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Abstract. This paper further investigates the potential and practical
applicability of abstract compilation in two different directions.

First, we formally define an abstract compilation scheme for precise pre-
diction of uncaught exceptions for a simple Java-like language; besides
the usual user declared checked exceptions, the analysis covers the run-
time ClassCastException.

Second, we present a general implementation schema for abstract compi-
lation based on coinductive CLP with variance annotation of user-defined
predicates, and propose an implementation based on a Prolog prototype
meta-interpreter, parametric in the solver for the subtyping constraints.

1 Introduction

Mapping type checking and type inference algorithms to inductive constraint
logic programming (CLP) is not a novel idea. Sulzmann and Stuckey [20] have
shown that the generalized Hindley/Milner type inference problem HM(X) [17]
can be mapped to inductive CLP(X): type inference of a program can be ob-
tained by first translating it in a set of CLP(X) clauses, and then by resolving
a certain goal w.r.t. such clauses. This result is not purely theoretical, indeed it
has also some important practical advantages: maintaining a strict distinction
between the translation phase and the logical inference one, when the goal and
the constraints are solved, allows a much clearer specification of type inference
and a more modular approach, since different type inference algorithms can be
obtained by just modifying the translation phase, while reusing the same engine
defined in the logical inference phase.

Recent work has shown how coinductive logic programming [19] and coin-
ductive CLP can be fruitfully applied to a handful applications ranging over
type inference of object-oriented languages [5, 1, 2], verification of real time sys-
tems [16], model checking, and SAT solvers [15].

? This work has been partially supported by MIUR DISCO - Distribution, Interaction,
Specification, Composition for Object Systems.



Type inference can be defined in terms of abstract compilation [5, 1, 2] into a
Horn formula of the program to be analyzed, and of resolution of an appropriate
goal in coinductive CLP with subtyping constraints. In contrast to conventional
inductive CLP, coinductive CLP allows the specification of much more expressive
type systems and, therefore, of more precise forms of type analysis able to better
detect malfunctioning of a program.

Abstract compilation is particularly interesting for type inference of object-
oriented languages when coinduction, union and object types are combined to-
gether. A first formal definition of abstract compilation [5, 1] has been given
for a purely functional object-oriented language similar to Featherweight Java
(FJ) [12] with optional nominal type annotations, generalized explicit construc-
tor declarations and primitive types, but no type casts. The proposed abstract
compilation scheme supports precise type inference based on coinductive union
and object types, and smoothly integrates it with nominal type annotations,
which are managed as additional constraints imposed by the user.

To further investigate the scalability of the approach, we have studied an
abstract compilation scheme [4] for a simple Java-like language with imperative
features as variable and field assignment and iterative constructs, by considering
as source to abstract compilation an SSA [8] intermediate form. Natural encoding
of SSA ϕ functions with union types proves how SSA intermediate forms can be
fruitfully exploited by abstract compilation.

Though these results show that abstract compilation is attractive and promis-
ing, its full potential has not been completely explored yet, and more efforts are
required before the approach can be applied to realistic object-oriented lan-
guages. In this paper we add a further step towards the long way to real appli-
cability of abstract compilation, in two different directions. First, we consider
an important feature in modern mainstream object-oriented language, namely
exception handling, and show an abstract compilation scheme allowing precise
prediction of uncaught exceptions for a simple Java-like language. Second, we
presents a general implementation schema for abstract compilation based on
coinductive CLP, and propose an implementation based on a Prolog prototype
meta-interpreter, parametric in the solver for the subtyping constraints. The
implementation exploits variance annotations of user-defined predicates to use
subsumption instead of simple term unification when the coinductive hypothesis
rule is applied.

The paper is organized as follows. Section 2 provides some minimal back-
ground on coinductive LP and on inductive CLP. Section 3 introduces abstract
compilation with some examples, whereas Section 4 formally defines abstract
compilation for a simple Java-like language with exceptions. Section 5 presents
a general implementation schema for abstract compilation and is devoted to
the semantics and implementation of coinductive CLP, whereas Section 6 draws
some conclusions and outlines some directions for further investigation.

2 Background
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Coinductive LP and SLD Simon et al [19] have introduced coinductive-LP,
or simply co-LP. Its declarative semantics is given in terms of co-Herbrand uni-
verse, infinitary Herbrand base and maximal models, computed using greatest
fixed-points. While in traditional LP this semantics corresponds to build finite
proof trees, co-LP allows infinite terms and proofs as well, which in general are
not finitely representable and, for this reason, are called idealized. The opera-
tional semantics, defined in a manner similar to SLD, is called co-SLD. For an
obvious reason, co-SLD is restricted to regular terms and proofs, that is, to trees
which may be infinite, but can only contain a finite number of different subtrees
(and, hence, can be finitely represented). To correctly deal with infinite regular
derivations an implicit coinductive hypothesis rule is introduced. This rule allows
a predicate call to succeed if it unifies with one of its ancestor calls.

CLP(X) CLP introduces constraints in the body of the clauses of a logic
program, specifying conditions under which the clauses hold, and let external
constraint solvers interpret/simplify these constraints. For instance, the clause
p(X) ← {X > 3}, q(X) expresses that p(X) holds when q(X) holds and the
value of X is greater than three. Furthermore, constraints serve also as an-
swers returned by derivations. For instance, if we add q(X) ← {X > 5} to the
clause above, then the goal p(X) succeeds with answer {X > 5}. Of course, the
standard resolution has to be extended in order to embed calls to the external
solvers. At each resolution step new constraints are generated and collected, and
the solver checks that the whole set of collected constraints is still satisfiable
before execution can proceed further.

3 Abstract compilation by examples

This section shows how abstract compilation allows accurate analysis of un-
caught exceptions, and informally introduces the main concepts which will be
used in the formalization given in Section 4.

