
MUIRexx

MUIRexx ii

COLLABORATORS

TITLE :

MUIRexx

ACTION NAME DATE SIGNATURE

WRITTEN BY January 13, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

MUIRexx iii

Contents

1 MUIRexx 1

1.1 MUIRexx.guide . 1

1.2 MUIRexx.guide/Update Information . 2

1.3 MUIRexx.guide/Version 3.0 . 2

1.4 MUIRexx.guide/Version 2.2 . 4

1.5 MUIRexx.guide/Version 2.1 . 5

1.6 MUIRexx.guide/Version 2.0 . 5

1.7 MUIRexx.guide/Introduction . 6

1.8 MUIRexx.guide/Disclaimer . 7

1.9 MUIRexx.guide/Conditions . 7

1.10 MUIRexx.guide/Requirements . 8

1.11 MUIRexx.guide/Registration . 9

1.12 MUIRexx.guide/Installation . 10

1.13 MUIRexx.guide/Command Reference . 10

1.14 MUIRexx.guide/Standard Commands . 12

1.15 MUIRexx.guide/quit . 12

1.16 MUIRexx.guide/hide . 12

1.17 MUIRexx.guide/show . 12

1.18 MUIRexx.guide/info . 12

1.19 MUIRexx.guide/Windows . 13

1.20 MUIRexx.guide/window . 13

1.21 MUIRexx.guide/endwindow . 15

1.22 MUIRexx.guide/Groups . 15

1.23 MUIRexx.guide/group . 16

1.24 MUIRexx.guide/endgroup . 18

1.25 MUIRexx.guide/Menus . 18

1.26 MUIRexx.guide/menu . 19

1.27 MUIRexx.guide/endmenu . 19

1.28 MUIRexx.guide/item . 19

1.29 MUIRexx.guide/Objects . 21

MUIRexx iv

1.30 MUIRexx.guide/space . 22

1.31 MUIRexx.guide/label . 22

1.32 MUIRexx.guide/view . 23

1.33 MUIRexx.guide/gauge . 24

1.34 MUIRexx.guide/meter . 26

1.35 MUIRexx.guide/text . 27

1.36 MUIRexx.guide/button . 29

1.37 MUIRexx.guide/switch . 30

1.38 MUIRexx.guide/image . 30

1.39 MUIRexx.guide/check . 30

1.40 MUIRexx.guide/cycle . 31

1.41 MUIRexx.guide/radio . 33

1.42 MUIRexx.guide/string . 33

1.43 MUIRexx.guide/popasl . 35

1.44 MUIRexx.guide/poplist . 36

1.45 MUIRexx.guide/slider . 36

1.46 MUIRexx.guide/popslider . 38

1.47 MUIRexx.guide/knob . 38

1.48 MUIRexx.guide/list . 39

1.49 MUIRexx.guide/dirlist . 42

1.50 MUIRexx.guide/volumelist . 44

1.51 MUIRexx.guide/object . 46

1.52 MUIRexx.guide/Misc . 48

1.53 MUIRexx.guide/request . 49

1.54 MUIRexx.guide/aslrequest . 49

1.55 MUIRexx.guide/callhook . 50

1.56 MUIRexx.guide/method . 51

1.57 MUIRexx.guide/setvar . 52

1.58 MUIRexx.guide/getvar . 52

1.59 MUIRexx.guide/application . 53

1.60 MUIRexx.guide/monitor . 53

1.61 MUIRexx.guide/print . 54

1.62 MUIRexx.guide/Utilities . 54

1.63 MUIRexx.guide/MUIRexxDir . 55

1.64 MUIRexx.guide/MUIRexxBuild . 55

1.65 MUIRexx.guide/MUIRexxDock . 55

1.66 MUIRexx.guide/Example Macro . 56

1.67 MUIRexx.guide/Command-Port Options . 57

1.68 MUIRexx.guide/MUI Format Sequences . 58

MUIRexx v

1.69 MUIRexx.guide/MUI Image Specifications . 59

1.70 MUIRexx.guide/MUI List Format . 60

1.71 MUIRexx.guide/Attribute TAGs . 61

1.72 MUIRexx.guide/MagicUserInterface . 61

1.73 MUIRexx.guide/Acknowledgements . 62

1.74 MUIRexx.guide/History . 63

1.75 MUIRexx.guide/Concept Index . 64

1.76 MUIRexx.guide/Command Index . 67

MUIRexx 1 / 70

Chapter 1

MUIRexx

1.1 MUIRexx.guide

MUIRexx

This is Edition 5 of the MUIRexx documentation,
30 March 1997, for MUIRexx Version 3.0.

Author: Russ Leighton <rleighto@violin.calpoly.edu>

Update Information
Read this first.

Introduction
A brief encounter.

Registration
My plea for support.

Installation
Pretty simple actually.

Command Reference
The mysteries revealed.

Utilities
A little help goes along way.

Example Macro
Just to peak your interest.

Command-Port Options
Where the action’s at.

MUIRexx 2 / 70

MUI Format Sequences
Making fancy text strings.

MUI Image Specifications
How to get little MUI images.

MUI List Format
How to get your lists to look just right.

Attribute TAGs
Now to really complicate things...

MagicUserInterface
The heart of MUIRexx.

Acknowledgements
Could not have done it without you.

History
What has been done so far.

Concept Index
Look it up here.

Command Index
Where is that command anyway?

1.2 MUIRexx.guide/Update Information

Update Information

Version 3.0

Version 2.2

Version 2.1

Version 2.0

1.3 MUIRexx.guide/Version 3.0

MUIRexx 3 / 70

Version 3.0
===========

This version of ‘MUIRexx’ is a major update from the previous
version. I decided to designate this release a major update since some
significant changes have been made that will require changes to
existing scripts. I again apologize for any inconvenience this causes.
One of the biggest changes is the addition of the

callhook
command

that provides more flexibility in defining gadget actions. A
consequence of this new command is the removal of the PRESS, APP, DROP
options from gadget commands which will necessitate changes in existing
scripts. Also, most LABEL options are now final arguments and as a
consequence labels will no longer require double quoting.

The major changes and additions include:

* Added
callhook
command

* Removed PRESS,APP,DROP options from all other commands

* Removed COMMAND option from
group
command

* Removed TRIG VAL options from
object
command

*
switch
objects can now have primary and alternate labels

* Added REMOVE option to
list
object to allow removal of specific

lines

* Empty groups (and windows) no longer cause crashes

* Groups can now be added dynamically to other groups

* Added new
group
POP option for creation of popup groups

* Added
monitor
command to open/close console for display of

received command lines and error information

* Added
print

MUIRexx 4 / 70

command to output text to the console opened by the

monitor
command (useful for debugging purposes)

* Added capability to specify inline commands (i.e. ARexx string
macros) for objects (see

Command-Port Options
)

* Literal strings (strings created by prepending with an ’=’) are no
longer returned with the prepended equals (see

list
)

* Added SPEC option to
button
,
text
, and
switch
objects

*
check
and

image
object options changed (they are now specific

instances of the
text
object)

1.4 MUIRexx.guide/Version 2.2

Version 2.2
===========

This release removes some bugs (see
History
) and adds a TITLE option

for
list
objects. This much requested addition allows lists to have

titles (a string that remains at the top of the list). Context
sensitive menus can now be created by simply defining a

menu
inside a

group
definition. An option (SPEC) has been added to the

popasl
and

MUIRexx 5 / 70

poplist
objects to allow specification of the popbutton object. Also,

a parse routine has been written to replace the builtin parse routine
in MUI. This effectivily allows for arbitrary length command lines (up
to the limit imposed by ‘ARexx’).

Note that as of this release I am now making ‘MUIRexx’ "supportware",
that is if you would like to show your support for further development
(and also enhance the prospect of getting support) then please consider
registering (see

Registration
).

1.5 MUIRexx.guide/Version 2.1

Version 2.1
===========

This release is a minor update to version 2.0 (see
Version 2.0
).

Changes / additions include a more general ‘view’ command (HELP, NODE
options as well as settable attributes), and new commands -
‘aslrequest’ that allows use of a standard ASL file requester within
scripts and ‘poplist’ for creation of string gadgets with attached
popup lists. Virtual groups are now supported (through the addition of
the ‘group’ options SCROLL and VIRTUAL) The ‘image’ object has been
changed and icon images (specified with the ICON option) now use an
external MUI class (which is included and must be installed). Also,
the ‘list’ command has been extended for better list handling. General
improvements have been made including nonvolatile TAG string values
(strings passed as TAG values are stored in allocated memory), string
arrays for TAG values, and string formatting (‘\n’ for carriage
returns and ‘\xxx’ for octal specification of characters).

Additionally, the previous documentation neglected to mention a
feature of the ‘list’ object supporting multicolumn lists. Strings
inserted into lists may consist of several strings separated with
commas. If the ‘list’ is given a format (with the LIST_FORMAT
attribute TAG) then these strings will be displayed in the appropriate
column (as defined by the format).

1.6 MUIRexx.guide/Version 2.0

Version 2.0
===========

This version of ‘MUIRexx’ is a major update from the previous

MUIRexx 6 / 70

version. I decided to designate this release a major update since a lot
has changed (see

History
) and most likely any scripts written for

previous versions will break under this version. I apologize for any
inconvenience this causes, but it was necessary to make major changes
to implement some new capabilities. One of the biggest changes is that
most options now require a keyword, so if you find that gadgets are
missing (or even whole groups) then it is probably because a keyword is
missing (like the LABEL keyword for example). Please have a look at
the included example scripts to get an idea of how things should now
look. Also, AmigaDOS 3.0 or better is now required because of the need
for datatypes.library.

Some other major changes and additions include:

* Multiple labels specified in a comma delimited list (used to be
specified as multiple arguments separated by space)

* Attribute TAGS can be set and retrieved, greatly improving
flexibility and eliminating the need for some options (which have
been removed, e.g. WEIGHT)

* New ‘object’ command for creation of generalized objects based on
MUI internal and external classes as well as BOOPSI classes (also
eliminated the need for some built-in objects, like ‘scale’)

* New ‘method’ command to allow creation of class methods which
greatly enhances flexibility and eliminates need for some commands
(which have been removed, e.g. ‘muiset’, ‘config’)

* Drag and drop operations are fully support for some objects

* Internal variables may be set or retrieved for passing data
conveniently between ‘ARexx’ scripts

Note that if a script does fail then most likely the application
will still be running (even if no window is open). In this case just
issue the

quit
command to the application port.

1.7 MUIRexx.guide/Introduction

Introduction

‘MUIRexx’ is a program which serves as an interface between ‘ARexx’
(Copyright (C) 1987, William S. Hawes) and

MagicUserInterface
(Copyright (C) 1993-97, Stefan Stuntz). ‘MUIRexx’ does not provide

complete access to all of the capabilities of MagicUserInterface (MUI),
however, quite a lot of capability is implemented in ‘MUIRexx’ such as

MUIRexx 7 / 70

notification, icon buttons, application objects (objects that react to
icons dropped on them), and drag/drop objects, as well as many standard
MUI objects. Complete graphical user interfaces as well as full
applications can be developed using ‘MUIRexx’ and ‘ARexx’ macros.
Additionally, it is also possible to dynamically change or add objects
after the application has been created.

Since MUI is an object oriented extension it was felt that the
general flavor of object oriented programming (OOP) should be retained
in the ‘ARexx’ implementation. Therefore, the command structure has a
familiar OOP look to it which is somewhat of a departure from normal
‘ARexx’ programming construction.

Disclaimer
A not so standard disclaimer.

Conditions
Not too bad really.

Requirements
At the very least you need this.

1.8 MUIRexx.guide/Disclaimer

Disclaimer
==========

Basically, I am not in any way responsible if anything bad happens
to you because of using this software. Say, for example, a mad MUI
hater breaks into your house and smashes up your computer because you
are using ‘MUIRexx’ then I am not responsible ;-)

Anyway, I hate disclaimers because the implication is that our
society has become so pitiful that we feel we have to protect ourselves
with legal disclaimers even though we, as freeware contributors, are
providing a service for no charge. Therefore, I implore, if you are a
person who is inclined to use/abuse the legal system in anyway that
would cause harm to someone who is only trying to contribute to the
community then please do not use this software.

1.9 MUIRexx.guide/Conditions

Conditions
==========

Actually, there aren’t any concerning usage. I do not require
anything from you to use this software, however, please consider

MUIRexx 8 / 70

registering ‘MUIRexx’ (see
Registration
). I have put quite a lot of

effort into this so I would appreciate some feedback. If you discover
any bugs tell me about them. If you have any ideas let me know. If
you write any interesting applications send them my way. I can be
reached by way of the following email address,

Russ Leighton <rleighto@violin.calpoly.edu>

or alternativily, my old email address is still valid (for now),

Russ Leighton <russ@sneezy.lancaster.ca.us>

Also, it should be understood that I retain the copyright to the
software ‘MUIRexx’ and as such do not give permission to anyone to sell
or claim this software as their own. I do not, however, make any such
claim to the scripts provided or to any scripts written that make use of
‘MUIRexx’. The full distribution may be freely distributed, provided
that the original distribution remains intact. Also, no fee may be
charged for the software except for any nominal media and/or shipping
charge. Additionally, this software (including all distribution
contents) may not be included on any commercial disks (including disk
magazines and cover disks) without the author’s expressed permission.
Exceptions to this rule includes any disks/CDROMs distributed by Cronus
(Fred Fish) or Aminet. A limited distribution of ‘MUIRexx’ (binary and
readme file only) may be distributed with software, with prior consent,
provided that I am given due credit and that the software package be
provided to me at no cost.

1.10 MUIRexx.guide/Requirements

Requirements
============

The minimum system requirements needed to use ‘MUIRexx’ are as
follows.

* An Amiga! (any should do)

* Version 3.0 of the Amiga operating system or higher

* MUI 3.0 or better (see
MagicUserInterface
)

* Icon.mcc custom class (included in the distribution)

* ARexx (running of course)

Additionally, to run the included macros the following may be needed.

MUIRexx 9 / 70

* rexxsupport.library (needed by all the scripts)

* some default icons and tools (take a look at the ‘deficon.rexx’
script)

The following are nice-to-have but not absolutely necessary.

* A graphics card for high resolution and lots of colors

* NewIcons ((C) Nicola Salmoria/Philip A. Vedovatti/Eric Sauvageau)
for 256 color icons (great for thumbnail previews of images)

* PictIcon ((C) Chad Randall) to generate those 256 color icons

1.11 MUIRexx.guide/Registration

Registration

As of version 2.2, ‘MUIRexx’ is now being distributed as
"supportware". I am requesting that you consider registering ‘MUIRexx’
as a show of support for further development. Also, I will give
registered users priority consideration for support and suggested
changes/additions to ‘MUIRexx’. I will continue to distribute updates
periodically and will provide them without any crippled features, but I
will offer more frequent updates to registered users.

