
VOGL

A very ordinary GL Like

Library

Documentation

 Copyright (C) 1991, 1992 The University of Melbourne.

 Department of Engineering Computer Resources.

 This programme source code may be copied or distributed in any

 medium or modified provided each copy or modified copy retains

 this copyright notice and the disclaimer that this software is

 distributed without any warranty implied or otherwise that it

 is error free and that it meets the recipients requirements.

README:

The directories in this directory contain the source for the VOGL library

and the library hershey which is for manipulating the Hershey font data.

They are as follows:

 docs contains the documentation such as there is.

 drivers contains the source to a variety of device drivers,

 currently restricted to: postcript, sun workstation,

 apollo workstations, X11 (R2, R3 & R4), tektronix

 (401x), hpgl, dxy, and the ibm pc cards: hercules mono,

 cga, ega, vga and sigma.

 examples contains some C and FORTRAN programs useful both in

 testing and (hopefully) learning how to use it.

 There are subdirectories xview,xt and sunview showing

 how to use an x toolkit (or sunview) with VOGL.

 hershey contains the source for the hershey library plus the

 source for generating fonts and the hershey data for

 the occidental and oriental character sets. Note: as

 with VOGL this library is callable in C and FORTRAN.

 src contains the source for the C VOGL interface, and the

 source for the FORTRAN interfaces where available.

If you have a real SGI machine with GL on it, you can simply compile the

Hershey library and the examples with "make -f Makefile.sgi". Otherwise,

you will have to edit the Makefile to set various options for your machine

and type "make".

VOGL is a device portable graphics library that tries to be Silicon Graphics

Iris GL compatible. Our intention is that any VOGL program will compile

unchanged on a machine running SGI GL (the examples do). VOGL is based

entirely on our other graphics library VOGLE. While we still regard VOGLE

as our main library (it is, and probably will be for some time to come, the

one that gets the most use around here), we will gratefully accept any bug

fixes or enhancements. As always suggestions are also welcome.

This software may be used for any purpose commercial or otherwise. It is

offered without any guarantee as to its suitability for any purpose or as

to the sanity of its writers. We do ask that the source is passed on to

anyone that requests a copy, and that people who get copies don’t go round

claiming they wrote it (that is why this one has a copyright notice in it,

see file COPYRIGHT).

Although VOGL is free we will drink any quantity of Beer you send to us.

Regards,

 Eric H. Echidna

Snail mail correspondance and alcoholic beverages should be directed to:

 The Software Support Programmer

 Department Of Engineering Computer Resources

 Faculty Of Engineering

 University Of Melbourne Vic 3052

 Australia

email to

 echidna@munnari.OZ.AU

 echidna@ecr.mu.OZ.AU

 echidna@gondwana.ecr.mu.OZ.AU

Contents

1 Overview 1

1.1 Name and Description 1

1.2 Include Files 1

1.3 Using X Toolkits and Sunview 1

2 Device Routines 2

2.1 vinit ... 2

2.2 ginit ... 3

2.3 winopen 4

2.4 gexit ... 4

2.5 voutput 4

2.6 vnewdev 5

3 Routines for Controlling Flushing or

Synchronisation 5

3.1 vsetflush 5

3.2 vflush .. 6

4 Routines for Setting Up Windows 6

4.1 prefposition 6

4.2 prefsize 6

4.3 reshapeviewport 7

5 General Routines 7

5.1 clear ... 7

5.2 color ... 7

5.3 colorf .. 7

5.4 mapcolor 8

5.5 defbasis 8

5.6 polymode 8

6 Device Queue and Valuator Routines 9

6.1 qdevice 9

6.2 unqdevice 9

6.3 qread ... 9

6.4 isqueued 10

6.5 qtest .. 10

6.6 qreset 10

6.7 getbutton 10

6.8 getvaluator 10

7 Viewport Routines 11

7.1 viewport 11

7.2 pushviewport 11

7.3 popviewport 11

7.4 getviewport 11

8 Attribute Stack Routines 12

8.1 pushattributes 12

8.2 popattributes 12

9 Projection Routines 12

9.1 ortho .. 12

9.2 ortho2 13

9.3 perspective 13

9.4 window 13

10 Matrix Stack Routines 13

10.1 pushmatrix 13

10.2 popmatrix 14

11 Viewpoint Routines 14

11.1 polarview 14

11.2 lookat 14

12 Move Routines 15

12.1 move ... 15

12.2 rmv .. 15

12.3 move2 .. 15

12.4 rmv2 ... 15

13 Line Routines 16

13.1 deflinestyle 16

13.2 setlinestyle 16

13.3 linewidth 16

14 Drawing Routines 17

14.1 draw ... 17

14.2 rdr .. 17

14.3 draw2 .. 17

14.4 rdr2 ... 17

15 Vertex Calls 18

15.1 v4d, v4f, v4i, v4s 18

15.2 bgnpoint, endpoint 19

15.3 bgnline, endline 19

15.4 bgnclosedline, endclosedline 20

15.5 bgnpolygone, endpolygon 20

16 Arcs and Circles 20

16.1 circleprecision 21

16.2 arc, arcf 21

16.3 circ, circf 21

17 Curve Routines 22

17.1 curvebasis 22

17.2 curveprecision22

17.3 rcrv, rcvrn22

17.4 crv, crvn 23

17.5 curveit 23

18 Rectangles and General Polygon Routines 24

18.1 rect, rectf 24

18.2 poly2, polf2 24

18.3 poly, polf 25

18.4 backface, frontface 25

19 Text Routines 26

19.1 font ... 26

19.2 cmov ... 26

19.3 cmov2 .. 27

19.4 getheight 27

19.5 strwidth 27

20 Transformation Routines 27

20.1 translate 27

20.2 scale .. 28

20.3 rot .. 28

20.4 rotate 28

21 Patch Routines 29

21.1 patchbasis 29

21.2 patchprecision 29

21.3 patchcurves 29

21.4 rpatch 29

21.5 patch .. 30

22 Point Routines 30

22.1 pnt .. 30

22.2 pnt2 ... 30

23 Object Routines 30

23.1 makeobj 31

23.2 closeobj 31

23.3 genobj 31

23.4 getopenobj 31

23.5 callobj 31

23.6 isobj .. 32

23.7 delobj 32

24 Double Buffering 32

24.1 gconfig 32

24.2 doublebuffer, singlebuffer 32

24.3 backbuffer, frontbuffer 33

24.4 swapbuffers 33

25 Position Routines 34

25.1 getgpos 34

25.2 getcpos 34

26 BUGS 34

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

NAME

 VOGL - A very ordinary GL Like Library.

