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Abstract. Global session types are behavioral types designed for speci-
fying in a compact way multiparty interactions between distributed com-
ponents, and verifying their correctness. We take advantage of the fact
that global session types can be naturally represented as cyclic Prolog
terms - which are directly supported by the Jason implementation of
AgentSpeak - to allow simple automatic generation of self-monitoring
MASs: given a global session type specifying an interaction protocol,
and the implementation of a MAS where agents are expected to be com-
pliant with it, we define a procedure for automatically deriving a self-
monitoring MAS. Such a generated MAS ensures that agents conform
to the protocol at run-time, by adding a monitor agent that checks that
the ongoing conversation is correct w.r.t. the global session type.
The feasibility of the approach has been experimented in Jason for a non-
trivial example involving recursive global session types with alternative
choice and fork type constructors. Although the main aim of this work
is the development of a unit testing framework for MASs, the proposed
approach can be also extended to implement a framework supporting
self-recovering MASs.

1 Introduction

A protocol represents an agreement on how participating systems inter-
act with each other. Without a protocol, it is hard to do a meaningful
interaction: participants simply cannot communicate effectively.
The development and validation of programs against protocol descriptions
could proceed as follows:
– A programmer specifies a set of protocols to be used in her applica-

tion.
...
– At the execution time, a local monitor can validate messages with

respect to given protocols, optionally blocking invalid messages from
being delivered.

This paper starts with a few sentences drawn from the manifesto of Scribble, a
language to describe application-level protocols among communicating systems



initially designed by Kohei Honda and Gary Brown1. The team working on
Scribble involves both scientists active in the agent community and scientists
active in the session types one. Their work inspired the proposal presented in
this paper where multiparty global session types are used on top of the Jason
agent oriented programming language for runtime verification of the conformance
of a MAS implementation to a given protocol. This allows us to experiment our
approach on realistic scenarios where messages may have a complex structure,
and their content may change from one interaction to another.

Following Scribble’s manifesto, we ensure runtime conformance thanks to a
Jason monitor agent that can be automatically generated from the global session
type, represented as a Prolog cyclic term. Besides the global session type, the
developer must specify the type of the actual messages that are expected to be
exchanged during a conversation.

In order to verify that a MAS implementation is compliant with a given pro-
tocol, the Jason code of the agents that participate in the protocol is extended
seamlessly and automatically. An even more transparent approach would be
possible by overriding the underlying agent architecture methods of Jason re-
sponsible for sending and receiving messages, which could intercept all messages
sent by the monitored agents, and send them to the monitor which could manage
them in the most suitable way. In this approach message “sniffing” would have
to occur at the Java (API) level, gaining in transparency but perhaps loosing in
flexibility.

In this paper we show the feasibility of our approach by testing a MAS against
a non-trivial protocol involving recursive global session types with alternative
choice and fork type constructors.

The paper is organized in the following way: Section 2 provides a gentle
introduction to the notion of global session type adopted in this work; Section 3
discusses our implementation of the protocol testing mechanism and presents the
results of our experiments; Section 4 discusses the related literature and outlines
future directions of our work.

2 A gentle introduction to global session types for agents

In this section we informally introduce global session types (global types for
short) and show how they can be smoothly integrated in MASs to specify mul-
tiparty communication protocols between agents. To this aim, we present a typ-
ical protocol that can be found in literature as our main running example used
throughout the paper.

Our example protocol involves three different agents playing the roles of a
seller s, a broker b, and a client c, respectively. Such a protocol is described
by the FIPA AUML interaction diagram [14] depicted in Figure 1: initially, s

communicates to b the intention to sell a certain item to c; then the protocol
enters a negotiation loop of an arbitrary number n (with n ≥ 0) of iterations,

1 http://www.jboss.org/scribble/



tell(final) 

tell(result) 

parallel

s: Seller

tell(item)

sd Brokering

loop

b: Broker c: Client

tell(offer)

tell(counter)

Fig. 1. The Brokering interaction protocol in FIPA AUML.

where b sends an offer to c and c replies with a corresponding counter-offer.
After such a loop, b concludes the communication by sending in an arbitrary
order the message of type result to c, and of type final to s.