To register please send the following information and cash, check,
or money order of 15 US\$ to

Russell Leighton
1640 4th St.
Los Osos, CA USA
93402

Registration information:

Name: ______________________________________
Address: ______________________________________
(optional) ______________________________________

Email: ______________________________________

Computer: ______________________________________
Memory: ______________________________________
OS version: ______________________________________
MUI version:______________________________________
Comments:

MUIRexx 10 / 70

1.12 MUIRexx.guide/Installation

Installation

Just use the supplied install script. It will ask for a directory
to install the demos and documentation. It will also prompt for the
directory to place the ‘MUIRexx’ executable. Make sure the selected
directory is in your global search path.

Also, the external MUI class, Icon.mcc, must be copied to
MUI:Libs/MUI. I recommend using the supplied install script which will
install the class and all supporting files.

‘MUIRexx’ may be started either from a CLI or from the WorkBench.
The command line syntax for ‘MUIRexx’ is:

-> [run] MUIRexx (script) PORT (portname) HELP (guidename)
OUTPUT (outname) ERROUT (outname)

If (SCRIPT) is specified then the corresponding ‘ARexx’ script will be
executed, otherwise, the code will wait until it receives a command,
presumably from a subsequently executed ‘ARexx’ command or script. The
PORT option will set the ‘MUIRexx’ host address to (PORTNAME). If not
given then the host address will be MUIREXX. The HELP option specifies
an AmigaGuide® file to be used for online help (see the NODE argument
descriptions for selected gadgets). The OUTPUT and ERROUT options will
turn on port monitoring which will result in a trace list of either all
issued commands or just errors (and the commands associated with the
errors) respectivily. The (OUTNAME) may be a file name or console
device. If none is specified then the default is CON:.

To use ‘MUIRexx’ from the WorkBench a project icon must be supplied
with the application startup script. The icon name should be the
startup script name with the file extension .INFO replacing .REXX.
Alternativily, a tooltype SCRIPT may be set to the name of the script
to be executed on startup. The full path should be specified if the
icon is not located in the same directory as the script. The default
tool for the icon should be set to ‘MUIRexx’ (with the full path
included if ‘MUIRexx’ is not in the global path). A tooltype PORT may
be specified to set the host address name for the application. If this
tooltype is not specified then the name will be set to the icon name
(minus the .INFO extension). Also, a tooltype HELP may be included to
specify the AmigaGuide® file as above. It is also recommended that the
value for the stack size be set at a reasonable level (whatever that
is). If problems occur running a script try setting the stack higher.
Likewise, tooltypes can be defined for OUTPUT and ERROUT.

1.13 MUIRexx.guide/Command Reference

Command Reference

MUIRexx 11 / 70

This chapter is included as a reference to the commands available
for use in ‘ARexx’ macros.

Each command template is given in the standard DOS ReadArg form.
That is each argument name is given separated by commas with flags
specified (separated by a /). Within an ‘ARexx’ script command
arguments should be separated by space (not commas). The flag
definitions are as follows:

Flag Definition

/K Keyword required.
/A Argument required.
/F Final argument. The remainder of the line will be set to

this argument.
/M Multiple arguments (separated by space).
/S Switch argument.

Note that some string arguments shown in the examples are surrounded
by two sets of quotes (consisting of a pair of single quotes and a pair
of double quotes). The general rule of thumb is if the argument is the
final argument (indicated by a /F in the command template) then only a
single pair of quotes is necessary. Otherwise, if the string contains
spaces then the two sets of quotes are necessary. The reason for this
is that ‘ARexx’ tries to interpret every token it encounters. If the
token is surrounded by quotes then the token is interpreted by removing
the quotes and leaving the enclosed string intact. Likewise, the DOS
ReadArgs function (used by ‘MUI’ to parse incoming ‘ARexx’ command
lines) parses arguments separated by spaces, therefore, strings with
spaces must by enclosed by quotes (hence, the need for the two sets of
quotes). An exception is if the argument is designated as the final
argument in which case the ReadArgs function will set the remainder of
the command line as the final argument.

Standard Commands
Provided with all MUI apps

Windows
The parent of all

Groups
The layout

Menus
What is on the menu today?

Objects
The children

Misc
Those commands that don’t fit above

MUIRexx 12 / 70

1.14 MUIRexx.guide/Standard Commands

Standard Commands
=================

These commands are standard with all MUI applications.

quit

hide

show

info

1.15 MUIRexx.guide/quit

-- Command: quit FORCE/S
This command will end the ‘MUIRexx’ application, closing windows
and freeing all associated memory. Note that if a script fails
‘MUIRexx’ may still actually be running. Use this command to end
the process by using an inline ‘ARexx’ command (e.g. issue ‘rx
"address [portname] quit"’ from a shell).

1.16 MUIRexx.guide/hide

-- Command: hide
Hides (iconifies) the application.

1.17 MUIRexx.guide/show

-- Command: show
Shows (pops up) an iconified application.

1.18 MUIRexx.guide/info

MUIRexx 13 / 70

-- Command: info ITEM/A
According to the given parameter the result string is filled with
the following contents (or something reasonably close):

* "title" - Name of the ARexx port

* "author" - "Russell Leighton"

* "copyright" - "Copyright ©1995-1997, Russell Leighton"

* "description" - "MUI Rexx interface."

* "version" - "$VER: MUIRexx 3.0"

* "base" - Name of the ARexx port

* "screen" - Name of the public screen

1.19 MUIRexx.guide/Windows

Windows
=======

These commands are used for window creation and disposal. At least
one window is required.

window
Begin window definition

endwindow
End window definition

1.20 MUIRexx.guide/window

-- Command: window ID/K, COMMAND/K, PORT/K, TITLE/K, CLOSE/S, ←↩
ATTRS/K/M

This command begins the definition of a window. All group and
initial object definitions must be placed between a ‘window’ and
‘endwindow’ pair. The arguments are optional.

* ID [I..] - an id can be assigned to a window for later
reference. The id can be any combination of up to 5
characters.

* COMMAND [I..] - if given, a close gadget will be attached to

MUIRexx 14 / 70

the window. If the null string is specified then the window
will simply be disposed when the close gadget is selected,
otherwise, the command string given will be executed. For a
complete description of this option see

Command-Port Options
.

Note that the window title will be used to replace a ‘%s’
contained in the command string. Also, note that it is up to
the programmer to insure that the window is in fact closed,
presumably by the macro that is specified in this argument.

* PORT [I..] - a specific host port may be specified by this
argument. For a complete description of this option see

Command-Port Options
.

* TITLE [I..] - the window may be given a title which will be
displayed in the windows title bar.

* CLOSE [.S.] - if this switch is given and an id specified (see
ID argument) for an existing window then the window will be
closed.

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved (see

Attribute TAGs
).

Some useful TAGs for use with the window command are:

TAG_Name = TAG_id Flags Type

Window_Activate = 0x80428d2f /* V4 isg BOOL */
Window_AltHeight = 0x8042cce3 /* V4 i.g LONG */
Window_AltLeftEdge = 0x80422d65 /* V4 i.g LONG */
Window_AltTopEdge = 0x8042e99b /* V4 i.g LONG */
Window_AltWidth = 0x804260f4 /* V4 i.g LONG */
Window_AppWindow = 0x804280cf /* V5 i.. BOOL */
Window_Backdrop = 0x8042c0bb /* V4 i.. BOOL */
Window_Borderless = 0x80429b79 /* V4 i.. BOOL */
Window_DepthGadget = 0x80421923 /* V4 i.. BOOL */
Window_DragBar = 0x8042045d /* V4 i.. BOOL */
Window_Height = 0x80425846 /* V4 i.g LONG */
Window_IsSubWindow = 0x8042b5aa /* V4 isg BOOL */
Window_LeftEdge = 0x80426c65 /* V4 i.g LONG */
Window_NoMenus = 0x80429df5 /* V4 is. BOOL */
Window_Open = 0x80428aa0 /* V4 .sg BOOL */
Window_PublicScreen = 0x804278e4 /* V6 isg STRPTR */
Window_ScreenTitle = 0x804234b0 /* V5 isg STRPTR */
Window_SizeGadget = 0x8042e33d /* V4 i.. BOOL */
Window_SizeRight = 0x80424780 /* V4 i.. BOOL */
Window_Sleep = 0x8042e7db /* V4 .sg BOOL */
Window_TopEdge = 0x80427c66 /* V4 i.g LONG */
Window_UseBottomBorderScroller = 0x80424e79 /* V13 is. BOOL */
Window_UseLeftBorderScroller = 0x8042433e /* V13 is. BOOL */
Window_UseRightBorderScroller = 0x8042c05e /* V13 is. BOOL */

MUIRexx 15 / 70

Window_Width = 0x8042dcae /* V4 i.g LONG */
InnerBottom = 0x8042f2c0 /* V4 i.g LONG */
InnerLeft = 0x804228f8 /* V4 i.g LONG */
InnerRight = 0x804297ff /* V4 i.g LONG */
InnerTop = 0x80421eb6 /* V4 i.g LONG */

Note: Consult MUI:Developer/Autodocs/MUI_Window.doc and
MUI:Developer/C/Include/libraries/mui.h

Example use of this command:

window ID DOCK ATTRS InnerBottom 0 InnerLeft 0 InnerRight 0 InnerTop 0
.
.
.

endwindow

window ID DOCK ATTRS Window_Open
say result

1.21 MUIRexx.guide/endwindow

-- Command: endwindow
This command ends the definition of a window. All group and initial
object definitions must be placed between a ‘window’ and
‘endwindow’ pair. The defined window will be opened after issuing
this command.

1.22 MUIRexx.guide/Groups

Groups
======

The following commands are used for group creation. Some arguments
can be used after the groups window is opened to change or retrieve
settings. In the argument descriptions the keywords are followed by a
pair of [] containing indicator letters. If the letter I is indicated
then the argument is valid during creation. If the letter S is
indicated then the argument can be set after the groups window is open.
If the letter G is indicated then the argument can be retrieved.

group

endgroup

MUIRexx 16 / 70

1.23 MUIRexx.guide/group

-- Command: group ID/K, HELP/K, NODE/K, FRAME/S, HORIZ/S, ←↩
REGISTER/S,

VIRTUAL/S, SCROLL/S, POP/S, ICON/K, SPEC/K, ATTRS/K/M,
LABEL=LABELS/K/F

This command begins the definition of a group. Groups are defined
by placement of other groups and objects between a ‘group’ and
‘endgroup’ pair. The arguments are optional.

* ID [I..] - an id can be assigned to a group for later
reference. The id can be any combination of up to 5
characters. If the id is given without any other arguments,
and the group has been previously created then the group will
be placed into a temporary state where objects can be added
or existing objects changed. The ‘endgroup’ command will
terminate this temporary state and cause the affected window
to be updated. In this manner a window’s contents may be
dynamically altered. In particular, object settings that can
only be specified when they are initially created (those
arguments indicated with a I) can be changed utilizing this
feature.

* HELP [I..] - with this argument help text may be defined
which will be displayed as balloon help whenever the pointer
is over the associated group. Of course, this is dependant
on whether the user set up balloon help in the MUI preference
settings.

* NODE [I..] - this argument is used to specify a node in the
guide file given in the command line argument HELP for
‘MUIRexx’. If the user positions the mouse pointer over the
group and presses the help button on the keyboard then the
guide file will be displayed at the node location.

* FRAME [I..] - if this switch is given then a frame will be
rendered for the group.

* HORIZ [I..] - if this switch is given then the group will be
arranged horizontally. If not specified then the group will
be arranged vertically.

* REGISTER [I..] - if this switch is given then the group will
be defined as a register group (i.e. a group consisting of
pages of objects or groups). The LABELS argument must be
given if this switch is specified.

* VIRTUAL [I..] - if this switch is given then the group will be
defined as a virtual group (i.e. a group whose contents can
be larger than the display region). This option will result
in a virtual group with no scroll bars. The virtual group
can be scrolled, however, by using the mouse (i.e. press and
hold down the left mouse button while in the group and move
past the edges or if you have a middle mouse button press and
hold it while in the group and just move the mouse).

MUIRexx 17 / 70

* SCROLL [I..] - if this switch is given then the group will be
defined as a virtual group (i.e. a group whose contents can
be larger than the display region). This option will result
in a virtual group with scroll bars. The virtual group can
be scrolled with the scroll bar gadgets or alternativily with
the mouse as described above.

* POP [I..] - if this switch is given then the group will be
created as a popup group (i.e. the group will be displayed
if the associated popup object is pressed). A pop button
image may be specified using either the ICON or SPEC or LABEL
options, otherwise, a default image (‘MUII_PopUp’) will be
used. Note that the contents of popup groups cannot be
changed (by using the temporary change state as described
above).

* ICON [I..] - the name of an icon may be specified with this
argument. If given then the popup image for a pop group (if
POP was given) will be set to the icon image. Note that the
name of the icon should not be specified with a ".info".

* SPEC [I..] - this argument is used to specify a MUI image
specification (see

MUI Image Specifications
) for a pop group

(if POP was given).

* LABEL=LABELS [ISG] - either a group title, register labels,
or popup label are specified with this option. Multiple
labels are separated by commas. If the REGISTER switch was
given then the labels correspond to the page titles. For
each label specified there must be a corresponding group or
object defined. If the REGISTER switch was not given then
the first label will be rendered as a group title. For
register groups, if the group was previously created (and its
window is open) then the current page may be set by issuing
the group command, with an existing ID, and a label
corresponding to the page to be activated. Also, if an ID
and the REGISTER switch are given without a label then the
currently displayed page label will be returned in the ‘ARexx’
variable RESULT (if ‘options results’ was specified in the
‘ARexx’ script).

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved (see

Attribute TAGs
).

Some useful TAGs for use with the group command are:

TAG_Name = TAG_id Flags Type

Group_ActivePage = 0x80424199 /* V5 isg LONG */
Group_Columns = 0x8042f416 /* V4 is. LONG */
Group_Horiz = 0x8042536b /* V4 i.. BOOL */
Group_HorizSpacing = 0x8042c651 /* V4 isg LONG */
Group_PageMode = 0x80421a5f /* V5 i.. BOOL */

MUIRexx 18 / 70

Group_Rows = 0x8042b68f /* V4 is. LONG */
Group_SameHeight = 0x8042037e /* V4 i.. BOOL */
Group_SameSize = 0x80420860 /* V4 i.. BOOL */
Group_SameWidth = 0x8042b3ec /* V4 i.. BOOL */
Group_Spacing = 0x8042866d /* V4 is. LONG */
Group_VertSpacing = 0x8042e1bf /* V4 isg LONG */

Note: Consult MUI:Developer/Autodocs/MUI_Group.doc and
MUI:Developer/C/Include/libraries/mui.h

Example use of this command:

window ID MDIR
group ID REG REGISTER LABELS ’Directory,Buffers,Volumes,Mirror’
.
.
.

endwindow

group ID REG REGISTER
say result

1.24 MUIRexx.guide/endgroup

-- Command: endgroup
This command ends the definition of a group. Groups are defined by
placement of other groups and objects between a ‘group’ and
‘endgroup’ pair.