DESCRIPTION

 VOGL is a library of C routines which try to allow a pro-

 grammer to write programs which can be moved to machines

 which have the Silicon Graphics GL library on them. It is

 based entirely on the VOGLE graphics library, and as a

 result can handle circles, curves, arcs, patches, and

 polygons in a device independent fashion. Simple hidden line

 removal is also available via polygon backfacing. Access to

 hardware text and double buffering of drawings depends on

 the driver. There is also a FORTRAN interface but as it

 goes through the C routines FORTRAN users are warned that

 arrays are in row-column order in C. Both the long FORTRAN

 names and the shortened six character names are supported.

 People interested in using software text should see the

 hershey library, HERSHEY(3).

 Some routines are only available in VOGL. If you include

 them in programs it is advisable to put #ifdef VOGL ...

 #endif around them. The constant VOGL is defined whenever a

 VOGL header file is included.

 It should be noted that there are a number of routines that

 take the type Angle for some of their parameters. All angles

 specified this way are actually Integer Tenths Of Degrees.

 (Don't ask!)

 Include files.

 There are two include files provided with vogl: vogl.h and

 vodevice.h. The file vogl.h has the type definitions and

 function interfaces, ideally it is included where you would

 include gl.h on an SGI. The file vodevice.h has the devices

 in it, and it is included where you would include device.h

 on an SGI.

 The following is a brief summary of the VOGL subroutines.

 Using X toolkits and Sunview

 For X11 and Sunview based applications, it is posible for

 VOGL to use a window that is supplied by that application's

 toolkit. Under these circumstances, the toolkit is is

 responsible for handling of all input events, and VOGL sim-

 ply draws into the supplied window. These calls are only

 available from C. Also see the directories examples/xt,

 examples/xview and examples/sunview.

 For X based toolkits the following two calls may be used:

VOGL 1.2.8 Last change: 12 Oct 1993 1

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 vo_xt_window(display, xwin, width, height)

 Tells VOGL to use the supplied window xwin

 vo_xt_window(display, xwin, width, height)

 Display *display;

 Window xwin;

 int width, height;

 This routine should be called before calling "ginit()".

 vo_xt_win_size(width, height)

 Tells VOGL that the supplied window has changed size.

 vo_xt_win_size(width, height)

 int width, height;

For sunview based applications the following two calls may be

used:

 vo_sunview_canvas(canvas, width, height)

 Tells VOGL to use the supplied sunview canvas canvas

 vo_sunview_canvas(canvas, width, height)

 Canvas canvas;

 int width, height;

 This routine should be called before calling "ginit()".

 vo_sunview_canvas_size(width, height)

 Tells VOGL that the supplied canvas has changed size.

 vo_sunview_canvas_size(width, height)

 int width, height;

 Device routines.

 vinit(device)

 Tell VOGL what the device is. This routine needs to be

 called if the environment variable VDEVICE isn't set,

 or if the value in VDEVICE is not to be used.

 Fortran:

 subroutine vinit(device, len)

 character *(*) device

 integer len

 C:

VOGL 1.2.8 Last change: 12 Oct 1993 2

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 vinit(device);

 char *device;

 Note 1 :- Current available devices are:

 tek - tektronix 4010 and compatibles

 hpgl - HP Graphics language and compatibles

 dxy - roland DXY plotter language

 postscript - monochrome postscript devices

 ppostscript - monochrome postscript devices (portrait mode)

 cps - colour postscript devices

 pcps - colour postscript devices (portrait mode)

 grx - the GRX library that is part of DJGPP.

 - (little tested)

 sun - Sun workstations running sunview

 X11 - X windows (SUN's Openwindows etc etc)

 decX11 - the decstation (old) window manager

 This is only included in case you need it.

 apollo - Apollo workstations

 NeXT - NeXTStep

 hercules - IBM PC hercules graphics card

 cga - IBM PC cga graphics card

 ega - IBM PC ega graphics card

 vga - IBM PC vga graphics card

 sigma - IBM PC sigma graphics card.

 mswin - MS-windoze (little tested).

 Sun, X11, decX11, apollo, hercules, cga

 and ega support double buffering.

 Note 2 :- If device is a NULL or a null string the value

 of the environment variable "VDEVICE" is taken as the

 device type to be opened.

 Note 3 :- after init it is wise to explicitly

 clear the screen.

 e.g.: in C

 color(BLACK);

 clear();

 or in Fortran

 call color(BLACK)

 call clear

 ginit()

 Open the graphics device and do the basic initialisa-

 tion. This routine is marked for obsolescence. The rou-

 tine winopen (see below) should be used instead. Note:

VOGL 1.2.8 Last change: 12 Oct 1993 3

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 this automatically causes a REDRAW event to appear as

 the first event in the event queue.

 Fortran:

 subroutine ginit

 C:

 ginit()

 winopen(title)

 Open the graphics device and do the basic initialisa-

 tion. This routine should be used instead of ginit.

 Note: this automatically causes a REDRAW event to

 appear as the first event in the event queue.

 Fortran:

 subroutine winopen(title, len)

 character*(*) title

 integer len

 C:

 winopen(title)

 char *title;

 gexit()

 Reset the window/terminal (must be the last VOGL rou-

 tine called)

 Fortran:

 subroutine gexit

 C:

 gexit()

 voutput(path)

 Redirect output from *next* ginit to file given by

 path. This routine only applies to devices drivers that

 write to stdout e.g. postscript and hpgl.