Even though the AUML diagram of Figure 1 is very intuitive and easy to un-
derstand, a more compact and formal specification of the protocol is required to
perform verification or testing of a MAS, in order to provide guarantees that the
protocol is implemented correctly. Global session types [5, 11] have been intro-
duced and studied exactly for this purposes, even though in the more theoretical
context of calculi of communicating processes. A global type describes succinctly
all sequences of sending actions that may occur during a correct implementation
of a protocol.

Depending on the employed type constructors, a global type can be more or
less expressive. Throughout this paper we will use a fixed notion of global type,
but our proposed approach can be easily adapted for other kinds of global types.
The notion of global type we adopt is a slightly less expressive version of that
proposed by Deniélou and Yoshida [7] (which, however, allows us to specify the
protocol depicted in Figure 1), defined on top of the following type constructors:

– Sending Actions: a sending action occurs between two agents, and specifies
the sender and the receiver of the message (in our case, the names of the
agents, or, more abstractly, the role they play in the communication), and
the type of the performative and of the content of the sent message; for



instance, msg(s, b, tell, item) specifies that agent s (the seller) sends the
tell performative to agent b (the broker) with content of type item.

– Empty Type: the constant end represents the empty interaction where no
sending actions occur.

– Sequencing : sequencing is a binary constructor allowing a global type t to be
prefixed by a sending action a; that is, all valid sequences of sending actions
denoted by seq(a,t) are obtained by prefixing with a all those sequences
denoted by t. For instance,

seq(msg(alice ,bob , te l l ,ping),
seq(msg(bob ,alice , te l l ,pong),end))

specifies the simple interaction where first alice sends tell(ping) to bob,
then bob replies to alice with tell(pong), and finally the interaction stops.

– Choice: the choice constructor has variable arity2 n (with n ≥ 0) and ex-
presses an alternative between n possible choices. Because its arity is variable
we use a list to represent its operands. For instance,

choice ([

seq(msg(c,b, te l l ,counter),end),
seq(msg(b,s, te l l ,final),end),
seq(msg(b,c, te l l ,result),end)

])

specifies an interaction where either c sends tell(counter) to b, or b sends
tell(final) to s, or b sends tell(result) to c.

– Fork : the fork binary3 constructor specifies two interactions that can be
interleaved. For instance,

fork(

seq(msg(b,s, te l l ,final),end),
seq(msg(b,c, te l l ,result),end)

)

specifies the interaction where first b sends tell(final) to s, and then b sends
tell(result) to c, or the other way round.

Recursive types: the example types shown so far do not specify any interaction
loop, as occurs in the protocol of Figure 1. To specify loops we need to consider
recursive global types; for instance, the protocol consisting of infinite sending
actions where first alice sends tell(ping) to bob, and then bob replies tell(pong)

to alice, can be represented by the recursive type T s.t.

T = seq(msg(alice ,bob , te l l ,ping),
seq(msg(bob ,alice , te l l ,pong),T))

If we interpret the equation above syntactically (that is, as a unification prob-
lem), then the unique solution is an infinite term (or, more abstractly, an infinite
2 Arity 0 and 1 are not necessary, but make the definition of predicate next simpler.
3 For simplicity, the operator has a fixed arity, but it could be generalized to the case

of n arguments (with n ≥ 2) as happens for the choice constructor.



tree) which is regular, that is, whose set of subterms is finite. In practice, the
unification problem above is solvable in most modern implementations of Prolog,
where cyclic terms are supported; this happens also for the Jason implementa-
tion, where Prolog-like rules can be used to derive beliefs that hold in the current
belief base4. As another example, let us consider the type T2 s.t.

T2 = seq(msg(alice ,bob , te l l ,ping),
seq(msg(bob ,alice , te l l ,pong),choice ([T2 ,end ])))

Such a type contains the infinite interaction denoted by T above, but also all finite
sequences of length 2n (with n ≥ 1) of alternating sending actions msg(alice,bob,
tell,ping) and msg(bob,alice,tell,pong).

