
tidy-help

tidy-help ii

COLLABORATORS

TITLE :

tidy-help

ACTION NAME DATE SIGNATURE

WRITTEN BY January 13, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

tidy-help iii

Contents

1 tidy-help 1

1.1 tidy - H E L P . 1

1.2 Tidy - Introduction . 2

1.3 Tidy - How to use . 8

1.4 Tidy - Downloading . 15

1.5 Tidy - Integration . 17

1.6 Tidy - Acknowledgements . 18

tidy-help 1 / 19

Chapter 1

tidy-help

1.1 tidy - H E L P

[Clean up your Web pages with HTML TIDY]

Clean up your Web pages with HTML TIDY

This version 13th January 2000

Copyright © 1998-2000 W3C, see tidy.c for copyright notice.

With many thanks to Hewlett Packard for financial support during the
development of this software!

Introduction to Tidy

How to use Tidy

Downloading Tidy

Integration with other Software

Acknowledgements
To get the latest version of Tidy please visit the original ←↩

version of this
page at: http://www.w3.org/People/Raggett/tidy. Courtesy of Netmind, you can
register for email reminders when new versions of tidy become available.

The public email list devoted to HTML Tidy is: <html-tidy@w3.org>. To subscribe
send an email to html-tidy-request@w3.org with the word subscribe in the
subject line (include the word unsubscribe if you want to unsubscribe). The
archive for this list is accessible online. Please use this list to report
errors or enhancement requests. See the release notes for information on recent
changes. Your feedback is welcome!

If you find HTML Tidy useful and you would like to say thanks, then I am
interested in receiving a souvenir from the area in which you live along with a
few words on what you are using Tidy for. Baseball caps, posters, t-shirts,
mugs or even postcards, I leave the choice entirely up to you! It will be fun
to map out where Tidy users are to be found! Here is my

tidy-help 2 / 19

postal address
.

Tutorials for HTML and CSS

If you are just starting off and would like to know more about how to author
Web pages, you may find my guide to HTML and CSS helpful. Please send me
feedback on this, and I will do my best to further improve it.

Support for Word2000

Tidy can now perform wonders on HTML saved from Microsoft Word 2000! Word bulks
out HTML files with stuff for round-tripping presentation between HTML and
Word. If you are more concerned about using HTML on the Web, check out Tidy’s
"Word-2000" config option! Of course Tidy does a good job on Word’97 files
as well!

1.2 Tidy - Introduction

Introduction to TIDY

When editing HTML it’s easy to make mistakes. Wouldn’t it be nice if there was
a simple way to fix these mistakes automatically and tidy up sloppy editing
into nicely layed out markup? Well now there is! Dave Raggett’s HTML TIDY is a
free utility for doing just that. It also works great on the atrociously hard
to read markup generated by specialized HTML editors and conversion tools, and
can help you identify where you need to pay further attention on making your
pages more accessible to people with disabilities.

Tidy is able to fix up a wide range of problems and to bring to your attention
things that you need to work on yourself. Each item found is listed with the
line number and column so that you can see where the problem lies in your
markup. Tidy won’t generate a cleaned up version when there are problems that
it can’t be sure of how to handle. These are logged as "errors" rather than
"warnings".

Tidy features in a recent article on XHTML by webreview.com.

Examples of TIDY at work

Tidy corrects the markup in a way that matches where possible the observed
rendering in popular browsers from Netscape and Microsoft. Here are just a few
examples of how TIDY perfects your HTML for you:

* Missing or mismatched end tags are detected and corrected

<h1>heading
<h2>subheading</h3>

is mapped to

<h1>heading</h1>
<h2>subheading</h2>

tidy-help 3 / 19

* End tags in the wrong order are corrected:

<p>here is a para bold <i>bold italic bold?</i> normal?

is mapped to

<p>here is a para bold <i>bold italic</i> bold? normal?

* Fixes problems with heading emphasis

<h1><i>italic heading</h1>
<p>new paragraph

In Netscape and Internet Explorer this causes everything following the
heading to be in the heading font size, not the desired effect at all!

Tidy maps the example to

<h1><i>italic heading</i></h1>
<p>new paragraph

* Recovers from mixed up tags

<i><h1>heading</h1></i>
<p>new paragraph bold text
<p>some more bold text

Tidy maps this to

<h1><i>heading</i></h1>
<p>new paragraph bold text
<p>some more bold text

* Getting the <hr> in the right place:

<h1><hr>heading</h1>
<h2>sub<hr>heading</h2>

Tidy maps this to

<hr>
<h1>heading</h1>
<h2>sub</h2>
<hr>
<h2>heading</h2>

* Adding the missing "/" in end tags for anchors:

References<a>

Tidy maps this to

tidy-help 4 / 19

References

* Perfecting lists by putting in tags missed out:

<body>
1st list item
2nd list item

is mapped to

<body>

1st list item
2nd list item

* Missing quotes around attribute values are added

Tidy inserts quote marks around all attribute values for you. It can also
detect when you have forgotten the closing quote mark, although this is
something you will have to fix yourself.