 Fortran:

 subroutine voutput(path, len)

 character*(*) path

 integer len

 C:

 voutput(path)

 char *path;

VOGL 1.2.8 Last change: 12 Oct 1993 4

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 vnewdev(device)

 Reinitialize VOGL to use a new device without changing

 attributes, viewport etc. (eg. window and viewport

 specifications)

 Fortran:

 subroutine vnewdev(device, len)

 character *(*) device

 integer len

 C:

 vnewdev(device)

 char *device;

 getplanes() Returns the number of bit planes (or color

 planes) for a particular device. The number of colors

 displayable by the device is then 2**(nplanes-1)

 Fortran:

 integer function getplanes()

 C:

 long

 getplanes()

 Routines for controlling flushing or syncronisation

 On some devices (particularly X11) considerable speedups in

 display can be achieved by not flushing each graphics primi-

 tive call to the actual display until necessary. VOGL

 automatically delays flushing under in following cases:

 - Within a callobj() call.

 - Within curves and patches.

 - Within bgn*/end* calls.

 - When double buffering (the flush is only done withing swapbuffers).

 There are two user routines (which are NOT GL compatible)

 that can be used to control flushing.

 vsetflush(yesno)

 Set global flushing status. If yesno = 0 (.false.) then

 don't do any flushing (except in swapbuffers(), or

 vflush()). If yesno = 1 (.true.) then do the flushing

 as described above.

 Fortran:

 subroutine vsetflush(yesno)

 logical yesno

 C:

 void

VOGL 1.2.8 Last change: 12 Oct 1993 5

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 vsetflush(yesno)

 int yesno;

 vflush()

 Call the device flush or syncronisation routine. This

 forces a flush.

 Fortran:

 subroutine vflush

 C:

 void

 vflush();

 Routines For Setting Up Windows.

 Some devices are basically window orientated - like sunview

 and X11. You can give VOGL some information about the window

 that it will use with these routines. These can make your

 code very device dependent. Both routines take arguments

 which are in device space. (0, 0) is the bottom left hand

 corner in device space. To have any effect these routines

 must be called before ginit or winopen. For the X11 device,

 an entry may be made in your .Xdefaults file of the form

 vogl.Geometry =150x500+550+50 (where you specify your

 geometry as you please).

 prefposition(x1, x2, y1, y2)

 Specify the preferred position of the window opened by

 the *next* winopen.

 Fortran:

 subroutine prefposition(x1, x2, y1, y2)

 integer x1, x2, y1, y2

 C:

 prefposition(x1, x2, y1, y2)

 long x1, x2, y1, y2

 prefsize(width, height)

 Specify the preferred width and height of the window

 opened by the *next* winopen.

 Fortran:

 subroutine prefsize(width, height)

 integer width, height

 C:

 prefsize(width, height)

 long width, height;

VOGL 1.2.8 Last change: 12 Oct 1993 6

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 reshapeviewport

 This is occasionally used in Iris GL if a REDRAW event

 rolls up. While VOGL is unlikely to ever provide a

 REDRAW event (except possibly the first event in the

 event queue) the call is provided for compatibility.

 Fortran:

 subroutine reshap

 C:

 reshapeviewport()

 General Routines.

 clear()

 Clears the current viewport to the current colour.

 Fortran:

 subroutine clear

 C:

 clear()

 color(col)

 Set the current colour. The standard colours are as

 follows:

 black = 0 red = 1 green = 2 yellow = 3

 blue = 4 magenta = 5 cyan = 6 white = 7.

 These are included in vogl.h as:

 BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN and WHITE.

 When using fortran these are included in fvogl.h as

 BLACK, RED, GREEN, YELLOW, BLUE, MAGENT, CYAN and WHITE.

 Fortran:

 subroutine color(col)

 integer col

 C:

 color(col)

 Colorindex col;

 colorf(col)

 Same as color only it takes a floating point argument.

 In Iris GL there are sometimes good reasons for using

 this routine over color. See the GL manual for more

 details.

VOGL 1.2.8 Last change: 12 Oct 1993 7

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 Fortran:

 subroutine colorf(col)

 real col

 C:

 colorf(col)

 float col;

 mapcolor(indx, red, green, blue)

 Set the color map index indx to the color represented

 by (red, green, blue). If the device has no color map

 this call does nothing.

 Fortran:

 subroutine mapcolor(indx, red, green, blue)

 integer indx, red, green, blue

 C:

 mapcolor(indx, red, green, blue)

 Colorindex indx;

 short red, green, blue;

 defbasis(id, mat)

 Define basis number id to be the matrix mat.

 Fortran:

 subroutine defbasis(id, mat)

 integer id

 real mat(4, 4)

 C:

 defbasis(id, mat)

 short id;

 Matrix mat;

 polymode(mode)

 NOTE:- For this call to have any effect it must have

 been conditionally compilied into the library. (See

 polygons.c for details) Control the filling of

 polygons. It expects one of the following PYM_LINE,

 which means only the edges of the polygon will be drawn

 and PYM_FILL which means fill the polygon (the

 default). PYM_POINT and PYM_HOLLOW are also recognised

 but they don't behave quite as they would with SGI GL.

 Also note that in Fortran the corresponding constants

 are truncated to PYM_LI, PYM_FI, PYM_PO and PYM_HO

 respectivly. These appear in fvogl.h.

VOGL 1.2.8 Last change: 12 Oct 1993 8

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 Fortran:

 subroutine polymode(mode)

 integer mode

 C:

 polymode(mode)

 long mode;

 The Device Queue and Valuator Routines.

 The available devices are defined in the header files

 vodevice.h and for FORTRAN fvodevice.h

 qdevice(dev)

 Enable a device. Note: in VOGL the queue is of length

 1.

 Fortran:

 subroutine qdevice(dev)

 integer dev

 C:

 qdevice(dev)

 Device dev;

 unqdevice(dev)

 Disable a device.

 Fortran:

 subroutine qdevice(dev)

 integer dev

 C:

 qdevice(dev)

 Device dev;

 qread(data)

 Read an event from the device queue. This routines

 blocks until something happens. Note: it is important

 to have called qdevice before doing this.

 Fortran:

 integer function qread(data)

 integer*2 data

 C:

 long qread(data)

 short *data;

VOGL 1.2.8 Last change: 12 Oct 1993 9

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 isqueued(dev)

 Check to see if device dev is enabled for queueing.