We are now ready to specify the Brokering protocol with a global type BP,
where for sake of clarity we use the auxiliary types OffOrFork, Off, and Fork:

BP = seq(msg(s,b, te l l ,item),OffOrFork),
OffOrFork = choice ([Off ,Fork])

Off = seq(msg(b,c, te l l ,offer),
seq(msg(c,b, te l l ,counter),OffOrFork ))

Fork = fork(seq(msg(b,s, te l l ,final),end),
seq(msg(b,c, te l l ,result),end))

Note that for the definition of global types we consider in this paper, the fork

constructor does not really extend the expressiveness of types: any type using
fork can be transformed into an equivalent one without fork. However, such a
transformation may lead to an exponential growth of the type [2].

Formal definitions

Figure 2 defines the abstract syntax of the global session types that will be used
in the rest of the paper. As already explained in the previous section, global

GT ::= choice([GT1,. . ., GTn]) (n ≥ 0) |
seq(SA, GT) |
fork(GT1, GT1) |
end

SA ::= msg(AId1,AId2,PE,CT)

Fig. 2. Syntax of Global Types.

types are defined coinductively: GT is the greatest set of regular terms defined
by the productions of Figure 2.

The meta-variables AId, PE and CT range over agent identifiers, performa-
tives, and content types, respectively. Content types are constants specifying the
types of the contents of messages.
4 Persistency of cyclic terms is supported by the very last version of Jason; since

testing of this feature is still ongoing, it has not been publicly released yet.



The syntactic definition given so far still contains global types that are not
considered useful, and, therefore, are rejected for simplicity. Consider for instance
the following type NC:

NC = choice ([NC,NC])

Such a type is called non contractive (or non guarded), since it contains an infi-
nite path with no seq type constructors. These kinds of types pose termination
problems during dynamic global typechecking. Therefore, in the sequel we will
consider only contractive global types (and we will drop the term “contractive”
for brevity), that is, global types that do not have paths containing only the
choice and fork type constructors. Such a restriction does not limit the expres-
sive power of types, since it can be shown that for every non contractive global
type, there exists a contractive one which is equivalent, in the sense that it rep-
resents the same set of sending action sequences. For instance, the type NC as
defined above corresponds to the empty type end.

Interpretation of global types. We have already provided an intuition of the
meaning of global types. We now define their interpretation, expressed in terms of
a next predicate, specifying the possible transitions of a global type. Intuitively,
a global type represents a state from which several transition steps to other
states (that is, other global types) are possible, with a resulting sending action.
Consider for instance the type F defined by

fork(seq(msg(b,s, te l l ,final),end),
seq(msg(b,c, te l l ,result),end))

Then there are two possible transition steps: one yields the sending action
msg(b,s,tell,final) and moves to the state corresponding to the type

fork(end ,

seq(msg(b,c, te l l ,result),end))

while the other yields the sending action msg(b,c,tell,result) and moves to the
state corresponding to the type

fork(seq(msg(b,s, te l l ,final),end),
end)

Predicate next is defined below, with the following meaning: if next(GT1,SA,GT2)
succeeds, then there is a one step transition from the state represented by the
global type GT1 to the state represented by the global type GT2, yielding the
sending action SA. The predicate is intended to be used with the mode indicators
next(+,+,-), that is, the first two arguments are input, whereas the last is an
output argument.

1 next(seq(msg(S, R, P, CT),GT),msg(S, R, P, C),GT) :-

has_type(C, CT).

2 next(choice ([GT1|_]),SA,GT2) :- next(GT1 ,SA,GT2).

3 next(choice ([_|L]),SA,GT) :- next(choice(L),SA,GT).

4 next(fork(GT1 ,GT2),SA,fork(GT3 ,GT2)) :- next(GT1 ,SA,GT3).

5 next(fork(GT1 ,GT2),SA,fork(GT1 ,GT3)) :- next(GT2 ,SA,GT3).



We provide an explanation for each clause:

1. For a sequence seq(msg(S, R, P, CT),GT) the only allowed transition step
leads to state GT, and yields a sending action msg(S, R, P, C) where C is
required to have type CT; we assume that all used content types are defined
by the predicate has_type, whose definition is part of the specification of the
protocol, together with the initial global type.

2. The first clause for choice states that there exists a transition step from
choice([GT1|_]) to GT2 yielding the sending action SA, whenever there exists
a transition step from GT1 to GT2 yielding the sending action SA.

