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Abstract

This paper brings together two recent contributions to
the area of declarative agent-oriented programming, made
feasible in practice by the recent introduction of an in-
terpreter for a BDI programming language. The work on
Coo-BDI has proposed an approach to plan exchange which
applies to BDI agents in general. The other contribution is
the introduction of special illocutionary forces for plan ex-
change between AgentSpeak agents. This has been imple-
mented in Jason, an interpreter for an extended version of
that language. This paper shows how the elaborate plan ex-
change mechanism of Coo-BDI can be used by AgentSpeak
agents implemented with Jason. It also discusses an appli-
cation on PDA-based multi-media presentations in museum
visits for which plan exchange is relevant.

1. Introduction

Various agent-oriented programming languages have ap-
peared in the literature since Shoham’s seminal work [12].
Typically, these languages concentrate on the programming
of one individual autonomous agent, leaving it completely
for the user to work out ways of developing multi-agent sys-
tem where those agents interact. However, the advantage
of the agent-oriented approach to software development re-
sides precisely in the fact that computational systems for
dynamic and complex scenarios can be designed more eas-
ily by relying on various autonomous agents coordinating
their actions.

On the other hand, agent-oriented software engineering
approaches (see, e.g., [14]) have focussed mainly on soci-
etal aspects of building multi-agent systems, such as groups
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and roles, rather than the development of individual agents
and their cognitive aspects. One of the first agent program-
ming languages to move towards a more societal approach
is ConcurrentMETATEM, where agents are specified di-
rectly in linear temporal logic: see their recent work on a
general notion of groups [7]. There are sophisticated ways
of developing teams of agents, such as STEAM [10] for ex-
ample, but these are not programming languages as such,
and do not have the same formal basis (e.g., formal seman-
tics) as do most agent-oriented programming languages.

In this work, we are interested in an important aspect
of the necessary support for future work on programming
teams of agents where each agent is programmed in an
agent-oriented programming language. We consider here
the means for autonomous agents to exchange plans, so that
agents can improve their abilities by obtaining plans from
other agents that might have the specific know-how in ques-
tion. To the best of our knowledge, this issue has not been
dealt with by other agent-oriented programming languages
such as Dribble [13], 3APL [5], and ConGolog [6].

Our starting point is Coo-BDI, an approach to coop-
eration for BDI agents by plan exchange, developed by
Ancona and Mascardi and reported in [1]. In this pa-
per, that approach is applied specifically to an extension
of a BDI agent-oriented programming language called
AgentSpeak(L), in the context ofJason [3], an inter-
preter for that extended language recently made available.
AgentSpeak(L) was originally devised by Rao [11] and later
extended and formalised by Bordini and colleagues [2, 4].
In [9], the operational semantics of AgentSpeak(L) was
extended to account for speech-act based communication,
including special illocutionary forces for communicating
plans.Jason implements the operational semantics given
in [4] as well as the extensions in [9]. This gives the nec-
essary formal and practical basis for plan exchange among
BDI agent in the way required by the approach presented in
this paper.



This paper is organised as follows. In the next section, we
summarise Coo-BDI, an approach to plan exchange among
BDI agents. Section 3 describesJason, a fully-fledged in-
terpreter for an extended version of AgentSpeak(L). In both
sections, only the features that are relevant for the work
here are discussed. Then, in Section 4 we describe a sce-
nario which shows the importance of plan exchange for BDI
agents; the scenario is that of a PDA used to assist visitors
in museums, art galleries, etc. This scenario is used in Sec-
tion 5 where we present Coo-AgentSpeak, the instantiation
of Coo-BDI for AgentSpeak in particular, and discuss how
these ideas can be elegantly integrated intoJason. The pa-
per assumes that the reader is familiar with the BDI archi-
tecture as well as the AgentSpeak language.

2. Coo-BDI

Coo-BDI (Cooperative BDI [1]) extends traditional BDI
agent-oriented programming languages in many respects.
As in the traditional BDI setting, Coo-BDI agents are char-
acterised by an event queue, a mailbox, a plan library, a be-
lief base, and a set of intentions. The main extensions of
Coo-BDI involve the introduction ofcooperationamong
agents for the retrieval of external plans for a given trigger-
ing event; the extension ofplanswith “access specifiers”;
the extension ofintentionsto take into account the exter-
nal plan retrieval mechanism; and the modification of the
Coo-BDI engine(i.e., the interpreter) to cope with all these
issues.