1.25 MUIRexx.guide/Menus

Menus
=====

The following commands are used for menu creation.

menu

endmenu

item

MUIRexx 19 / 70

1.26 MUIRexx.guide/menu

-- Command: menu ID/K, ATTRS/K/M, LABEL/K/F
This command begins the definition of a menu. Menus are defined by
placement of other menus and menu items between a ‘menu’ and
‘endmenu’ pair. If a menu is defined within a window definition
(i.e. between a WINDOW and ENDWINDOW pair), but outside any group
definitions then the menu will be added to the window menu strip.
If a menu is defined within a group then a context sensitive menu
will be created for the group (i.e. when the mouse pointer is over
the group and the right mouse button is pressed then a popup menu
will be displayed). Note that only one menu may be defined for a
context sensitive menu (all others will be ignored).

* ID [I..] - an id can be assigned to a menu for later
reference. The id can be any combination of up to 5
characters.

* LABEL [I..] - the menu must be given a label which will be
displayed in the menu bar of the window.

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved (see

Attribute TAGs
).

Some useful TAGs for use with the menu command are:

TAG_Name = TAG_id Flags Type

Menu_Enabled = 0x8042ed48 /* V8 isg BOOL */

Note: Consult MUI:Developer/Autodocs/MUI_Menu.doc, MUI_Area.doc and
MUI:Developer/C/Include/libraries/mui.h

1.27 MUIRexx.guide/endmenu

-- Command: endmenu
This command ends the definition of a menu. Menus are defined by
placement of other menus and menu items between a ‘menu’ and
‘endmenu’ pair.

1.28 MUIRexx.guide/item

-- Command: item ID/K, COMMAND/K, PORT/K, ATTRS/K/M, LABEL/K/F
This command defines a menu item. This command is only valid
between a ‘menu’ and ‘endmenu’ pair.

MUIRexx 20 / 70

* ID [I..] - an id can be assigned to a menu item for later
reference. The id can be any combination of up to 5
characters.

* COMMAND [I..] - if given, the command will be executed
whenever the menu item is selected. For a complete
description of this option see

Command-Port Options
. Note

that the menu item label (see the LABEL argument description)
will be used to replace a ‘%s’ contained in the command
string.

* PORT [I..] - a specific host port may be specified by this
argument. For a complete description of this option see

Command-Port Options
.

* LABEL [I..] - this is the text for the menu item (which must
be given).

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved (see

Attribute TAGs
).

Some useful TAGs for use with the item command are:

TAG_Name = TAG_id Flags Type

Menuitem_Checked = 0x8042562a /* V8 isg BOOL */
Menuitem_Checkit = 0x80425ace /* V8 isg BOOL */
Menuitem_Enabled = 0x8042ae0f /* V8 isg BOOL */
Menuitem_Exclude = 0x80420bc6 /* V8 isg LONG */
Menuitem_Shortcut = 0x80422030 /* V8 isg STRPTR */
Menuitem_Title = 0x804218be /* V8 isg STRPTR */
Menuitem_Toggle = 0x80424d5c /* V8 isg BOOL */

Note: Consult MUI:Developer/Autodocs/MUI_Menuitem.doc and
MUI:Developer/C/Include/libraries/mui.h

Example use of this command:

window TITLE ’"MUIRexx Demo"’ COMMAND ’"quit"’ PORT DEMO
menu LABEL ’"Project"’

.

.

.
item ATTRS Menuitem_Title ’-1’ /* item separator bar */
item COMMAND ’"quit"’ PORT DEMO LABEL ’Quit’

endmenu
.
.
.

endwindow

MUIRexx 21 / 70

1.29 MUIRexx.guide/Objects

Objects
=======

The following commands are used to create and manipulate objects.
Some arguments can be used after the object’s window is opened to
change or retrieve settings. Also, issuing an object command with only
an ID argument will return a result in the ‘ARexx’ variable RESULT (if
‘options results’ was specified in the ‘ARexx’ script). In the
argument descriptions the keywords are followed by a pair of []
containing indicator letters. If the letter I is indicated then the
argument is valid during creation. If the letter S is indicated then
the argument can be set after the objects window is open. If the letter
G is indicated then the argument can be retrieved.

space

label

view

gauge

meter

text

button

switch

image

check

cycle

radio

string

popasl

poplist

slider

popslider

MUIRexx 22 / 70

knob

list

dirlist

volumelist

object

1.30 MUIRexx.guide/space

-- Command: space BAR/S, HORIZ/S, VALUE
This object will place some white space into the current location.
A consequence of placing space is that the window will be sizable
in the associated direction. The arguments are optional.

* BAR [I..] - if this switch is given then a bar will be
rendered in the center of the space.

* HORIZ [I..] - if this switch is given then the space will be a
horizontal space (best used within a horizontal group)
otherwise the space will be vertical.

* VALUE [I..] - this argument, if given, specifies the minimum
amount of space. The default value is zero.

Example use of this command:

window
.
.
.
group HORIZ

button LABEL ’OK’
space BAR 0
button LABEL ’Cancel’

endgroup
endwindow

1.31 MUIRexx.guide/label

-- Command: label LEFT/S, CENTER/S, SINGLE/S, DOUBLE/S, LABEL/A/F
This object is a simple label that can be used in conjunction with
another object for clarification of the other objects purpose.

* LEFT [I..] - this switch will force the label to be left
justified.

MUIRexx 23 / 70

* CENTER [I..] - this switch will force the label to be
centered.

* SINGLE [I..] - this switch will cause extra vertical space to
be added to the label to center it about the same space
occupied by an object with a single width frame.

* DOUBLE [I..] - this switch will cause extra vertical space to
be added to the label to center it about the same space
occupied by an object with a double width frame.

* LABEL [I..] - this is the text for the label (which must be
the last argument and may contain spaces).

Example use of this command:

window
.
.
.
group HORIZ

label ’"string:"’
string ID STR1

endgroup
endwindow

1.32 MUIRexx.guide/view

-- Command: view ID/K, HELP/K, NODE/K, FILE/K, ATTRS/K/M, STRING/ ←↩
K/F

This specifies a view object.

* ID [I..] - an id can be assigned to a view for later
reference. The id can be any combination of up to 5
characters.

* HELP [I..] - with this argument help text may be defined
which will be displayed as balloon help whenever the pointer
is over the associated view object. Of course, this is
dependant on whether the user set up balloon help in the MUI
preference settings.

* NODE [I..] - this argument is used to specify a node in the
guide file given in the command line argument HELP for
‘MUIRexx’. If the user positions the mouse pointer over the
view object and presses the help button on the keyboard then
the guide file will be displayed at the node location.

* FILE [I..] - If this argument is given then the view contents
will be retrieved from the specified file.

* STRING [I..] - this is the view content string. Note that

MUIRexx 24 / 70

the string may contain any of the special formatting
sequences (see

MUI Format Sequences
). Also, if this argument

is given then it must be the last specified.

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved (see

Attribute TAGs
).

Some useful TAGs for use with the gauge command are:

TAG_Name = TAG_id Flags Type

Floattext_Justify = 0x8042dc03 /* V4 isg BOOL */
Floattext_SkipChars = 0x80425c7d /* V4 is. STRPTR */
Floattext_TabSize = 0x80427d17 /* V4 is. LONG */
Floattext_Text = 0x8042d16a /* V4 isg STRPTR */

Note: Consult MUI:Developer/Autodocs/MUI_Floattext.doc and
MUI:Developer/C/Include/libraries/mui.h

Example use of this command:

window ID LHA TITLE ’"Archive List"’
view ID LVIEW FILE ’"ram:t/lha.out"’
.
.
.

endwindow

view ID LVIEW ATTRS Floattext_Text
say import(d2c(result))

1.33 MUIRexx.guide/gauge

-- Command: gauge ID/K, HELP/K, NODE/K, ATTRS/K/M, LABEL/K/F
Gauge objects are created with this command.

* ID [I..] - an id can be assigned to a gauge for later
reference. The id can be any combination of up to 5
characters.

* HELP [I..] - with this argument help text may be defined
which will be displayed as balloon help whenever the pointer
is over the associated gauge. Of course, this is dependant on
whether the user set up balloon help in the MUI preference
settings.

* NODE [I..] - this argument is used to specify a node in the
guide file given in the command line argument HELP for

MUIRexx 25 / 70

‘MUIRexx’. If the user positions the mouse pointer over the
gauge and presses the help button on the keyboard then the
guide file will be displayed at the node location.

* LABEL [I..] - if given this label will be displayed in the
gauge. A format specifier ‘%ld’ may be included in the string
which will be replaced by the current gauge level.

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved (see

Attribute TAGs
).

Some useful TAGs for use with the gauge command are:

TAG_Name = TAG_id Flags Type

Gauge_Current = 0x8042f0dd /* V4 isg LONG */
Gauge_Divide = 0x8042d8df /* V4 isg BOOL */
Gauge_Horiz = 0x804232dd /* V4 i.. BOOL */
Gauge_InfoText = 0x8042bf15 /* V7 isg STRPTR */
Gauge_Max = 0x8042bcdb /* V4 isg LONG */

Note: Consult MUI:Developer/Autodocs/MUI_Gauge.doc and
MUI:Developer/C/Include/libraries/mui.h

Example use of this command:

window TITLE ’"Test"’ COMMAND ’"quit"’ PORT DEMO
.
.
.
group

slider ID SLDR
gauge ID GAUG LABEL ’"level %ld"’ ATTRS Gauge_Horiz TRUE
object CLASS ’"Scale.mui"’
.
.
.
group HORIZ

group
label DOUBLE ’"Hue:"’
label DOUBLE ’"Saturation:"’

endgroup
group

gauge ID HUE ATTRS Gauge_Max 16384,
Gauge_Divide 262144,
Gauge_Horiz TRUE

gauge ID SAT ATTRS Gauge_Max 16384,
Gauge_Divide 262144,
Gauge_Horiz TRUE

endgroup
endgroup

endgroup
endwindow

method ID SLDR Notify Numeric_Value EveryTime,

MUIRexx 26 / 70

@GAUG 3 Set Gauge_Current TriggerValue

1.34 MUIRexx.guide/meter

-- Command: meter ID/K, HELP/K, NODE/K, ATTRS/K/M, LABEL/K/F
Meter objects are created with this command.

* ID [I..] - an id can be assigned to a meter for later
reference. The id can be any combination of up to 5
characters.

* HELP [I..] - with this argument help text may be defined
which will be displayed as balloon help whenever the pointer
is over the associated meter. Of course, this is dependant on
whether the user set up balloon help in the MUI preference
settings.

* NODE [I..] - this argument is used to specify a node in the
guide file given in the command line argument HELP for
‘MUIRexx’. If the user positions the mouse pointer over the
meter and presses the help button on the keyboard then the
guide file will be displayed at the node location.

* LABEL [I..] - if given this label will be displayed in the
meter.

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved (see

Attribute TAGs
).

Some useful TAGs for use with the meter command are:

TAG_Name = TAG_id Flags Type

Numeric_Default = 0x804263e8 /* V11 isg LONG */
Numeric_Format = 0x804263e9 /* V11 isg STRPTR */
Numeric_Max = 0x8042d78a /* V11 isg LONG */
Numeric_Min = 0x8042e404 /* V11 isg LONG */
Numeric_Reverse = 0x8042f2a0 /* V11 isg BOOL */
Numeric_RevLeftRight = 0x804294a7 /* V11 isg BOOL */
Numeric_RevUpDown = 0x804252dd /* V11 isg BOOL */
Numeric_Value = 0x8042ae3a /* V11 isg LONG */

Note: Consult MUI:Developer/Autodocs/MUI_Numeric.doc and
MUI:Developer/C/Include/libraries/mui.h

Example use of this command:

window TITLE ’"Test"’ COMMAND ’"quit"’ PORT DEMO
.
.

MUIRexx 27 / 70

.
group

group HORIZ
knob ID KNOB HELP ’"an example knob gadget"’ NODE ’"knob"’
meter ID METR NODE ’"meter"’ LABEL ’meter’

endgroup
endgroup

endwindow

method ID KNOB Notify Numeric_Value EveryTime,
@METR 3 Set Numeric_Value TriggerValue

1.35 MUIRexx.guide/text

-- Command: text ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K, ICON/K,
SPEC/K, PICT/K, TRANS/S, ATTRS/K/M, LABEL/K/F

Text gadget objects are created with this command. Text, button,
switch, check, and image gadgets are essentially identical with
the only differences being the base object class and the default
appearance/action. All options are identical for these objects.

* ID [I..] - an id can be assigned to a gadget for later
reference. The id can be any combination of up to 5
characters. If the id is given without any other arguments,
and the object has been previously created, then the label
will be returned in RESULT (if OPTIONS RESULTS is specified
in the script).

* COMMAND [I..] - if given, the command will be executed
whenever the gadget is pressed. For a complete description
of this option see

Command-Port Options
. Note that the

gadget label (see the LABEL argument description) will be
used to replace a ‘%s’ contained in the command string.
Additionally, if the gadget is an icon (specified by the ICON
argument) and a command is not specified but a port is (see
PORT argument description) then the command will be set to
the default tool of the icon. For example, if the icons
default tool is ‘MultiView’ then the command string will be
set to ‘MultiView %s’.

* PORT [I..] - a specific host port may be specified by this
argument. For a complete description of this option see

Command-Port Options
.

* HELP [I..] - with this argument help text may be defined
which will be displayed as balloon help whenever the pointer
is over the associated gadget. Of course, this is dependant
on whether the user set up balloon help in the MUI preference

MUIRexx 28 / 70

settings.

* NODE [I..] - this argument is used to specify a node in the
guide file given in the command line argument HELP for
‘MUIRexx’. If the user positions the mouse pointer over the
gadget and presses the help button on the keyboard then the
guide file will be displayed at the node location.

* ICON [I..] - the name of an icon may be specified with this
argument. If given then the gadget image will be set to the
icon image. Note that the name of the icon should not be
specified with a ".info".

* SPEC [I..] - this argument is used to specify a MUI image
specification (see

MUI Image Specifications
). For ‘check’

objects if not given then the image ‘MUII_CheckMark’ will be
used.