3. The second clause for choice states that there exists a transition step from
choice([_|L]) to GT yielding the sending action SA, whenever there exists a
transition step from choice(L) (that is, the initial type where the first choice
has been removed) to GT yielding the sending action SA.
Note that both clauses for choice fail for the empty list, as expected (since
no choice can be made).

4. The first clause for fork states that there exists a transition from fork(GT1,GT2)

to fork(GT3,GT2) yielding the sending action SA, whenever there exists a tran-
sition step from GT1 to GT3 yielding the sending action SA.

5. The second clause for fork is symmetric to the first one.

We conclude this section by a claim stating that contractive types ensure
termination of the resolution of next.

Proposition 1. Let us assume that has_type(c,ct) always terminates for any
ground atoms c and ct. Then, next(gt,sa,X) always terminates, for any ground
terms gt and sa, and logical variable X, if gt is a contractive global type.

Proof. By contradiction, it is straightforward to show that if next(gt,sa,X) does
not terminate, then gt must contain a (necessarily infinite) path with only choice

and fork constructors, hence, gt is not contractive.

3 A Jason Implementation of a Monitor for Checking
Global Session Types

As already explained in the Introduction, the main motivation of our work is a
better support for testing the conformance of a MAS to a given protocol, even
though we envisage other interesting future application scenarios (see Section 4).
From this point of view our approach can be considered as a first step towards
the development of a unit testing framework for MASs where testing, types, and
– more generally – formal verification can be reconciled in a synergistic way.

In more detail, given a Jason implementation of a MAS5, our approach allows
automatic generation6 of an extended MAS from it, that can be run on a set
of tests to detect possible deviations of the behavior of a system from a given
5 We assume that the reader is familiar with the AgentSpeak language [17].
6 Its implementation has not been completed yet.



protocol. To achieve this the developer is required to provide (besides the original
MAS, of course) the following additional definitions:

– The Prolog clauses for predicate next defining the behavior of the used global
types (as shown in Section 2); such clauses depend on the notion of global
type needed for specifying the protocol; depending on the complexity of the
protocol, one may need to adopt more or less expressive notions of global
types, containing different kinds of type constructors, and for each of them
the corresponding behavior has to be defined in terms of the next predicate.
However, we expect the need for changing the definition of next to be a
rare case; the notion of global type we present here captures a large class
of frequently used protocols, and it is always possible to extend the testing
unit framework with a collection of predefined notions of global types among
which the developer can choose the most suitable one.

– The global type specifying the protocol to be tested; this can be easily defined
in terms of a set of unification equations.

– The clauses for the has_type predicate (already mentioned in Section 2),
defining the types used for checking the content of the messages; also in this
case, a set of predefined primitive types could be directly supported by the
framework, leaving to the developer the definition of the user-defined types.

The main idea of our approach relies on the definition of a centralized monitor
agent that verifies that a conversation among any number of participants is
compliant with a given global type, and warns the developer if the MAS does
not progress. Furthermore, the code of the agents of the original MAS requires
minimal changes that, however, can be performed in an automatic way.

In the sequel, we describe the code of the monitor agent, and the changes
applied to all other agents (that is, the participants of the implemented protocol).

3.1 Monitor

We illustrate the code for the monitor by using our running brokering example.
The monitor can be automatically generated from the global type specification in
a trivial way. The global type provided by the developer is simply a conjunction
UnifEq of unification equations of the form X = GT , where X is a logical
variable, and GT is a term (possibly containing logical variables) denoting a
global type. The use of more logical variables is allowed for defining auxiliary
types that make the definition of the main type more readable. Then from UnifEq
the following Prolog rule is generated:

initial_state(X) :- UnifEq.

where X is the logical variable contained in UnifEq corresponding to the main
global type. The definition of the type of each message content must be provided
as well. In fact, the protocol specification defines also the expected types (such as
item, offer, counter, final and result) for the correct content of all possible
messages. For example, the developer may decide that the type offer defines all



terms of shape offer(Item, Offer), where Item is a string and Offer is an integer;
similarly, the type item corresponds to all terms of shape item(Client, Item)

where both Client and Item are strings.
Consequently, the developer has to provide the following Prolog rules that

formalize the descriptions given above:

has_type(offer(Item , Offer), offer) :-

string(Item) & int(Offer ).

has_type(item(Client , Item), item) :-

string(Client) & string(Item).

