
Global Types for Dynamic Checking of Protocol
Conformance of Multi-Agent Systems

(Extended Abstract)

Davide Ancona, Matteo Barbieri, and Viviana Mascardi

DIBRIS, University of Genova, Italy
email: davide@disi.unige.it, matteo.barbieri@oniriclabs.com,

mascardi@disi.unige.it

1 Introduction

Multi-agent systems (MASs) have been proved to be an industrial-strength tech-
nology for integrating and coordinating heterogeneous systems. However, due to
their intrinsically distributed nature, testing MASs is a difficult task. In recent
work [1] we have tackled the problem of run-time verification of the conformance
of a MAS implementation to a specified protocol by exploiting global types on
top of the Jason agent oriented programming language [2].

Global types [3,6,4] are a behavioral type and process algebra approach to the
problem of specifying and verifying multiparty interactions between distributed
components.

Our notion of global type closely resembles that of Castagna, Dezani, and
Padovani, [4] except for two main differences: our types are interpreted coinduc-
tively, rather than inductively, hence they are possibly infinite sets of possibly
infinite sequences of interactions between a fixed set of participants; in this way,
protocols that must not terminate can be specified. Furthermore, we use global
types for dynamic, rather than static, checking of multiparty interactions; errors
can only be detected at run-time, but checking is simpler and more flexible, and
no notion of projection and session type has to be introduced.

Global types can be naturally represented as cyclic Prolog terms (that is,
regular terms), and their interpretation can be given by a transition function,
that can be compactly defined by a Prolog predicate. With such a predicate,
a Jason monitor agent can be automatically implemented to dynamically check
that the message exchange between the agents of a system conforms to a specified
protocol.

In this paper we continue our research in two directions: on the one hand, we
investigate the theoretical foundations of our framework; on the other, we extend
it by introducing a concatenation operator that allows a significant enhancement
of the expressive power of our global types. As significant examples, we show
how two non trivial protocols can be compactly represented in our framework:
a ping-pong protocol, and an alternating bit protocol, in the version proposed
by Deniélou and Yoshida [5]. Both protocols cannot be specified easily (if at all)
by other global type frameworks, while in our approach they can be expressed

by two deterministic types (in a sense made precise in the sequel) that can be
effectively employed for dynamic checking of the conformance to the protocol.

2 Global type interpretation

A global type τ represents a set of possibly infinite sequences of sending actions,
and is defined on top of the following type constructors:

– λ (empty sequence), representing the singleton set {ε} containing the empty
sequence ε.

– α:τ (seq), representing the set of all sequences whose first element is a sending
action matching type α, and the remaining part is a sequence in the set
represented by τ .

– τ1 + τ2 (choice), representing the union of the sequences of τ1 and τ2.
– τ1|τ2 (fork), representing the set obtained by shuffling the sequences in τ1

with the sequences in τ2 .
– τ1 · τ2 (concat), representing the set of sequences obtained by concatenating

the sequences of τ1 with those of τ2.

As an example, (((α1:λ)|(α2:λ)) + ((α3:λ)|(α4:λ))) · ((α5:α6:λ)|(α7:λ)) denotes
the following set of sequences of sending action types:α1α2α5α6α7, α1α2α5α7α6, α1α2α7α5α6, α2α1α5α6α7,

α2α1α5α7α6, α2α1α7α5α6, α3α4α5α6α7, α3α4α5α7α6,
α3α4α7α5α6, α4α3α5α6α7, α4α3α5α7α6, α4α3α7α5α6

Global types are regular terms, that is, can be cyclic: more abstractly, they are
finitely branching trees (where nodes are type constructors) whose depth can
be infinite, but that can only have a finite set of subtrees. A regular term can
be represented by a finite set of syntactic equations, as happens, for instance,
in Jason and in most modern Prolog implementations. For instance, the two
equations T1 = (λ+ (α1:T1)) ·T2, and T2 = (λ+ (α2:T2)) represent the following
infinite, but regular, global types (λ+(α1:(λ+(α1: . . .))))·(λ+(α2:(λ+(α2: . . .))))
and (λ+ (α2:(λ+ (α2: . . .)))), respectively.