The terms of our type domain are class, method and field names (represented
by constants), and types coinductively defined over integer, boolean, object,
union, and exception types.

bt ::= int | bool (basic types)
vt ::= bt | obj (c, [f1:vt1, . . . , fn:vtn]) | vt1 ∨ vt2 (value types)
t ::= vt | t1 ∨ t2 | ex (c) (types)

An object type obj (c, [f1:vt1, . . . , fn:vtn]) specifies the class c to which the object
belongs, together with the set of available fields with their corresponding value
types. A value type does not contain exception types, and represents a set of
values. Exception types are inferred for expressions whose evaluation throws
an exception, hence cannot be associated with a field or with the parameter
of a method. The class name of the object type is needed for typing method
invocations. We assume that fields in an object type are finite, distinct and that
their order is immaterial. Union types t1 ∨ t2 have the standard meaning [6, 11].
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Finally, if an an expression has type ex (c), then it means that its evaluation
throws an exception of class c. In general we expect the type of an expression to
be the union of value and exception types; for instance, if an expression has type
ex (c) ∨ int , then it means that its evaluation may either throw an exception of
class c, or return an integer value. However, if the type of an expression is the
union of sole exception types, then it means that the evaluation of that expression
will always throw an exception, thus revealing a problem in the program. This
accurate analysis is not possible in the approach of Jo et al. [14].

As pointed out in Section 2, in coinductive logic programming terms and
derivations can correspond to arbitrary infinite trees [7], hence not all the terms
and derivations can be represented in a finite way, therefore the corresponding
type systems are called idealized. However, an implementable sound approxi-
mation of an idealized type system can be obtained by restricting terms and
derivations to regular ones. A regular tree can be infinite, but can only contain
a finite number of subtrees or, equivalently, can be represented as the solution
of a unification problem, that is, a finite set of syntactic equations of the form
Xi = ei, where all variables Xi are distinct and expressions ei may only contain
variables Xi [7, 19, 18].

A type domain D is a constraint domain which defines two predicates: strong
equivalence and subtyping. In this example strong equivalence corresponds to
syntactic equality and is interpreted in the coinductive Herbrand universe, whereas
subtyping is interpreted as set inclusion between sets of values: t1 ≤ t2 iff
Jt1K ⊆ Jt2K, where JtK depends on the considered type language. For space limita-
tion, we have omitted the definition of interpretation for our types; however, the
definition given by Ancona and Lagorio [2] can be extended in a straightforward
way to deal with exception types too.

An accurate analysis of uncaught exceptions We show by a simple exam-
ple how abstract compilation allows accurate uncaught exceptions in Java-like
languages. We share the same motivations as in the work by Jo et al. [14]: an
analysis of uncaught exceptions independent of declared thrown exceptions is
a valuable tool for avoiding unnecessary or too broad declarations, and, hence,
unnecessary try statements or too general error handling. Last but not least,
reporting some kinds of unchecked exceptions, as ClassCastException, would al-
low static detection of typical run-time errors. This last feature is supported in
the language defined in Section 4.

Consider the following example of Java3 code.

c lass Exc extends Exception {}

interface Node {Node next() throws Exc;} // linked nodes

c lass TNode implements Node { // terminal nodes

public Node next() throws Exc {throw new Exc ();}

3 For clarity we use full Java, even though this example could be easily recast in the
language defined in Section 4.
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}

c lass NTNode implements Node { // non terminal nodes

private Node next;

public NTNode(Node n){ this .next=n;}
public Node next() {return this .next;}

}

c lass Test {

void m() throws Exc { // Exc must be declared

// but will never been thrown

new NTNode(new NTNode(new TNode ())). next (). next ();}

}

In order to be correctly compiled, method m must declare Exc in its throws

clause, or its body must be wrapped by a dummy try statement, even though
such a method will never throw an exception of type Exc. The throws clause can
be safely removed, if a type more precise than Node is inferred for the expression
new NTNode(new NTNode(new TNode())).next(); indeed, by abstract compila-
tion it is possible to infer the type obj (ntnode, [next :obj (tnode, [ ])]) and, hence,
deduce that the second call to next() cannot throw an exception.

To compile the program shown above into a Horn formula, we introduce
a predicate for each language construct; for instance, invoke for method in-
vocation, new for constructor invocation, field acc for field access, and cond
for conditional expressions. Furthermore, auxiliary predicates are introduced for
expressing the semantics of the language; for instance, predicate has meth corre-
sponds to method look-up. Each method declaration is abstractly compiled into
a Horn clause: the compilation of method next() of classes TNode and NTNode

generates the following two clauses, respectively.

has_meth(tnode ,next ,[This],ex(exc)).

has_meth(ntnode ,next ,[This],N) ← field_acc(This ,next ,N).

Predicate has meth has four arguments: the class where the method is de-
clared, the name of the method, the types of the arguments, and the type of the
returned value. If a method has n arguments, then its argument type is a list of
n+1 types, where the first type always corresponds to the target object this. The
first clause is a fact specifying that method next() declared in class TNode always
throws an exception. The second clause has a non empty body corresponding
to the abstract compilation of the body of the method: field_acc(This,next,N)
means that accessing field next of the object This returns a value of type N.

Each method declaration is compiled into a clause defining predicate has meth,
and, analogously, each constructor declaration is compiled into a clause defining
predicate has constr . Furthermore, other program independent clauses are gen-
erated to specify the behavior of the various constructs w.r.t. the available types
(see Section 4).
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Coinductive derivations and subtyping To see an example of coinductive
derivation and to explain the importance of subtyping constraints, let us add
the following factory method4 to class Test.

Node addNodes( int i, Node n) { // adds i nodes before n

i f (i<=0) return n;

else return addNodes(i-1,new NTNode(n));}

Let us assume now that we would like to infer the type of the expression
new Test().addNodes(5,new TNode()); the inferred type can be obtained by
resolving the goal invoke(obj (test , [ ]), addNodes, [int , obj (tnode, [ ])], R0) w.r.t.
the Horn formula obtained from the abstract compilation of our example classes.