The monitor keeps track of the runtime evolution of the protocol by saving its
current state (corresponding to a global type), and checking that each message
that a participant would like to send, is allowed by the current state. If so,
the monitor allows the participant to send the message by explicitly sending an
acknowledgment to it. We explain how participants inform the monitor of their
intention to send a message in Section 3.2.

The correctness of a sending action is directly checked by the next predicate,
that also specifies the next state in case the transition is correct. In other words,
verifying the correctness of the message sent by S to R with performative P and
content C amounts to checking if it is possible to reach a NewState from the
CurrentState, yielding a sending action msg(S, R, P, C) (type_check predicate).

/* Monitor ’s initial beliefs and rules */

// user -defined predicates
initial_state(Glob) :-

Merge = choice ([Off ,Fork]) &
Off= seq(msg(b, c, tell , offer),

seq(msg(c, b, tell , counter), Merge)) &
Fork= fork(seq(msg(b, s, tell , final),end),

seq(msg(b, c, tell , result),end)) &
Glob = seq(msg(s, b, tell , item),Merge ).

has_type(offer(Item , Offer), offer) :-
string(Item) & int(Offer ).

has_type(counter(Item , Offer), counter) :-
string(Item) & int(Offer ).

has_type(final(Res , Client , Item , Offer), final) :-
string(Res) & string(Client) & string(Item) & int(Offer ).

has_type(result(Res , Item , Offer), result) :-
string(Res) & string(Item) & int(Offer).

has_type(item(Client , Item), item) :-
string(Client) & string(Item).

// end of user -defined predicates

timeout (4000).

type_check(msg(S, R, P, C), NewState) :-
current_state(CurrentState) &
next(CurrentState , msg(S, R, P, C), NewState ).

// Rules defining the next predicate follow
........

The monitor prints every information relevant for testing on the console with
the .print internal action. The .send(R, P, C) internal action implements the



asynchronous delivery of a message with performative P and content C to agent
R.

A brief description of the main plans follow.

– Plan test is triggered by the initial goal !test that starts the testing, by
setting the current state to the initial state.

– Plan move2state upgrades the belief about the current state.
– Plan successfulMove is triggered by the !type check message(msg(S, R,

P, C)) internal goal. If the type check(msg(S, R, P, C), NewState) con-
text is satisfied, then S is allowed to send the message with performative P
and content C to R. The state of the protocol changes, and monitor notifies
S that the message can be sent.

– Plan failingMoveAndProtocol is triggered, like successfulMove, by the
!type check message(msg(S, R, P, C)) internal goal. It is used when suc-
cessfulMove cannot be applied because its context is not verified. This
means that S is not allowed to send message P with content C to R, because
a dynamic type error has been detected: the message does not comply with
the protocol.

– Plan messageReceptionOK is triggered by the reception of a tell message
with msg(S, R, P, C) content; the message is checked against the proto-
col, and the progress check is activated (!check progress succeeds either
if a message is received before a default timeout, or if the timeout elapses,
in which case !check progress is activated again: .wait(+msg(S1, R1,
P1, C1), MS, Delay) suspends the intention until msg(S1, R1, P1, C1)
is received or MS milliseconds have passed, whatever happens first; Delay
is unified to the elapsed time from the start of .wait until the event or
timeout).

All plans whose context involves checking the current state and/or whose
body involves changing it are defined as atomic ones, to avoid problems due to
interleaved check-modify actions.
/* Initial goals */

!test.

/* Monitor ’s plans */

@test[atomic]
+!test : initial_state(InitialState)

<- +current_state(InitialState ).

@move2state[atomic]
+! move_to_state(NewState) : current_state(LastState)

<- -current_state(LastState );
+current_state(NewState ).

@successfulMove[atomic]
+! type_check_message(msg(S, R, P, C)) : type_check(msg(S, R, P, C), NewState)

<- !move_to_state(NewState );
.print ("\ nMessage ", msg(S, R, P, C), "\ nleads to state ", NewState , "\n");
.send(S, tell , ok_check(msg(S, R, P, C))).

@failingMoveAndProtocol
+! type_check_message(msg(S, R, P, C)) : current_state(Current)



<- .print ("\n*** DYNAMIC TYPE -CHECKING ERROR ***\ nMessage ", msg(S, R, P, C),
"\ ncannot be accepted in the current state ", Current , "\n");
!move_to_state(failure ).