* Unknown/Proprietary attributes are reported

Tidy has a comprehensive knowledge of the attributes defined in the HTML 4.0
recommendation from W3C. This often allows you to spot where you have
mistyped an attribute or value.

* Proprietary elements are recognized and reported as such.

Tidy will even work out which version of HTML you are using and insert the
appropriate DOCTYPE element, as per the W3C recommendations.

* Tags lacking a terminating ’>’ are spotted

This is something you then have to fix yourself as Tidy is unsure of where
the > should be inserted.

Layout style

You can choose which style you want Tidy to use when it generates the cleaned
up markup: for instance whether you like elements to indent their contents or
not. Several people have asked if Tidy could preserve the original layout. I am
sorry to say that this would be very hard to support due to the way Tidy is
implemented. Tidy starts by building a clean parse tree from the source file.
The parse tree doesn’t contain any information about the original layout. Tidy
then pretty prints the parse tree using the current layout options. Trying to
preserve the original layout would interact badly with the repair operations
needed to build a clean parse tree and considerably complicate the code.

Some browsers can screw up the right alignment of text depending on how you
layout headings. As an example, consider:

<h1 align="right">

tidy-help 5 / 19

Heading
</h1>

<h1 align="right">Heading</h1>

Both of these should be rendered the same. Sadly a common browser bug fails to
trim trailing whitespace and misaligns the first heading. HTML Tidy will
protect you from this bug, except when you set the indent option to "yes".

Setting the indent option to yes can also cause problems with table layout for
some browsers:

<td></td>
<td></td>

will look slightly different from:

<td>

</td>
<td>

</td>

You can avoid such quirks by using indent: no or indent: auto in the config
file.

Internationalization issues

Tidy offers you a choice of character encodings: US ASCII, ISO Latin-1, UTF-8
and the ISO 2022 family of 7 bit encodings. The full set of HTML 4.0 entities
are defined. Cleaned up output uses HTML entity names for characters when
appropriate. Otherwise characters outside the normal range are output as
numeric character entities. Tidy defaults to assuming you want the output to be
in US ASCII. Tidy doesn’t yet recognize the use of the HTML meta element for
specifying the character encoding.

Accessibility

Tidy offers advice on accessibility problems for people using non-graphical
browsers. The most common thing you will see is the suggestion you add a
summary attribute to table elements. The idea is to provide a summary of the
table’s role and structure suitable for use with aural browsers.

Cleaning up presentational markup

Many tools generate HTML with an excess of FONT, NOBR and CENTER tags. Tidy’s -
clean option will replace them by style properties and rules using CSS. This
makes the markup easier to read and maintain as well as reducing the file size!
Tidy is expected to get smarter at this in the future.

Some pages rely on the presentation effects of isolated <p> or </p> tags.Tidy
deletes empty paragraph and heading elements etc. The use of empty paragraph
elements is not recommended for adding vertical whitespace. Instead use style
sheets, or the
 element. Tidy won’t discard paragraphs only containing a

tidy-help 6 / 19

nonbreaking space

Teaching Tidy about new tags!

You can teach Tidy about new tags by declaring them in the configuration file,
the syntax is:

new-inline-tags: tag1, tag2, tag3
new-empty-tags: tag1, tag2, tag3
new-blocklevel-tags: tag1, tag2, tag3
new-pre-tags: tag1, tag2, tag3

The same tag can be defined as empty and as inline or as empty and as block.

These declarations can be combined to define an a new empty inline or empty
block element, but you are not advised to declare tags as being both inline and
block!

Note that the new tags can only appear where Tidy expects inline or block-level
tags respectively. This means you can’t (yet) place new tags within the
document head or other contexts with restricted content models. So far the most
popular use of this feature is to allow Tidy to be applied to Cold Fusion files.

I am working on ways to make it easy to customize the permitted document syntax
using assertion grammars, and hope to apply this to a much smarter version of
Tidy for release later this year.