 Fortran:

 logical function isqueued(dev)

 integer dev

 C:

 Boolean isqueued(dev)

 short *dev;

 qtest()

 Check if there is anything in the queue. Note: in VOGL

 the queue is only 1 entry deep.

 Fortran:

 logical function qtest

 C:

 Boolean qtest()

 qreset()

 Reset the device queue. This will get rid of any pend-

 ing events.

 Fortran:

 subroutine qreset

 C:

 qreset()

 getbutton(dev)

 Returns the up (0) or down (1) state of a button.

 Fortran:

 logical function getbutton(dev)

 integer dev

 C:

 Boolean getbutton(dev)

 Device dev;

 getvaluator(dev)

 Return the current value of the valuator. Currently the

 only valuators supported are MOUSEX and MOUSEY.

 Fortran:

 integer function getvaluator(dev)

VOGL 1.2.8 Last change: 12 Oct 1993 10

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 integer dev

 C:

 long getvaluator(dev)

 Device dev;

 Viewport Routines.

 viewport(left, right, bottom, top)

 Specify which part of the screen to draw in. Left,

 right, bottom, and top are integer values in screen

 coordinates.

 Fortran:

 subroutine viewport(left, right, bottom, top)

 integer left, right, bottom, top

 C:

 viewport(left, right, bottom, top)

 Screencoord left, right, bottom, top;

 pushviewport()

 Save current viewport on the viewport stack.

 Fortran:

 subroutine pushviewport

 C:

 pushviewport()

 popviewport()

 Retrieve last pushed viewport.

 Fortran:

 subroutine popviewport

 C:

 popviewport()

 getviewport(left, right, bottom, top)

 Returns the left, right, bottom and top limits of the

 current viewport in screen coordinates.

 Fortran:

 subroutine getviewport(left, right, bottom, top)

 integer*2 left, right, bottom, top

 C:

 getviewport(left, right, bottom, top)

VOGL 1.2.8 Last change: 12 Oct 1993 11

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 Screencoord *left, *right, *bottom, *top;

 Attribute Stack Routines.

 The attribute stack contains details such as current color,

 current line style and width, and the current font number.

 If you need to prevent object calls form changing these, use

 pushattributes before the call and popattributes after.

 pushattributes()

 Save the current attributes on the attribute stack.

 Fortran:

 subroutine pushattributes

 C:

 pushattributes()

 popattributes()

 Restore the attributes to what they were at the last

 pushattribute().

 Fortran:

 subroutine popattributes

 C:

 popattributes()

 Projection Routines.

 All the projection routines define a new transformation

 matrix, and consequently the world units. Parallel projec-

 tions are defined by ortho or ortho2. Perspective projec-

 tions can be defined by perspective and window. Note the

 types Angle, etc, are defined in vogl.h. Remember angles are

 in tenths of degrees.

 ortho(left, right, bottom, top, near, far)

 Define x (left, right), y (bottom, top), and z (near,

 far) clipping planes. The near and far clipping planes

 are actually specified as distances along the line of

 sight. These distances can also be negative. The

 actual location of the clipping planes is z = -near_d

 and z = -far_d.

 Fortran:

 subroutine ortho(left, right, bottom, top, near_d, far_d)

 real left, right, bottom, top, near_d, far_d

 C:

 ortho(left, right, bottom, top, near_d, far_d)

 Coord left, right, bottom, top, near_d, far_d;

VOGL 1.2.8 Last change: 12 Oct 1993 12

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 ortho2(left, right, bottom, top)

 Define x (left, right), and y (bottom, top) clipping

 planes.

 Fortran:

 subroutine ortho2(left, right, bottom, top)

 real left, right, bottom, top

 C:

 ortho2(left, right, bottom, top)

 float left, right, bottom, top;

 perspective(fov, aspect, near, far)

 Specify a perspective viewing pyramid in world coordi-

 nates by giving a field of view, aspect ratio and the

 distance from the eye of the near and far clipping

 plane.

 Fortran:

 subroutine perspective(fov, aspect, near, far)

 integer fov

 real aspect, near, far

 C:

 perspective(fov, aspect, near, far)

 Angle fov;

 float aspect;

 Coord near, far;

 window(left, right, bot, top, near, far)

 Specify a perspective viewing pyramid in world coordinates by

 giving the rectangle closest to the eye (ie. at the near clipping

 plane) and the distances to the near and far clipping planes.

 Fortran:

 subroutine window(left, right, bot, top, near, far)

 real left, right, bot, top, near, far

 C:

 window(left, right, bot, top, near, far)

 float left, right, bot, top, near, far;

 Matrix Stack Routines.

 pushmatrix()

 Save the current transformation matrix on the matrix

 stack.

 Fortran:

 subroutine pushmatrix

VOGL 1.2.8 Last change: 12 Oct 1993 13

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 C:

 pushmatrix()

 popmatrix()

 Retrieve the last matrix pushed and make it the current

 transformation matrix.

 Fortran:

 subroutine popmatrix

 C:

 popmatrix()

 Viewpoint Routines.

 Viewpoint routines alter the current tranformation matrix.

 polarview(dist, azim, inc, twist)

 Specify the viewer's position in polar coordinates by

 giving the distance from the viewpoint to the world

 origin, the azimuthal angle in the x-y plane, measured

 from the y-axis, the incidence angle in the y-z plane,

 measured from the z-axis, and the twist angle about the

 line of sight.

 Fortran:

 subroutine polarview(dist, azim, inc, twist)

 real dist

 integer azim, inc, twist

 C:

 polarview(dist, azim, inc, twist)

 Coord dist;

 Angle azim, inc, twist;

 lookat(vx, vy, vz, px, py, pz, twist)

 Specify the viewer's position by giving a viewpoint and

 a reference point in world coordinates. A twist about

 the line of sight may also be given.

 Fortran:

 subroutine lookat(vx, vy, vz, px, py, pz, twist)

 real vx, vy, vz, px, py, pz

 integer twist

 C:

 lookat(vx, vy, vz, px, py, pz, twist)

 float vx, vy, vz, px, py, pz;

 Angle twist;

VOGL 1.2.8 Last change: 12 Oct 1993 14

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 Move Routines.

 There are variations on all these routines that end in 's'

 and also end in 'i'. In the case of the 's' variations they

 take arguments of type Scoord in C and integer*2 in FORTRAN.

