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We define an extension of the simply-typed lambda calculus where two different binding mech-
anisms, by position and by name, nicely coexist. In the former, as in standard lambda calculus,
the matching betweeen parameter and argument is done on a positional basis, hence α-equivalence
holds, whereas in the latter it is done on a nominal basis. The two mechanisms also respectively
correspond to static binding, where the existence and type compatibility of the argument are checked
at compile-time, and dynamic binding, where they are checked at runtime.

1 Introduction

Two different binding mechanisms which are both widely applied in computer science are binding by
position and binding by name. In the former, matching is done on a positional basis, hence α-equivalence
holds, as demonstrated by the de Bruijn presentation of the lambda calculus. This models parameter
passing in most languages. In the latter, matching is done on a nominal basis, hence α-equivalence
does not hold, as in name-based parameter passing, method look-up in object-oriented languages, and
synchronization in process calculi. Usually, identifiers which can be α-renamed are called variables,
whereas names cannot be α-renamed (if not globally in a program) [1, 8]. An analogous difference holds
between tuples and records, as recently discussed by Rytz and Odersky [10]. The record notation has
been extremely successful in object-oriented languages, whereas functional languages use prevalently
tuples for non curried functions. The positional notation allows developers not to be constrained to a
particular choice of names; from the point of view of clients, instead, the nominal notation can be better,
since names are in general more suggestive. However, in both cases developers and clients have to agree
on some convention, either positional or nominal.

In this extended abstract, we outline some work in progress investigating the integration of these two
paradigms and the expressive power of their combination. Notably, we extend the simply typed lambda
calculus with two constructs.

• An unbound term 〈r | t〉, with r = x1 7→ X1, . . . ,xm 7→ Xm, is a value representing “open code”.
That is, t may contain free occurrences of variables x1, . . . ,xn to be dynamically bound, when code
will be used, through the global nominal interface offered by names X1, . . . ,Xn. Each occurrence
of x1, . . . ,xn in r is called an unbinder.

• To be used, open code should be passed as argument to a rebinding lambda-abstraction λx[s].t,
with s = X1 7→ t1, . . . ,Xm 7→ tm. This construct behaves like a standard lambda-abstraction. How-
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ever, the argument, which is expected to be open code, is not used as it stands, but rebound as
specified by s, and if some rebinder is missing a dynamic error occurs.

For instance, the application (λ z[X 7→ 1,Y 7→ 2].z)〈x 7→ X,y 7→ Y | x + y〉 reduces to 1 + 2, while (λ z[X 7→
1].z)〈x 7→ X,y 7→ Y | x + y〉 reduces to error.

This proposal is based on our previous extension of lambda-calculus with unbind and rebind primi-
tives [5, 6] (of which [4] is a preliminary version) and indeed shares with this work the ability to express
static and dynamic binding mechanisms within the same calculus. A thorough comparison between the
current calculus and the calculi of [5, 6] is presented in Section 4.

In the rest of this extended abstract, we first provide the formal definition of an untyped version of
the calculus (Section 2), then of a typed version with its type system (Section 3), for which we state a
soundness result. In Section 4 we compare this calculus with previous calculi. Finally, in the Conclusion
we briefly discuss our research plan.

2 Untyped calculus

The syntax and reduction rules of the untyped calculus are given in Figure 1. We assume infinite sets of
variables x and names X.

t :: = x | n | t1 + t2 | λx.t | t1 t2 | 〈r | t〉 | λx[s].t | error term
r :: = x1 7→ X1, . . . ,xm 7→ Xm unbinding map
s :: = X1 7→ t1, . . . ,Xm 7→ tm rebinding map

v :: = n | λx.t | | λx[s].t | 〈r | t〉 (FV(t)⊆dom(r)) value
E :: = [] | E + t | n + E | E t | v E evaluation context
σ :: = x1 7→ t1, . . . ,xm 7→ tm substitution

n1 + n2 −→ n if ñ = ñ1 +Z ñ2 (SUM)

(λx.t) v−→ t{x 7→ v} (APP)

(λx[s].t) 〈r | t′〉 −→ t{x 7→ t′{y 7→ s(r(y)) | y ∈ dom(r)}} rng(r)⊆ dom(s) (APPREBINDOK)

(λx[s].t) 〈r | t′〉 −→ error rng(r) 6⊆ dom(s) (APPREBINDERR)

t −→ t′ E 6= []
(CONT)

E [t]−→ E [t′]

t −→ error E 6= []
(CONTERROR)

E [t]−→ error

Figure 1: Syntax and reduction rules

Terms of the calculus are λ -calculus terms, unbound terms (called boxed terms in [9]), rebinding
lambda-abstractions (related to the letbox terms of [9]) and a term representing dynamic error. We also
include integers with addition for concreteness. We use r for unbinding maps, which are finite maps from
variables to names, and s for rebinding maps, which are finite maps from names to terms.