The version of Coo-BDI described here is different from
the one described in [1] for two main reasons:

Enhancement of the flexibility and expressive power of
Coo-BDI. The granularity of the cooperative strat-
egy has been refined, so that it becomes possible to ap-
ply different strategies to different kinds of plan, in-
stead of having a unique cooperative policy for all the
plans. Plans have been extended so as to include the
plan source (namely, the agent that originally “owned”
the plan).

Compliance with AgentSpeak andJason. In order to
facilitate the integration of Coo-BDI and AgentSpeak,
implemented by means of theJason interpreter, the
distinction between “external events” and “desires”
discussed in [1] has been abandoned: only AgentSpeak
“events” are considered now. Plans have been adapted
to the syntax supported byJason: constructs such as
the invariant, and success and failure actions have
been dropped, as well as branches in bodies. Mes-
sages exchanged between agents have also been mod-
ified in order to comply with the format supported by
AgentSpeak inJason.

The description of some issues of Coo-BDI which are
not particularly relevant for this work have been omitted or
simplified for the sake of conciseness and clarity. We now
discuss the Coo-BDI extensions in more detail.

Cooperation strategy.The cooperation strategy of an agent
Ag includes the set of agents which are expected to coop-
erate withAg, the plan retrieval policy, and the plan ac-
quisition policy. The cooperation strategy may evolve dur-
ing time, allowing greater flexibility and autonomy to the
agents, and is modelled by three predicates:

• trusted( Te, TrustedAgentSet ) , whereTe is
a (not necessarily ground) triggering event and
TrustedAgentSet is the set of agents thatAg can
contact in order to obtain plans that are relevant forTe.

• retrievalPolicy( Te, Retrieval ) , where
Retrieval may assume the valuesalways and
noLocal , meaning that relevant plans for the trig-
gering eventTe must always be retrieved from other
agents, or only when no local relevant plans are avail-
able, respectively.

• acquisitionPolicy( Te, Acquisition ) ,
whereAcquisition may assume the valuesdis-
card , add , andreplace meaning that, when a rel-
evant plan forTe is retrieved from a trusted agent,
it must be discarded after its current use, or added
to the plan library, or used to update the plan li-
brary by replacing all existing plans triggered by
Te.

Plans. Besides the standard components which constitute
BDI plans, Coo-BDI plans also have asourcewhich refers
to the agent from which the plan was obtained, and anac-
cess specifierwhich determines the set of agents with which
the plan can be shared. The source may assume two val-
ues: self (the agent itself owns the plan) andAg (the
plan was originally from agentAg). The access specifier
may assume three values:private (the plan cannot be
shared),public (the plan can be shared with any agent)
and only (TrustedAgentSet)(the plan can be shared only
with the agents inTrustedAgentSet).

Intentions. Intentions are characterised by the “standard”
components plus those introduced due to the external-plan
retrieval mechanism:

• the relevant plans which have already been collected
for managing of the current goal; and

• the set of identifiers of those agents which are still
expected to cooperate (by providing plans) for the
achievement of the current goal.

Intentions may be eitheractiveor suspended. They are sus-
pended when the execution of their topmost plan caused the
generation of a subgoal, and the retrieval of relevant plans
for that subgoal is not yet completed.



Coo-BDI engine.The engine for Coo-BDI differs from
classical BDI interpreters, and is characterised by four
macro-steps: (1) processing the mailbox; (2) processing the
event queue; (3) processing suspended intentions; (4) pro-
cessing active intentions. Before describing these four steps,
we need to explain the mechanism for retrieving relevant
plans, which is involved in steps 1 and 2 above. This mech-
anism starts when a new event enters the event queue. To
keep the management of internal and external events homo-
geneous, we assume that, as soon as an external event en-
ters the event queue, a new, empty intention is associated
with it. The plan retrieval mechanism for a given trigger-
ing eventTe consists of four sequential steps:

(a) The intention associated withTe is suspended.
(b) The local relevant plans forTe are generated and as-

sociated with the intention.
(c) According to the cooperation strategy for events

matchingTe, the setS of the agents expected to co-
operate for handling the event is defined.