 In the case of the 'i' variations they take arguments of

 type Icoord in C and integer in FORTRAN.

 move(x, y, z)

 Move current graphics position to (x, y, z). (x, y, z)

 is a point in world coordinates.

 Fortran:

 subroutine move(x, y, z)

 real x, y, z

 C:

 move(x, y, z)

 Coord x, y, z;

 rmv(deltax, deltay, deltaz)

 Relative move. deltax, deltay, and deltaz are offsets

 in world units.

 Fortran:

 subroutine rmv(deltax, deltay, deltaz)

 real deltax, deltay, deltaz

 C:

 rmv(deltax, deltay, deltaz)

 Coord deltax, deltay, deltaz;

 move2(x, y)

 Move graphics position to point (x, y). (x, y) is a

 point in world coordinates.

 Fortran:

 subroutine move2(x, y)

 real x, y

 C:

 move2(x, y)

 Coord x, y;

 rmv2(deltax, deltay)

 Relative move2. deltax and deltay are offsets in world

 units.

 Fortran:

 subroutine rmv2(deltax, deltay)

VOGL 1.2.8 Last change: 12 Oct 1993 15

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 real deltax, deltay

 C:

 rmv2(deltax, deltay)

 Coord deltax, deltay;

 Line routines.

 These routines set the line style and line width if the

 current device is capable of doing so.

 deflinestyle(n, style)

 Define a line style and binds it to the integer n. The

 line style is a bit pattern of 16 bits width.

 Fortran:

 subroutine deflin(n, style)

 integer n

 integer style

 C:

 deflinestyle(n, style)

 short n;

 Linestyle style;

 setlinestyle(n)

 Sets the current line style.

 Fortran:

 subroutine setlin(n)

 integer n

 C:

 setlinestyle(n)

 short n;

 linewidth(n)

 Sets the current line width to 'n' pixels wide.

 Fortran:

 subroutine linewi(n)

 integer n

 C:

 linewidth(n)

 short n;

VOGL 1.2.8 Last change: 12 Oct 1993 16

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 Drawing Routines.

 There are variations on all these routines that end in 's'

 and also end in 'i'. In the case of the 's' variations they

 take arguments of type Scoord in C and integer*2 in FORTRAN.

 In the case of the 'i' variations they take arguments of

 type Icoord in C and integer in FORTRAN.

 draw(x, y, z)

 Draw from current graphics position to (x, y, z). (x,

 y, z) is a point in world coordinates.

 Fortran:

 subroutine draw(x, y, z)

 real x, y, z

 C:

 draw(x, y, z)

 Coord x, y, z;

 rdr(deltax, deltay, deltaz)

 Relative draw. deltax, deltay, and deltaz are offsets

 in world units.

 Fortran:

 subroutine rdr(deltax, deltay, deltaz)

 real deltax, deltay, deltaz

 C:

 rdr(deltax, deltay, deltaz)

 Coord deltax, deltay, deltaz;

 draw2(x, y)

 Draw from current graphics position to point (x, y).

 (x, y) is a point in world coordinates.

 Fortran:

 subroutine draw2(x, y)

 real x, y

 C:

 draw2(x, y)

 Coord x, y;

 rdr2(deltax, deltay)

 Relative draw2. deltax and deltay are offsets in world

 units.

 Fortran:

 subroutine rdr2(deltax, deltay)

VOGL 1.2.8 Last change: 12 Oct 1993 17

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 real deltax, deltay

 C:

 rdr2(deltax, deltay)

 Coord deltax, deltay;

 Vertex calls.

 There are calls which we term 'vertex calls' which simply

 specify a point in 4D, 3D or 2D. These calls take an array

 which specifies the coordinates of the point. The interpre-

 tation of these points is described below.

 v4d(v) Specify a vertex(point) in 4D using double precision

 numbers.

 Fortran:

 subroutine v4d(v)

 real *8 v(4)

 C:

 v4d(v)

 double v[4];

 v4f(v) Specify a vertex(point) in 4D using single precision

 floating point numbers.

 Fortran:

 subroutine v4f(v)

 real v(4)

 C:

 v4f(v)

 float v[4];

 v4i(v) Specify a vertex(point) in 4D using integer numbers

 Fortran:

 subroutine v4i(v)

 integer v(4)

 C:

 v4i(v)

 long v[4];

 v4s(v) Specify a vertex(point) in 4D using short integer

 numbers

VOGL 1.2.8 Last change: 12 Oct 1993 18

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 Fortran:

 subroutine v4s(v)

 integer *2 v(4)

 C:

 v4s(v)

 short v[4];

 There are also equivalent calls for 3D points (v3d, v3f,

 v3i, v3s) and 2D points (v2d, v2f, v2i, v2s). The only

 difference is the number of elements that each vertex needs

 to be specified. It should also be noted the the different

 data types (ie. double, float, long and short) are merely

 different ways of representing the same basic coordinate

 data (calling v3s with v[] = {100,200,200} is the same as

 calling v3f with v[] = {100.0, 200.0, 200.0}).

 The way these points are interpreted depends on what mode

 has be set up with one of the calls bgnpoint, bgnline,

 bgnclosedline or bgnpolygon. The bgnpoint call specifies

 that the next series of vertex calls are specifying a chain

 of points (dots) to be drawn. A bgnpoint is terminated with

 a endpoint call.

 Fortran:

 subroutine bgnpoint

 C:

 bgnpoint()

 Fortran:

 subroutine endpoint

 C:

 endpoint()

 The bgnline call specifies that the next series of vertex

 calls are specifying the points on a polyline. A bgnline

 is terminated with a endline call.

 Fortran:

 subroutine bgnline

 C:

 bgnline()

 Fortran:

VOGL 1.2.8 Last change: 12 Oct 1993 19

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 subroutine endline

 C:

 endline()

 The bgnclosedline call is similar to the bgnline except that

 when endclosedline is called the first point given (ie. the

 one first after the bgnclosedline call) is joined to the

 last point given (ie. the one just before the endclosedline

 call).