The operational semantics is described by reduction rules. We denote by ñ the integer represented by
the constant n, by dom and rng the domain and range of a map, respectively, and by σ\S the substitution
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obtained from σ by removing variables in set S. The application of a substitution to a term, t{σ}, is
defined, together with free variables, in Figure 2. Note that an unbinder (that is, a variable occurrence

FV(x) = {x}
FV(n) = /0
FV(t1 + t2) = FV(t1)∪FV(t2)
FV(λx.t) = FV(t)\{x}
FV(t1 t2) = FV(t1)∪FV(t1)
FV(〈r | t〉) = FV(t)\dom(r)
FV(λx[s].t) = (FV(t)\{x})∪FV(s)
FV(X1 7→ t1, . . . ,Xm 7→ tm) =

⋃
i∈1..m FV(ti)

x{σ}= t if σ(x) = t
x{σ}= x if x 6∈ dom(σ)
n{σ}= n
(t1 + t2){σ}= t1{σ} + t2{σ}
(λx.t){σ}= λx.t{σ\{x}} if x 6∈ FV(σ)
(t1 t2){σ}= t1{σ} t2{σ}
〈r | t〉{σ}= 〈r | t{σ\dom(r)}〉 if dom(r)∩FV(σ) = /0
(λx[s].t){σ}= λx[s{σ}].t{σ\{x}} if x 6∈ FV(σ)
(X1 7→ t1, . . . ,Xm 7→ tm){σ}= X1 7→ t1{σ}, . . . ,Xm 7→ tm{σ}

Figure 2: Free variables and application of substitution

in the range of an unbinding map) behaves like a λ -binder: for instance, in a term of shape 〈x 7→ X | t〉,
the unbinder x introduces a local scope, that is, binds free occurrences of x in t. Hence, a substitution
for x is not propagated inside t. Moreover, a condition which prevents capture of free variables, similar
to the λ -abstraction case, is needed. For instance, the term t = (λy.〈x 7→ X | y x〉) (λ z.x) is stuck,
since the substitution 〈x 7→ X | y x〉{y 7→ λ z.x} is undefined, and therefore the term does not reduce
to 〈x 7→ X | (λ z.x) x〉, which would be, indeed, wrong. This condition is enforced by the definition of
substitution where we require that the free variables of the substitution are disjoint from the domain of the
unbinding map. However, as for the similar requirement for substitution applied to a lambda-abstraction
we can always α-rename the variables in the domain of the unbinding map (and consistently in the body
of the unbound term) to meet the requirement (we omit the obvious formal definition). Consider the term
t′ = (λy.〈x′ 7→ X | y x′〉) (λ z.x) which is t with the unbinder x renamed to x′. The term t′ is α-equivalent
to t, and reduces (correctly) to 〈x′ 7→ X | (λ z.x) x′〉.

The rules of the operational semantics for sum and standard application are the usual ones. For
application of a rebinding lambda-abstraction to an unbound term the variable x in the body of the
lambda-abstraction is substituted with t′ in which the unbinders are substituted with the term bound to
the corresponding name in the rebinding. This application, however, evaluates to error in case the domain
of the rebinding map is not a superset of the range of the unbinding map. We write the side condition in
both rules for clarity, even though it is redundant in the former.

Example 1 This example shows that unbound terms can be arguments of both standard and rebinding
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lambda-abstractions. Consider the term t that follows

( λy.(λ z[X 7→ 2].z) y+(λ z[X 7→ 3].z) y ) 〈x 7→ X | x+1〉

applying the rules of the operational semantics we get the following reduction:

t −→ (λ z[X 7→ 2].z) 〈x 7→ X | x+1〉+(λ z[X 7→ 3].z) 〈x 7→ X | x+1〉 (APP)

−→ (2+1)+(λ z[X 7→ 3].z) 〈x 7→ X | x+1〉 (APPREBINDOK)

−→ 3+(λ z[X 7→ 3].z) 〈x 7→ X | x+1〉 (SUM)

−→ 3+(3+1) (APPREBINDOK)

−→ 3+4 (SUM)

−→ 7 (SUM)

From now on, we will use the abbreviation t[s] for (λx[s].x) t.

Example 2 The classical example showing the difference between static and dynamic scoping:

let x=3 in
let f=lambda y.x+y in
let x=5 in

f 1

can be translated as follows:

1. (λx.(λ f .(λx.f 1) 5) (λy.x+ y)) 3 which reduces to 4 (static scoping), or

2. (λx.(λ f .(λx.f [X 7→ x] 1) 5) 〈x 7→ X | λy.x+ y〉) 3 which reduces to 6 (dynamic scoping).