* PICT [I..] - the name of a picture may be specified with this
argument. If given then the gadget image will be set to the
picture content. Any picture with an associated installed
datatype may be used.

* TRANS [I..] - if this flag is given then the background color
of the picture (defined with the PICT option) will be
transparent.

* LABEL=LABELS [ISG] - the label for the gadget is given by this
argument. Note that the string may contain any of the
special formatting sequences (see

MUI Format Sequences
).

Additionally, even though the label is not displayed for
image gadgets it may still be used in the command string (see
COMMAND argument above). Also, for ‘switch’ and ‘check’
objects two strings may be given (separated by a comma) that
will be returned depending on the select state of the gadget.
The first defines the unselected string and the second

defines the selected. If not specified then the unselected
string will be set to 0 and the selected string will be set
to 1.

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved (see

Attribute TAGs
).

Some useful TAGs for use with this command are:

TAG_Name = TAG_id Flags Type

Text_Contents = 0x8042f8dc /* V4 isg STRPTR */
Text_HiChar = 0x804218ff /* V4 i.. char */
Text_PreParse = 0x8042566d /* V4 isg STRPTR */
Text_SetMax = 0x80424d0a /* V4 i.. BOOL */

MUIRexx 29 / 70

Text_SetMin = 0x80424e10 /* V4 i.. BOOL */
Text_SetVMax = 0x80420d8b /* V11 i.. BOOL */
ControlChar = 0x8042120b /* V4 isg char */
CycleChain = 0x80421ce7 /* V11 isg LONG */
Disabled = 0x80423661 /* V4 isg BOOL */
Draggable = 0x80420b6e /* V11 isg BOOL */
FixHeight = 0x8042a92b /* V4 i.. LONG */
FixHeightTxt = 0x804276f2 /* V4 i.. STRPTR */
FixWidth = 0x8042a3f1 /* V4 i.. LONG */
FixWidthTxt = 0x8042d044 /* V4 i.. STRPTR */
HorizDisappear = 0x80429615 /* V11 isg LONG */
HorizWeight = 0x80426db9 /* V4 isg WORD */
MaxHeight = 0x804293e4 /* V11 i.. LONG */
MaxWidth = 0x8042f112 /* V11 i.. LONG */
Selected = 0x8042654b /* V4 isg BOOL */
ShowMe = 0x80429ba8 /* V4 isg BOOL */
ShowSelState = 0x8042caac /* V4 i.. BOOL */
VertDisappear = 0x8042d12f /* V11 isg LONG */
VertWeight = 0x804298d0 /* V4 isg WORD */
Weight = 0x80421d1f /* V4 i.. WORD */

Note: Consult MUI:Developer/Autodocs/MUI_Text.doc, MUI_Image.doc,
MUI_Area.doc and MUI:Developer/C/Include/libraries/mui.h

Example use of this command:

window ID MRX1 TITLE ’"demo"’ COMMAND ’"window ID MRX1 CLOSE"’ PORT DEMO
text LABEL ’A demonstration of MUIRexx’
button ID BUT COMMAND ’"out %s"’ HELP ’"button 1"’ LABEL ’button 1’
switch ID SWCH LABEL ’switch’
check ID CHK1 STRINGS ’"no,yes"’ ATTRS Selected TRUE
image SPEC ’"4:MUI:Images/WD/13pt/PopUp.mf0"’
.
.
.

endwindow

switch ID SWCH ATTRS Selected
say result

1.36 MUIRexx.guide/button

-- Command: button ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K, ICON/ ←↩
K,

SPEC/K, PICT/K, TRANS/S, ATTRS/K/M, LABEL/K/F
Button gadget objects are created with this command. Text,
button, switch, check, and image gadgets are essentially identical
with the only differences being the base object class and the
default appearance/action. All options are identical for these
objects. Refer to the

text
command for descriptions of the

MUIRexx 30 / 70

options.

1.37 MUIRexx.guide/switch

-- Command: switch ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K, ICON/ ←↩
K,

SPEC/K, PICT/K, TRANS/S, ATTRS/K/M, LABEL=LABELS/K/F
Switch gadget objects are created with this command. Text,
button, switch, check, and image gadgets are essentially identical
with the only differences being the base object class and the
default appearance/action. The switch gadget differs from text
gadgets in that its select state toggles with each press.
Additionally, two labels may be given (using the LABEL option)
seperated by a comma. The first label will be displayed when the
switch is unselected and the second when the switch is selected.
All options are identical for these objects. Refer to the

text
command for descriptions of the options.

1.38 MUIRexx.guide/image

-- Command: image ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K, ICON/K ←↩
,

SPEC/K, PICT/K, TRANS/S, ATTRS/K/M, LABEL/K/F
Image gadget objects are created with this command. Text, button,
switch, check, and image gadgets are essentially identical with
the only differences being the base object class and the default
appearance/action (image objects, by default, use MUI images
specified through the SPEC option and do not toggle their state).
All options are identical for these objects. Refer to the

text
command for descriptions of the options.

1.39 MUIRexx.guide/check

-- Command: check ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K, ICON/K ←↩
,

SPEC/K, PICT/K, TRANS/S, ATTRS/K/M, LABEL=LABELS/K/F
Check gadget objects are created with this command. Text, button,
switch, check, and image gadgets are essentially identical with
the only differences being the base object class and the default

MUIRexx 31 / 70

appearance/action (check objects, by default, use MUI images
specified through the SPEC option and toggle their state). All
options are identical for these objects. Refer to the

text
command for descriptions of the options.

1.40 MUIRexx.guide/cycle

-- Command: cycle ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K, ATTRS/ ←↩
K/M,

LABEL=LABELS/K/F
Cycle gadget objects are created with this command. Cycle and
radio gadgets are essentially identical with the only difference
being the base object class to create each type of object. All
options are identical for these objects.

* ID [I..] - an id can be assigned to a gadget for later
reference. The id can be any combination of up to 5
characters. If the id is given without any other arguments,
and the gadget has been previously created, then the
currently selected label will be returned in RESULT (if
OPTIONS RESULTS is specified in the script).

* COMMAND [I..] - if given, the command will be executed
whenever the gadget is selected. For a complete description
of this option see

Command-Port Options
. Note that the

gadget active label (see the LABELS argument description)
will be used to replace a ‘%s’ contained in the command
string.

* PORT [I..] - a specific host port may be specified by this
argument. For a complete description of this option see

Command-Port Options
.

* HELP [I..] - with this argument help text may be defined
which will be displayed as balloon help whenever the pointer
is over the associated gadget. Of course, this is dependant
on whether the user set up balloon help in the MUI preference
settings.

* NODE [I..] - this argument is used to specify a node in the
guide file given in the command line argument HELP for
‘MUIRexx’. If the user positions the mouse pointer over the
gadget and presses the help button on the keyboard then the
guide file will be displayed at the node location.

* LABELS [ISG] - a series of strings (separated by commas) may
be specified by this argument. These strings are used as the

MUIRexx 32 / 70

labels for the gadget object. The currently displayed label
may be retrieved by issuing the gadget command with an
existing ID. Also, the selected label may be set by issuing
the gadget command with an existing ID and label. Note that
the labels may contain any of the special formatting
sequences (see

MUI Format Sequences
).

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved (see

Attribute TAGs
).

Some useful TAGs for use with this command are:

TAG_Name = TAG_id Flags Type

Cycle_Active = 0x80421788 /* V4 isg LONG */
Radio_Active = 0x80429b41 /* V4 isg LONG */
ControlChar = 0x8042120b /* V4 isg char */
CycleChain = 0x80421ce7 /* V11 isg LONG */
Disabled = 0x80423661 /* V4 isg BOOL */
FixHeight = 0x8042a92b /* V4 i.. LONG */
FixHeightTxt = 0x804276f2 /* V4 i.. STRPTR */
FixWidth = 0x8042a3f1 /* V4 i.. LONG */
FixWidthTxt = 0x8042d044 /* V4 i.. STRPTR */
HorizDisappear = 0x80429615 /* V11 isg LONG */
HorizWeight = 0x80426db9 /* V4 isg WORD */
MaxHeight = 0x804293e4 /* V11 i.. LONG */
MaxWidth = 0x8042f112 /* V11 i.. LONG */
Selected = 0x8042654b /* V4 isg BOOL */
ShowMe = 0x80429ba8 /* V4 isg BOOL */
VertDisappear = 0x8042d12f /* V11 isg LONG */
VertWeight = 0x804298d0 /* V4 isg WORD */
Weight = 0x80421d1f /* V4 i.. WORD */

Note: Consult MUI:Developer/Autodocs/MUI_Cycle.doc, MUI_Radio.doc,
MUI_Area.doc and MUI:Developer/C/Include/libraries/mui.h

Example use of this command:

window ID PAGE TITLE ’"Character Definition"’
group HORIZ

group
label SINGLE ’Name:’
label SINGLE ’Sex:’

endgroup
group

string ID NAME CONTENT ’Frodo’
cycle ID SEX LABELS ’male,female’

endgroup
endgroup
space 2
group REGISTER LABELS ’Race,Class,Armor,Level’

group FRAME
radio ID RACE LABELS ’Human,Elf,Dwarf,Hobbit,Gnome’

MUIRexx 33 / 70

endgroup
.
.
.

endwindow

cycle ID SEX
say result
radio ID RACE
say result

1.41 MUIRexx.guide/radio

-- Command: radio ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K, ATTRS/ ←↩
K/M,

LABEL=LABELS/K/F
Radio gadget objects are created with this command. Cycle and
radio gadgets are essentially identical with the only difference
being the base object class to create each type of object. All
options are identical for these objects. Refer to the

cycle
command for descriptions of the options.

1.42 MUIRexx.guide/string

-- Command: string ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K, ATTRS ←↩
/K/M,

CONTENT/K/F
String gadget objects are created with this command. String and
popasl gadgets are essentially identical with the only difference
being the base object class to create each type of object. All
options are identical for these objects.

* ID [I..] - an id can be assigned to a string gadget for later
reference. The id can be any combination of up to 5
characters. If the id is given without any other arguments,
and the string gadget has been previously created, then the
current string gadget content will be returned in RESULT (if
OPTIONS RESULTS is specified in the script).

* COMMAND [I..] - if given, the command will be executed
whenever a string is entered (i.e. a carriage return is hit
while the gadget is active). For a complete description of
this option see

Command-Port Options
. Note that the string

MUIRexx 34 / 70

gadget content (see the CONTENT argument description) will be
used to replace a ‘%s’ contained in the command string.

* PORT [I..] - a specific host port may be specified by this
argument. For a complete description of this option see

Command-Port Options
.

* HELP [I..] - with this argument help text may be defined
which will be displayed as balloon help whenever the pointer
is over the associated string gadget. Of course, this is
dependant on whether the user set up balloon help in the MUI
preference settings.

* NODE [I..] - this argument is used to specify a node in the
guide file given in the command line argument HELP for
‘MUIRexx’. If the user positions the mouse pointer over the
string gadget and presses the help button on the keyboard
then the guide file will be displayed at the node location.

* CONTENT [ISG] - the contents of the string gadget is given by
this argument.

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved (see

Attribute TAGs
).

Some useful TAGs for use with this command are:

TAG_Name = TAG_id Flags Type

String_Accept = 0x8042e3e1 /* V4 isg STRPTR */
String_AdvanceOnCR = 0x804226de /* V11 isg BOOL */
String_BufferPos = 0x80428b6c /* V4 .sg LONG */
String_Contents = 0x80428ffd /* V4 isg STRPTR */
String_DisplayPos = 0x8042ccbf /* V4 .sg LONG */
String_Format = 0x80427484 /* V4 i.g LONG */
String_Integer = 0x80426e8a /* V4 isg ULONG */
String_MaxLen = 0x80424984 /* V4 i.g LONG */
String_Reject = 0x8042179c /* V4 isg STRPTR */
String_Secret = 0x80428769 /* V4 i.g BOOL */
ControlChar = 0x8042120b /* V4 isg char */
CycleChain = 0x80421ce7 /* V11 isg LONG */
Disabled = 0x80423661 /* V4 isg BOOL */
FixHeight = 0x8042a92b /* V4 i.. LONG */
FixHeightTxt = 0x804276f2 /* V4 i.. STRPTR */
FixWidth = 0x8042a3f1 /* V4 i.. LONG */
FixWidthTxt = 0x8042d044 /* V4 i.. STRPTR */
HorizDisappear = 0x80429615 /* V11 isg LONG */
HorizWeight = 0x80426db9 /* V4 isg WORD */
MaxHeight = 0x804293e4 /* V11 i.. LONG */
MaxWidth = 0x8042f112 /* V11 i.. LONG */
Selected = 0x8042654b /* V4 isg BOOL */
ShowMe = 0x80429ba8 /* V4 isg BOOL */
VertDisappear = 0x8042d12f /* V11 isg LONG */

MUIRexx 35 / 70

VertWeight = 0x804298d0 /* V4 isg WORD */
Weight = 0x80421d1f /* V4 i.. WORD */

Note: Consult MUI:Developer/Autodocs/MUI_String.doc,
MUI_Area.doc and MUI:Developer/C/Include/libraries/mui.h

Example use of this command:

window ID MAIN TITLE ’"ShowIcon"’
group HORIZ

button ’"parent"’ WEIGHT 0 COMMAND ’"showicon /"’
string ID STRG COMMAND ’"dirlist ID LIST PATH %s"’ PORT SHOW

endgroup
.
.
.
popasl ID 104 HELP ’"this is an example popasl gadget"’

endwindow

string ID STRG
say result

1.43 MUIRexx.guide/popasl

-- Command: popasl ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K, ATTRS ←↩
/K/M,

CONTENT/K/F, SPEC/K
Popasl gadget objects are created with this command. String and
popasl gadgets are essentially identical with the only difference
being the base object class to create each type of object. The
most notable difference is that the popasl object has an attached
button that allows the user to bring up an ASL file requestor.
The selected file is placed into the string content. All options
are identical for these objects with the exception of the SPEC
option (used to specify the popbutton image specification). Refer
to the

string
command for descriptions of these options.

* SPEC [I..] - this argument is used to specify a MUI image
specification (see

MUI Image Specifications
) for the

popbutton. If not given then the image ‘MUII_PopUp’ will be
used.

MUIRexx 36 / 70

1.44 MUIRexx.guide/poplist

-- Command: poplist ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K,
ATTRS/K/M, CONTENT/K/F, SPEC/K, LABELS/K

Poplist gadget objects are created with this command. String and
poplist gadgets are essentially identical with the only difference
being the base object class to create each type of object. The
most notable difference is that the poplist object has an attached
button that allows the user to bring up a list of strings
(specified with the LABELS option). All options are identical for
these objects with the exception of the SPEC option (used to
specify the popbutton image specification) and the LABELS option.
Refer to the

string
command for descriptions of these options.