To easily ensure termination of dynamic checking of protocol conformance,
we only consider contractive (or guarded) types.

Definition 1. A global type τ is contractive if it does not contain paths whose
nodes can only be constructors in {+, |, ·} (such paths are necessarily infinite).

The type represented by the equation T1 = (λ + (α2:T1)) is contractive: its
infinite path contains infinite occurrences of +, but also of the : constructor;
conversely, the type represented by the equation T2 = (λ+ ((T2|T2) + (T2 · T2)))
is not contractive. Trivially, every finite type (that is, non cyclic) is contractive.

The interpretation of a global type depends on the notion of transition, a
total function δ:T × A → Pfin(T), where T and A denote the set of contractive
global types and of sending actions, respectively. As it is customary, we write

τ1
a→ τ2 to mean τ2 ∈ δ(τ1, a). Figure 1 (in the Appendix) defines the inductive

rules for the transition function.
The auxiliary function ε(), inductively defined in Figure 2 (in the Appendix),

specifies the global types whose interpretation contains the empty sequence ε.

Proposition 1. Let τ be a contractive type. If ε(τ) does not hold, then there
exist a and τ ′ s.t. τ a→ τ ′.

Proposition 2. If τ is contractive and τ a→ τ ′ for some a, then τ ′ is contractive
as well.

Definition 2. Let τ0 be a contractive type. A run ρ for τ0 is a sequence τ0
a0→

τ1
a1→ . . .

an−1→ τn
an→ τn+1

an+1→ . . . such that

– either the sequence is infinite, or there exists k ≥ 0 such that τk is the last
global type, and ε(τk);

– for all τi, ai, and τi+1 in the sequence, τi
ai→ τi+1 holds.

We denote by A(ρ) the possibly empty or infinite sequence of sending actions
a0a1 . . . an . . . contained in ρ.

The interpretation Jτ0K of τ0 is the set {A(ρ) | ρ is a run for τ0 }.

The two propositions above ensure that if τ is a contractive global type, then
JτK 6= ∅.

Note that, differently from other approaches [4], global types are interpreted
coinductively: for instance, the global type defined by T = α:T denotes the
set {αω} (that is, the singleton set containing the infinite sequence of sending
action type α), and not the empty set. Furthermore, whereas global types are
regular trees, in general their interpretation is not a regular language, since it
may contain strings of infinite length.

Finally, we introduce the notion of deterministic global type, which ensures
that dynamic checking can be performed efficiently without backtracking.

Definition 3. A contractive global type τ is deterministic if for any possible run

ρ of τ and any possible τ ′ in ρ, if τ ′ a→ τ ′′, τ ′ a′→ τ ′′′, and a = a′, then τ ′′ = τ ′′′.

3 Examples

In this section we provide two examples to show the expressive power of our
formalism.

3.1 Ping-pong Protocol

This protocol requires that first Alice sends n (with n ≥ 1, but also possibly
infinite) consecutive ping messages to Bob, and then Bob replies with exactly
n pong messages. The conversation continues forever in this way, but at each
iteration Alice is allowed to change the number of sent ping messages.

Given the two sending action types ping and pong , the protocol can be spec-
ified by the following contractive and deterministic global type (defined by the
variable Forever):

Forever = PingPong · Forever
PingPong = ping :((pong :λ) + ((PingPong) · (pong :λ)))

3.2 Alternating Bit Protocol

We consider the Alternating Bit protocol, in the version defined by Deniélou
and Yoshida [5]. Four different sending actions may occur: Alice sends msg1 to
Bob (sending action type msg1), Alice sends msg2 to Bob (sending action type
msg2), Bob sends ack1 to Alice (sending action type ack1), Bob sends ack2 to
Alice (sending action type ack2). Also in this case the protocol is an infinite
iteration, but the following constraints have to be satisfied for all occurrences of
the sending actions:

– The n-th occurrence of msg1 must precede the n-th occurrence of msg2 .
– The n-th occurrence of msg1 must precede the n-th occurrence of ack1 ,

which, in turn, must precede the (n+ 1)-th occurrence of msg1 .
– The n-th occurrence of msg2 must precede the n-th occurrence of ack2 ,

which, in turn, must precede the (n+ 1)-th occurrence of msg2 .