Example 3 The following example shows some of the meta-programming features offered by the open
code and the rebinding lambda-abstraction constructs.

f = λx1.λx2.〈y1 7→ X,y2 7→ X | (x1[X 7→ y1]) x2[X 7→ y2]〉

f is a function manipulating open code: it takes two open code fragments, with the same global nominal
interface containing the sole name X, and, after rebinding both, it combines them by means of func-
tion application; finally, it unbinds the result so that the resulting nominal interface contains again the
sole name X. The fact that the unbinding map is not injective means that the free variables of the two
combined open code fragments will be finally rebound to the same value (that is, the same value will be
shared).

For instance, ( f 〈x 7→ X | λy.y+ x〉 〈x 7→ X | x〉)[X 7→ 1] reduces to 2.

3 Typed calculus

The syntax and operational semantics of the typed calculus are given in Figure 3. Types are either ground
types: integer and function types, or types representing unbound terms that need a number k of rebindings
in order to produce a term of a ground type. Our types take into account only the number of rebindings
that have to be applied to a term in order to get a term of a ground type. In typed terms, as usual, variable
and name definitions (either in lambda-abstractions or maps) are decorated with types. We assume that
in an unbinding map two variables which are mapped in the same name are decorated with the same
type, hence there is an implicit decoration for names as well. We use the following notations:
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t :: = x | n | t1 + t2 | λx:T.t | t1 t2 | 〈r | t〉 | λx:T[s].t term
r :: = x1:T1 7→ X1, . . . ,xm:Tm 7→ Xm unbinding map
s :: = X1:T1 7→ t1, . . . ,Xm:Tm 7→ tm rebinding map

T :: = τk k ∈ N type
τ :: = int | T1→ T2 ground type
Γ :: = x1:T1, . . . ,xm:Tm type context

v :: = n | λx:T.t| λx:T[s].t | 〈r | t〉 (FV(t)⊂ dom(r)) value
E :: = [] | E + t | n + E | E t | v E evaluation context

(λx : T[s].t) 〈r | t′〉 −→ t{x 7→ t′{y 7→ s(r(y)) | y ∈ dom(r)}} tenv(r)⊆ tenv(s) (APPREBINDOK)

(λx : T[s].t) 〈r | t′〉 −→ error tenv(r) 6⊆ tenv(s) (APPREBINDERR)

Figure 3: Syntax of typed calculus, and modified operational semantics rule

• tenv(x1:T1 7→X1, . . . ,xm:Tm 7→Xm) = tenv(X1:T1 7→ t1, . . . ,Xm:Tm 7→ tm) = {X1:T1, . . . ,Xm:Tm}, and

• Γ[Γ′](x) = Γ′(x) if x ∈ dom(Γ′), Γ(x) otherwise.
The operational semantics of the untyped and typed versions of the language differ only in the rule of

application with rebinding. In this case we check not only that all the names are defined in the rebinding
map of the lambda-abstraction, but also that their type is correct. This is formally expressed by the side
condition requiring that, for all names specified in the unbinding map, the type provided by the rebinding
map coincides with the required type.

For instance, the untyped term t = (λx[Y 7→ 3].x + 4) 〈y 7→ Y | y 2〉 reduces with rule (APPREBINDOK)

of Figure 1 to (3 2) + 4 which is a stuck term. However, the well-typed version of t:

(λx:int0[Y:int0 7→ 3].x + 4) 〈y:(int→ int)0 7→ Y | y 2〉

reduces with rule (APPREBINDERR) of Figure 3 to error, indicating a dynamic type error, since tenv(y:(int→
int)0 7→ Y) = {Y:(int→ int)0} 6⊆ {Y:int0}= tenv(Y:int0 7→ 3).

The rules of the type system (see Figure 4) are quite standard: integers and lambda-abstractions have
types of level 0, error is of any type, application requires that the left term has a function type of level
0. An unbound term has a type that has one level more than the type of the term it contains. Finally,
the argument type of a rebinding lambda-abstraction is one level more than the type assigned to the
parameter x for typing the body of the abstraction, since the actual parameter will be rebound before
substituting it for x.

The typed term corresponding to the untyped term of Example 1 is:

( λy:int1.(λ z:int0[X:int0 7→ 2)].z) y+(λ z:int0[X:int0 7→ 3)].z) y ) 〈x:int0 7→ X | x+1〉

The type system is safe since types are preserved by reduction, subject reduction property, and closed
terms are not stuck, progress property, as stated by the following theorems.