* SPEC [I..] - this argument is used to specify a MUI image
specification (see

MUI Image Specifications
) for the

popbutton. If not given then the image ‘MUII_PopUp’ will be
used.

* LABELS [ISG] - a series of strings (separated by commas) may
be specified by this argument. These strings are used as the
labels for the poplist object.

1.45 MUIRexx.guide/slider

-- Command: slider ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K, ATTRS ←↩
/K/M

Slider gadget objects are created with this command. Slider,
popslider and knob gadgets are essentially identical with the only
difference being the base object class to create each type of
object. All options are identical for these objects.

* ID [I..] - an id can be assigned to a slider gadget for later
reference. The id can be any combination of up to 5
characters. If the id is given without any other arguments,
and the slider gadget has been previously created, then the
current slider level will be returned in RESULT (if OPTIONS
RESULTS is specified in the script).

* COMMAND [I..] - if given, the command will be executed
whenever the slider gadget is changed. For a complete
description of this option see

Command-Port Options
. Note

that the slider gadget level will be used to replace a ‘%s’
contained in the command string. Caution must be taken since
movement of the slider can result in a lot of commands. If

MUIRexx 37 / 70

the command is at all time consuming the result will be very
sluggish slider action.

* PORT [I..] - a specific host port may be specified by this
argument. For a complete description of this option see

Command-Port Options
.

* HELP [I..] - with this argument help text may be defined
which will be displayed as balloon help whenever the pointer
is over the associated slider gadget. Of course, this is
dependant on whether the user set up balloon help in the MUI
preference settings.

* NODE [I..] - this argument is used to specify a node in the
guide file given in the command line argument HELP for
‘MUIRexx’. If the user positions the mouse pointer over the
slider gadget and presses the help button on the keyboard
then the guide file will be displayed at the node location.

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved (see

Attribute TAGs
).

Some useful TAGs for use with this command are:

TAG_Name = TAG_id Flags Type

Slider_Horiz = 0x8042fad1 /* V11 isg BOOL */
Slider_Level = 0x8042ae3a /* V4 isg LONG */
Slider_Max = 0x8042d78a /* V4 isg LONG */
Slider_Min = 0x8042e404 /* V4 isg LONG */
Slider_Quiet = 0x80420b26 /* V6 i.. BOOL */
Slider_Reverse = 0x8042f2a0 /* V4 isg BOOL */
Numeric_Default = 0x804263e8 /* V11 isg LONG */
Numeric_Format = 0x804263e9 /* V11 isg STRPTR */
Numeric_Max = 0x8042d78a /* V11 isg LONG */
Numeric_Min = 0x8042e404 /* V11 isg LONG */
Numeric_Reverse = 0x8042f2a0 /* V11 isg BOOL */
Numeric_RevLeftRight = 0x804294a7 /* V11 isg BOOL */
Numeric_RevUpDown = 0x804252dd /* V11 isg BOOL */
Numeric_Value = 0x8042ae3a /* V11 isg LONG */
ControlChar = 0x8042120b /* V4 isg char */
CycleChain = 0x80421ce7 /* V11 isg LONG */
Disabled = 0x80423661 /* V4 isg BOOL */
FixHeight = 0x8042a92b /* V4 i.. LONG */
FixHeightTxt = 0x804276f2 /* V4 i.. STRPTR */
FixWidth = 0x8042a3f1 /* V4 i.. LONG */
FixWidthTxt = 0x8042d044 /* V4 i.. STRPTR */
HorizDisappear = 0x80429615 /* V11 isg LONG */
HorizWeight = 0x80426db9 /* V4 isg WORD */
MaxHeight = 0x804293e4 /* V11 i.. LONG */
MaxWidth = 0x8042f112 /* V11 i.. LONG */
Selected = 0x8042654b /* V4 isg BOOL */
ShowMe = 0x80429ba8 /* V4 isg BOOL */

MUIRexx 38 / 70

VertDisappear = 0x8042d12f /* V11 isg LONG */
VertWeight = 0x804298d0 /* V4 isg WORD */
Weight = 0x80421d1f /* V4 i.. WORD */

Note: Consult MUI:Developer/Autodocs/MUI_Slider.doc, MUI_Numeric.doc,
MUI_Area.doc and MUI:Developer/C/Include/libraries/mui.h

Example use of this command:

window ID DEMO
.
.
.
group HORIZ

space HORIZ
group

knob ID KNOB HELP ’"an example knob gadget"’
popslider ID PSLD HELP ’"an example popup slider gadget"’

endgroup
meter ID METR NODE ’"meter"’ LABEL ’"meter"’
space HORIZ

endgroup
slider ID SLDR ATTRS Slider_Level 50
gauge ID GAUG NODE ’"gauge"’ LABEL ’"level %ld"’ ATTRS Gauge_Horiz ←↩

TRUE
object CLASS ’"Scale.mui"’

endwindow

1.46 MUIRexx.guide/popslider

-- Command: popslider ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K,
ATTRS/K/M

Popslider gadget objects are created with this command. Slider,
popslider and knob gadgets are essentially identical with the only
difference being the base object class to create each type of
object. Specifically, while unselected the gadget displays the
current numeric value in a button. If selected then a slider pops
up allowing selection of a new value. All options are identical
for these objects. Refer to the

slider
command for descriptions

of the options.

1.47 MUIRexx.guide/knob

MUIRexx 39 / 70

-- Command: knob ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K, ATTRS/K ←↩
/M

Knob gadget objects are created with this command. Slider,
popslider and knob gadgets are essentially identical with the only
difference being the base object class to create each type of
object. All options are identical for these objects. Refer to
the

slider
command for descriptions of the options.

1.48 MUIRexx.guide/list

-- Command: list ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K, TITLE/K ←↩
,

POS/K, INSERT/S, REMOVE/S, NODUP/S, TOGGLE/S, ATTRS/K/M,
STRING=STRINGS/K/F

List objects are created with this command.

* ID [I..] - an id can be assigned to a list for later
reference. The id can be any combination of up to 5
characters. If the id is given without any other arguments,
and the list object has been previously created, then the
currently selected line will be returned in RESULT (if
OPTIONS RESULTS is specified in the script). If multiple
lines are selected then each line will be returned with each
list command. The line entry in the list will be deselected.
A null string ("") will be returned if no lines are selected

(or the last selected line has been reached).

* COMMAND [I..] - if given, the command will be executed
whenever a line in the list is double clicked. For a
complete description of this option see

Command-Port Options
.

Note that the selected line will be used to replace a ‘%s’
contained in the command string.

* PORT [I..] - a specific host port may be specified by this
argument. For a complete description of this option see

Command-Port Options
.

* HELP [I..] - with this argument help text may be defined
which will be displayed as balloon help whenever the pointer
is over the associated list. Of course, this is dependant on
whether the user set up balloon help in the MUI preference
settings.

* NODE [I..] - this argument is used to specify a node in the
guide file given in the command line argument HELP for

MUIRexx 40 / 70

‘MUIRexx’. If the user positions the mouse pointer over the
list and presses the help button on the keyboard then the
guide file will be displayed at the node location.

* TITLE [IS.] - this argument is used to specify a title for
the list. A title will be shown at the top of the list and
will remain even if the list scrolled. Note that the format
of the title will be the same as for the string entries (see
the STRING option description below).

* POS [.SG] - if this argument is given and a string is
specified (with the STRING argument) then the string will be
inserted at this position. Special values (see List.mui
Autodoc entry for MUIA_List_Insert) may be used. If no
string is given then the string located at the given position
will be returned in the ‘ARexx’ variable RESULT. If a null
string is given (by specifying the STRING option with no
string or "") then the string at this position will be
removed.

* INSERT [.S.] - if this switch is given then any string
supplied by the STRING argument will be inserted into the
current list. If no position is specified (with the POS
argument) then the string will be inserted at the current
DropMark (see List.mui Autodoc entry for MUIA_List_DropMark).

* REMOVE [.S.] - if this switch is given then an entry will be
removed from the list. If no position or label is specified
(with the POS argument) then the currently selected entry
will be removed. If a label is given (using the LABEL
option) then the entry matching that label will be removed.

* NODUP [IS.] - if this switch is given then no duplicate
strings will be displayed.

* TOGGLE [.S.] - if this switch is given then the select state
of each displayed string will be toggled.

* STRING [ISG] - a string to be entered into the list may be
specified by this argument. Note that the string may contain
any of the special formatting sequences (see

MUI Format Sequences
). Additionally, multicolumn lists may

be created. A string may, in fact, consist of several
strings separated with commas. If the list is given a format
(with the LIST_FORMAT attribute TAG) then these strings will
be displayed in the appropriate column (as defined by the
format, see

MUI List Format
). Prepending any substring with

an equals symbol (=) will force the rest of the string to be
interpreted literally thereby allowing commas within a
string. Note that the equals symbol will be removed from any
retreived literal string.

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be

MUIRexx 41 / 70

set or retrieved (see
Attribute TAGs
).

Some useful TAGs for use with this command are:

TAG_Name = TAG_id Flags Type

List_Active = 0x8042391c /* V4 isg LONG */
List_AdjustHeight = 0x8042850d /* V4 i.. BOOL */
List_AdjustWidth = 0x8042354a /* V4 i.. BOOL */
List_AutoVisible = 0x8042a445 /* V11 isg BOOL */
List_DragSortable = 0x80426099 /* V11 isg BOOL */
List_DropMark = 0x8042aba6 /* V11 ..g LONG */
List_Entries = 0x80421654 /* V4 ..g LONG */
List_First = 0x804238d4 /* V4 ..g LONG */
List_Format = 0x80423c0a /* V4 isg STRPTR */
List_InsertPosition = 0x8042d0cd /* V9 ..g LONG */
List_MinLineHeight = 0x8042d1c3 /* V4 i.. LONG */
List_Quiet = 0x8042d8c7 /* V4 .s. BOOL */
List_ShowDropMarks = 0x8042c6f3 /* V11 isg BOOL */
List_Title = 0x80423e66 /* V6 isg char * */
List_Visible = 0x8042191f /* V4 ..g LONG */
Listview_ClickColumn = 0x8042d1b3 /* V7 ..g LONG */
Listview_DefClickColumn = 0x8042b296 /* V7 isg LONG */
Listview_DoubleClick = 0x80424635 /* V4 i.g BOOL */
Listview_DragType = 0x80425cd3 /* V11 isg LONG */
Listview_Input = 0x8042682d /* V4 i.. BOOL */
Listview_MultiSelect = 0x80427e08 /* V7 i.. LONG */
Listview_ScrollerPos = 0x8042b1b4 /* V10 i.. BOOL */
Listview_SelectChange = 0x8042178f /* V4 ..g BOOL */
CycleChain = 0x80421ce7 /* V11 isg LONG */
Disabled = 0x80423661 /* V4 isg BOOL */
HorizDisappear = 0x80429615 /* V11 isg LONG */
HorizWeight = 0x80426db9 /* V4 isg WORD */
ShowMe = 0x80429ba8 /* V4 isg BOOL */
VertDisappear = 0x8042d12f /* V11 isg LONG */
VertWeight = 0x804298d0 /* V4 isg WORD */
Weight = 0x80421d1f /* V4 i.. WORD */

Note: Consult MUI:Developer/Autodocs/MUI_List.doc, MUI_Listview.doc,
MUI_Area.doc and MUI:Developer/C/Include/libraries/mui.h

Example use of this command:

window ID DEMO
list ID ALST ATTRS List_Format "MIW=25 BAR,MIW=25 BAR,MIW=25"’
list ID BLST
.
.
.

endwindow
list ID ALST INSERT POS 0 STRING ’"column 1,column 2,column 3"’
list ID BLST INSERT POS 0 STRING ’"=this one, that one"’

MUIRexx 42 / 70

1.49 MUIRexx.guide/dirlist

-- Command: dirlist ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K, PATH ←↩
/K,

PATTERN/K, REREAD/S ,TOGGLE/S, ATTRS/K/M
Dirlist objects are created with this command.

* ID [I..] - an id can be assigned to a dirlist for later
reference. The id can be any combination of up to 5
characters. If the id is given without any other arguments,
and the dirlist has been previously created, then the
currently selected file (with path) will be returned in
RESULT (if OPTIONS RESULTS is specified in the script). If
multiple files are selected then each file name (with path)
will be returned with each dirlist command. The file name
entry in the list will be deselected. A null string ("")
will be returned if no files are selected (or the last
selected file has been reached).

* COMMAND [I..] - if given, the command will be executed
whenever an item in the dirlist is double clicked. For a
complete description of this option see

Command-Port Options
.

Note that the full path of the selected item will be used to
replace a ‘%s’ contained in the command string.

* PORT [I..] - a specific host port may be specified by this
argument. For a complete description of this option see

Command-Port Options
.

* HELP [I..] - with this argument help text may be defined
which will be displayed as balloon help whenever the pointer
is over the associated dirlist. Of course, this is dependant
on whether the user set up balloon help in the MUI preference
settings.

* NODE [I..] - this argument is used to specify a node in the
guide file given in the command line argument HELP for
‘MUIRexx’. If the user positions the mouse pointer over the
dirlist and presses the help button on the keyboard then the
guide file will be displayed at the node location.

* PATH [ISG] - at creation this argument specifies the initial
directory path. When the dirlist command is issued with just
the ID argument a fully qualified path name is returned for
the file or directory selected in the listview.

* PATTERN [IS.] - this argument sets the accept pattern for the
directory list. Any standard AmigaDOS pattern may be given.
Note that if a path is set (see PATH argument) or the

MUIRexx 43 / 70

directory is reread (see REREAD argument) then this pattern
will be reflected.

* REREAD [.S.] - if this switch is given then the dirlist will
be updated with the current directory.

* TOGGLE [.S.] - if this switch is given then the select state
of each displayed file will be toggled.

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved (see

Attribute TAGs
).