 Fortran:

 subroutine bgncloseline

 C:

 bgnclosedline()

 Fortran:

 subroutine endclosedline

 C:

 endclosedline()

 The bgnpolygon call specifies that the next series of vertex

 calls are defining a polygon. When endpolygon is called,

 the polygon is closed and filled (or drawn as an outline

 depending on the mode that has been set with the polymode

 call if this call has been compilied into the library.

 Fortran:

 subroutine bgnpolygon

 C:

 bgnpolygon()

 Fortran:

 subroutine endpolygon

 C:

 endpolygon()

 Arcs and Circles.

 There are variations on all these routines that end in 's'

 and also end in 'i'. In the case of the 's' variations they

VOGL 1.2.8 Last change: 12 Oct 1993 20

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 take arguments of type Scoord in C and integer*2 in FORTRAN.

 In the case of the 'i' variations they take arguments of

 type Icoord in C and integer in FORTRAN.

 circleprecision(nsegs)

 Set the number of line segments making up a circle.

 Default is currently 32. The number of segments in an

 arc is calculated from nsegs according the span of the

 arc. This routine is only available in VOGL.

 Fortran:

 subroutine circleprecision(nsegs)

 integer nsegs

 C:

 circleprecision(nsegs)

 int nsegs;

 arc(x, y, radius, startang, endang)

 Draw an arc. x, y, and radius are values in world

 units.

 Fortran:

 subroutine arc(x, y, radius, startang, endang)

 real x, y, radius;

 integer startang, endang;

 C:

 arc(x, y, radius, startang, endang)

 Coord x, y, radius;

 Angle startang, endang;

 arcf(x, y, radius, startang, endang)

 Draw a filled arc. x, y, and radius are values in world

 units. (How the filling is done may be changed by cal-

 ling polymode , if this call has been compilied into

 the library).

 Fortran:

 subroutine arcf(x, y, radius, startang, endang)

 real x, y, radius;

 integer startang, endang;

 C:

 arcf(x, y, radius, startang, endang)

 Coord x, y, radius;

 Angle startang, endang;

 circ(x, y, radius)

 Draw a circle. x, y, and radius are values in world

 units.

 Fortran:

VOGL 1.2.8 Last change: 12 Oct 1993 21

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 subroutine circ(x, y, radius)

 real x, y, radius

 C:

 circ(x, y, radius)

 Coord x, y, radius;

 circf(x, y, radius)

 Draw a filled circle. x, y, and radius are values in

 world units. How the filling is done may be changed by

 calling polymode.

 Fortran:

 subroutine circf(x, y, radius)

 real x, y, radius

 C:

 circf(x, y, radius)

 Coord x, y, radius;

 Curve Routines.

 curvebasis(id)

 Set the basis matrix for a curve to the matrix refer-

 enced by id. The matrix and it's id are tied together

 with a call to defbasis.

 Fortran:

 subroutine curvebasis(id)

 integer id

 C:

 curvebasis(id)

 short id;

 curveprecision(nsegs)

 Define the number of line segments used to draw a

 curve.

 Fortran:

 subroutine curveprecision(nsegs)

 integer nsegs

 C:

 curveprecision(nsegs)

 short nsegs;

 rcrv(geom)

 Draw a rational curve.

 Fortran:

 subroutine rcrv(geom)

VOGL 1.2.8 Last change: 12 Oct 1993 22

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 real geom(4,4)

 C:

 rcrv(geom)

 Coord geom[4][4];

 rcrvn(n, geom)

 Draw n - 3 rational curve segments. Note: n must be at

 least 4.

 Fortran:

 subroutine rcrvn(n, geom)

 integer n

 real geom(4,n)

 C:

 rcrvn(n, geom)

 long n;

 Coord geom[][4];

 crv(geom)

 Draw a curve.

 Fortran:

 subroutine crv(geom)

 real geom(3,4)

 C:

 crv(geom)

 Coord geom[4][3];

 crvn(n, geom)

 Draw n - 3 curve segments. Note: n must be at least 4.

 Fortran:

 subroutine crvn(n, geom)

 integer n

 real geom(3,n)

 C:

 crvn(n, geom)

 long n;

 Coord geom[][3];

 curveit(n)

 Draw a curve segment by iterating the top matrix in the

 matrix stack as a forward difference matrix. This per-

 forms 'n' iterations.

 Fortran:

 subroutine curveit(n)

 integer n

VOGL 1.2.8 Last change: 12 Oct 1993 23

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 C:

 curveit(n)

 short n;

 Rectangles and General Polygon Routines.

 See also Vertex calls above. The way in which filled

 polygons (including circles and arcs) are treated depends on

 the mode that has been set with the polymode call.

 There are variations on all these routines that end in 's'

 and also end in 'i'. In the case of the 's' variations they

 take arguments of type Scoord in C and integer*2 in FORTRAN.

 In the case of the 'i' variations they take arguments of

 type Icoord in C and integer in FORTRAN.

 rect(x1, y1, x2, y2)

 Draw a rectangle.

 Fortran:

 subroutine rect(x1, y1, x2, y2)

 real x1, y1, x1, y2

 C:

 rect(x1, y1, x2, y2)

 Coord x1, y1, x2, y2;

 rectf(x1, y1, x2, y2)

 Draw a filled rectangle. (How the filling is done may

 be changed by calling polymode , if this call has been

 compilied into the library).

 Fortran:

 subroutine rectf(x1, y1, x2, y2)

 real x1, y1, x1, y2

 C:

 rectf(x1, y1, x2, y2)

 Coord x1, y1, x2, y2;

 poly2(n, points)

 Construct a (x, y) polygon from an array of points pro-

 vided by the user.

 Fortran:

 subroutine poly2(n, points)

 integer n

 real points(2, n)

 C:

 poly2(n, points)

 long n;

 Coord points[][2];

VOGL 1.2.8 Last change: 12 Oct 1993 24

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 polf2(n, points)

 Construct a filled (x, y) polygon from an array of

 points provided by the user. (How the filling is done

 may be changed by calling polymode , if this call has

 been compilied into the library).

 Fortran:

 subroutine polf2(n, points)

 integer n

 real points(2, n)

 C:

 polf2(n, points)

 long n;

 Coord points[][2];

 poly(n, points)

 Construct a polygon from an array of points provided by

 the user.