(d) If S 6= {}, a plan request for the eventTe is created
and sent to all the agents inS.

Now we can describe in more detail the four steps of the
Coo-BDI engine.

1. Processing the mailbox: when an agent receives a plan
request from another agentAg, it sends toAg its lo-
cal plans which are relevant for that event and can be
shared withAg. On the other hand, when an agent re-
ceives an answer to a request for plans handling a cer-
tain event, it checks if the answer is still valid and if so
it updates the intention associated with that event to in-
clude the plan just obtained.

2. Processing the event queue: after an event has been se-
lected, the mechanism for retrieving plans triggered by
that event is started.

3. Processing suspended intentions: the management of
suspended intentions consists of looking for all sus-
pended intentions which can be resumed. When an in-
tention is resumed, the set of applicable plan instances
is generated from the set of relevant plans associated
with the intention, one applicable plan instance is se-
lected and pushed on top of the corresponding inten-
tion stack. If the set of applicable plans is empty, the
event for which plans had been collected cannot be
handled and the corresponding intention is destroyed.
The plans retrieved from cooperating agents may be
discarded, added to the plan library, or used to replace
local plans with a unifying triggering event, according
to the acquisition policy related to the triggering event.

4. Processing active intentions: active intentions are pro-
cessed as originally in the BDI architecture.

Finally, we point out that Coo-BDI (and, consequently,
Coo-AgentSpeak) currently assumes that agents share the

ontology used for writing the exchanged plans. This is a rea-
sonable assumption for scenarios such as the one described
in Section 4, but we expect to drop this assumption in fu-
ture work, as discussed in Section 6. Note that we also as-
sume that all plans are written in AgentSpeak: interoper-
ability is not presently a concern of this work, although this
too could be addressed in the future.

3. About Jason

A recent development in the practical aspects of
AgentSpeak is the first release ofJason [3], an interpreter
for an extended version of AgentSpeak(L), which allows
agents to be distributed over the net through the use of SACI
[8]. Jason is availableOpen Sourceunder GNU LGPL
athttp://jason.sourceforge.net . It implements
the operational semantics of AgentSpeak(L) as given in [4].
It also implements the extension of that operational seman-
tics to account for speech-act based communication among
AgentSpeak agents, as proposed in [9]. This, together with
other mechanisms available inJason, allows us to imple-
ment in practice the ideas of plan sharing described in the
previous section.

Besides interpreting the original AgentSpeak(L) lan-
guage, some of the features available inJason, which are
relevant for this work are:

• speech-act based inter-agent communication (and be-
lief annotations on information sources);

• annotations on plan labels, which can be used by elab-
orate (e.g., decision theoretic) selection functions;

• the possibility to run a multi-agent system distributed
over a network (using SACI);

• fully customisable (in Java) selection functions, trust
functions, and overall agent architecture (perception,
belief-revision, inter-agent communication, and act-
ing);

• straightforward extensibility by user-defined internal
actions, which are programmed in Java;

The idea ofinternal actionswas introduced in [2]. They
are actions (procedures) that are run internally by the agent;
that is, they do not change the environment, thus they can be
executed immediately without requiring an extra interpreta-
tion cycle. In fact, they can appear both in the context and
in the body of a plan. Syntactically, they are differentiated
from other actions by having a character ‘. ’ somewhere in
the action symbol (i.e., the action name). The atom to the
left of ‘ . ’ is a library name, and to the right the name of an
action within that library. This can be useful for users to or-
ganise (in separate libraries) the internal actions they create
themselves (inJason, this is done in Java). An empty library



name (i.e., an action name starting with ‘. ’) makes refer-
ence to the standard library, which is provided withJason.
One particularly important internal action available in the
standard library is the one used for inter-agent communica-
tion: .send( Ag, IlF , L) , whereAg is an agent’s name
(or a set of names for multicast),IlF is the illocutionary
force, andL is a literal inJason’s notation [3].