Some useful TAGs for use with this command are:

TAG_Name = TAG_id Flags Type

Dirlist_Directory = 0x8042ea41 /* V4 isg STRPTR */
Dirlist_DrawersOnly = 0x8042b379 /* V4 is. BOOL */
Dirlist_FilesOnly = 0x8042896a /* V4 is. BOOL */
Dirlist_FilterDrawers = 0x80424ad2 /* V4 is. BOOL */
Dirlist_MultiSelDirs = 0x80428653 /* V6 is. BOOL */
Dirlist_NumBytes = 0x80429e26 /* V4 ..g LONG */
Dirlist_NumDrawers = 0x80429cb8 /* V4 ..g LONG */
Dirlist_NumFiles = 0x8042a6f0 /* V4 ..g LONG */
Dirlist_RejectIcons = 0x80424808 /* V4 is. BOOL */
Dirlist_SortDirs = 0x8042bbb9 /* V4 is. LONG */
Dirlist_SortHighLow = 0x80421896 /* V4 is. BOOL */
Dirlist_SortType = 0x804228bc /* V4 is. LONG */
Dirlist_Status = 0x804240de /* V4 ..g LONG */
List_Active = 0x8042391c /* V4 isg LONG */
List_AdjustHeight = 0x8042850d /* V4 i.. BOOL */
List_AdjustWidth = 0x8042354a /* V4 i.. BOOL */
List_AutoVisible = 0x8042a445 /* V11 isg BOOL */
List_DragSortable = 0x80426099 /* V11 isg BOOL */
List_DropMark = 0x8042aba6 /* V11 ..g LONG */
List_Entries = 0x80421654 /* V4 ..g LONG */
List_First = 0x804238d4 /* V4 ..g LONG */
List_Format = 0x80423c0a /* V4 isg STRPTR */
List_InsertPosition = 0x8042d0cd /* V9 ..g LONG */
List_MinLineHeight = 0x8042d1c3 /* V4 i.. LONG */
List_Quiet = 0x8042d8c7 /* V4 .s. BOOL */
List_ShowDropMarks = 0x8042c6f3 /* V11 isg BOOL */
List_Title = 0x80423e66 /* V6 isg char * */
List_Visible = 0x8042191f /* V4 ..g LONG */
Listview_ClickColumn = 0x8042d1b3 /* V7 ..g LONG */
Listview_DefClickColumn = 0x8042b296 /* V7 isg LONG */
Listview_DoubleClick = 0x80424635 /* V4 i.g BOOL */
Listview_DragType = 0x80425cd3 /* V11 isg LONG */
Listview_Input = 0x8042682d /* V4 i.. BOOL */
Listview_MultiSelect = 0x80427e08 /* V7 i.. LONG */
Listview_ScrollerPos = 0x8042b1b4 /* V10 i.. BOOL */
Listview_SelectChange = 0x8042178f /* V4 ..g BOOL */
CycleChain = 0x80421ce7 /* V11 isg LONG */
Disabled = 0x80423661 /* V4 isg BOOL */
HorizDisappear = 0x80429615 /* V11 isg LONG */

MUIRexx 44 / 70

HorizWeight = 0x80426db9 /* V4 isg WORD */
ShowMe = 0x80429ba8 /* V4 isg BOOL */
VertDisappear = 0x8042d12f /* V11 isg LONG */
VertWeight = 0x804298d0 /* V4 isg WORD */
Weight = 0x80421d1f /* V4 i.. WORD */

Note: Consult MUI:Developer/Autodocs/MUI_List.doc, MUI_Listview.doc,
MUI_Dirlist.doc, MUI_Area.doc and
MUI:Developer/C/Include/libraries/mui.h

Example use of this command:

window TITLE ’"MUIRexx Demo"’ COMMAND ’"quit"’ PORT DEMO
dirlist ID DIR1 PATH ’"ram:"’ PRESS APP DROP,

COMMAND ’"dirlist ID DIR1 PATH %s"’ PORT DEMO NODE ’"dirlist"’,
ATTRS Frame Frame_Text Listview_DragType ←↩

Listview_DragType_Immediate
.
.
.

endwindow

dirlist ID DIR1 ATTRS Dirlist_Directory
say result

1.50 MUIRexx.guide/volumelist

-- Command: volumelist ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K,
ATTRS/K/M

volumelist objects are created with this command.

* ID [I..] - an id can be assigned to a volumelist for later
reference. The id can be any combination of up to 5
characters. If the id is given without any other arguments,
and the volumelist has been previously created, then the
currently selected volume will be returned in RESULT (if
OPTIONS RESULTS is specified in the script).

* COMMAND [I..] - if given, the command will be executed
whenever an item in the volumelist is double clicked. For a
complete description of this option see

Command-Port Options
.

Note that the selected volume name will be used to replace a
‘%s’ contained in the command string.

* PORT [I..] - a specific host port may be specified by this
argument. For a complete description of this option see

Command-Port Options
.

MUIRexx 45 / 70

* HELP [I..] - with this argument help text may be defined
which will be displayed as balloon help whenever the pointer
is over the associated volumelist. Of course, this is
dependant on whether the user set up balloon help in the MUI
preference settings.

* NODE [I..] - this argument is used to specify a node in the
guide file given in the command line argument HELP for
‘MUIRexx’. If the user positions the mouse pointer over the
volumelist and presses the help button on the keyboard then
the guide file will be displayed at the node location.

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved (see

Attribute TAGs
).

Some useful TAGs for use with this command are:

TAG_Name = TAG_id Flags Type

List_Active = 0x8042391c /* V4 isg LONG */
List_AdjustHeight = 0x8042850d /* V4 i.. BOOL */
List_AdjustWidth = 0x8042354a /* V4 i.. BOOL */
List_AutoVisible = 0x8042a445 /* V11 isg BOOL */
List_DragSortable = 0x80426099 /* V11 isg BOOL */
List_DropMark = 0x8042aba6 /* V11 ..g LONG */
List_Entries = 0x80421654 /* V4 ..g LONG */
List_First = 0x804238d4 /* V4 ..g LONG */
List_Format = 0x80423c0a /* V4 isg STRPTR */
List_InsertPosition = 0x8042d0cd /* V9 ..g LONG */
List_MinLineHeight = 0x8042d1c3 /* V4 i.. LONG */
List_Quiet = 0x8042d8c7 /* V4 .s. BOOL */
List_ShowDropMarks = 0x8042c6f3 /* V11 isg BOOL */
List_Title = 0x80423e66 /* V6 isg char * */
List_Visible = 0x8042191f /* V4 ..g LONG */
Listview_ClickColumn = 0x8042d1b3 /* V7 ..g LONG */
Listview_DefClickColumn = 0x8042b296 /* V7 isg LONG */
Listview_DoubleClick = 0x80424635 /* V4 i.g BOOL */
Listview_DragType = 0x80425cd3 /* V11 isg LONG */
Listview_Input = 0x8042682d /* V4 i.. BOOL */
Listview_MultiSelect = 0x80427e08 /* V7 i.. LONG */
Listview_ScrollerPos = 0x8042b1b4 /* V10 i.. BOOL */
Listview_SelectChange = 0x8042178f /* V4 ..g BOOL */
CycleChain = 0x80421ce7 /* V11 isg LONG */
Disabled = 0x80423661 /* V4 isg BOOL */
HorizDisappear = 0x80429615 /* V11 isg LONG */
HorizWeight = 0x80426db9 /* V4 isg WORD */
ShowMe = 0x80429ba8 /* V4 isg BOOL */
VertDisappear = 0x8042d12f /* V11 isg LONG */
VertWeight = 0x804298d0 /* V4 isg WORD */
Weight = 0x80421d1f /* V4 i.. WORD */

Note: Consult MUI:Developer/Autodocs/MUI_List.doc, MUI_Listview.doc,
MUI_Volumelist.doc, MUI_Area.doc and
MUI:Developer/C/Include/libraries/mui.h

MUIRexx 46 / 70

Example use of this command:

window TITLE ’"MUIRexx Demo"’ COMMAND ’"quit"’ PORT DEMO
volumelist,

COMMAND ’"dirlist ID DIR1 PATH %s"’ PORT DEMO NODE ’"volumelist ←↩
"’,

ATTRS Weight 50
.
.
.

endwindow

1.51 MUIRexx.guide/object

-- Command: object ID/K, HELP/K, NODE/K, CLASS/K, BOOPSI/S, ATTRS ←↩
/K/M

Objects from MUI internal, external and BOOPSI classes are created
with this command. Note that while this is a very powerful and
flexible command it can easily result in the unexpected, including
system crashes, so beware.

* ID [I..] - an id can be assigned to a object for later
reference. The id can be any combination of up to 5
characters.

* HELP [I..] - with this argument help text may be defined
which will be displayed as balloon help whenever the pointer
is over the associated object. Of course, this is dependant
on whether the user set up balloon help in the MUI preference
settings.

* NODE [I..] - this argument is used to specify a node in the
guide file given in the command line argument HELP for
‘MUIRexx’. If the user positions the mouse pointer over the
object and presses the help button on the keyboard then the
guide file will be displayed at the node location.

* CLASS [I..] - this argument allows specification of the
object class. The class may be any internal or external MUI
or BOOPSI (see the BOOPSI option) gadget class.

* BOOPSI [I..] - if this switch is given then the object will be
created from a BOOPSI gadget class. BOOPSI objects will, by
default, have the following TAG ids and values set:

TAG value

GA_Left 0
GA_Top 0
GA_Width 0
GA_Height 0
ICA_TARGET ICTARGET_IDCMP

MUIRexx 47 / 70

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved (see

Attribute TAGs
).

Some useful TAGs for use with this command are:

TAG_Name = TAG_id Flags Type

Boopsi_MaxHeight = 0x8042757f /* V4 isg ULONG */
Boopsi_MaxWidth = 0x8042bcb1 /* V4 isg ULONG */
Boopsi_MinHeight = 0x80422c93 /* V4 isg ULONG */
Boopsi_MinWidth = 0x80428fb2 /* V4 isg ULONG */
Boopsi_Remember = 0x8042f4bd /* V4 i.. ULONG */
Boopsi_Smart = 0x8042b8d7 /* V9 i.. BOOL */
Boopsi_TagDrawInfo = 0x8042bae7 /* V4 isg ULONG */
Boopsi_TagScreen = 0x8042bc71 /* V4 isg ULONG */
Boopsi_TagWindow = 0x8042e11d /* V4 isg ULONG */
ControlChar = 0x8042120b /* V4 isg char */
CycleChain = 0x80421ce7 /* V11 isg LONG */
Disabled = 0x80423661 /* V4 isg BOOL */
Draggable = 0x80420b6e /* V11 isg BOOL */
FillArea = 0x804294a3 /* V4 is. BOOL */
FixHeight = 0x8042a92b /* V4 i.. LONG */
FixHeightTxt = 0x804276f2 /* V4 i.. STRPTR */
FixWidth = 0x8042a3f1 /* V4 i.. LONG */
FixWidthTxt = 0x8042d044 /* V4 i.. STRPTR */
HorizDisappear = 0x80429615 /* V11 isg LONG */
HorizWeight = 0x80426db9 /* V4 isg WORD */
MaxHeight = 0x804293e4 /* V11 i.. LONG */
MaxWidth = 0x8042f112 /* V11 i.. LONG */
Selected = 0x8042654b /* V4 isg BOOL */
ShowMe = 0x80429ba8 /* V4 isg BOOL */
ShowSelState = 0x8042caac /* V4 i.. BOOL */
VertDisappear = 0x8042d12f /* V11 isg LONG */
VertWeight = 0x804298d0 /* V4 isg WORD */
Weight = 0x80421d1f /* V4 i.. WORD */

Note: Consult MUI:Developer/Autodocs/MUI_Boopsi.doc, MUI_Area.doc and
MUI:Developer/C/Include/libraries/mui.h

Example use of this command:

WHEEL_Hue = 0x84000001
WHEEL_Saturation = 0x84000002
WHEEL_Screen = 0x84000009

window TITLE ’"MUIRexx Demo"’ COMMAND ’"quit"’ PORT DEMO
group HORIZ

group
label DOUBLE ’"Hue:"’
label DOUBLE ’"Saturation:"’

endgroup
group

gauge ID HUE ATTRS Gauge_Max 16384,
Gauge_Divide 262144,

MUIRexx 48 / 70

Gauge_Horiz TRUE
gauge ID SAT ATTRS Gauge_Max 16384,

Gauge_Divide 262144,
Gauge_Horiz TRUE

endgroup
endgroup
object ID BOOP BOOPSI CLASS ’"colorwheel.gadget"’,

ATTRS Boopsi_MinWidth 30,
Boopsi_MinHeight 30,
Boopsi_Remember WHEEL_Hue,
Boopsi_Remember WHEEL_Saturation,
Boopsi_TagScreen WHEEL_Screen,
WHEEL_Screen 0,
WHEEL_Saturation 0,
FillArea TRUE

.

.

.
endwindow

method ID BOOP Notify WHEEL_Hue EveryTime,
@HUE 4 Set Gauge_Current TriggerValue

method ID BOOP Notify WHEEL_Saturation EveryTime,
@SAT 4 Set Gauge_Current TriggerValue

1.52 MUIRexx.guide/Misc

Misc
====

These commands don’t fit any of the previous categories so here they
are.

request

aslrequest

callhook

method

setvar

getvar

application

monitor

print

MUIRexx 49 / 70

1.53 MUIRexx.guide/request

-- Command: request ID/K, TITLE/K, GADGETS/K, FILE/K, STRING/F
This command will bring up a standard ‘MUI’ requester. Note that
this command is syncronous. That is once it is issued it will not
return a result until the user has selected a gadget. Once a
gadget has been selected then a number will be returned in the
‘ARexx’ variable RESULT (assuming ‘options results’ was specified
in the script). The first gadget will return a 1, the second a 2,
and so on. The last gadget, however, will return a 0 (this is by
convention since the last gadget is typically a CANCEL or
equivilent gadget).

* ID - this argument specifies a window ID. If specified then
the requester will be centered in the window.

* TITLE - this argument specifies the requester title (placed
in the title bar of the requester window).

* GADGETS - this argument specifies the gadget labels. The
labels are given as a single string with a vertical bar, |
used to separate each label. Additionally, each label can
contain an underscore, _ prior to any character. The
character will be the keyboard shortcut to activate the
associated gadget.

* FILE - if given, this argument specifies the file to get the
contents for the requester. All line breaks in the file will
be included. Note that this argument overrides the STRING
argument.

* STRING - this argument specifies the string to display in the
requester.

Example use of this command:

request ID MDIR GADGETS ’"OK|Cancel"’ ’"Delete selected entries?"’

1.54 MUIRexx.guide/aslrequest

-- Command: aslrequest ID/K, TITLE/K, ATTRS/K/M
This command will bring up a standard ASL file requester. Note
that this command is syncronous. That is once it is issued it
will not return a result until the user has selected a
file/directory or canceled. Once a file/directory has been
selected then the fully path-qualified name will be returned in
the ‘ARexx’ variable RESULT (assuming ‘options results’ was
specified in the script).

MUIRexx 50 / 70

* ID - this argument specifies a window ID. If specified then
the requester will be associated with the window.

* TITLE - this argument specifies the requester title (placed
in the title bar of the requester window).

* ATTRS [ISG] - with this option any ASL attribute TAGs may be
set (refer to AmigaDOS RKMs for details).