 Fortran:

 subroutine poly(n, points)

 integer n

 real points(3, n)

 C:

 poly(n, points)

 long n;

 float points[][3];

 polf(n, points)

 Construct a filled polygon from an array of points pro-

 vided by the user. (How the filling is done may be

 changed by calling polymode , if this call has been

 compilied into the library).

 Fortran:

 subroutine polf(n, points)

 integer n

 real points(3, n)

 C:

 polf(n, points)

 long n;

 Coord points[][3];

 backface(onoff)

 Turns on culling of backfacing polygons. A polygon is

 backfacing if it's orientation in *screen* coords is

 clockwise.

 Fortran:

VOGL 1.2.8 Last change: 12 Oct 1993 25

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 subroutine backface(onoff)

 logical onoff

 C:

 backface(onoff)

 Boolean onoff;

 frontface(onoff)

 Turns on culling of frontfacing polygons. A polygon is

 frontfacing if it's orientation in *screen* coords is

 anticlockwise.

 Fortran:

 subroutine frontface(clockwise)

 logical onoff

 C:

 frontface(clockwise)

 Boolean onoff;

 Text routines.

 The original VOGLE hardware fonts "small" and "large" have

 the font numbers 0 and 1 respectively. The default font is

 0. For X11 displays the default fonts used by the program

 can be overridden by placing the following defaults in the

 ~/.Xdefaults file:

 vogl.smallfont:

 vogl.largefont:

 font(fontid)

 Set the current font

 Fortran:

 subroutine font(fontid)

 integer fontid;

 C:

 font(fontid)

 short fontid;

 cmov(x, y, z)

 Change the current character position. The usual varia-

 tions with the extensions 'i' and 's' also apply here.

 Fortran:

 subroutine cmov(x, y, z)

 real x, y, z;

 C:

VOGL 1.2.8 Last change: 12 Oct 1993 26

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 cmov(x, y, z)

 Coord x, y, z;

 cmov2(x, y)

 Change the current character position in x and y. The

 usual variations with the extensions 'i' and 's' also

 apply here.

 Fortran:

 subroutine cmov2(x, y)

 real x, y;

 C:

 cmov2(x, y)

 Coord x, y;

 getheight()

 Return the maximum height in the current font.

 Fortran:

 integer function getheight

 C:

 long

 getheight()

 strwidth(s)

 Return the length of the string s in screen coords.

 Fortran:

 integer function strwidth(s, n)

 character *(*) s

 integer n;

 C:

 long

 strwidth(s)

 char *s;

 Transformation Routines

 All transformations are cumulative, so if you rotate some-

 thing and then do a translate you are translating relative

 to the rotated axes. If you need to preserve the current

 transformation matrix use pushmatrix(), do the drawing, and

 then call popmatrix() to get back where you were before.

 translate(x, y, z)

 Set up a translation.

VOGL 1.2.8 Last change: 12 Oct 1993 27

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 Fortran:

 subroutine translate(x, y, z)

 real x, y, z

 C:

 translate(x, y, z)

 Coord x, y, z;

 scale(x, y, z)

 Set up scaling factors in x, y, and z axis.

 Fortran:

 subroutine scale(x, y, z)

 real x, y, z

 C:

 scale(x, y, z)

 Coord x, y, z;

 rot(angle, axis)

 Set up a rotation in axis axis. Axis is one of 'x',

 'y', or 'z'. The angle in this case is a real number

 in degrees.

 Fortran:

 subroutine rot(angle, axis)

 real angle

 character axis

 C:

 rot(angle, axis)

 float angle;

 char axis;

 rotate(angle, axis)

 Set up a rotation in axis axis. Axis is one of 'x',

 'y', or 'z', and the angle is in tenths of degrees.

 Makes you feel sentimental doesn't it.

 Fortran:

 subroutine rotate(angle, axis)

 integer angle

 character axis

 C:

 rotate(angle, axis)

 Angle angle;

 char axis;

VOGL 1.2.8 Last change: 12 Oct 1993 28

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 Patch Routines.

 patchbasis(tbasisid, ubasisid)

 Define the t and u basis matrix id's of a patch. It is

 assumed that tbasisid and ubasisid have matrices asso-

 ciated with them already (this is done using the

 defbasis call).

 Fortran:

 subroutine patchbasis(tid, uid)

 integer tid, uid

 C:

 patchbasis(tid, ubid)

 long tid, uid

 patchprecision(tseg, useg)

 Set the minimum number of line segments making up

 curves in a patch.

 Fortran:

 subroutine patchprecision(tseg, useg)

 integer tseg, useg

 C:

 patchprecision(tseg, useg)

 long tseg, useg;

 patchcurves(nt, nu)

 Set the number of curves making up a patch.

 Fortran:

 subroutine patchcurves(nt, nu)

 integer nt, nu

 C:

 patchcurves(nt, nu)

 long nt, nu;

 rpatch(gx, gy, gz, gw)

 Draws a rational patch in the current basis, according

 to the geometry matrices gx, gy, gz, and gw.

 Fortran:

 subroutine rpatch(gx, gy, gz, gw)

 real gx(4,4), gy(4,4), gz(4,4), gw(4,4)

 C:

 rpatch(gx, gy, gz, gw)

 Matrix gx, gy, gz, gw;

VOGL 1.2.8 Last change: 12 Oct 1993 29

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 patch(gx, gy, gz)

 Draws a patch in the current basis, according to the

 geometry matrices gx, gy, and gz.

 Fortran:

 subroutine patch(gx, gy, gz)

 real gx(4,4), gy(4,4), gz(4,4)

 C:

 patch(gx, gy, gz)

 Matrix gx, gy, gz;

 Point Routines.

 There are variations on all these routines that end in 's'

 and also end in 'i'. In the case of the 's' variations they

 take arguments of type Scoord in C and integer*2 in FORTRAN.

 In the case of the 'i' variations they take arguments of

 type Icoord in C and integer in FORTRAN.

 pnt(x, y, z)

 Draw a point at x, y, z

 Fortran:

 subroutine pnt(x, y, z)

 real x, y, z

 C:

 pnt(x, y, z)

 Coord x, y, z;

 pnt2(x, y)

 Draw a point at x, y.