One of the illocutionary forces proposed in [9] for
AgentSpeak inter-agent communication isTellHow . That
paper gives a precise formalisation of this illocutionary
force, which is used when the sender (s) intends the re-
ceiver (r) to add the content of the message to its plan li-
brary, rather than belief base. Suppose agents executes the
internal action “.send( r, TellHow ,P) ” while executing
a plan, whereP is, e.g., a logical variable instantiated with
a string that can be parsed into an AgentSpeak plan (in fact,
we here consider aset of plans, rather than exactly one).
Then, whenr receives that message, after checking whether
s is a trusted information source, the plan parsed from the
content of the message will be added tor’s plan library. This
provides the first essential requirement for allowing the so-
phisticated plan sharing approach of Coo-BDI to be imple-
mented in practice usingJason.

A second requirement is the availability of some mecha-
nism for associating a plan with a list of properties; in this
case, the list of plan access specifiers, for example, needs
to be explicitly associated with plans. Fortunately,Jason
implements a mechanism which makes the implementation
of such specifiers straightforward. InJason, plans have la-
bels, as proposed in [2], but instead of labels being simply
atoms, they can be any predicate with annotations. Predi-
cate “annotations” were introduced in [9], to be used in the
agent’s belief base for recording the sources of information
(given that inter-agent communication for AgentSpeak was
introduced in that paper). This extended syntax for predi-
cates is as follows:ps(t1, . . . , tn)[a1, . . . , am], whereps is
a predicate symbol of arityn, t1, . . . , tn are terms, and the
m annotationsa1, . . . , am are also terms, all of which must
be ground. Although originally defined to be used in predi-
cates in the belief base,Jasonalso uses these extended pred-
icates in plan labels. Plan labels appear to the left of a spe-
cial symbol ‘-> ’, and the remainder of a plan is as usual
in AgentSpeak. Although a plan label can be any predicate
with annotations, it is suggested that users write labels as
a predicate of arity 0 (i.e., an atom) with annotations when
necessary. So, for example, typical plan labels (for an arbi-
trary plan) would be:

aPlanLabel -> +b(X) : c(t) <- a(X).

anotherLabel[chanceSuccess(0.7),
usualPayoff(0.9), anyOtherProperty] ->

+b(X) : c(t) <- a(X).

It is then up to the user-defined selection functions to use

such information in a plan’s label according to the particu-
lar requirements of the given application. InJason, the in-
terpreter is implemented in Java, and customisations to vari-
ous functions used in the interpreter can be done by the user
by overriding the methods of theAgent class that imple-
ment the standard versions of those functions. For example,
to select an intended means from a set of applicable plans
using application-specific plan properties, the programmer
can override the following method:

public Option selectOption(List optList) {
}

which is called in the AgentSpeak interpretation cycle
whenever a list of relevant and applicable plans1 are ob-
tained for the event being handled at that reasoning cycle.
The default option selection function simply returns the first
option in the JavaList passed on parameter (the options
are inserted in the list in the order the plans appeared in the
AgentSpeak code).

Note that plan properties annotated in the plan label are
copied when instances of a plan are placed in the set of in-
tentions. Because of that, plan properties can be dynami-
cally changed by programmers (during intention execution
time) by executing user-defined internal actions that use cer-
tain Java methods available inJason. This provides a very
interesting mechanism for the implementation of sophisti-
cated selection functions, yet maintaining a neat notation in
the agent programs.

Together withselectOption , the selectEvent
andselectIntention customisable methods inJason
correspond to the three selection functions that are assumed
as given in the AgentSpeak abstract interpreter [11, 2]. Be-
sides these, another customisable function isselectMes-
sage , which was introduced in [9]. It can be overridden
when programmers need to customise the selection of the
message in the agent’s “mailbox” that is to be processed
in the current reasoning cycle (the default function just
chooses the first in the queue).