Some useful TAGs for use with this command are:

TAG_Name = TAG_id

ASLFR_InitialLeftEdge 0x80080003
ASLFR_InitialTopEdge 0x80080004
ASLFR_InitialWidth 0x80080005
ASLFR_InitialHeight 0x80080006
ASLFR_InitialFile 0x80080008
ASLFR_InitialDrawer 0x80080009
ASLFR_InitialPattern 0x8008000A
ASLFR_DoSaveMode 0x8008002C
ASLFR_DoMultiSelect 0x8008002D
ASLFR_DoPatterns 0x8008002E
ASLFR_DrawersOnly 0x8008002F
ASLFR_RejectIcons 0x8008003C
ASLFR_RejectPattern 0x8008003D
ASLFR_AcceptPattern 0x8008003E
ASLFR_FilterDrawers 0x8008003F

1.55 MUIRexx.guide/callhook

-- Command: callhook ID/K, COMMAND/K, PORT/K, PRESS/S, APP/S, ←↩
DROP/S,

INCLUDE/K, EXCLUDE/K, TRIG=ATTRS/K/M
This command is used to define callback notification methods for
objects. Trigger actions can be defined for object selection, drop
and app operations, as well as object specific actions.

* ID - an id of an existing gadget.

* COMMAND - if given, the command will be executed whenever the
gadget is pressed (PRESS switch specified or default for no
switch), an icon is dropped (APP switch), or another object
is dropped (DROP switch) on the gadget. For a complete
description of this option see

Command-Port Options
. Note

that the object label (for PRESS actions), or an icon name
(for APP actions), or a dropped object label (for DROP
actions) will be used to replace a ‘%s’ contained in the
command string, as appropriate.

MUIRexx 51 / 70

* PORT [I..] - a specific host port may be specified by this
argument. For a complete description of this option see

Command-Port Options
.

* PRESS - if this flag is given then the specified command
(given in the COMMAND option) will will issued if the object
is pressed. (same as the default action given with the
object’s COMMAND option).

* APP - if this flag is given then the specified command (given
in the COMMAND option) will will issued if an icon is dropped
on the object from the Workbench.

* DROP - if this flag is given then the specified command (given
in the COMMAND option) will will issued if another object is
dropped on the object through a drag and drop operation.
Using the INCLUDE or EXCLUDE options drag and drop operations
can be restricted to specific objects.

* INCLUDE - Limits drag and drop operations to a list of
objects. The list consists of object ids separated with
commas. The specified objects do not have to actually exist
(i.e. the listed objects can be created after the ’callhook’
is defined).

* EXCLUDE - Limits drag and drop operations by excluding a list
of objects. The list consists of object ids separated with
commas. The specified objects do not have to actually exist
(i.e. the listed objects can be created after the ’callhook’
is defined).

* TRIG - A TAG pair consisting of a trigger attribute and
value. Used to create arbitrary callback hook triggers. Do
not use if PRESS, APP or DROP options are specified.

Example use of this command:

/* the following defines a command that will be triggered everytime
a list entry becomes active */

callhook ID DIR1 COMMAND """string ID STR1 CONTENT %s""" PORT DIRUTIL,
TRIG MUIA_List_Active MUIV_EveryTime

/* the following defines a command triggered by a drop action, but will
only accept drop querys from the ’BLST’ object */

callhook ID VLST DROP COMMAND """build:attrs VADD %s""" INCLUDE ’BLST’

1.56 MUIRexx.guide/method

-- Command: method ID/K, ARGS/M
This command allows construction of class methods (ala the domethod

MUIRexx 52 / 70

function). While this command is very powerful it is also quite
complicated and possibly dangerous (can result in system crashes).
Care should be taken by consulting the autodocs describing the

method to be constructed. RESULT will contain the value returned
by the domethod function.

* ID - this argument specifies the ID of the reference object
for the method. If it is not given then the application
object will be used.

* ARGS - these arguments are the remaining arguments passed to
the domethod function. The arguments may be TAG ids or TAG
values (see

Attribute TAGs
). TAG values may also be object

pointers which are specified by preceding an object ID with
an @.

Example use of this command:

method Application_AboutMUI 0 /* bring up about_MUI requester */
method Application_OpenConfigWindow /* open MUI settings program */

/* an example notification method */

method ID BOOP Notify WHEEL_Hue EveryTime,
@HUE 4 Set Gauge_Current TriggerValue

1.57 MUIRexx.guide/setvar

-- Command: setvar NAME/A, VALUE/F
This command will set an internal ‘MUIRexx’ variable to any value
(stored as a string) which can be retrieved or reset later within
the same application (not necessarily the same script). This
ability can be used to pass information between ‘ARexx’ scripts
used in the same application. Note that variables may also be used
in place of object ID values, in which case the value of the
variable will be used as the actual object ID (this value must be
a string 5 characters or less, but the variable name can be any
length).

* NAME - this argument defines the variable name.

* VALUE - this argument defines the value of the variable and
can consist of any characters.

1.58 MUIRexx.guide/getvar

MUIRexx 53 / 70

-- Command: getvar NAME/A
This command will retrieve an internal ‘MUIRexx’ variable. The
value will be placed into the ‘ARexx’ variable RESULT (assuming
OPTIONS RESULTS was specified in the calling script).

* NAME - this argument specifies the variable name.

1.59 MUIRexx.guide/application

-- Command: application ATTRS/K/M
This command allows attributes to be set and retrieved for the
application object.

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved (see

Attribute TAGs
).

Some useful TAGs for use with this command are:

TAG_Name = TAG_id Flags Type

Application_Active = 0x804260ab /* V4 isg BOOL */
Application_Author = 0x80424842 /* V4 i.g STRPTR */
Application_Base = 0x8042e07a /* V4 i.g STRPTR */
Application_Copyright = 0x8042ef4d /* V4 i.g STRPTR */
Application_Description = 0x80421fc6 /* V4 i.g STRPTR */
Application_DoubleStart = 0x80423bc6 /* V4 ..g BOOL */
Application_Iconified = 0x8042a07f /* V4 .sg BOOL */
Application_Sleep = 0x80425711 /* V4 .s. BOOL */
Application_Title = 0x804281b8 /* V4 i.g STRPTR */
Application_Version = 0x8042b33f /* V4 i.g STRPTR */

Note: Consult MUI:Developer/Autodocs/MUI_Application.doc and
MUI:Developer/C/Include/libraries/mui.h

Example use of this command:

application ATTRS Application_Iconified TRUE /* forces ←↩
iconification */

application ATTRS Application_Version
say result

1.60 MUIRexx.guide/monitor

-- Command: monitor ON/S, OFF/S, ERROR/S, OUTPUT/F

MUIRexx 54 / 70

This command is used to open or close a monitor console window.
The monitor, depending on the options given, will display received
command lines and errors.

* ON - if given then the console window (or file) will be
opened. Both received command lines and error messages will
be displayed (or saved). If no options are given then the
console open state will be toggled.

* OFF - if given then the console window (or file) will be
closed.

* ERROR - if given then the console window (or file) will be
opened. Only error messages and the associated command line
will be displayed (or saved).

* OUTPUT - this argument is used to specify the console output
device or file.

Example use of this command:

monitor on ’cnc:0/660/840/240//auto’
monitor error ’ram:error.out’
monitor off

1.61 MUIRexx.guide/print

-- Command: print STRING/F
This command is used to output a string to the console previously
opened by the

monitor
command.

* STRING - string to be output.

1.62 MUIRexx.guide/Utilities

Utilities

MUIRexxDir
The little directory utility that could.

MUIRexxBuild
Using MUIRexx to build MUIRexx apps.

MUIRexx 55 / 70

MUIRexxDock
Dock construction 101.

1.63 MUIRexx.guide/MUIRexxDir

MUIRexxDir
==========

This utility is an example of a complete application built entirely
from ‘ARexx’ scripts and ‘MUIRexx’. Online help is available by
positioning the mouse pointer over an object and pressing the [Help] key
on the keyboard.

1.64 MUIRexx.guide/MUIRexxBuild

MUIRexxBuild
============

This ‘MUIRexx’ application is used to help build other ‘MUIRexx’
applications. Some online help is available along with bubble help to
aid in use of the application.

1.65 MUIRexx.guide/MUIRexxDock

MUIRexxDock
===========

This ‘MUIRexx’ application is used to build and maintain utility
docks. There is currently no documentation available, but hopefully
operation is intuitive enough to figure out. Try opening the edit
window (using the dock’s menu) and drag and drop either a dock icon or
an icon from the Workbench onto the edit window icon area (above the
cycle gadget). After editting the dock item either drag the icon back
to the dock (replacing the icon it is dropped on) or press the [add]
button to add the icon to the end of the dock. Also while the edit
window is open dock items in the dock can be rearranged by dragging one
icon onto another. Dock items can be buttons (typically used to start
programs), switches (typically used as a toggle), docks (other subdocks
of items), or pop groups. Pop groups may consist of any set of objects
and are created in the edit window by entering ‘MUIRexx’ commands into
the list located on the ’Pop’ register page. Simple buttons may be
easily created by dropping command icons from the Workbench onto the

MUIRexx 56 / 70

’Pop’ list. To edit or delete command lines in the ’Pop’ list simply
double click on the line and edit the string or press the [del] button
to delete. Entering a string will add the command line to the end of
the ’Pop’ list. Lines in this list are drag sortable. Also,
additional commands may be entered into the list located on the ’Add’
register page. These additional commands are inserted into the
beginning of the group that will contain the dock item. This feature
is particularly useful for including context menus with specific dock
items.

1.66 MUIRexx.guide/Example Macro

Example Macro

/* A simple example based on one of the demos supplied with MUI */
options results

Selected = 0x8042654b /* V4 isg BOOL */
Slider_Level = 0x8042ae3a /* V4 isg LONG */

TRUE = 1

address PAGES

window ID PAGE TITLE ’"Character Definition"’ COMMAND ’quit’ PORT PAGES
group HORIZ

group
label SINGLE ’Name:’
label SINGLE ’Sex:’

endgroup
group

string ID NAME CONTENT ’Frodo’
cycle ID SEX LABELS ’male,female’

endgroup
endgroup

space 2
group REGISTER LABELS ’Race,Class,Armor,Level’

group FRAME
radio ID RACE LABELS ’Human,Elf,Dwarf,Hobbit,Gnome’

endgroup
group FRAME

radio ID CLAS LABELS ’Warrior,Rogue,Bard,Monk,Magician,Archmage’
endgroup

group
group HORIZ

group
label SINGLE ’Cloak:’
label SINGLE ’Shield:’
label SINGLE ’Gloves:’

MUIRexx 57 / 70

label SINGLE ’Helmet:’
endgroup
group

check ID CHK1 ATTRS Selected TRUE
check ID CHK2 ATTRS Selected TRUE
check ID CHK3 ATTRS Selected TRUE
check ID CHK4 ATTRS Selected TRUE

endgroup
endgroup

endgroup

group
group HORIZ

group
label DOUBLE ’Experience:’
label DOUBLE ’Strength:’
label DOUBLE ’Dexterity:’
label DOUBLE ’Condition:’
label DOUBLE ’Intelligence:’

endgroup
group

slider ATTRS Slider_Level 3
slider ATTRS Slider_Level 42
slider ATTRS Slider_Level 24
slider ATTRS Slider_Level 39
slider ATTRS Slider_Level 74

endgroup
endgroup

endgroup

endgroup
endwindow
exit

1.67 MUIRexx.guide/Command-Port Options

Command/Port Options

* COMMAND - if given, the command will be executed whenever the
object is triggered (specific trigger is defined by the object
type). The command will be issued to the host port specified by
the PORT argument. Note that the command is run asyncronously (as
a detached process) and only inherits the global path if ‘MUIRexx’
is started from a shell. The command text may contain a format
specifier (‘%s’) in which case before issuing the command the
format specifier will be replaced by a label whose content is
dependant on the object type.

* PORT - a specific host port may be specified by this argument. The
defined command will be issued to this port whenever the object is
triggered. If the port is defined as COMMAND then the command will

MUIRexx 58 / 70

be issued to a DOS shell (global path will be in affect only if
‘MUIRexx’ was run from a shell). If this argument is not given
but a command is defined then the port will be defined as the port
for ‘ARexx’ (i.e. it will be assumed that the command is an
‘ARexx’ script). Additionally, if the port is defined as INLINE
then the command string will be treated as an inline ‘ARexx’ macro
string. Note also, that the port may be defined as the port of the
application itself. In this manner objects within an application
can be linked as well as to objects in other applications.

Many examples are given in the command reference section, however,
here are a few examples illustrating the use of the INLINE port option
(note that each line within the string macros must be terminated with a
semicolon).

callhook ID VUP ATTRS MUIA_Timer MUIV_EveryTime PORT INLINE,
COMMAND """options results;

address example;
gauge ID VGAUG ATTRS "MUIA_Gauge_Current";
gauge ID VGAUG ATTRS "MUIA_Gauge_Current" result+5;"""

callhook ID LST2 INCLUDE "LST1" DROP PORT INLINE,
COMMAND """options results;

address DragnDrop;
line = ’%s’;
’list ID LST2 INSERT STRING’ line;
’list ID LST1 REMOVE STRING’ line;"""

callhook ID HTML TRIG MUIA_HTMLtext_URL MUIV_EveryTime PORT INLINE,
COMMAND """options results;

address DEMO;
object ID HTML ATTRS "MUIA_HTMLtext_URL";
url = import(d2c(result));
popasl ID SURL;
setvar url result;
popasl ID SURL CONTENT url;"""

1.68 MUIRexx.guide/MUI Format Sequences

MUI Format Sequences

Whenever MUI prints strings, they may contain some special character
sequences defining format, color and style of the text.

* ’\n’ Start a new line. With this character you can e.g. create
multi line buttons.

* ’\033-’ Disable text engine, following chars will be printed
without further parsing.

* ’\033u’ Set the soft style to underline.

* ’\033b’ Set the soft style to bold.

MUIRexx 59 / 70

* ’\033i’ Set the soft style to italic.

* ’\033n’ Set the soft style back to normal.

* ’\033[n]’ Use pen number n (2..9) as front pen. n must be a valid
DrawInfo pen as specified in "intuition/screens.h".

* ’\033c’ Center current (and following) line(s). This sequence is
only valid at the beginning of a string or after a newline
character.

* ’\033r’ Right justify current (and following) line(s). This
sequence is only valid at the beginning of a string or after a
newline character.

* ’\033l’ Left justify current (and following) line(s). This
sequence is only valid at the beginning of a string or after a
newline character.

* ’\033I[[s]]’ Draw MUI image with specification [s] (see

MUI Image Specifications
).