We first show a non deterministic contractive type specifying such a protocol
(defined by the variable AltBit1).

AltBit1 = msg1 :M2

AltBit2 = msg2 :M1

M1 = (((msg1 :λ)|(ack2 :λ)) ·M2) + (((msg1 :ack1 :λ)|(ack2 :λ)) ·AltBit2)
M2 = (((msg2 :λ)|(ack1 :λ)) ·M1) + (((msg2 :ack2 :λ)|(ack1 :λ)) ·AltBit1)

Since the type is not deterministic, it would require backtracking to perform
the dynamic checking of the protocol. The corresponding minimal deterministic
type (defined by the variable AltBit1) is the following:

AltBit1 = msg1 :M2

AltBit2 = msg2 : M1

M1 = (msg1 : A2) + (ack2 : AltBit1)
A1 = (ack1 : M1) + (ack2 : ack1 : AltBit1)
M2 = (msg2 : A1) + (ack1 : AltBit2)
A2 = (ack2 : M2) + (ack1 : ack2 : AltBit2)

References

1. D. Ancona, S. Drossopoulou, and V. Mascardi. Automatic Generation of Self-
Monitoring MASs from Multiparty Global Session Types in Jason. In Declarative
Agent Languages and Technologies (DALT 2012). Workshop Notes., pages 1–17,
2012.

2. R. H. Bordini, J. F. Hübner, and M. Wooldridge. Programming Multi-Agent Systems
in AgentSpeak Using Jason. John Wiley & Sons, 2007.

3. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred pro-
gramming for web services. In ESOP’07 (part of ETAPS 2007), volume 4421 of
LNCS, pages 2–17. Springer, 2007.

4. G. Castagna, M. Dezani-Ciancaglini, and L. Padovani. On global types and multi-
party session. Logical Methods in Computer Science, 8(1), 2012.

5. P.-M. Deniélou and N. Yoshida. Multiparty session types meet communicating
automata. In ESOP’12 (part of ETAPS 2012), LNCS. Springer, 2012.

6. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In
POPL 2008, pages 273–284. ACM, 2008.

A Appendix

(seq)
α:τ

a→ τ
a ∈ α (choice-l)

τ1
a→ τ ′

1

τ1 + τ2
a→ τ ′

1

(choice-r)
τ2

a→ τ ′
2

τ1 + τ2
a→ τ ′

2

(fork-l)
τ1

a→ τ ′
1

τ1|τ2
a→ τ ′

1|τ2
(fork-r)

τ2
a→ τ ′

2

τ1|τ2
a→ τ1|τ ′

2

(cat-l)
τ1

a→ τ ′
1

τ1 · τ2
a→ τ ′

1 · τ2
(cat-r)

τ2
a→ τ ′

2

τ1 · τ2
a→ τ ′

2

ε(τ1)

Fig. 1. Rules defining the transition function

(ε-seq)
ε(λ)

(ε-lchoice)
ε(τ1)

ε(τ1 + τ2)
(ε-rchoice)

ε(τ2)

ε(τ1 + τ2)

(ε-fork)
ε(τ1) ε(τ2)

ε(τ1|τ2)
(ε-cat)

ε(τ1) ε(τ2)

ε(τ1 · τ2)

Fig. 2. Rules defining global types equivalent to λ

	Global Types for Dynamic Checking of Protocol Conformance of Multi-Agent Systems (Extended Abstract)