One final characteristic ofJason that is relevant here is
the configuration option on what to do in case there is no
applicable plan for a relevant event. If an event is relevant,
it means that there are plans in the agent’s plan library for
handling that particular event (meaning that handling that
event is normally a desire of that agent). If it happens that
none of those plans are applicable at a certain time, this can
be a problem as the agent does not know how to handle

1 In AgentSpeak, the notion ofoption refers specifically to the (viable)
alternative courses of actions an agent knows in order to handle an
event (e.g., achieve a goal). More specifically, the “options” are a set
of plans that are relevant (for the event that was selected) and alsoap-
plicable (i.e., the context of the plan is a logical consequence of the
agent’s belief base) at that moment in time. The particular course of
action to which the agent commits itself is then referred to as the “in-
tended means” for handling that event.



the event under the given circumstances. Ancona and Mas-
cardi [1] discussed how this problem is handled in various
agent-oriented programming languages. InJason, a config-
uration option is given to users, which can be set in the file
where the various agents and the environment composing
a multi-agent system are specified. The option allows the
user to state, for events which have relevant but not applica-
ble plans, whether the interpreter should discard that event
altogether (events=discard ) or insert the event back at
the end of the event queue (events=requeue ), so that it
can be considered again later on.

Although Coo-AgentSpeak represents a significant im-
provement to the functionality of AgentSpeak agents, all
the necessary mechanisms to implement Coo-AgentSpeak
can be incorporated intoJason by using its extensibil-
ity or previously added general-purpose language con-
structs. The only modification to the interpreter that
was required forJason to cope with Coo-AgentSpeak
was a third configuration option that is available to the
users. When Coo-AgentSpeak is to be used, the option
events=retrieve must be used in the configuration
file. This makesJasoncall the user-definedselectOp-
tion functioneven when no applicable plans exist for an
event. This way, part of the Coo-BDI approach can be im-
plemented by providing a specialselectOption func-
tion which takes care of retrieving plans externally, when-
ever appropriate. Only in case this also fails, the existing
plan failure mechanism available inJasonis put in place.

4. An Example Scenario

The scenario we shall use in the remainder of this paper
has its roots in an application area that has recently become
very popular: the use of Personal Digital Assistants (PDAs)
for guided visits to museums, galleries, or cities.

A PDA used in that context should deliver content, in dif-
ferent media such as video, sound, and image, according to
the museum room where it is currently located. However,
because of their limited hardware resources, PDAs may not
be able to keep internally the code for all the appropriate
media players required during a visit, and they certainly
cannot keep all the needed multimedia data. They need to
cooperate with other PDAs and software/media providers
to ensure the best guidance is given to the visitor, accord-
ing to his/her preferences. When the PDA agent downloads
movies or other media, it keeps them in memory only during
the time it takes to show them to the user, and then discards
them. Thus, the PDA will never have the movies themselves
permanently in its memory, and it makes sense to configure
it to always download movies rather than keep them inter-
nally, due to resource limitations.

Features such as reacting to the location in the museum,
autonomously choosing the content to be shown to the user,

and achieving the user’s specific goals, make the use of
BDI-based languages very suitable for modelling such PDA
agents. The main obstacle to the adoption of a BDI approach
is that existing BDI systems do not support any form of re-
source sharing. For the PDA technology to be really effec-
tive, dynamic downloading of code and content is a fun-
damental aspect. A more flexible BDI approach, in partic-
ular allowing the retrieval of plans as they become neces-
sary, could solve the problem of the limited computational
resources of a PDA for such applications, with the advan-
tage of a high-level approach for the modelling of more au-
tonomous devices.

In the examples we use in the next section, PDAs con-
tain an agent which refers tocodeProvider anddat-
aProvider agents to download code for playing vari-
ous media, and multimedia content, respectively. Of course,
codeProvider and dataProvider agents reside on
servers situated in appropriate points in the museum. At
the start of the visit, PDA agents contain the plans that
are needed for cooperating with thecodeProvider and
dataProvider agents, and for adapting possible mu-
seum tours to the user’s preferences. During the visit, they
temporary acquire plans for playing particular media, and,
finally, at the end of the visit the PDA agents are reset, thus
losing all acquired plans.

