantiated only
with the empty context.

Rule (∨L) is simply obtained by instantiating (split) with
the empty context. Rules (∨R1), (∨R2) and (∨L) specify
subtyping in the presence of union types: the union type
constructor is the join operator w.r.t. subtyping. Note also
the strong analogy with the left and right logical rules of
the classical Gentzen sequent calculus for the disjunction,
when the subtyping relation is replaced with the provability
relation.

Rule (obj) corresponds to standard width and depth sub-
typing between object types: the type on the left-hand side

may have more fields (represented by the ellipsis at the end),
while subtyping is covariant w.r.t. the fields belonging to
both types. Note that depth subtyping is allowed since we
are considering a purely functional setting [4]. Finally, sub-
typing between object types is allowed only when they refer
to the same class name.

Rule (distr) is obtained by instantiating (split) with con-
texts of shape obj (c, [f :2, f1:t1, . . . , fn:tn]), where 2 is the
empty context. The rule states that object types distribute
over union types, in the same way Cartesian product dis-
tributes over union.

For instance, if u1 = obj (c, [f :t1])∨ obj (c, [f :t2]) and u2 =
obj (c, [f :t1 ∨ t2]), then Ju1K = Ju2K, hence if completeness
holds, one should be able to derive u1

∼= u2, that is, u1 ≤ u2

and u2 ≤ u1. The relation u1 ≤ u2 can be derived by apply-
ing rules (∨L), (obj), (∨R1) and (∨R2), and by reflexivity4.
Rule (distr) is necessary for deriving the opposite direction
u2 ≤ u1 of the relation, since by applying rules (∨R1), (∨R2)
and (obj) we end up with t1 ∨ t2 ≤ t1 or t1 ∨ t2 ≤ t2 which
in general do not hold.

For reasons similar to those explained in the previous sec-
tion, derivations have to be contractive, otherwise unsound
judgments can be derived. For instance, if t = t ∨ int ,
then we could derive obj (c, []) ≤ t by only applying rule
(∨R1). However, giving a definition of contractive deriva-
tion for subtyping which does not break soundness without
compromising completeness (at least when the system is re-
stricted to regular types and derivations) is not trivial. In
this case Def. 3.1 alone does not ensure soundness. For in-
stance, if t is the term s.t. t = t ∨ obj (c, [f :t]), then we can
build a derivation for the clearly unsound judgment t ≤ int
by using only rule (split) as shown in Figure 3. We have
added to the label of each rule application a natural number
corresponding to the depth of the hole of the context used
for applying rule (split); the problem with the shown deriva-
tion is that the hole depth of contexts used for applying rule
(split) is unbounded, hence types are never “consumed” as
it happens in rules (int) and (obj).

Def. 3.2. The depth of a context C[] is inductively de-
fined as follows:

depth(2) = 0
depth(obj (c, [f :C[], f1:t1, . . . , fn:tn])) = depth(C[]) + 1

An application of rule (split) has depth n iff the rule is ap-
plied with a context of depth n.

Def. 3.3. A derivation for t1 ≤ t2 is contractive iff it
contains no sub-derivations built only with subtyping rules
(∨R), and (∨L), and the depth of the applications of rule
(split) is bounded.

The subtyping relation t1 ≤ t2 holds iff there is a contrac-
tive derivation for it.

4It is not difficult to prove that reflexivity of subtyping
holds.

(split-0)

(split-0)

..

.

t ≤ int
(split-1)

(split-1)

...

obj (c, [f :t]) ≤ int
(split-2)

...

obj (c, [f :obj (c, [f :t])]) ≤ int

obj (c, [f :t]) ≤ int

t ≤ int

Figure 3: A non contractive derivation for t ≤ int, with t = t ∨ obj (c, [f :t]).

3.3 Soundness and completeness
We can now state the main claims about subtyping. Sound-

ness holds in the most general case, when types and deriva-
tions are allowed to be non regular.

Theorem 3.1 (Soundness). For all t1, t2, if t1 ≤ t2 is
derivable, then Jt1K ⊆ Jt2K.

Soundness of subtyping has been already proved [3], how-
ever the proof needs to be upgraded since here we are consid-
ering a larger relation. However, the proof we have proposed
can be adapted, with some efforts, to our new definition of
subtyping. The proof, which is not trivial, basically consists
in coinductively defining a function which takes two deriva-
tions, for v ∈ t1 and t1 ≤ t2, and returns a derivation for
v ∈ t2. The ability of defining such a function relies on a
main lemma which can be generalized here as follows.

Lemma 3.1. If v ∈ t1 and t1 ≤ t2, then there exists a type
u (not necessarily equal to t1) s.t. v ∈ u and u ≤ t2 for a
derivation whose first applied rule is not (split).

We omit here the proof of this lemma, as well as all the
other details of the proof of soundness, for space limitation.
The main idea of the proof of the lemma is that u can be
found by following a certain path in the derivation of t1 ≤ t2
determined by the derivation of v ∈ t1, until a rule different
from (split) is applied. The proof that such a path cannot
contain only applications of rule (split) relies on the notion
of contractiveness as given in Def. 3.3, and on the definition
of a specific Noetherian order which ensures that the number
of consecutive applications of rule (split) is always finite.