Limited support for ASP, JSTE and PHP

Tidy is somewhat aware of the preprocessing language called ASP which uses a
pseudo element syntax <% ... %> to include preprocessor directives. ASP is
normally interpreted by the web server before delivery to the browser. JSTE
shares the same syntax, but sometimes also uses <# ... #>. Tidy can also cope
with another such language called PHP, which uses the syntax <?php ... ?>

Tidy will cope with ASP, JSTE and PHP pseudo elements within element content
and as replacements for attributes, for example:

<option <% if rsSchool.Fields("ID").Value
= session("sessSchoolID")
then Response.Write("selected") %>
value=’<%=rsSchool.Fields("ID").Value%>’>
<%=rsSchool.Fields("Name").Value%>
(<%=rsSchool.Fields("ID").Value%>)

</option>

Note that Tidy doesn’t understand the scripting language used within psuedo
elements and attributes, and can easily get confused. Tidy may report missing
attributes when these are hidden within preprocessor code. Tidy can also get
things wrong if the code includes quote marks, e.g. if the example above is
changed to:

value="<%=rsSchool.Fields("ID").Value%>"

Tidy will now see the quote mark preceding ID as ending the attribute value,
and proceed to complain about what follows. Note you can choose whether to

tidy-help 7 / 19

allow line wrapping on spaces within pseudo elements or not using the wrap-asp
option. If you used ASP, JSTE or PHP to create a start tag, but placed the end
tag explicitly in the markup, Tidy won’t be able to match them up, and will
delete the end tag for you. So in this case you are advise to make the start
tag explicit and to use ASP, JSTE or PHP for just the attributes, e.g.

<a href="<%=random.site()%>">do you feel lucky?

Tidy allows you to control whether line wrapping is enabled for ASP, JSTE and
PHP instructions, see the wrap-asp, wrap-jste and wrap-php config options,
respectively.

I regret that Tidy does NOT support Tango preprocessing instructions which look
like:

<@if variable_1=’a’>
do something

<@else>
do nothing

</@if>

<@include <@cgi><@appfilepath>includes/message.html>

Tidy supports another preprocessing syntax called "Tango", but only for
attribute values. Adding support for pseudo elements written in Tango looks as
if it would be quite tough, so I would like to gauge the level of interest
before committing to this work.

Limited support for XML

XML processors compliant with W3C’s XML 1.0 recommendation are very picky about
which files they will accept. Tidy can help you to fix errors that cause your
XML files to be rejected. Tidy doesn’t yet recognize all XML features though,
e.g. it doesn’t yet understand CDATA sections or DTD subsets.

Creating Slides

The -slides option allows you to burst a single HTML file into a number of
linked slides. Each H2 element in the input file is treated as delimiting the
start of the next slide. The slides are named slide1.html, slide2.html,
slide3.html etc. This is a relatively new feature and ideas are welcomed as to
how to improve it. In particular, I plan to add support to the configuration
file for setting the style sheet for slides and for customizing the slides via
a template.

I would be interested in hearing from anyone who can offer help with using
Javascript for adding dynamic effects to slides, for instance similar to those
available in Microsoft PowerPoint.

Indenting text for a better layout

Indenting the content of elements makes the markup easier to read. Tidy can do
this for all elements or just for those where it’s needed. The auto-indent mode
has been used below to avoid indenting the content of title, p and li elements:

tidy-help 8 / 19

<html>
<head>

<title>Test document</title>
</head>

<body>
<p>para which has enough text to cause a line break,
and so test the wrapping mechanism for long lines.</p>

<pre>
This is
genuine

preformatted
text

</pre>

1st list item

2nd list item

<!-- end comment -->

</body>
</html>

Indenting the content does increase the size of the file, so you may prefer
Tidy’s default style:

<html>
<head>
<title>Test document</title>
</head>
<body>
<p>para which has enough text to cause a line break,
and so test the wrapping mechanism for long lines.</p>

<pre>This is
genuine

preformatted
text

</pre>

1st list item

2nd list item

<!-- end comment -->
</body>
</html>

1.3 Tidy - How to use

tidy-help 9 / 19

How to run tidy

tidy [[options] filename]*

HTML tidy is not (yet) a windows program. If you run tidy without any
arguments, it will just sit there waiting to read markup on the stdin stream.
Tidy’s input and output default to stdin and stdout respectively. Errors are
written to stderr but can be redirected to a file with the -f filename option.

I generally use the -m option to get tidy to update the original file, and if
the file is particularly bad I also use the -f option to write the errors to a
file to make it easier to review them. Tidy supports a small set of character
encoding options. The default is ASCII, which makes it easy to edit markup in
regular text editors.

For instance:

tidy -f errs.txt -m index.html

which runs tidy on the file "index.html" updating it in place and writing the
error messages to the file "errs.txt". Its a good idea to save your work before
tidying it, as with all complex software, tidy may have bugs. If you find any
please let me know!

Thanks to Jacek Niedziela, The Win32 executable for tidy is now able to example
wild cards in filenames. This utilizes the setargv library supplied with VC++.