5. Coo-AgentSpeak

In order to achieve the goal of building an interpreter
for AgentSpeak extended with the cooperation mechanisms
supported by Coo-BDI, we exploit the features offered by
Jasonwhich are most suitable for the implementation of co-
operative plan exchange. There are four main tasks to be ac-
complished:

1. in order to define thecooperation strategyof
Coo-AgentSpeak agents, we need to include three
more “given” functions2 to the specification of each
agent, in the same way thattrust andpower func-
tions were added to agent specifications in [9];

2. including access specifiers and sources to plans;

3. keeping track of the events associated with intentions
that were suspended because the agent needs to wait
for an external plan retrieval to finish (i.e., that some
other agent sends the plans that are required for carry-
ing further the execution of that intention);

2 These functions are “given” in the sense that they are part of the inter-
preter of AgentSpeak yet are normally provided by the programmer,
unless the default ones happen to be suitable; however, any sophis-
ticated agent is likely to need application-specific versions of these
functions.



4. customisingJason’s interpreter to make the mecha-
nism for retrieving external relevant plans transparent
to the developer, as it is in Coo-BDI.

In the remainder of this section we show in more detail
how the tasks above can be accomplished. In order to make
the presentation clearer, we shall use the PDA application
described in the previous section as a running example.

5.1. Cooperation strategy

The cooperation strategy can be easily expressed in
Coo-AgentSpeak as a set of “system” (i.e., reserved) predi-
cates in the belief base. The system predicates are:

• cooAS planSources (Te,[Id1,. . .,Idn]),
• cooAS retrievalPolicy (Te, Retrieval), and
• cooAS acquisitionPolicy (Te, Acquisition),

corresponding to those introduced in Section 2.
A PDA agent which respects the requirements ex-

pressed in Section 4 could be configured with the follow-
ing Coo-AgentSpeak cooperation strategy:

• cooAS_planSources("+!playMovie(Movie)",
[codeProvider]).

cooAS_planSources("+!playSound(Sound)",
[codeProvider]).

cooAS_planSources("+!retrieveData(Data)",
[dataProvider]).

• cooAS_retrievalPolicy("+!playMovie(Movie)",
noLocal).

cooAS_retrievalPolicy("+!playSound(Sound)",
noLocal).

cooAS_retrievalPolicy("+!retrieveData(Data)",
always).

• cooAS_acquisitionPolicy("+!playMovie(Movie)",
add).

cooAS_acquisitionPolicy("+!playSound(Sound)",
replace).

cooAS_acquisitionPolicy(
"+!retrieveData(Data)", discard).

Note the difference in the acquisition policy for playing
movies and sounds. We are assuming that a single applica-
tion is used for playing movies, so once the correspond-
ing plan has been downloaded, it will be present in the
PDA agent’s plan library until the end of the visit (hence
theadd policy). On the contrary, we assume that thedat-
aProvider agent contains audio files with different for-
mats each one needing a specific application which, due to
memory limitation, cannot coexist in the PDA. For this rea-
son areplace strategy is used to acquire plans for play-
ing audio.

5.2. Plans

Jason already provides the means for including arbi-
trary annotations in plan labels; Coo-AgentSpeak can adopt

Jason’s notation for plans without requiring any further ex-
tension. We can take advantage of the “plan label annota-
tion” feature to specify in all plan labels acooAS structure
of arity one; the argument ofcooAS is a list which con-
tains (at least for the time being) two terms,accSpec and
source , both of arity one.

The argument ofaccSpec may range over{private ,
public , only( TrustedAgentsSet ) }, while the ar-
gument ofsource may range over{self ,id}. The mean-
ing of these atoms is as explained in Section 2. Thus, for the
PDA application, we can have Coo-AgentSpeak plans such
as the following one:

p1[cooAS([accSpec(public),source(self)])]->
+!playMovie(Movie)
: moviePlayerInstalled(MoviePlayerCodeRef)

<- start(MoviePlayerCodeRef, Movie).

The example above shows a plan that belongs
to the codeProvider agent. It is a public plan
(term accSpec(public) ), owned by the code-
Provider agent itself (termsource(self) ), and
is used to play a movie (the triggering event is
+!playMovie(Movie) ). In case a movie player is be-
lieved to be installed (plan contextmoviePlayerIn-
stalled(MoviePlayerCodeRef) ) it is sufficient to
start the movie player executable code with the movie as its
argument (plan bodystart(MoviePlayerCodeRef,
Movie) ).