If we consider unification with no subtyping constraints, then we can only
get an infinite derivation containing the following sequence of atoms:

at0 = invoke(obj (test , [ ]), addNodes, [int , t0], R0)
at1 = invoke(obj (test , [ ]), addNodes, [int , t1], R1)

...
atk = invoke(obj (test , [ ]), addNodes, [int , tk], Rk)

...

with answer R0 = t0∨R1, . . . , Rk = tk∨Rk+1, . . ., where t0 = obj (tnode, [ ]), and
tk+1 = obj (ntnode, [n:tk]) for all k ≥ 0; hence, the solution is a non regular term
obtained from a non regular derivation. The main problem is that for all k, atom
atk does not unify with atoms at0, . . . , atk−1, hence no coinductive hypothesis
can be used to build a regular proof.

If we consider subtyping and observe that method invocation is contravariant
in the argument type and covariant in the returned type, then we have that5 our
initial goal succeeds if the atom at = invoke(obj (test , [ ]), addNodes, [int , T ], R0)
succeeds, and t0 ≤ T holds. To resolve at , the following atom at ′ needs to be
resolved, under the constraint R0 ≥ T ∨R1:

invoke(obj (test , [ ]), addNodes, [int , obj (ntnode, [n:T ])], R1)

To derive at ′ we can use the coinductive hypothesis at if the additional con-
straints R1 ≥ R0 and obj (ntnode, [n:T ]) ≤ T hold. Hence, the initial goal can be
resolved if the following set of constraints is satisfiable:

t0 ≤ T,R0 ≥ T ∨R1, R1 ≥ R0, obj (ntnode, [n:T ]) ≤ T.

A possible solution is given by R0 = R1 = T, T = t , where t is the regular term t
s.t. t = t0 ∨ obj (ntnode, [n:t ]). Therefore, by exploiting the subtyping constraint
≤, we can resolve our goal with a regular derivation and a regular solution

4 This is just a simple example in our functional Java-like language; in Java the method
would be static and tail recursion would be replaced with a loop.

5 The resolution steps have been slightly simplified for the sake of clarity.
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(other interesting examples of regular derivations, which can be computed by
considering the subtyping constraint, can be find in related papers [1–3]).

The derivation sketched above follows the rules of coinductive CLP as de-
fined in Section 5, where user-defined predicates are associated with variance
annotations.

The key point is that each predicate is expected to behave in a specific
way w.r.t. subtyping. If p is a predicate with only one6 argument, we have the
following four possibilities:

– p is covariant in its argument: if p(t1) and t1 ≤ t2 hold, then p(t2) holds has
well (we say that p(t1) subsumes p(t2)).

– p is contravariant in its argument: if t2 ≤ t1 holds, then p(t1) subsumes p(t2).
– p is weakly invariant in its argument: if t1 ≤ t2, t1 ≥ t2 holds, then p(t1)

subsumes p(t2). In this case we abbreviate t1 ≤ t2, t1 ≥ t2 with t1 ∼= t2, and
we call ∼= weak equivalence.

– p is strongly invariant in its argument: if t1 ≡ t2 holds, then p(t1) subsumes
p(t2). We call ≡ strong equivalence since it is expected to be stronger than
∼=, that is t1 ≡ t2 ⇒ t1 ∼= t2, but not conversely. In most cases ≡ coincides
with syntactic equality.

For instance, invoke is strongly invariant w.r.t. its first7 and second argu-
ments, contravariant in its third argument, and covariant in its fourth argument.

4 Formalization

In this section we formally define abstract compilation for a simple functional
Java-like language supporting exceptions (Figure 1). Syntactic assumptions
listed in the figure have to be verified before abstract compilation is performed.
Bars denote sequences of n items, where n is the superscript of the bar.

A program consists of a sequence of class declarations and a main expression.
Type annotations in all declarations can be either primitive types bool or int , or
class names. We assume that the language supports boxing conversions, hence
bool and int are both subtypes of Object . Hence Object is the top type annotation
which, in fact, does not impose any restriction on the type of fields, parameters
and returned values.

A class declaration contains field and method declarations, and a single
constructor declaration. We assume predefined classes Object , Throwable and
ClassCastExc: the first is the root of the inheritance tree, the second extends
Object and is the most general type for exceptions, the third extends Throwable
and is the class of the unchecked exceptions thrown when a runtime type check
fails; for simplicity, we assume that all three classes contain no fields and methods

6 The definition can be straightforwardly generalized for an arbitrary number of ar-
guments.

7 In contrast with what intuition may suggest, weak invariance in the first argument
of invoke is unsound.
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prog ::= cd
n

e

cd ::= class c1 extends c2 { fd
n

cn md
k } (c1 6= Object ,Throwable,ClassCastExc)

fd ::= τ f ;

cn ::= c(τ xn) {super(ek); f = e ′;
h}

md ::= τ0 m(τ xn) {e}
e ::= new c(en) | x | e.f | e0.m(en) | if (e) e1 else e2 | false | true | i | e1 op e2

throw c | try e1 catch(c) e2 | (c) e
op ::= relOp | boolOp | intOp
τ ::= c | bool | int

Assumptions: n, k, h ≥ 0, inheritance is acyclic, names of declared classes in a program,
methods and fields in a class, and parameters in a method are distinct.

Fig. 1. Syntax of the language

and have a constructor without parameters. The body of a constructor consists
of an invocation of the superclass constructor and a sequence of field initializa-
tions, one for each field declared in the class. Method declarations are standard;
note however that they do not include throws clause, since our analysis is inde-
pendent of the declared thrown exceptions.