Tidy writes errors to stderr, and won’t be paused by the more command. A work
around is to redirect stderr to stdout as follows. This works on Unix and
Windows NT, but not on other platforms. My thanks to Markus Wolf for this tip!

tidy file.html 2>&1 | more

Tidy’s Options

To get a list of available options use:

tidy -help

You should see something like this:

options for tidy vers: 14th April 1999

-config file read config file
-indent or -i indent element content
-omit or -o omit optional endtags
-wrap 72 wrap text at column 72 (default is 68)
-upper or -u force tags to upper case (default is lower)
-clean or -c replace font, nobr & center tags by CSS
-raw don’t o/p entities for chars 128 to 255
-ascii use ASCII for output, Latin-1 for input
-latin1 use Latin-1 for both input and output
-utf8 use UTF-8 for both input and output

tidy-help 10 / 19

-iso2022 use ISO2022 for both input and output
-numeric or -n output numeric rather than named entities
-modify or -m to modify original files
-errors or -e show only error messages
-quiet or -q suppress non-essential output
-f file write errors to file
-xml use this when input is in XML
-asxml to convert HTML to XML
-slides to burst into slides on h2 elements
-help list command line options
-version show release date

Input and Output default to stdin/stdout respectively. Single letter options
apart from -f may be combined as in: tidy -f errs.txt -imu foo.html

Using a Configuration File

Tidy now supports a configuration file, and this is now much the most
convenient way to configure Tidy. Assuming you have created a config file named
"config.txt" (the name doesn’t matter), you can instruct Tidy to use it via the
command line option -config config.txt, e.g.

tidy -config config.txt file1.html file2.html

Alternatively, you can name the default config file via the environment
variable named "HTML_TIDY". Note this should be the absolute path since you are
likely to want to run Tidy in different directories. You can also set a config
file at compile time by defining CONFIG_FILE as the path string, see platform.h.

You can now set config options on the command line by preceding the name of the
option immediately (no intervening space) by "--", for example:

tidy --break-before-br true --show-warnings false

The following options are supported:

- tidy-mark: bool
If set to yes (the default) Tidy will add a meta element to the document
head to indicate that the document has been tidied. To suppress this, set
tidy-mark to no. Tidy won’t add a meta element if one is already present.

- markup: bool
Determines whether Tidy generates a pretty printed version of the markup.
Bool values are either yes or no. Note that Tidy won’t generate a pretty
printed version if it finds unknown tags, or missing trailing quotes on
attribute values, or missing trailing ’>’ on tags.The default is yes.

- wrap: number
Sets the right margin for line wrapping. Tidy tries to wrap lines so that
they do not exceed this length. The default is 66. Set wrap to zero if you
want to disable line wrapping.

- wrap-attributes: bool
If set to yes, attribute values may be wrapped across lines for easier
editing. The default is no. This option can be set independently of wrap-
scriptlets

tidy-help 11 / 19

- wrap-script-literals: bool
If set to yes, this allows lines to be wrapped within string literals that
appear in script attributes. The default is no. The example shows how Tidy
wraps a really really long script string literal inserting a backslash
character before the linebreak:

<a href="somewhere.html" onmouseover="document.status = ’...some \
really, really, really, really, really, really, really, really, \
really, really long string..’;">test

- wrap-asp: bool
If set to no, this prevents lines from being wrapped within ASP pseudo
elements, which look like: <% ... %>. The default is yes.

- wrap-jste: bool
If set to no, this prevents lines from being wrapped within JSTE pseudo
elements, which look like: <# ... #>. The default is yes.

- wrap-php: bool
If set to no, this prevents lines from being wrapped within PHP pseudo
elements. The default is yes.

- tab-size: number
Sets the number of columns between successive tab stops. The default is 4.
It is used to map tabs to spaces when reading files. Tidy never outputs
files with tabs.

- indent: no, yes or auto
If set to yes Tidy will indent block-level tags. The default is no. If set
to auto Tidy will decide whether or not to indent the content of tags such
as h1-h6, li, or p depending on whether or not the content includes a block-
level element.

- indent-spaces: number
Sets the number of spaces to indent content when indentation is enabled. The
default is 2 spaces.

- indent-attributes: bool
If set to yes, each attribute will begin on a new line. The default is no.

- hide-endtags: bool
If set to yes, optional end-tags will be omitted when generating the pretty
printed markup. This option is ignored if you are outputting to XML. The
default is no.

- input-xml: bool
If set to yes, Tidy will use the XML parser rather than the error correcting
HTML parser. The default is no.

- output-xml: bool
If set to yes, Tidy will use generate the pretty printed output writing it
as well-formed XML. Any entities not defined in XML 1.0 will be written as
numeric entities to allow them to be parsed by an XML parser. The tags and
attributes will be in the case used in the input document, regardless of
other options. The default is no.