@messageReceptionOK
+msg(S, R, P, C)[ source(S)]: true

<- -msg(S, R, P, C)[ source(S)];
!type_check_message(msg(S, R, P, C));
!check_progress.

+! check_progress : timeout(MS)
<- .wait ({+msg(S1, R1, P1 , C1)}, MS, Delay);

!aux_check_progress(Delay).

+! aux_check_progress(Delay) : timeout(MS) & Delay < MS.

+! aux_check_progress(Delay) : timeout(MS) & current_state(Current) & Delay >= MS
<- .print ("\n*** WARNING ***\ nNo progress for ", Delay , " milliseconds

in the current state ", Current , "\n");
!check_progress.

3.2 Participants

We assume that participants interact via asynchronous exchange of messages
with tell performatives.

To keep the implementation as general and flexible as possible, in the par-
ticipants’ code extended as explained below we use the Perf logical variable
where the message performative is expected. Under the assumption that only
tell performatives will be used, Perf will always be bound to the tell ground
atom.

Only two changes are required to the code of participants:

1. .send is replaced by !my send and
2. two plans are added for managing the interaction with the monitor.

The first plan is triggered by the !my send internal goal; my send has the
same signature as the .send internal action, but, instead of sending a message
with performative Perf and Content to Receiver, it sends a tell message
to the monitor in the format msg(Sender, Receiver, Perf, Content). When
received, this message will be checked by the monitor against the global type,
as explained in Section 3.1.

The second plan is triggered by the reception of the monitor’s message that
allows the agent to actually send Content to Receiver, by means of a message
with performative Perf. In reaction to the reception of such a message, the agent
sends the corresponding message to the expected agent.
/* Plans for runtime type checking */

+! my_send(Receiver , Perf , Content) : true
<- .my_name(Sender );

.send(monitor , tell , msg(Sender , Receiver , Perf , Content )).

+ok_check(msg(Sender , Receiver , Perf , Content ))[ source(monitor )] : true
<- -ok_check(msg(Sender , Receiver , Perf , Content ))[ source(monitor )];

.send(Receiver , Perf , Content ).



3.3 Experiments

Table 1 summarizes the results of some of the experiments we carried out with
the brokering protocol. The full implementation of the seller, client and bro-
ker agents, as well as the messages printed by the monitor on the console are
described in [2].

– Broker: i.o. is the initial offer the broker makes to the client.
– Broker: a.o. is the lowest price the broker is willing to accept for selling

oranges to the client.
– Client: c.o. is the client’s initial counter offer.
– Code is the agents code used to run the experiment.
– Expected res. and Obtained res. are the expected and obtained results.
– Bug1 : instead of sending a counter offer upon reception of the broker’s offer,

the client sends an offer followed by a message with unknown type.
– Bug2 : the client autonomously starts to interact with the broker before the

initial messages that the protocol enforces have been sent.
– Bug3 : we deleted all the plans triggered by the reception of +counter(Item,

Offer)[source(Client)] from the broker’s code, making the broker agent
unable to react to a counter offer.

Our “meta-testing” of the testing mechanism was successful. We run the
MAS with many other values of the initial and acceptable offers, and with other
communication errors, always obtaining the expected result. The simpler proto-
cols involving alice and bob agents described in Section 2 have been successfully
tested as well.

Broker: i.o. Broker: a.o. Client: c.o. Code Expected res. Obtained res.

11 6 3 Correct ok ok

8 6 2 Correct noDeal noDeal

8 6 5 Bug1 protocol error protocol error

8 6 5 Bug2 protocol error protocol error

8 6 5 Bug3 no progress no progress

Table 1. Some of our experiments with the brokering protocol

3.4 Discussion

Alternative implementations. We opted to implement the proof-of-concept of
our approach by extending the code of the existing participants rather than
modifying the code of the Jason interpreter, because this was the simplest and
quickest solution we could devise for developing a prototype, and easily experi-
menting different design choices. However, the same results could be obtained by



directly modifying the .send internal action by overriding the underlying agent
architecture methods of Jason responsible for sending and receiving messages.