Expressions deserve few comments: i denotes integer literals, relOp, boolOp
and intOp denotes the usual relational, boolean and integer binary operators;
for simplicity, we consider == and != monomorphic operators over integers; an
extension allowing == and != to be polymorphic is straightforward. Expressions
for exception handling have been deliberately simplified to make the presentation
lighter: when an exception is thrown, no instance is created, but only the type
of the exception (which is required to be a subtypes of Throwable) is specified;
consequently, catch clauses do not have any formal parameter. Furthermore try

expressions can have only one catch clause.
For space reasons we have omitted the quite standard operational semantics

of the language. Abstract compilation for programs and declarations (defined in
Figure 2) is very similar to those given in previous work ([1, 4]).

Abstract compilation of a program generates a pair (Hf |B), where Hf is a
Horn formula and B is a goal (a sequence of atoms). Abstract compilation of a
class, field, constructor, and method declaration yields two clauses (for classes
and methods) or one (for fields and constructors).

For simplicity class, field, method and variable names are not affected by
abstract compilation, even though in practice appropriate bijections8 (different
from the identity) have to be considered.

For any expression e, the abstract compilation of e (defined in Figure 3)
generates a pair (t |B), where t is the term corresponding to the type of e, and
B is the sequence of atoms whose satisfaction ensures that e is well-typed.

8 This is due to the fact that in logic programming names beginning with an upper
case letter denote logical variables, while those beginning with a lower case letter
denote constant, function and predicate symbols.
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(prog)
∀ i = 1..n cd i  Hf i e in ∅ (t |B)

cd
n

e  (Hf 0 ∪ (∪i=1..nHf i)|B)
Hf 0 defined in Fig.4 and 5

(class)
∀ i = 1..n fd i in c1  Cl i cn in fd

n
 Cl ∀ j = 1..k md j in c1  Hf j

class c1 extends c2 { fd
n

cn md
k } 


class(c1 )← true.
extends(c1 , c2 )← true.

ffS[
i=1..n

{Cl i}
S
{Cl}

[
j=1..k

Hf j

(field)
τ f ; in c  dec field(c, f , τ)← true.

(constr)
∀ i = 1..k ei in {xn} (ti |Bi) ∀ j = 1..h e ′

j in {xn} (t ′
j |B ′

j)

c(τ xn) {super(ek); f = e;
h} in τ ′ f ;

h
 

has constr(c, [xn ], obj (c, [f :t ′h |R]))← type comp([xn], [τn]),B
k
,

extends(c, P ),

has constr(P, [t
k
], obj (P,R)),B ′h,

type comp([t ′h], [τ ′h]).

(meth)
e in {This, xn} (t |B)

τ0 m(τ xn){e} in c  
dec meth(c,m)← true.
has meth(c,m, [This, xn ], t)← type comp(This, c),

type comp([xn], [τn]),
B , type comp(t , τ0).

Fig. 2. Abstract compilation of programs and declarations
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(new)
∀ i = 1..n ei in V  (ti |Bi)

new c(en) in V  (R |Bn
,new(c, [t

n
], R))

R fresh

(var)
x in V  (x | true)

x ∈ V (field-acc)
e in V  (t |B)

e.f in V  
(R |B ,field acc(t , f , R))

R fresh

(invk)
∀ i = 0..n ei in V  (ti |Bi)

e0.m(en) in V  (R |B0,B
n
, invoke(t0,m, [t

n
], R))

R fresh

(if)
e in V  (t |B) e1 in V  (t1 |B1) e2 in V  (t2 |B2)

if (e) e1 else e2 in V  (R |B ,B1,B2, cond(t , t1, t2, R))
R fresh

(true)
true in V  (bool | true)

(false)
false in V  (bool | true)

(int)
i in V  (int | true)

(bin-op)
e1 in V  (t1 |B1) e2 in V  (t2 |B2)

e1 op e2 in V  (R |B1,B2, bin op(op, t1, t2, R))
R fresh

(throw)
throw c in V  (R | throw(c, R))

R fresh

(try)
e1 in V  (t1 |B1) e2 in V  (t2 |B2)

try e1 catch(c) e2 in V  (R |B1,B2, try(t1, c, t2, R))
R fresh

(cast)
e in V  (t |B)

(c) e in V  (R |B , cast(c, t , R))
R fresh

Fig. 3. Abstract compilation of expressions
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The compilation is straightforward and is based on a set of predicates which
specify the behavior of each construct. For instance, predicates invoke is defined
as follows:

invoke(obj(C,R),M,A1,RT∨ET) ← val_types(A1,A2),

exc_types(A1 ,ET),has_meth(C,M,[obj(C,R)|A2],RT).

invoke(obj(C,R),M,A,ET) ← no_val_types(A), exc_types(A,ET).

invoke(T1∨T2,M,A,RT1∨RT2) ← invoke(T1,M,A,RT1),

invoke(T2,M,A,RT2).

invoke(ex(C),M,A,ex(C)).

The first two clauses specify the behavior of method calls when the target is
an object type. The predicates val_types, exc_types, and no_val_types (de-
fined in Figure 5) control exception propagation during argument evaluation.
The atom val_types(l,l ′) succeeds only if type list l corresponds to an ex-
pression sequence whose evaluation may be completed normally (see Section
14.1, [10]) with type list l ′ (which necessarily contains no exception types).
For instance, val_types([ex (c1) ∨ vt1,ex (c2) ∨ vt2],[vt1,vt2]) succeeds, whereas
val_types([ex (c1),ex (c2) ∨ vt2],X) fails. The atom exc_types(l,t) succeeds if
l corresponds to an expression sequence whose evaluation may be completed
abruptly with type t (which necessarily does not contain value types). For in-
stance, exc_types([ex (c1) ∨ vt1,ex (c2) ∨ vt2],ex (c1) ∨ ex (c2)) succeeds; note that
exc_types succeeds also when no exceptions are thrown: exc_types([vt1,vt2],X)

succeeds with X=⊥ (that is, the empty9 type). Finally, no_val_types(l) succeeds
iff val_types(l,X) fails.