- add-xml-pi: bool
If set to yes, Tidy will use add the XML processing instruction when
outputting XML or XHTML. The default is yes. Note that if the input
document includes an XML PI, then it will appear in the output independent
of the value of this option.

- output-xhtml: bool
If set to yes, Tidy will use generate the pretty printed output writing it
as extensible HTML. The default is no. This option causes Tidy to set the
doctype and default namespace as appropriate to XHTML. If a doctype or
namespace is given they will checked for consistency with the content of the
document. In the case of an inconsistency, the corrected values will appear

tidy-help 12 / 19

in the output. For XHTML, entities can be written as named or numeric
entities according to the value of the "numeric-entities" property. he tags
and attributes will be output in the case used in the input document,
regardless of other options.

- doctype: omit, auto, strict, loose or <fpi>
This property controls the doctype declaration generated by Tidy. If set to
omit the output file won’t contain a doctype declaration. If set to auto
(the default) Tidy will use an educated guess based upon the contents of the
document. If set to strict, Tidy will set the doctype to the strict DTD. If
set to loose, the doctype is set to the loose (transitional) DTD.
Alternatively, you can supply a string for the formal public identifier
(fpi) for example:

doctype: "-//ACME//DTD HTML 3.14159//EN"

If you specify the fpi for an XHTML document, Tidy will set the system
identifier to the empty string. Tidy leaves the document type for generic
XML documents unchanged.

- char-encoding: raw, ascii, latin1, utf8 or iso2022
Determines how Tidy interprets character streams. For ascii, Tidy will
accept Latin-1 character values, but will use entities for all characters
whose value > 127. For raw, Tidy will output values above 127 without
translating them into entities. For latin1 characters above 255 will be
written as entities. For utf8, Tidy assumes that both input and output is
encoded as UTF-8. You can use iso2022 for files encoded using the ISO2022
family of encodings e.g. ISO 2022-JP. The default is ascii

- numeric-entities: bool
Causes entities other than the basic XML 1.0 named entities to be written in
the numeric rather than the named entity form. The default is no

- quote-marks: bool
If set to yes, this causes " characters to be written out as " as is
preferred by some editing environments. The apostrophe character ’ is
written out as ' since many web browsers don’t yet support '. The
default is no.

- quote-nbsp: bool
If set, this causes non-breaking space characters to be written out as
entities. The default is yes.

- quote-ampersand: bool
If set to yes, this causes unadorned & characters to be written out as
&. The default is yes.

- assume-xml-procins: bool
If set to yes, this changes the parsing of processing instructions to
require ?> as the terminator rather than >. The default is no. This option
is automatically set if the input is in XML.

- fix-backslash: bool
If set to yes, this causes backslash characters "\" in URLs to be replaced
by forward slashes "/". The default is yes.

- break-before-br: bool
If set, Tidy will output a line break before each
 element. The default
is no.

- uppercase-tags: bool
Causes tag names to be output in upper case. The default is no resulting in
lowercase, except for XML input where the original case is preserved.

- uppercase-attributes: bool
Causes attribute names to be output in upper case. The default is no
resulting in lowercase, except for XML where the original case is preserved.

tidy-help 13 / 19

- word-2000: bool
If set, Tidy will go to great pains to strip out all the surplus stuff
Microsoft Word 2000 inserts when you save Word documents as "Web pages". The
default is no. Note that Tidy doesn’t yet know what to do with VML markup
from Word, but in future I hope to be able to map VML to SVG.

Microsoft has developed its own optional filter for exporting to HTML, and
the 2.0 version is much improved. You can download the filter free from the
Microsoft Office Update site.

- clean: bool
If set, causes Tidy to strip out surplus presentational tags and attributes
replacing them by style rules and structural markup as appropriate. It works
well on the html saved from Microsoft Office’97. The default is no.

- logical-emphasis: bool
If set, causes Tidy to replace any occurrence of i by em and any occurrence
of b by strong. In both cases, the attributes are preserved unchanged. The
default is no. This option can now be set independently of the clean and
drop-font-tags options.

- drop-empty-paras: bool
If set to yes, empty paragraphs will be discarded. If set to no, empty
paragraphs are replaced by a pair of br elements as HTML4 precludes empty
paragraphs. The default is yes.

- drop-font-tags: bool
If set together with the clean option (see above), Tidy will discard font
and center tags rather than creating the corresponding style rules. The
default is no.

- enclose-text: bool
If set, this causes Tidy to enclose any text it finds in the body element
within a p element. This is useful when you want to take an existing html
file and use it with a style sheet. Any text at the body level will screw up
the margins, but wrap the text within a p element and all is well! The
default is no.