Other similar plans must be defined with the appropriate
courses of action for the PDA agent to take under other cir-
cumstance, e.g., in case the required media player is not in-
stalled.

5.3. Intentions

We need to keep track of which intentions are waiting for
the arrival of a certain plan from another agent. The simplest
way to implement this extension inJasonis to use anad hoc
structure which is kept in the belief base. The advantage of
having this information in the belief base is that agents can
change the Coo-AgentSpeak information dynamically (e.g.,
by executing special user-defined internal actions from in-
tended plan instances).

We associate an intention (which is explicitly repre-
sented in an event, so we will use events as references to the
related intentions, for our convenience) with an external-
plan request using system beliefs of the following form:
cooAS suspendedInt( MsgID, Ev, Ags, Plans ) .

Beliefs of this type will be used for updating the set of
collected external plansPlans for the intention identified
within Ev , when the agent receives a message in reply to
the plan request with SACI identifierMsgId ; Ags is ini-
tialised with the set of all agents to which the request was
sent.



5.4. Engine

We now discuss the Coo-AgentSpeak engine, according
to the following macro-steps defined in Coo-BDI.

1. Processing the mailbox:there are two types of mes-
sages which must be processed before any other: the re-
quests for plans, and the answers to these requests. The
selectMessage method provided byJason is cus-
tomised so that it gives priority to these types of mes-
sages; between the two, precedence should be given to
the answers received for the agent’s plan requests.

(a) Once a message of type 〈achieve,
Ag, cooAS sendPlansFor( Te) 〉 is se-
lected for being handled, the special event
+!cooAS sendPlansFor( Te, Ag ) is included
in the event queue of the receiver. The way this event
is handled is explained in item 2 below (process-
ing the event queue).

(b) Once a message of type〈tellHow, Ag, P〉 in re-
ply to a message identified byMsgID is selected for
being processed, the information on the suspended in-
tention associated with thatMsgID , as registered in a
predicatecooAS suspendedInt , is updated in the
belief base. AgentAg is removed from the setAgs of
agents that are still expected to reply, and all plans in
P are added toPlans in that predicate. In case all
agents have replied (i.e.,Ags is empty), the intention
can be resumed, by selecting one plan fromPlans ; be-
fore that, the library is updated according to theac-
quisitionPolicy specified in the triggering events
of all received plans.

2. Processing the event queue:in this step we must con-
sider two situations.

(a) A special event+!cooAS sendPlansFor (Te, Ag)
generated by the reception of a plan request is
selected. The way these special events are gen-
erated was explained above. TheselectEvent
method provided byJason can be customised so
that it always selects+!cooAS sendPlansFor (Te,
Ag) events first (only!startExternalPlanRe-
trieval (Te) has higher priority)3. A system plan
is provided by Coo-AgentSpeak with triggering event
+!cooAS sendPlansFor( Te, Ag ) ; it searches
for all relevant plans forTe (this is accomplished by a
special internal action implemented specifically for this
purpose, making use of the unification algorithm used in

3 Note that this is the behaviour of the defaultselectMessage
andselectEvent functions provided by Coo-AgentSpeak. As the
methods implementing these and other selection functions can be
overridden at the individual agent level, the user can further customise
these methods, e.g., to give the agent more autonomy so as to only
help other agents by sending plans when it can afford to do so.

Jasonto check which plans in the plan library are rele-
vant) and executes a.send( Ag, tellHow, P) ac-
tion, whereP is the set of retrieved plans.

(b) If a normal eventTe is selected, two cases may oc-
cur. If the retrieval strategy forTe is noLocal
and either Te has (locally) relevant and applica-
ble plans, or there are no trusted agent forTe, then no
request for external plans is issued and the computa-
tion continues in the same way as in the implementation
of AgentSpeak. Otherwise, external plans need to be re-
trieved. In Coo-AgentSpeak, theselectOption
method provided byJasonis customised so that, in this
situation, it generates a new internal event!star-
tExternalPlanRetrieval( Te) . The se-
lectEvent method provided byJasonis customised
so that it always selects!startExternalPlanRe-
trieval( Te) events first. Also, a system plan is pro-
vided (to be included in the agents’ plan libraries)
whose triggering event is the goal addition+!star-
tExternalPlanRetrieval( Te) and the con-
text has cooAS planSources( Te,AgList ) ,
and the plan body executes the.send( AgList ,
achieve, cooAS sendPlansFor( Te)) ac-
tion (where cooAS planSources is as defined
above).