This solution would not require any modification of the code of the par-
ticipants, and would allow the monitor to forward the message, when correct,
directly to the recipient agent, thus reducing the number of interactions required
among agents.

Another interesting solution would consist in creating a monitor agent for
each agent participating to the interaction, thus avoiding the communication
problems of the centralized approach where the unique monitor is required to
exchange a large amount of messages with the other agents; however, this solu-
tion requires to project the global session type to end-point types (a.k.a. local
types), specifying the expected behavior of each single agent involved in the in-
teraction. Depending on the considered notion of global type, it might be non
trivial to find an efficient and complete projection algorithm.

Global type transition. We have already shown that the next predicate is ensured
to terminate on contractive global types; however, a developer may erroneously
define a non contractive type for testing its system. Fortunately, there exist
algorithms for automatically translating a non contractive global type into an
equivalent contractive one.

Another issue concerns non deterministic global types, that is, global types
where transitions are not deterministic. Consider for instance the following global
type:

fork(seq(msg(alice ,bob ,tell ,ping),

seq(msg(bob ,alice ,tell ,pong),end)),

seq(msg(alice ,bob ,tell ,ping),

seq(msg(alice ,bob ,tell ,bye),end )))

In this case the next predicate has to guess which of the two operand types must
progress upon reception of the message matching with msg(alice,bob,tell,ping);
this means that in case of non deterministic global types the monitor may de-
tect false positives. To avoid this problem one could determinize the type, but
depending on the considered notion of global type, it would not be easy, or even
possible, to devise a determinization algorithm. Alternatively, the monitor could
store the whole sequence of received sending actions to allow backtracking in
case of failure, thus making the testing procedure much less efficient.

Finally, it is worth mentioning that the proposed approach makes an efficient
use of memory space if the initial global type does not contain loops with the
fork constructor. In this case the space required by a global type representing
an intermediate state is bounded by the size of the initial global type; since
only one type at a time is kept in the belief base of the monitor, this implies
a significant space optimization when the total number of all possible states is
exponential w.r.t. the size of the initial global type. As already pointed out, this
consideration does not apply to types with loops involving the fork constructor,
like in the following example:

T = fork(seq(msg(alice ,bob , te l l ,ping),T),



seq(msg(bob ,alice , te l l ,pong),T)).

In this case the term grows at each transition step (and there are cases where
the type cannot be simplified to a smaller one); however, we were not able to
come up with examples of realistic protocols that require types with fork in a
loop to be specified.

4 Related and Future Work

Our work represents a first step in two directions: extending an existing agent
programming language with session types, and supporting testing of protocol
conformance within a MAS. In this section we consider the related works in
both areas, discuss the (lack of) proposals of integrating session types in existing
MASs frameworks, and outline possible extensions of our work.

Session types on top of existing programming languages. The integration of ses-
sion types into existing languages is a recent activity, dating back to less than ten
years ago for object oriented calculi, and less than five years for declarative ones.
The research field is very lively and open, with the newest proposals published
just a few months ago.

Session types have been integrated into object calculi starting from 2005 [8,
9]. The first full implementation of a language and run-time for session-based dis-
tributed programming on top of Java, featuring asynchronous message passing,
delegation, session subtyping and interleaving, combined with class download-
ing and failure handling, dates back to 2008 [13]. More recently, a Java language
extension has been proposed, that counters the problems of traditional event-
based programming with abstractions and safety guarantees based on session
types [12].

Closer to our work on declarative languages, the paper [18] discusses how
session types have been incorporated into Haskell as a standard library that
allows the developer to statically verify the use of the communication primitives
provided without an additional type checker, preprocessor or modification to
the compiler. A session typing system for a featherweight Erlang calculus that
encompasses the main communication abilities of the language is presented in
[16]. Structured types are used to govern the interaction of Erlang processes,
ensuring that their behavior is safe with respect to a defined protocol.

Protocol representation and verification in MASs. Because of the very nature
of MASs as complex systems consisting of autonomous communicating entities
that must adhere to a given protocol in order to allow the MAS correct function-
ing, the problem of how representing interaction protocols has been addressed
since the dawning of research on MASs (one of the most well known outcomes
being FIPA AUML interaction diagrams [14]), and the literature on protocol
conformance verification is extremely rich.