- fix-bad-comments: bool
If set, this causes Tidy to replace unexpected hyphens with "=" characters
when it comes across adjacent hyphens The default is yes. This option is
provided for users of Cold Fusion which uses the comment syntax: <!--- --->

- alt-text: string
This allows you to set the default alt text for img attributes. This feature
is dangerous as it suppresses further accessibility warnings.

YOU ARE RESPONSIBLE FOR MAKING YOUR DOCUMENTS
ACCESSIBLE TO PEOPLE WHO CAN’T SEE THE IMAGES!!!

- write-back: bool
If set, Tidy will write back the tidied markup to the same file it read
from. The default is no. You are advised to keep copies of important files
before tidying them as on rare occasions the result may not always be what
you expect.

- keep-time: bool
If set, Tidy won’t alter the last modified time for files it writes back to.
The default is yes. This allows you to tidy files without effecting which
ones will be uploaded to the Web server when using a tool such as
’SiteCopy’.

- error-file: filename
Writes errors and warnings to the named file rather than to stderr.

- show-warnings: bool
If set to no, warnings are suppressed. This can be useful when a few errors

tidy-help 14 / 19

are hidden in a flurry of warnings. The default is yes.
- quiet: bool

If set to yes, Tidy won’t output the welcome message or the summary of the
numbers of errors and warnings. The default is no.

- split: bool
If set to yes Tidy will use the input file to create a sequence of slides,
splitting the markup prior to each successive <h2>. You can see an example
of the results in a recent talk I made on XHTML. The slides are written to
"slide1.html", "slide2.html" etc. The default is no.

- new-empty-tags: tag1, tag2, tag3
Use this to declare new empty inline tags. The option takes a space or comma
separated list of tag names. Unless you declare new tags, Tidy will refuse
to generate a tidied file if the input includes previously unknown tags.
Remember to also declare empty tags as either inline or blocklevel, see
below.

- new-inline-tags: tag1, tag2, tag3
Use this to declare new non-empty inline tags. The option takes a space or
comma separated list of tag names. Unless you declare new tags, Tidy will
refuse to generate a tidied file if the input includes previously unknown
tags.

- new-blocklevel-tags: tag1, tag2, tag3
Use this to declare new block-level tags. The option takes a space or comma
separated list of tag names. Unless you declare new tags, Tidy will refuse
to generate a tidied file if the input includes previously unknown tags.
Note you can’t change the content model for elements such as table, ul, ol
and dl. explained in more detail in the Release Notes.

- new-pre-tags: tag1, tag2, tag3
Use this to declare new tags that are to be processed in exactly the same
way as HTML’s pre element. The option takes a space or comma separated list
of tag names. Unless you declare new tags, Tidy will refuse to generate a
tidied file if the input includes previously unknown tags. Note you can’t as
yet add new CDATA elements (similar to script).

Sample Config File

This is just an example to get you started.

// sample config file for HTML tidy
indent: auto
indent-spaces: 2
wrap: 72
markup: yes
output-xml: no
input-xml: no
show-warnings: yes
numeric-entities: yes
quote-marks: yes
quote-nbsp: yes
quote-ampersand: no
break-before-br: no
uppercase-tags: no
uppercase-attributes: no
char-encoding: latin1
new-inline-tags: cfif, cfelse, math, mroot,
mrow, mi, mn, mo, msqrt, mfrac, msubsup, munderover,
munder, mover, mmultiscripts, msup, msub, mtext,

tidy-help 15 / 19

mprescripts, mtable, mtr, mtd, mth
new-blocklevel-tags: cfoutput, cfquery
new-empty-tags: cfelse

Using Tidy from scripts

If you want to run Tidy from a Perl or other scripting language you may find it
of value to inspect the result returned by Tidy when it exits: 0 if everything
is fine, 1 if there were warnings and 2 if there were errors. This is an
example using Perl:

if (close(TIDY) == 0) {
my $exitcode = $? >> 8;
if ($exitcode == 1) {

printf STDERR "tidy issued warning messages\n";
} elsif ($exitcode == 2) {

printf STDERR "tidy issued error messages\n";
} else {

die "tidy exited with code: $exitcode\n";
}

} else {
printf STDERR "tidy detected no errors\n";

}

1.4 Tidy - Downloading

Downloadable Binaries

If you are prepared to maintain a public URL for HTML Tidy compiled for a
specific platform, please let me know so that I can add a link to your page.
This will avoid the need for me to update this page whenever you recompile.

Windows 95/98/NT/2000

tidy.exeWindows 95/98/NT/2000 executable (32-bit Windows console-mode
program). This is the executable that I maintain as part of the HTML Tidy
distribution. The command line parameters are described above, along with the
extensive configuration file options.