3. Processing suspended intentions: in
Coo-AgentSpeak, this step is performed together with
the handling of messages, as described above. Noth-
ing special is required for this step of Coo-BDI when
implemented inJason.

4. Processing active intentions:this step is the same as
originally defined in AgentSpeak. See rulesAction,
Achieve, Test1, Test2, AddBel, andDelBel in [9, ap-
pendix].

Finally, we show how steps 1 and 2 above work in our
PDA example. Let us start from the situation where a PDA
agentpda1 selects a normal event with triggering event
T =+!playMovie(movie1) , and let us assume that
pda1 has no relevant plans forT . According to the strat-
egy specified in the example of Section 5.1, agentcode-
Provider is the only known source of plans forT , there-
fore the intention that generatedT is suspended and a new
internal event is created; an empty intention is associated to
the event and its triggering event is as follows:
!startExternalPlanRetrieval(

"+!playMovie(movie1)")
Then the internal goal is selected from the event queue
and the only relevant plan that is found is the system
plan specifically designed for handling this event. An in-
stance of that plan is obtained by instantiating the vari-
ablesTe andAgList in its triggering event withplay-
Movie(movie1) and[codeProvider] , respectively.



Then the action.send([codeProvider],achieve,
cooAS sendPlansFor(playMovie(movie1))) is
executed and thecodeProvider agent receives, in its
mailbox, the following message:
〈achieve,pda1,

cooAS sendPlansFor(playMovie(movie1)) 〉.
The message is processed by generating an event for:

T ′ =+!cooAS sendPlansFor(
playMovie(movie1),pda1)

which is, then, selected; the only relevant (and applica-
ble) plan for agentcodeProvider whose triggering
event unifies withT ′ is the system plan designed for
handling special events such asT ′. Its execution collects
all plans available in agentcodeProvider whose trig-
gering events unify withplayMovie(movie1) ; let P
be such set of plans. ThecodeProvider agent then
performs the action.send(pda1,tellHow, P) . Sub-
sequently,pda1 selects, from its mailbox, the message
<tellHow,codeProvider, P> and, finally, it can per-
manently addP to its plan library, resume the suspended in-
tention forplayMovie(movie1) (since no other agent
is expected to send further plans), and playmovie1 to the
museum visitor.

6. Conclusions

In this paper, we have shown how Coo-BDI, a sophisti-
cated mechanism for plan exchange among BDI agents, can
be applied to AgentSpeak, and made practical by using the
Jasoninterpreter. The ability to exchange plans is essential
for the development of multi-agent systems where agents
are reactive planning systems. It allows agents to change
their know-how over time, accounting both for adaptation
as well as boundedness of computational resources (e.g., to
avoid keeping large numbers of plans in plan libraries). To
the best of our knowledge, this is the first such mechanism
put in place for an agent-oriented programming language.
We expect the Coo-AgentSpeak extensions to be available
with Jason(also asOpen Source) in the near future.

Future work should address the development of large
scale multi-agent systems, so that we can further assess
the adequacy of our ideas in such context. There is ongo-
ing work on AgentSpeak to incorporate the use of ontolo-
gies; with that, we can drop the assumption of shared ontol-
ogy among all agents, yet agents can make sure there is no
ontological discrepancies in the plans they exchange. We
also plan to formalise the ideas presented here as part of
the operational semantics of AgentSpeak. Finally, by using
SACI “yellow pages” functionalities, we can improve the
mechanism for retrieving the necessary plans so that agents
do not need to worry which agents to ask for the plans
they need. We believe that with the future development of
this approach, it will allow the implementation of sophisti-
cated teams of autonomous agents, having the advantage of

agents being coded in an agent-oriented programming lan-
guage that has formal semantics and is inspired by the well
known BDI architecture for cognitive agents.
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