Theorem 4 (Subject Reduction) If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Theorem 5 (Progress) If ` t : T, then either t is a value, or t = error, or t −→ t′ for some t′.
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(T-NUM)
Γ ` n : int0 (T-VAR)

Γ(x) = T
Γ ` x : T

(T-SUM)
Γ ` t1 : int0 Γ ` t2 : int0

Γ ` t1 + t2 : int0 (T-ERROR)
Γ ` error : T

(T-ABS)
Γ[x:T1] ` t : T2

Γ ` λx : T1.t : (T1→ T2)0 (T-APP)
Γ ` t1 : (T→ T ′)0 Γ ` t2 : T

Γ ` t1 t2 : T ′

(T-UNBIND)
Γ[Γ′] ` t : τk Γ′ = tenv(r)

Γ ` 〈r | t〉 : τk+1 (T-REBIND)
Γ[x:τk] ` t : T Γ ` ti : Ti (1≤ i≤ m)

Γ ` λx:τk[X1:T1 7→ t1, . . . ,Xm:Tm 7→ tm].t : (τk+1→ T)0

Figure 4: Typed calculus: typing rules

4 Comparison with previous calculi

This proposal is based on our previous extension of lambda-calculus with unbind and rebind primitives
[5, 6] and indeed shares with this work the ability to express static and dynamic binding mechanisms
within the same calculus. However, there are two main novelties. Firstly, we introduce the explicit
distinction between variables and names discussed above, and this allows us a cleaner and simpler treat-
ment of α-equivalence, which only holds for variables1, as in process and module calculi. Secondly,
we investigate a different semantics where rebinding is more controlled, that is, can only be applied to
terms which effectively need to be rebound. A term such as, e.g., (〈x 7→ X | x〉 + 4)[X 7→ 1] is stuck in
the current calculus, whereas its analogous in the calculi of [5, 6] reduces to 5, and is, correspondingly,
well-typed. This more restricted semantics allows us a simpler type system that does not require inter-
section types, as in the calculus of [5], to prove soundness for the call-by-value evaluation strategy (in
the calculus of [6] soundness was proved for call-by-name).

We will investigate in further work whether the language is effectively less expressive with this
stricter semantics. At a preliminary analysis, the current semantics corresponds more closely to what
happens in meta-programming, see [11], and, even more, in the contextual modal type theory of [9].
However, in contextual modal type theory, there may not be occurrences of free variables in unbound
terms, whereas this may happen in our calculi. Consider the term t = 〈y:int0 7→ Y | y + x〉. In contextual
modal type theory, there is no environment Γ in which this term is well-typed, due to the occurrence of the
free x in an unbound term. In our calculi, instead, in an environment in which x has type int0, the term
is well-typed. This allows an expressive power similar to “unquote”, even though a precise comparison
is matter of further investigation. Indeed, if the term is in the scope of a lambda, say λx:int0. · · · t · · · ,
applying the lambda to an integer, say 3, replaces such integer in the term t.

Another important difference w.r.t. previous calculi is that, as the abbreviation introduced at the end
of Example 1 suggests, the term λx[s].x, which is a value, may be thought as the rebinding s. That is, as
a matter of fact, rebindings are first-class values. In the previous calculi in [5, 6] this was not the case, as
it is not in [9], where rebinding is applied via the use of metavariables.

1We thank an anonymous referee of [5] for pointing out this problem.
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5 Conclusion

We have presented a calculus in which standard positional, static binding of the lambda-calculus is
smoothly integrated with positional, dynamic binding. Soundness relies on a combination of static and
dynamic type checking. That is, rebinding raises a dynamic error if for some variable there is no replacing
term or it has the wrong type.

This calculus is in our opinion interesting since it seems to provide, at a preliminary analysis that we
plan to develop in the full version of this paper, an unifying foundation for different modeling aims.

First of all, as we can see from Example 2, we are able to model dynamic scoping, where identifiers
are resolved w.r.t. their dynamic environments, and rebinding, where identifiers are resolved w.r.t. their
static environments, but additional primitives allow explicit modification of these environments. Classi-
cal references for dynamic scoping are [7], and [3], whereas the λmarsh calculus of [2] supports rebinding
w.r.t. named contexts (not of individual variables).

Furthermore, as shown in Example 3, the calculus supports some meta-programming features, by
allowing programmers to define functions able to manipulate and combine code fragments.

Our type system takes into account only the number of rebindings needed to obtain a ground type.
We are investigating the use more expressive types such us:

T ::= int | T→ T ′ | 〈Γ〉T

where Γ associates names with types, taking into account also the types of names to be rebound. These
types have a modal interpretation studied in [9]. However, in our calculus we may have free variables
in unbound terms (that could be bound in lambda-abstractions later on). Therefore, we may have terms
of type T → 〈〉T and 〈〉T → T , implying that 〈〉T and T would be, as modal formulas, equivalent, thus
making the modal interpretation not correct. We are currently investigating this issue, and hope to come
up with a satisfying solution in the final version of the abstract.
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