HTML-Kit - a free HTML editor for Windows 95/98/NT/2000 with integrated support
for Tidy.

Evrsoft’s 1st Page 2000 - a free HTML editor for Windws 95/98/NT/2000 with
integrated support for Tidy. 1st Page 2000 is a high-end authoring tool that
makes it easy to add effects based upon scripting.

Mac’s and other Apple machines

You can now run HTML Tidy as a standalone Macintosh application with a
graphical user interface, or as a FilterTop filter. My thanks to
Terry Teague for this port.

tidy-help 16 / 19

Atari

Arnaud Bercegeay’s site for the Atari binary for Tidy.

Amiga

Keith Blakemore-Noble maintains a page for Tidy on Amiga.

AIX

Ciaran Deignan maintains an AIX binary for Tidy. The link is to a general
download page. The executable is available for AIX 4.3.2 and later.

BeOS

Scot Hacker is maintaining a BeoS port for Tidy that runs on Intel and PowerPC
hardware.

Linux

Dimitri Papadopoulos maintains a Tidy RPM package for Redhat Linux You may also
be able to find Tidy on other Linux distribution sites, e.g.
http://rpmfind.net/.

UnixWare

Simon Trimmer <simon@ocston.org> maintains a Tidy binary for Unixware.

MSDOS

Nick B. maintains Tidy386 for DOS. This exploits the DPMI mechanism for the
memory management.

Solaris

Stephen Fuqua maintains a page for Tidy on Solaris.

OS/2

Kaz SHiMZ <kshimz@sfc.co.jp> maintains an OS/2 binary for Tidy.

FreeBSD

Martin Fouts maintains Tidy on FreeBSD.

tidy-help 17 / 19

1.5 Tidy - Integration

Integrating Tidy as part of other Software

You can also incorporate Tidy as part of a larger program, for instance in HTML
editors or HTML transformation tools used for import filters, or for when you
want to customize Web content to get the best out of different kinds of
browsers. Imagine authoring clean HTML with CSS and at a touch of a button
producing variants that look great and work reliably on a large variety of
different browsers, taking into account the quirks of each. For instance,
providing the ability to tune content for different versions of Netscape and
Internet Explorer, and for browsers running on set-top boxes for televisions,
handheld and palmtop devices, cell phones, and voice browsers. I am happy to
quote for software development for such tools.

Java port of HTML Tidy

Andy Quick <ac.quick@sympatico.ca> maintains a Java port of Tidy, so you can
now integrate Tidy into your Java applications. Andy is tracking the releases
of Tidy in C (this page). More information is available on Andy’s home page.

Source Code

The code is in ANSI C and uses the C standard library for i/o. The parser works
top down, building a complete parse tree in memory. Document text is held as
Unicode represented as UTF-8 in a character buffer that expands as needed. The
code has so far been tested on Windows’95, Windows’98, Windows NT, Windows
2000, Linux, FreeBSD, NetBSD, Ultrix, OSF, OS/MP, IRIX, NeXtStep, MacOS, BeOS,
OS/2, AIX, Amiga, Atari, SunOS, Solaris, IRIX and HP-UX, amongst others.

- tidy13jan00.tgz
gzipped tar file for source code (Unix line ends)

- tidy13jan00.zip
zipped source code (Windows line ends)

- platform.h, html.h
the include files with common definitions

- config.c
support for customizing Tidy via config files

- lexer.c
lexical analysis and buffer management

- parser.c
HTML and XML parsers

- tags.c
dictionary of tags and their properties

- attrs.c
dictionary of attributes and their properties

- istack.c
stack of active inline elements

- entities.c
dictionary of entities

- clean.c
smarts for cleaning up presentational markup

- pprint.c
pretty printing for HTML and XML

- localize.c

tidy-help 18 / 19

Change this file to localize tidy’s messages
- tidy.c

main() and error reporting routines
- Makefile

Makefile for gcc
- Unix Man page

Maintained by Matej Vela <vela@debian.org>

Conventions for whether lines end with CRLF, LF or CR vary from one system to
another. I have included the C source for a utility tab2space which can be used
to ensure that files use the line end convention of your choice, and to expand
tabs to spaces.

tab2space -t4 -unix *.h *.c
tab2space -tabs -unix Makefile

Note use of "-tabs" to ensure that tabs are preserved in the Makefile (it won’t
work without them!).