The first clause of invoke deals with cases where argument expressions may
evaluate normally. Method look-up is started (predicate has_meth) from the class
of the target object, and its type is added as first argument to correctly deal
with this. Note that this case does not prevent argument expressions to evaluate
abruptly: ET represents all thrown exceptions. The second clause is used when
argument expressions never evaluate normally: in this case no method look-up is
performed10; this clause allows exact propagation of union types containing sole
exception types, thus inferring that the evaluation of the method invocation will
always throw an exception, and, hence, that something is wrong in the source
code.

The third clause of invoke deals with union types: if invoking method M on a
target of type T1 (resp. T2) yields a result of type RT1 (resp. RT2), then invoking
M on a target of type T1 ∨ T2 yields a result of type RT1 ∨ RT2.

Finally, the last clause deals with the case when the expression correspond-
ing to the target evaluates abruptly by throwing an exception exc(C) which,
therefore, is propagated.

Let us focus now on the predicates corresponding to the throw and try

constructs. The clause for throw is pretty straightforward:

9 The empty type can be simply represented by the type t s.t. t = t ∨ t [2, 3].
10 This allows typechecking an invocation of any method M with any arguments A;

though the method will never be actually invoked, since the evaluation of its argu-
ments will always throw an exception.
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throw(C,ex(C)) ← subtype(C,throwable ).

The type of the expression throw(c) is ex (c), providing that c is a subtype of
Throwable, otherwise the expression is not well-typed.

Since the behavior of the try expression is more involved, let us consider
first some examples. If e1 and e2 have type t1 = ex (c1) ∨ ex (c2) ∨ vt and t2,
respectively, and if c1 is a subclass of c, while c2 is not, then the type inferred
for try e1 catch(c) e2 is ex (c2) ∨ vt ∨ t2. On the other hand, if both c1 and c2

are not subclasses of c, then the inferred type is just t1. Indeed, expression e2

is evaluated only if e1 throws an exception which is a subclass of c, hence the
type of the try expression includes t2 only when t1 contains an exception type
handled by the catch clause. Furthermore, all exception types in t1 handled by
the catch clause have to be removed from t1 to infer the most precise type.

try(T1 ,C,T2 ,T3∨T2) ← remove_handled(T1,C,T3).

try(T1 ,C,T2 ,T1) ← unhandled(T1 ,C).

The auxiliary predicate remove_handled(T1,C,T3) succeeds if T1 contains at least
an exception type covered by C, and the type T3 is obtained from T1 by remov-
ing all exception types covered by C; the auxiliary predicate unhandled(T1,C)

succeeds if T1 does not contain an exception type covered by C. The complete
definition of all main and auxiliary predicates can be found in Figures 4 and 5.

5 A prototype implementation of coinductive CLP(X)

In this section we show a prototype implementation of the inference engine for
coinductive CLP, which is an essential component for supporting abstract com-
pilation, as depicted in Figure 6. The input is represented by the source program
to be analyzed and by a query defined by the user in a high level language. Then
the abstract compiler and the goal generator, which is a subcomponent of the ab-
stract compiler, generate a Horn formula and a goal. The generated clauses can
be optionally augmented by user-defined clauses defining auxiliary predicates.
Finally, type inference is performed by the coinductive CLP engine. The red (or
dark) components are those depending on the type system under consideration:
the abstract compiler11 and the solver for the specific type domain.

The engine supports variance annotations, which are more than a convenient
syntactic notation for avoiding explicit insertion of constraints in the body of
clauses; indeed, they allow definition of constraints which are associated with
predicates, rather than clauses. To our knowledge, this is a novel feature not
previously considered in CLP. In this way, we gain in expressive power, since
instead of unification, subsumption can be exploited when the coinductive hy-
pothesis rule is applied.

We first provide the fixed-point and operational semantics of coinductive
CLP.

11 If the source language is unchanged only the back-end will be modified.
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class(object)← true.
class(throwable)← true.
class(class cast exc)← true.
extends(throwable, object)← true.
extends(class cast exc, throwable)← true.
subtype(X ,X )← type(X ).
subtype(X , object)← type(X ).
subtype(X ,Y )← extends(X ,Z ), subtype(Z ,Y ).
type(bool)← true.
type(int)← true.
type(C )← class(C ).
type comp(bool , bool)← true.
type comp(int , int)← true.
type comp([ ], [ ])← true.
type comp([T1 |L1 ], [T2 |L2 ])← type comp(T1 ,T2 ), type comp(L1 ,L2 ).
type comp(obj (C1 ,X ),C2 )← subtype(C1 ,C2 ).
type comp(T1 ∨ T2 ,C )← type comp(T1 ,C ), type comp(T2 ,C ).
bin op(O ,T1 ,T2 ,R ∨ E)← val types([T1 ,T2 ], [T3 ,T4 ]), exc types([T1 ,T2 ],E), ev bin op(O ,T3 ,T4 ,R).
bin op(O ,T1 ,T2 ,E)← no val types([T1 ,T2 ]), exc types([T1 ,T2 ],E).
field acc(obj (C ,R),F ,T )← has field(C ,F ,TA),field(R,F ,T ), type comp(T ,TA).
field acc(T1 ∨ T2 ,F ,FT1 ∨ FT2 )← field acc(T1 ,F ,FT1 ),field acc(T1 ,F ,FT1 ).
field([F :T |R],F ,T )← true.
field([F1 :T1 |R],F2 ,T )← field(R,F2 ,T ),F1 6= F2 .
invoke(obj (C ,S),M ,A1 ,R ∨ E)← val types(A1 ,A2 ), exc types(A1 ,ET ), has meth(C ,M , [obj (C ,S)|A2 ],R).
invoke(obj (C ,S),M ,A,E)← no val types(A), exc types(A,E).
invoke(T1 ∨ T2 ,M ,A,R1 ∨ R2 )← invoke(T1 ,M ,A,R1 ), invoke(T2 ,M ,A,R2 ).
invoke(ex (C ),M ,A, ex (C ))← true.
has constr(object , [ ], obj (object , [ ]))← true.
has constr(throwable, [ ], obj (throwable, [ ]))← true.
has constr(class cast exc, [ ], obj (class cast exc, [ ]))← true.
new(C ,A1 ,R ∨ E)← val types(A1 ,A2 ), exc types(A1 ,E), has constr(C ,A2 ,R).
new(C ,A,E)← no val types(A), exc types(A,E).
has field(C ,F ,T )← dec field(C ,F ,T ).
has field(C ,F ,T1 )← extends(C ,P), has field(P ,F ,T1 ),¬dec field(C ,F ,T2 ).
has meth(C ,M ,A,R)← extends(C ,P), has meth(P ,M ,A,R),¬dec meth(C ,M ).
cond(T1 ,T2 ,T3 ,T2 ∨ T3 ∨ E)← val type(T1 ,T4 ), exc type(T1 ,E), type comp(T4 , bool).
cond(T1 ,T2 ,T3 ,T1 )← no val type(T1 ).
throw(C , ex (C ))← subtype(C , throwable).
try(T1 ,C ,T2 ,T3 ∨ T2 )← remove handled(T1 ,C ,T3 ).
try(T1 ,C ,T2 ,T1 )← unhandled(T1 ).
cast(C , bool , bool)← subtype(bool ,C ).
cast(C , int , int)← subtype(int ,C ).
cast(C1 , obj (C2 ,R), obj (C2 ,R))← subtype(C2 ,C1 ).
cast(C1 , obj (C2 ,R), ex (class cast exc))← not subtype(C2 ,C1 ).
cast(C ,T1 ∨ T2 ,R1 ∨ R2 )← cast(C ,T1 ,R1 ), cast(C ,T2 ,R2 ).
cast(C1 , ex (C2 ), ex (C2 ))← true.