Although a bit dated, [3] still represents one of the most valuable contribu-
tions to verification of a priori conformance. In that paper the authors propose



an approach based on the theory of formal languages. The ability to formally
prove the interoperability of two policies (the actual protocol implementations),
each of which is compliant with a protocol specification, is one of the main fea-
tures of the proposed approach whose aim is however deeply different from ours,
being devoted to a static analysis carried out before the interaction takes place.

The problem of verifying the compliance of protocols at run time has been
tackled – among others – within the SOCS project7, where the SCIFF compu-
tational logic framework [1] is used to provide the semantics of social integrity
constraints. Such a semantics is based on abduction: expectations on the possibly
observable, yet unknown, events are modeled as abducibles and social integrity
constraints are represented as integrity constraints. To model MAS interaction,
expectation-based semantics specifies the links between the observed events and
the expected ones. The recent paper “Modelling Interactions via Commitments
and Expectations” [20] discusses that and related approaches. Although aimed
at testing run-time conformance of an actual conversation with respect to a given
protocol, our approach differs from the expectation-based one in many respects,
including the lack of notion of expectation in the agent language, and the im-
plementation of the testing mechanism in a seamless way on top of an existing
and widespread agent-oriented programming language.

As far as formalisms for representing agent interaction protocols are con-
cerned, the reader may find a concise but very good survey in Section 4 of [19].
In that paper, the authors propose a commitment-based semantics of protocols.
Commitments involve a debtor, a creditor, an antecedent, and a consequent: the
debtor stakes a claim or makes a promise to the creditor about the specified
consequent provided that the antecedent holds. Protocols specify business in-
teractions by stating how messages affect the participants’ commitments. That
setting allows the authors to determine if a protocol refines another protocol, how
protocols may be aggregated into other protocols, and to verify interoperability
properties of agents and roles (safety, liveness, or alignment), conformance of
roles, and compliance of agents. Our approach is currently limited to the run-
time verification of the MAS compliance to the interaction protocol, but the
exploitation of session types as the formalism to represent protocols allows us
to take advantage of all the results achieved in the session types research field,
which include session subtyping and algorithms for static verification of protocol
properties such as safety and liveness.

The ability to specify the type of messages (has_type(c,ct) predicate) in
order to relate actual messages to messages specified in the protocol, usually
given at a more abstract level, is a characterizing feature of our approach and
seems to be supported by none of the proposals mentioned above.

Session Types and MASs. As demonstrated for example by the Scribble language
mentioned in the Introduction and by [10], using session types to represent and
verify protocol conformance inside MASs is not a new idea but, to the best of
our knowledge, no attempts of taking advantage of global session types to verify

7 http://lia.deis.unibo.it/research/projects/SOCS/



MASs programmed in some widespread agent oriented programming languages
had been made so far, and our proposal is an original one.

Future extensions. Our work can be extended in many ways, as already discussed
to some extent in Section 3. Besides the specific extensions mentioned there,
and the fully automatic generation of the monitor and participants code, our
short term goals include analyzing how our approach could be extended to other
Prolog-based agent-programming languages, such as GOAL [4] or 2APL [6],
and designing more complex protocols to stress-test our system and provide a
quantitative assessment of its runtime behavior and scalability.

In the medium term, we plan to work for evolving our mechanism towards
a framework supporting self-recovering MASs. This evolution would require to
modify the way we extend the code of the participant agents, in order to au-
tomatically select other messages to send in the current state, if any, in case
the monitor realizes that the chosen one does not respect the protocol. Default
recovery actions for the situation where no other choices are available, should
be defined as well. In such a context – more oriented towards verification of in-
teroperability of deployed systems rather than testing of systems-to-be –, agents
might advertise to the monitor the services they offer and the protocols to follow
in order to obtain them. Besides ensuring the protocol’s compliance, the monitor
could then act as a repository of <service specification, protocol specification>
couples, helping agents to locate services in an open MAS in a similar way the
Universal Description, Discovery and Integration (UDDI) registry does for web
services.

In the long term, the integration of ontology-based meaning into protocol
specifications, leading to “ontology-aware session types”, will be addressed. Our
previous work on CooL-AgentSpeak [15] will represent the starting point for that
extension.
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