For those of you on Unix, here is a script you can use to strip carriage
returns:

#!/bin/sh
echo Stripping Carriage Returns from files...
for i
do

If a writable file
if [-f $i]
then

if [-w $i]
then

echo $i
strip CRs from input and output to temp file
tr -d ’\015’ < $i > toix.tmp
mv toix.tmp $i

else
echo $i: write-protected

fi
else

echo $i: not a file
fi

done

Save this script to a file, e.g. "scripcr" and use "chmod +x stripcr" to make
it executable. You can then run it as "stripcr *.c *.h Overview.html Makefile"

1.6 Tidy - Acknowledgements

Acknowledgements

I would like to thank the many people who have written to me with suggestions
for improvements or reporting bugs. Your help has been invaluable.

tidy-help 19 / 19

Jonathan Adair, Drew Adams, Osma Ahvenlampi, Carsten Allefeld, Richard
Allsebrook, Jacob Sparre Andersen, Joe D’Andrea, Jerry Andrews, Bruce Aron,
Takuya Asada, Edward Avis, Nick B, Chang Hyun Baek, Nick B, Denis Barbier,
Chuck Baslock, Christer Bernerus, Yu Jian Bin, Alexander Biron, Keith
Blakemore-Noble, Eric Blossom, ochen M. Braun, David Brooke, Andy Brown,
Keith B. Brown, Andreas Buchholz, Maurice Buxton, Jelks Cabaniss, John
Cappelletti, Trevor Carden, Terry Cassidy, Mathew Cepl, Kendall Clark, Rob
Clark, Jeremy Clulow, Dan Connolly, Larry Cousin, Ken Cox, Luis M. Cruz,
John Cumming, Ian Davey, Keith Davies, Ciaran Deignan, David Duffy, Emma
Duke-Williams, Tamminen Eero, Bodo Eing, Baruch Even, David Fallon, Claus
André Färber, Stephanie Foott, Darren Forcier, Martin Fouts, Frederik
Fouvry, Rene Fritz, Stephen Fuqua, Martin Gallwey, Francisco Guardiola,
David Getchell, Michael Giroux, Guus Goos, Léa Gris, Juha Häikiö, David
Halliday, Vlad Harchev, Shane Harrelson, Andre Hinrichs, Bjoern Hoehrmann,
G. Ken Holman, Bill Homer, Craig Horman, Jack Horsfield, Nigel Horspool, Pao-
Hsi Huang, Marc Jauvin, Rick Jelliffe, Peter Jeremy, Craig Johnson, Charles
LaFountain, Steven Lobo, Zdenek Kabelac, Michael Kay, Axel Kielhorn,
Konstantinos Kleisouris, Johannes Koch, Daniel Kohn, Rudy Kohut, Allan
Kuchinsky, Volker Kuhlmann, Michael LaStella, Steve Lee, Tony Leneis, Nick
Leverton, Todd Lewis, Dietmar Lippold, Gert-Jan C. Lokhorst, John Love-
Jensen, Satwinder Mangat, Anton Marsden, Bede McCall, Shane McCarron, Thomas
McGuigan, Ian McKellar, Al Medeiros, Chris Nappin, Ann Navarro, Jacek
Niedziela, Morten Blinksbjerg Nielsen, Kenichi Numata, Allan Odgaard, Matt
Oshry, Gerald Oskoboiny, Paul Ossenbruggen, Ernst Paalvast, Christian
Pantel, Dimitri Papadopoulos, Steven Pemberton, Lee Anne Phillips, Xavier
Plantefeve, Karl Prinz, Andy Quick, Thomas Ribbrock, Ross L. Richardson,
Philip Riebold, Erik Rossen, Dan Rudman, Peter Ruevski, Christian Ruetgers,
Klaus Johannes Rusch, John Russell, Eric Schindler, J. Schlauch, Christian
Schüler, Klaus Alexander Seistrup, Jim Seymour, Kazuyoshi Shimizu, Geoff
Sinclair, Jo Smith, Paul Smith, Steve Spilker, Rafi Stern, Michael J. Suzio,
Zac Thompson, Eric Thorbjornsen, Oren Tirosh, John Tobler, Omri Traub, Loïc
Trégan, Jason Tribbeck, Simon Trimmer, Steffen Ullrich, Stuart Updegrave,
Charles A. Upsdell, Jussi Vestman, Larry W. Virden, Daniel Vogelheim, Jez
Wain, Randy Waki, Paul Ward, Yudong Yang, Jeff Young, Johannes Zellner,
Christian Zuckschwerdt

Dave’s Address

73b Ground Corner
Holt
Wiltshire
BA14 6RT
United Kingdom

Dave Raggett <dsr@w3.org> is an engineer from Hewlett Packard’s UK
Laboratories, and works on assignment to the World Wide Web Consortium, where
he is the W3C lead for HTML, Math and Voice Browsers.

	tidy-help
	tidy - H E L P
	Tidy - Introduction
	Tidy - How to use
	Tidy - Downloading
	Tidy - Integration
	Tidy - Acknowledgements