Fig. 4. Definition of the shared clauses Hf 0 (part one)
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val types([ ], [ ])← true.
val types([T1 |L1 ], [T2 |L2 ])← val type(T1 ,T2 ), val types(L1 ,L2 ).
no val types([T |L])← no val type(T ).
no val types([T |L])← no val types(L).
val type(bool , bool)← true.
val type(int , int)← true.
val type(obj (C ,R), obj (C ,R))← true.
val type(T1 ∨ T2 ,T3 ∨ T4 )← val type(T1 ,T3 ), val type(T2 ,T4 ).
val type(T1 ∨ T2 ,T3 )← val type(T1 ,T3 ),no val type(T2 ).
val type(T1 ∨ T2 ,T3 )← no val type(T1 ), val type(T2 ,T3 ).
no val type(ex (C ))← true.
no val type(T1 ∨ T2 )← no val type(T1 ),no val type(T2 ).
exc types([ ],E)← is empty(E).
exc types([T |L],E1 ∨ E2 )← exc type(T ,E1 ), val type(T ,T2 ), exc types(L,E2 ).
exc types([T |L],E)← exc type(T ,E),no val type(T ).
exc type(bool ,E)← is empty(E).
exc type(int ,E)← is empty(E).
exc type(obj (C ,R),E)← is empty(E).
exc type(ex (C ), ex (C ))← true.
exc type(T1 ∨ T2 ,E1 ∨ E2 )← exc type(T1 ,E1 ), exc type(T2 ,E2 ).
remove handled(ex (C1 ),C2 ,E)← subtype(C1 ,C2 ), is empty(E).
remove handled(T1 ∨ T2 ,C ,T3 ∨ T4 )← remove handled(T1 ,C ,T3 ), remove handled(T2 ,C ,T4 ).
remove handled(T1 ∨ T2 ,C ,T3 ∨ T2 )← remove handled(T1 ,C ,T3 ), unhandled(T2 ,C ).
remove handled(T1 ∨ T2 ,C ,T1 ∨ T3 )← unhandled(T1 ,C ), remove handled(T2 ,C ,T3 ).
unhandled(bool ,C )← true.
unhandled(int ,C )← true.
unhandled(obj (C1 ,R),C2 )← true.
unhandled(ex (C1 ),C2 )← not subtype(C1 ,C2 ).
unhandled(T1 ∨ T2 ,C )← unhandled(T1 ,C ), unhandled(T2 ,C ).
not subtype(bool ,T )← T 6= object ,T 6= bool .
not subtype(int ,T )← T 6= object ,T 6= int .
not subtype(object ,C )← C 6= object .
not subtype(C1 ,C2 )← C1 6= C2 , extends(C1 ,C3 ),not subtype(C3 ,C2 ).
is empty(E)← E = E ∨ E .
ev bin op(O ,T1 ,T2 ,R)← is rel op(O), type comp(T1 , int), type comp(T2 , int), type comp(R, bool).
ev bin op(O ,T1 ,T2 ,R)← is bool op(O), type comp(T1 , bool), type comp(T2 , bool), type comp(R, bool).
ev bin op(O ,T1 ,T2 ,R)← is int op(O), type comp(T1 , int), type comp(T2 , int), type comp(R, int).
is rel op(′<′)← true. . . .
is bool op(′&&′)← true. . . .
is int op(′+′)← true. . . .

Fig. 5. Definition of the shared clauses Hf 0 (part two)
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Fig. 6. General schema for abstract compilation based on coinductive CLP(X)

Fixed-point semantics For simplicity, all following definitions use a fixed
coinductive Herbrand universe and base and type domain D.

We write pαn to mean that predicate symbol p has arity n and variance
annotation αn, where each αi may be one of the constraint predicates {≤,≥,∼=
,≡}, as defined in Sect. 3.

Definition 1. If pαn is a predicate symbol, then the ground atom pαn(t1, . . . , tn)
subsumes the ground atom pαn(t ′1, . . . , t ′n) iff {t1α1t ′1, . . . , tnαnt ′n} is satisfiable,
that is, D |= {t1α1t ′1, . . . , tnαnt ′n}.