Completeness does not hold for the idealized system where
types and derivations can also be non regular. Consider for
instance the terms defined by the following infinite set of
equations:

t1 = obj (c, [f :ta ∨ tb, g :t1])
t2 = ua ∨ ub

ua = obj (c, [f :ta, g :ua])
ub = u0 ∨ . . . ∨ un ∨ . . .
u0 = obj (c, [f :tb, g :t1])
. . .
un+1 = obj (c, [f :ta, g :un])
. . .

We assume that ta and tb are two non empty incomparable
types (JtaK 6= ∅, JtbK 6= ∅, JtaK ∩ JtbK = ∅). Types t1 and t2
correspond to all infinite lists where each element has type ta
or tb. Each un corresponds to the infinite lists where the n-
th element has type tb, and all preceding elements have type
ta, therefore JubK = Jt1K \ JuaK. Even though Jt1K = Jt2K,
the only derivations for t1 ≤ t2 are not contractive since
the depth of the applications of rule (split) is necessarily

unbounded. Indeed, by applying n (for n arbitrary) times
rule (split) at increasing depths we obtain 2n terms among
which all are provably subtypes of ub except for the one
(let us call it t ′) which represents the lists where the first
n elements have type ta. Since Jt ′K 6⊆ JuaK and Jt ′K 6⊆ JubK
t ′ ≤ ua and t ′ ≤ ub cannot be derived by soundness. We
conclude that all possible derivations are those which try to
split indefinitely t1, thus having an infinite path containing
just applications of rule (split) with an unbounded depth.

The counter-example shown above relies on the fact that
t2 is not a regular term, however we conjecture that com-
pleteness holds if the system is restricted to regular types
and derivations.

We denote with ≤r the subtyping relation restricted to
regular types and derivations, and with JtKr the interpreta-
tion of regular types restricted to regular values and mem-
bership derivations. Since, by definition, regular derivations
can only contain a finite number of sub-derivations, it follows
that in a regular derivation the depth of applications of rule
(split) is always bounded. Therefore a regular derivation for
t1 ≤r t2 is contractive iff it contains no sub-derivations built
only with subtyping rules (∨R), and (∨L), similarly to what
is required in Def. 3.1.

Conjecture 3.1 (Completeness). For all regular
types t1, t2, if Jt1Kr ⊆ Jt2Kr, then t1 ≤r t2 is derivable.

Proof. (Sketch) The proof is in two steps. First we prove
that if Jt1Kr ⊆ Jt2Kr, then we can build a derivation for
t1 ≤r t2, and then we show that the proof is in fact a method
for generating only regular and contractive derivations.

Step one is proved by coinduction on the definition of ≤
and by case analysis on the top level type constructors of
both t1 and t2. The Table 3.3 summarizes the rules which
are applied for each case, and the auxiliary lemmas which
are needed (whose claims are shown below).

Claim of lemmas (recall that all terms are regular, even
though most of the lemmas hold also for the most general
case):

1. Z ⊆ Jt1 ∨ t2K⇒ Z ⊆ Jt1K or Z ⊆ Jt2K.

2. JC[t1]K ⊆ JC[t1 ∨ t2]K and JC[t2]K ⊆ JC[t1 ∨ t2]K.

3. t1 object type s.t. Jt1K ⊆ Ju1 ∨ u2K, Jt1K 6⊆ Ju1K, Jt1K 6⊆
Ju2K⇒ t1 contains a union type.

4. t1 object type s.t. Jt1K = ∅ ⇒ ∃C[] s.t. t1 = C[⊥].

5. Let t = obj (c, [f1:t1, . . . , fn:tn, . . .]).
Then, JtK 6= ∅ and JtK ⊆ Jobj (c, [f1:t ′1, . . . , fn:t ′n])K ⇒
∀i = 1, . . . , n JtiK ⊆ Jt ′iK.

The most challenging case is when t1 is an object type and
t2 is a union type u1 ∨ u2. If Jt1K = ∅, then by lemma 4 we

can apply (split) instead of (∨R1) or (∨R2) (to avoid a non
contractive derivation) to the redex ⊥, and we can conclude
by coinductive hypothesis. If Jt1K 6= ∅ and (Jt1K ⊆ Ju1K or
Jt1K ⊆ Ju2K), then we can apply rule5 (∨R1) or (∨R2) and
conclude by coinductive hypothesis. Otherwise, by lemma 3
we know that t1 contains a union type, therefore we can ap-
ply rule (split) by choosing a redex whose depth is minimal,
and conclude by lemma 2 and coinductive hypothesis.

The final part of the proof is the most awkward and con-
sists in showing that the derivation obtained in this way is
always regular and contractive, and depends on the choices
in the proof of step one when more rules are applicable.