1.69 MUIRexx.guide/MUI Image Specifications

MUI Image Specifications

MUI Image specifications always starts with a digit, followed by a
’:’, followed by some parameters. Currently, the following things are
defined:

* "0:[x]" where [x] is between MUII_BACKGROUND and MUII_FILLBACK2
identifying a builtin pattern.

* "1:[x]" where [x] identifies a builtin standard image. Don’t use
this, use "6:[x]" instead.

* "2:[r],[g],[b]" where [r], [g] and [b] are 32-bit RGB color values
specified as 8-digit hex string (e.g. 00000000 or ffffffff).
Kick 2.x users will get an empty image.

* "3:[n]" where [n] is the name of an external boopsi image class.

* "4:[n]" where [n] is the name of an external MUI brush.

* "5:[n]" where [n] is the name of an external picture file that
should be loaded with datatypes. Kick 2.x users will get an empty
image.

* "6:[x]" where [x] is between MUII_WindowBack (0) and MUII_Count-1

MUIRexx 60 / 70

(41) identifying a preconfigured image/background.

1.70 MUIRexx.guide/MUI List Format

MUI List Format

MUI has the ability to handle multi column lists. To define how many
columns should be displayed and how they should be formatted, you
specify a format string.

This format string must contain one entry for each column you want
to see. Entries are separated by commas with each line parsed via
dos.library/ReadArgs().

The template for a single entry looks like this:

DELTA=D/N, PREPARSE=P/K, WEIGHT=W/N, MINWIDTH=MIW/N, MAXWIDTH=MAW/N,
COL=C/N, BAR/S

* DELTA - Space in pixel between this column and the next. the last
displayed column ignores this setting. Defaults to 4.

* PREPARSE - A preparse value for this column. Setting this e.g. to
’\033c’ would make the column centered (see

MUI Format Sequences
).

* WEIGHT - The weight of the column. As with MUI’s group class,
columns are layouted with a minimum size, a maximum size and
weight. A column with a weight of 200 would gain twice the space
than a column with a weight of 100. Defaults to 100.

* MINWIDTH - Minimum percentage width for the current column. If
your list is 200 pixel wide and you set this to 25, your column
will at least be 50 pixel. The special value -1 for this
parameter means that the minimum width is as wide as the widest
entry in this column. This ensures that every entry will be
completely visible (as long as the list is wide enough). Defaults
to -1.

* MAXWIDTH - Maximum percentage width for the current column. If
your list is 200 pixel wide and you set this to 25, your column
will not be wider as 50 pixel. The special value -1 for this
parameter means that the maximum width is as wide as the widest
entry in this column. Defaults to -1.

* COL - This value adjusts the number of the current column. This
allows you to adjust the order of your columns. Defaults to
current entry number (0,1,...)

* BAR - Since muimaster.library V11, you can enable a vertical bar
between this and the next column by using this switch.

MUIRexx 61 / 70

If your list object gets so small there is not enough place for the
minwidth of a column, this column will be hidden completely and the
remaining space is distributed between the remaining columns. This is
not true if the column is the first column, in this case the entries
will simply be clipped.

Note: You will have as many columns in your list as entries in the
format string (i.e. number of commas + 1). Empty entries, e.g. with
a format string of ",,,," are perfectly ok.

The default list format is an empty string (""), this means a one
column list without special formatting.

For a dirlist object the column data, starting at column zero (0),
is the file name, size, date, time, protection, and comment.

1.71 MUIRexx.guide/Attribute TAGs

Attribute TAGs

While the capability to specify arbitrary attributes allows for much
flexibility it also can lead to unexpected results. It is recommended
that before using a TAG that the MUI and AmigaOS autodocs be referenced
in order to clearly understand the effect the TAG will have. All TAGs
are set by specifying a TAG id and value pair. Any number of TAG pairs
may be given. TAG ids should be given as hexidecimal numbers (preceded
by a ‘0x’), although decimal numbers may also be used. Typically, TAG
ids should be assigned to an ‘ARexx’ variable for script clarity. TAG
values may be either decimal numbers, hexadecimal numbers, strings (the
value will be assumed to be a string if it is not recognized as a
number) or string arrays (specified by starting with a period (.) and
separating each string with a comma (,). A TAG value can be forced to
be interpreted as a string by prepending the string with an equal
symbol (=). Note that all TAGs indicated with an ‘i’ flag can be set
at object creation. The ‘s’ flag indicates a TAG that can be set after
object creation and the ‘g’ indicates a TAG that can be retrieved. To
retrieve a TAG value just specify the TAG id alone. The TAG value will
be returned in the ‘ARexx’ variable RESULT.

For commands that allow specification of attribute TAGs some example
TAGs are given with the command description. However, it may be
possible (even probable) that other TAGs may be usable. It is
therefore highly recommended that the MUI class autodocs be consulted.
These autodocs may be found in the MUI developers archive.

1.72 MUIRexx.guide/MagicUserInterface

MUIRexx 62 / 70

MagicUserInterface

This application uses

MUI - MagicUserInterface

(C) Copyright 1993-97 by Stefan Stuntz

MUI is a system to generate and maintain graphical user interfaces.
With the aid of a preferences program, the user of an application
has the ability to customize the outfit according to his personal taste.

MUI is distributed as shareware. To obtain a complete package
containing lots of examples and more information about registration
please look for a file called "muiXXusr.lha" (XX means the latest
version number) on your local bulletin boards or on public domain disks.

If you want to register directly, feel free to send

DM 30.- or US$ 20.-

to

Stefan Stuntz

Eduard-Spranger-Straße 7

80935 München

GERMANY

Support and online registration is available at

http://www.sasg.com/

1.73 MUIRexx.guide/Acknowledgements

Acknowledgements

* William S. Hawes for development of ARexx.

* Stefan Stuntz for MagicUserInterface (MUI).

* Tom Ekström for Iconographics

* All those responsible for the development of the Amiga.

MUIRexx 63 / 70

1.74 MUIRexx.guide/History

History

v1.0 2/13/96 - initial release
v1.1 2/24/96 - fixed enforcer hits

added support for menus
added a MUI settings command

2/25/96 - improved group/menu syntax checking
v1.2i 3/10/96 - added support for drag and drop

3/14/96 - added options to set MUIA attributes
removed unnecessary options (e.g. WEIGHT)

v2.0 3/20/96 - added variable storage (set and get)
3/22/96 - MUIA attributes are now gettable
3/23/96 - added support for dragging multiselected items

removed Cyclechain TAG (add using ATTRS)
removed SELECT option from check gadget

3/24/96 - added switch gadget
list objects are now dropable
group objects are now dropable

3/26/96 - stack size now set for commands
3/28/96 - added method command
3/30/96 - added object gadget

removed scale gadget (use object instead)
3/31/96 - added support for setting app attributes/methods

if started from WB then icon is set
added support for multicolumn lists
removed dirlist DIR and FORMAT options (use ATTRS)

4/1/96 - removed config and muiset commands (use method)
4/2/96 - added support for boopsi objects
4/5/96 - added support for datatype images

v2.1 5/19/96 - TAG strings now nonvolatile
5/22/96 - generalized view command

added aslrequest command
5/27/96 - improved list drag&drop behavior
6/17/96 - added poplist command
6/25/96 - added format sequences for strings
7/20/96 - added support for new Icon.mcc class

changed behavior of image and check gadgets
8/22/96 - added support for virtual groups

v2.1a 9/1/96 - minor bug fixed (popasl contents were not stored
in config file)

9/4/96 - minor bug fixed (prevented pub screen closure)
9/5/96 - minor update to Icon.mcc (see docs)

v2.1b 9/7/96 - fixed bug (enforcer hit)
9/9/96 - fixed bug (MUIA_Cycle_Active now works at cycle

object creation, thanks to Hartmut Goebel)
v2.2 9/22/96 - added list TITLE option

9/25/96 - slider, popslider and knob now return value
(per documentation)

9/27/96 - format specifiers now work for all objects
(I think)

9/29/96 - context menus for groups added
can now specify image for popasl/poplist objects
(SPEC option)

MUIRexx 64 / 70

10/1/96 - parse routine added to replace MUI REXX command
line parse

10/25/96- fixed bug in string, popasl, poplist objects
(MUIA_String_MaxLen now works, thanks to Bob Sisk)

v2.2i 11/22/96- fixed bug in list objects (prevented sorting)
(thanks again to Bob Sisk)

v3.0 12/4/96 - added callhook command
12/10/96- switch objects can now have an alternate label
12/21/96- extended callhook to include app and drop hooks

removed APP DROP PRESS options (use callhook instead)
removed COMMAND option from group command (use ←↩

callhook)
removed TRIG VAL options from object command (←↩

callhook)
12/23/96- added REMOVE option to list object
12/26/96- added callhook INCLUDE/EXCLUDE to restrict drop ops
12/29/96- empty groups (and windows) no longer cause crashes
1/1/97 - groups can now be added dynamically
1/10/97 - fixed bug that prevented dynamic changes in popasl,

poplist, and list objects (discovered by Bob Sisk)
2/13/97 - added group POP option for creation of popup groups
3/16/97 - added monitor command to control debug output
3/18/97 - added inline command specification
4/21/97 - added SPEC option to button, text and switch objects

check and image object options changed
v3.0a 7/24/97 - fixed bug that prevented parsing of non-alpha ←↩

characters
and all characters following in strings

7/29/97 - added install script to install MUIRexx

1.75 MUIRexx.guide/Concept Index

Concept Index

ARexx
Introduction

ASL file requester
aslrequest

Bars
space

Beginning a group definition
group

Beginning a menu definition
menu

Beginning a window definition

MUIRexx 65 / 70

window

Changing group settings
Groups

Changing object settings
Objects

Closing a window
window

Cycle gadget labels
cycle

Deiconifying an application
show

Dirlist path
dirlist

Dock gadgets
text

Dynamic object creation
group

Ending a group definition
endgroup

Ending a menu definition
endmenu

Ending a window definition
endwindow

Ending MUIRexx
quit

Failed script
quit

Features of MUIRexx
Introduction

Gadget label
text

Gauge label
gauge

Group frame
group

Icon gadgets
text

Iconifying an application

MUIRexx 66 / 70

hide

Information on MUIRexx
info

Installing MUIRexx
Installation

Label justification
label

MagicUserInterface
Introduction

Menu item definition
item

Meter label
meter

Minimum system requirements
Requirements

Opening a window
endwindow

Popasl gadget content
popasl

Popasl gadget content
poplist

Popasl gadget weight
poplist

Popasl gadget weight
popasl

Radio gadget labels
radio

Radio gadget weight
radio

Register groups
group

Registering MUIRexx
Registration

Requester contents
request

Requester gadgets
request

Requester title

MUIRexx 67 / 70

request

Retrieving group settings
Groups

Retrieving object settings
Objects

String gadget content
string

Terminating an application
window

Text color
MUI Format Sequences

Text format
MUI Format Sequences

Text justification
MUI Format Sequences

Text style
MUI Format Sequences

Updates of MUIRexx
Update Information

View string
view

View string file
view

Virtual groups
group

Window sizing
space

Window title
window

1.76 MUIRexx.guide/Command Index

Command Index

application

MUIRexx 68 / 70

application

aslrequest
aslrequest

button
button

callhook
callhook

check
check

cycle
cycle

dirlist
dirlist

endgroup
endgroup

endmenu
endmenu

endwindow
endwindow

gauge
gauge

getvar
getvar

group
group

hide
hide

image
image

info
info

item
item

knob
knob

label
label

list

MUIRexx 69 / 70

list

menu
menu

meter
meter

method
method

monitor
monitor

object
object

popasl
popasl

poplist
poplist

popslider
popslider

print
print

quit
quit

radio
radio

request
request

setvar
setvar

show
show

slider
slider

space
space

string
string

switch
switch

text

MUIRexx 70 / 70

text

view
view

volumelist
volumelist

window
window

	MUIRexx
	MUIRexx.guide
	MUIRexx.guide/Update Information
	MUIRexx.guide/Version 3.0
	MUIRexx.guide/Version 2.2
	MUIRexx.guide/Version 2.1
	MUIRexx.guide/Version 2.0
	MUIRexx.guide/Introduction
	MUIRexx.guide/Disclaimer
	MUIRexx.guide/Conditions
	MUIRexx.guide/Requirements
	MUIRexx.guide/Registration
	MUIRexx.guide/Installation
	MUIRexx.guide/Command Reference
	MUIRexx.guide/Standard Commands
	MUIRexx.guide/quit
	MUIRexx.guide/hide
	MUIRexx.guide/show
	MUIRexx.guide/info
	MUIRexx.guide/Windows
	MUIRexx.guide/window
	MUIRexx.guide/endwindow
	MUIRexx.guide/Groups
	MUIRexx.guide/group
	MUIRexx.guide/endgroup
	MUIRexx.guide/Menus
	MUIRexx.guide/menu
	MUIRexx.guide/endmenu
	MUIRexx.guide/item
	MUIRexx.guide/Objects
	MUIRexx.guide/space
	MUIRexx.guide/label
	MUIRexx.guide/view
	MUIRexx.guide/gauge
	MUIRexx.guide/meter
	MUIRexx.guide/text
	MUIRexx.guide/button
	MUIRexx.guide/switch
	MUIRexx.guide/image
	MUIRexx.guide/check
	MUIRexx.guide/cycle
	MUIRexx.guide/radio
	MUIRexx.guide/string
	MUIRexx.guide/popasl
	MUIRexx.guide/poplist
	MUIRexx.guide/slider
	MUIRexx.guide/popslider
	MUIRexx.guide/knob
	MUIRexx.guide/list
	MUIRexx.guide/dirlist
	MUIRexx.guide/volumelist
	MUIRexx.guide/object
	MUIRexx.guide/Misc
	MUIRexx.guide/request
	MUIRexx.guide/aslrequest
	MUIRexx.guide/callhook
	MUIRexx.guide/method
	MUIRexx.guide/setvar
	MUIRexx.guide/getvar
	MUIRexx.guide/application
	MUIRexx.guide/monitor
	MUIRexx.guide/print
	MUIRexx.guide/Utilities
	MUIRexx.guide/MUIRexxDir
	MUIRexx.guide/MUIRexxBuild
	MUIRexx.guide/MUIRexxDock
	MUIRexx.guide/Example Macro
	MUIRexx.guide/Command-Port Options
	MUIRexx.guide/MUI Format Sequences
	MUIRexx.guide/MUI Image Specifications
	MUIRexx.guide/MUI List Format
	MUIRexx.guide/Attribute TAGs
	MUIRexx.guide/MagicUserInterface
	MUIRexx.guide/Acknowledgements
	MUIRexx.guide/History
	MUIRexx.guide/Concept Index
	MUIRexx.guide/Command Index