The one-step consequence function THf ,D, induced by a Horn formula Hf
where all predicates are associated with a variance annotation, is the function
over sets of ground atoms contained in the coinductive Herbrand base, defined
as follows:

THf ,D(S) = {A′ | A← A1 , . . . ,An ground instance of a clause in Hf ,
Ai ∈ S for all i = 1, . . . , n, A subsumes A′}

The coinductive Herbrand model of Hf w.r.t. the type domain D is the greatest
fixed-point of THf ,D. Equivalently, the semantics of Hf can be expressed by
translating Hf into a formula Hf ′ where constraints are explicitly introduced
in the clauses of Hf , and then by considering the greatest fixed-point of TCLP

Hf ′,D,
where TCLP

Hf ′,D is the standard one-step consequence function defined for CLP [13]:

TCLP
Hf ,D(S) = {A | A← C ,A1 , . . . ,An ground instance of a clause in Hf ,

Ai ∈ S for all i = 1, . . . , n, D |= C}

A clause having general shape pαn (tn)← A
k

is translated in the CLP clause
pαn (X

n
)← gen(tn , αn ,X

n
),A

k
, where X

n
are distinct and fresh variables and

constraints are generated by the function gen defined as follows:

gen(ε, ε, ε) = ∅
gen((t , tn−1), (α, αn−1), (u, un−1)) = {t α u} ∪ gen(tn−1

, αn−1, un−1)
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(empty) Hf | H ` true  ∅

(co-hyp)
Hf | H1, pαn(t

n
),H2 ` G1,G2  C1 ` C1 ∪ C2 → C ′

Hf | H1, pαn(t
n
),H2 ` G1, pαn(un),G2  C ′ C2 = gen(t

n
, αn, un)

(cls)
Hf | H , pαn(t

n
) ` G1,G,G2  C1 ` C1 ∪ C2 → C ′

Hf | H ` G1, pαn(un),G2  C ′

pαn (t
n
)← G fresh instance of

a clause of Hf
C2 = gen(t

n
, αn, un)

Fig. 7. Operational semantics

The function gen simply takes three tuples of the same length n, t1, . . . , tn,
α1, . . . , αn, and u1, . . . , un, and generates the set of constraints {t1α1u1, . . . ,
tnαnun}. This function is used in the next section for expressing the operational
semantics of a Horn formula, where the meta-variables ui may be instantiated
with general terms and not only with variables.

Operational semantics The operational semantics of a Horn formula Hf is
inductively defined in Fig. 7. When restricting to regular terms and proofs,
results on the equivalence between the fixed-point and the operational semantics,
which holds for both coinductive LP [19] and inductive CLP [13], can be adapted
also to the case of coinductive CLP.

In the judgment Hf | H ` G  C , meta-variables Hf , H , and G represent
the input of the judgment, whereas C is the only output; if the judgment is deriv-
able, then the goal G succeeds w.r.t. the Horn formula Hf and the coinductive
hypotheses H , with the satisfiable set of constraints C as solution.

The coinductive hypotheses H (a stack of atoms) are needed for building
regular derivations; for doing that, we have to keep track of all atoms that have
been already resolved with a standard SLD step (see rule (cls) below).

The rules are parametric in the judgment ` C → C ′, which corresponds to
the abstract specification of the constraint solver for the specific type domain
under consideration, hence if the judgment is derivable then D |= C holds (hence,
C represents the input of the solver) and returns an equivalent but simplified
version C ′ (which, therefore, represents the output of the solver).

Rule (empty) deals with the empty goal (represented by true) which always
succeeds; in this case the returned solution is the empty set of constraints.

Coinduction is managed by rule (co-hyp), where the atom pαn(un) (non
deterministically selected from the goal) is resolved by using a coinductive hy-
pothesis (non deterministically selected from H ). This happens when H contains
an atom pαn(tn) (that is, with the same predicate symbol p and arity n of the
atom selected from the goal) subsuming the atom pαn(un) of the goal for a cer-
tain assignment of values to variables. Such an assignment is determined by the
set of constraints C2 generated by gen(tn, αn, un) and the set of constraints C1

corresponding to the solution of the remaining atoms G1,G2 of the goal. Hence,
if C1 ∪C2 is satisfiable, then the rule is applicable. The returned solution is the
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simplification C ′ of C1 ∪ C2 computed by the solver. Note that the rule uses
subsumption instead of simple term unification, thanks to variance annotations.
This would not be possible in standard CLP where constraints are associated
with clauses and not with predicates.

Rule (cls) non deterministically selects an atom pαn(un) from the goal, and
a clause from Hf s.t. its head has the same predicate symbol p and arity n of the
atom selected from the goal. Then, an instance pαn (tn)← G of the clause where
all variables are bijectively renamed with fresh variables is considered, and the
new goal G1,G ,G2, obtained by replacing the atom pαn(un) with the body G
of the clause, is resolved w.r.t. the coinductive hypotheses augmented with the
head pαn(tn) of the clause. If resolution of G1,G ,G2 succeeds with constraints
C1, and C2 is the set of constraints generated from the head of the clause and the
atom selected from the goal, then the solver checks whether C1∪C2 is satisfiable.
If it so, then the clause is applicable, and resolution of the initial goal succeeds
with the constraint set C ′ obtained by simplifying C1 ∪ C2.

Prototype implementation We have implemented the operational semantics
defined in Fig. 7 with a meta-interpreter12 written in SWI Prolog.

The implementation performs a depth first search of the tree of all possible
derivations, by selecting the atoms of the goal and the applicable clauses in
the usual order (left to right and top to bottom, respectively). Furthermore,
rule (co-hyp) takes the precedence over (cls), and coinductive hypotheses are
selected starting from the top of the stack (that is, the most recent coinductive
hypothesis is selected first). The basic structure of the meta-interpreter can be
specified by the following pseudo-code.

coCLP(Goal , Solver , Solution) ←
coCLP(Goal , Solver , [], [], Solution ).