4. CONCLUSION
We have shown that the definition of subtyping on coin-

ductive object and union types given in a previous work [3]
is not complete even when finite types are considered. To
overcome this problem, we have extended our definition of
subtyping by introducing a more powerful rule (split) which
generalizes the previously devised rules (∨L) and (distr).
Such an extension is not trivial since the notion of contrac-
tive proof needs to be strengthened to avoid unsoundness.
Consequently, the proof of soundness [3] has been general-
ized.

For what concerns completeness, we have shown that rule
(split) does not imply completeness in the more general case
when types can be non regular. However, from a more prac-
tical point of view, completeness is more interesting when
restricting the system to regular types and derivations. In
this case we can only conjecture that our definition of sub-
typing is complete, since although almost finished, there still
remain some cases of the proof which need to be checked.
Interestingly, if the proof works, then we can easily devise a
semicomputable procedure which always returns a contrac-
tive and regular derivation for t1 ≤ t2 whenever Jt1K ⊆ Jt2K.
However when Jt1K 6⊆ Jt2K, the procedure may terminate
with a correct failure, but may also diverge. We leave open
for future work the question whether complete subtyping
between regular types is decidable.

5. REFERENCES
[1] O. Agesen. The cartesian product algorithm. In

W. Olthoff, editor, ECOOP’05, volume 952 of LNCS,
pages 2–26. Springer, 1995.

[2] D. Ancona and G. Lagorio. Coinductive type systems
for object-oriented languages. In S. Drossopoulou,

5We are deliberately omitting some detail here, since if
both inclusions hold, then there are cases where (∨R1) must
be preferred over (∨R2), and conversely, depending on the
shape of u1 and u2.

t1\t2 int ∨ obj

int (int)
(∨R1) or (∨R2)

vacuous
lemma 1

∨ (split) (split) or (∨R1) or (∨R2) (split)
lemma 2 lemma 2 and 3 lemma 2

obj vacuous
(split) or (∨R1) or (∨R2) (split) or (obj)

lemma 2, 3 and 4 lemma 4 and 5

Table 1: Applied rules

editor, ECOOP 2009, volume 5653 of LNCS, pages
2–26. Springer, 2009. Best paper prize.

[3] D. Ancona and G. Lagorio. Coinductive subtyping for
abstract compilation of object-oriented languages into
Horn formulas. Technical report, DISI, March 2010.
Submitted for journal publication.

[4] D. Ancona and G. Lagorio. Idealized coinductive type
systems for imperative object-oriented programs.
Technical report, DISI, January 2010. Submitted for
journal publication.

[5] D. Ancona, G. Lagorio, and E. Zucca. Type inference
by coinductive logic programming. In Post-Proceedings
of TYPES’08, number 5497 in Lecture Notes in
Computer Science. Springer, 2009.

[6] F. Barbanera, M. Dezani-Cincaglini, and
U. de’Liguoro. Intersection and union types: Syntax
and semantics. Information and Computation,
119(2):202–230, 1995.

[7] Michael Brandt and Fritz Henglein. Coinductive
axiomatization of recursive type equality and
subtyping. In TLCA ’97 - Typed Lambda Calculi and
Applications, pages 63–81, 1997.

[8] Michael Brandt and Fritz Henglein. Coinductive
axiomatization of recursive type equality and
subtyping. Fundam. Inform., 33(4):309–338, 1998.

[9] B. Courcelle. Fundamental properties of infinite trees.
Theoretical Computer Science, 25:95–169, 1983.

[10] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM Transactions on Programming Languages and
Systems, 13:451–490, 1991.

[11] M. Furr, J. An, J. S. Foster, and M. Hicks. Static type
inference for Ruby. In SAC ’09: Proceedings of the
2009 ACM symposium on Applied computing. ACM
Press, 2009.

[12] A. Igarashi and H. Nagira. Union types for
object-oriented programming. Journ. of Object
Technology, 6(2):47–68, 2007.

[13] N.Oxhøj, J. Palsberg, and M. I. Schwartzbach.
Making type inference practical. In ECOOP’92, pages
329–349, 1992.

[14] J. Palsberg and M. I. Schwartzbach. Object-oriented
type inference. In OOPSLA 1991, pages 146–161,
1991.

[15] L. Simon, A. Bansal, A. Mallya, and G. Gupta.
Co-logic programming: Extending logic programming
with coinduction. In Automata, Languages and
Programming, 34th International Colloquium, ICALP
2007, pages 472–483, 2007.

[16] L. Simon, A. Mallya, A. Bansal, and G. Gupta.
Coinductive logic programming. In Logic
Programming, 22nd International Conference, ICLP
2006, pages 330–345, 2006.

[17] T. Wang and S. Smith. Polymorphic constraint-based
type inference for objects. Technical report, The Johns
Hopkins University, 2008. Submitted for publication.

[18] Tiejun Wang and Scott F. Smith. Precise
constraint-based type inference for Java. In
ECOOP’01, volume 2072, pages 99–117. Springer,
2001.