% (empty)

coCLP(true , _Solver , _CoHyp , Solution , Solution ).

% (co-hyp)

coCLP ((pαn(un), Goal), Solver , CoHyp , C1, Solution) ←
fresh_atom(p, n, pαn(X

n
)),member(pαn(X

n
), CoHyp),

gen(X
n
, αn, un, C2), union(C1, C2, C3), call(Solver , C3, C4),

coCLP(Goal , Solver , CoHyp , C4 , Solution ).

% (cls)

coCLP ((pαn(un), Goal), Solver , CoHyp , C1, Solution) ←
fresh_atom(p, n, pαn(X

n
)), clause(pαn(X

n
), Body),

gen(X
n
, αn, un, C2), union(C1, C2, C3), call(Solver , C3, C4),

append_goal(Body , Goal , NewGoal),

coCLP(NewGoal , Solver , [pαn(X
n
)|CoHyp], C4 , Solution ).

The main predicate13 coCLP/3 (not specified in Fig. 7) is defined in terms of the
auxiliary predicate coCLP/5 which implements the judgment Hf | H ` G  C .
The definition is parametric in the predicate corresponding to the constraint
12 Available at ftp://ftp.disi.unige.it/person/AnconaD/coCLP.zip.
13 We assume that the goal is always terminated by true.
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solver, which is represented by the variable Solver. The two additional argu-
ments of coCLP/5 (when compared with coCLP/3) are the coinductive hypotheses
and the accumulated constraints, which are both initially empty. The use of an
accumulator for the generated constraints allows a more efficient implementa-
tion: coCLP/5 is tail-recursive, hence its execution can be optimized; furthermore,
the constraints generated from the application of a coinductive hypothesis or of a
clause are checked before proceeding with the resolution of the remaining atoms
of the goal.

The search of an applicable coinductive hypothesis is performed by first creat-
ing an atom with the same predicate symbol and arity of the atom selected from
the goal, where all arguments are fresh distinct variables (predicate fresh_atom,
directly implementable with the standard meta-predicate functor), then such
atom is searched in the list of coinductive hypotheses with the standard member

predicate. Predicate gen corresponds to the function gen defined at the beginning
of this section, whereas union performs union of sets of constraints.

The implementation of rule (cls) (last clause) is analogous except for two
details: the standard meta-predicate clause is used to find applicable clauses in
the program, and the auxiliary predicate append_goal is used for appending the
body of the selected clause to the remaining part of the initial goal.

Finally, we outline some of the details of our implementation not shown in
the pseudo-code defined above.

To associate the variance annotation αn with the predicate p/n, one has to
call the goal register_coind_atom(p(αn)). As a side effect of this call, every clause
of p/n is associated with the set of constraints gen(tn, αn, X

n
), where p(tn) is

the head of the clause, and X
n

are distinct and fresh variables. Hence, the meta-
interpreter initially performs the same translation to an equivalent CLP program
as defined at the beginning of this section. The set of pre-generated constraints
is associated with the clause by means of a dynamically asserted fact containing
the reference indexing the clause; such a reference can be retrieved with the
library predicate clause/3.

Pre-generated constraints of clauses are exploited in two different ways: they
are used for dynamically generating the set of constraints which must verified
for allowing application of a clause, and for dynamically pre-generating the con-
straints corresponding to the variance annotation of the predicate of the coin-
ductive hypothesis, which is pushed onto the stack when the clause turns out to
be applicable. Such pre-generated constraints are used for dynamically generat-
ing the set of constraints which must verified for allowing the application of a
coinductive hypothesis.

Finally, the answer returned by the interpreter is the set of computed con-
straints restricted to the variables contained in the initial goal; this final step
has been not included in the pseudo-code described above.

The definition of gen change into gen(Ref, X
n
, un, C2) that for each α(tn, Y )

in C
n

unify Xn with tn and un with Y ; we need to unify Xn to keep correlation
between all constraints. This approach enforce the relation with CLP(X) because
we associate the constraints directly to a clause.
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We take advantage of the pre-generated constraints also when we manage
hypotheses and in a similar way. An hypothesis is an atom with this form
[Functor/Arity|C

n
], where C

n
is taken from constrs. When we have to add an

hypothesis (in (cls)) we unify Xn with tn; instead, in (co-hypo) we must unify un
with Y before check the constraints. Note that C

n
which we put in hypothesis is

a completely fresh one, different from the set the we use to verify the constraint
of the current atom.

6 Conclusion

This paper provides a further step towards applicability of abstract compilation
to realistic object-oriented languages, in two directions.

We have defined a formal abstract compilation scheme allowing precise pre-
diction of uncaught exceptions for a simple Java-like language. The analysis
covers both user declared checked exceptions, and the unchecked predefined run-
time exception ClassCastException. Furthermore, we have presented a general
implementation schema for abstract compilation based on coinductive CLP with
variance annotation of user-defined predicates, and proposed an implementation
based on a Prolog prototype meta-interpreter, parametric in the solver for the
subtyping constraints.

Our approach seems particularly promising in the context of object-oriented
programming, when the type domain contains union and object types. More
efforts are required to obtain results for realistic object-oriented languages. De-
vising a constraint solver for subtyping on regular union and object types is
of paramount importance. We have already investigated several sound but not
complete axiomatizations of subtyping [2, 3], but we still do not know whether
subtyping on regular union and object types is decidable; currently, we are devel-
oping a CHR [9] based implementation of a sound but not complete constraint
solver for the abstract compilation scheme presented in this paper.

Although scalability of the approach in the presence of imperative features
has been already investigated [4], much work should be accomplished in this di-
rection; for instance, it would be interesting to investigate whether abstract com-
pilation could be integrated with other kinds of analysis to detect reference alias-
ing, or other runtime exceptions as NullPointerException or IndexOutOfBoundsException.
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