 Fortran:

 subroutine pnt2(x, y)

 real x, y

 C:

 pnt2(x, y)

 Coord x, y;

 Object Routines.

 Objects are graphical entities created by the drawing rou-

 tines called between makeobj and closeobj. Objects may be

 called from within other objects. When an object is created

 most of the calculations required by the drawing routines

 called within it are done up to where the calculations

 involve the current transformation matrix. So if you need to

 draw the same thing several times on the screen but in

VOGL 1.2.8 Last change: 12 Oct 1993 30

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 different places it is faster to use objects than to call

 the appropriate drawing routines each time.

 makeobj(n)

 Commence the object number n.

 Fortran:

 subroutine makeobj(n)

 integer n

 C:

 makeobj(n)

 Object n;

 closeobj()

 Close the current object.

 Fortran:

 subroutine closeobj()

 C:

 closeobj()

 genobj()

 Returns a unique object identifier.

 Fortran:

 integer function genobj()

 C:

 Object

 genobj()

 getopenobj()

 Return the number of the current object.

 Fortran:

 integer function getopenobj()

 C:

 Object

 getopenobj()

 callobj(n)

 Draw object number n.

 Fortran:

 subroutine callobj(n)

VOGL 1.2.8 Last change: 12 Oct 1993 31

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 integer n

 C:

 callobj(n)

 Object n;

 isobj(n)

 Returns non-zero if there is an object of number n.

 Fortran:

 logical function isobj(n)

 integer n

 C:

 Boolean

 isobj(n)

 Object n;

 delobj(n)

 Delete the object number n.

 Fortran:

 subroutine delobj(n)

 integer n

 C:

 delobj(n)

 Object n;

 Double Buffering.

 Where possible VOGL allows for front and back buffers to

 enable things like animation and smooth updating of the

 screen. Note: it isn't possible to have backbuffer and

 frontbuffer true at the same time.

 gconfig

 With Iris GL you must call gconfig for things like

 doublebuffering to take effect.

 Fortran:

 subroutine gconfig

 C:

 gconfig()

 doublebuffer

 Flags our intention to do double buffering.

VOGL 1.2.8 Last change: 12 Oct 1993 32

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 Fortran:

 subroutine doublebuffer

 C:

 doublebuffer()

 singlebuffer

 Switch back to singlebuffer mode.

 Fortran:

 subroutine singlebuffer

 C:

 singlebuffer()

 backbuffer(Boolean)

 Make VOGL draw in the backbuffer.

 Fortran:

 subroutine backbuffer(yesno)

 logical yesno;

 C:

 backbuffer(yesno)

 Boolean yesno;

 frontbuffer(Boolean)

 Make VOGL draw in the front buffer.

 Fortran:

 subroutine frontbuffer(yesno)

 logical yesno;

 C:

 frontbuffer(yesno)

 Boolean yesno;

 swapbuffers()

 Swap the front and back buffers.

 Fortran:

 subroutine swapbuffers

 C:

 swapbuffers()

VOGL 1.2.8 Last change: 12 Oct 1993 33

VOGL(3) C LIBRARY FUNCTIONS VOGL(3)

 Position Routines.

 getgpos(x, y, z, w)

 Gets the current graphics position in world coords.

 Fortran:

 subroutine getgpos(x, y, z, w)

 real x, y, z

 C:

 getgpos(x, y, z, w)

 Coord *x, *y, *z, *w;

 getcpos(ix, iy)

 Gets the current character position in screen coords.

 Fortran:

 subroutine getcpo(ix, iy)

 integer ix, iy

 C:

 getcpos(ix, iy)

 Scoord *ix, *iy;

BUGS

 Double buffering isn't supported on all devices.

 The yobbarays may be turned on or they may be turned off.

VOGL 1.2.8 Last change: 12 Oct 1993 34

INDEX

arc, arcf 21
Arcs and Circles 20
Attribute Stack Routines 12

backbuffer, frontbuffer 33
backface, frontface 25
bgnclosedline, endclosedline 20
bgnline, endline 19
bgnpoint, endpoint 19
bgnpolygone, endpolygon 20
BUGS 34

callobj 31
circ, circf 21
circleprecision 21
clear 7
closeobj 31
cmov 26
cmov2 27
color 7
colorf 7
crv, crvn 23
Curve Routines 22
curvebasis 22
curveit 23
curveprecision 22

defbasis 8
deflinestyle 16
delobj 32
Device Queue and Valuator Routines 9
Device Routines 2
Double Buffering 32
doublebuffer, singlebuffer 32
draw 17
draw2 17
Drawing Routines 17

font 26

gconfig 32
General Routines 7
genobj 31
getbutton 10
getcpos 34
getgpos 34
getheight 27
getopenobj 31
getvaluator 10
getviewport 11
gexit 4
ginit 3

Include Files 1
isobj 32
isqueued 10

Line Routines 16
linewidth 16
lookat 14

makeobj 31
mapcolor 8
Matrix Stack Routines 13
move 15
Move Routines 15
move2 15

Name and Description 1

Object Routines 30
ortho 12
ortho2 13
Overview 1

patch 30
Patch Routines 29

patchbasis 29
patchcurves 29
patchprecision 29
perspective 13
pnt 30
pnt2 30
Point Routines 30
polarview 14
poly, polf 25
poly2, polf2 24
polymode 8
popattributes 12
popmatrix 14
popviewport 11
Position Routines 34
prefposition 6
prefsize 6
Projection Routines 12
pushattributes 12
pushmatrix 13
pushviewport 11

qdevice 9
qread 9
qreset 10
qtest 10

rcrv, rcvrn 22
rdr 17
rdr2 17
rect, rectf 24
Rectangles and General
Polygon Routines 24
reshapeviewport 7
rmv 15
rmv2 15
rot 28
rotate 28
Routines for Controlling
Flushing or Synchronisation 5
Routines for Setting Up Windows 6
rpatch 29

scale 28
setlinestyle 16
strwidth 27
swapbuffers 33

Text Routines 26
Transformation Routines 27
translate 27

unqdevice 9
Using X Toolkits and Sunview 1

v4d, v4f, v4i, v4s 18
Vertex Calls 18
vflush 6
Viewpoint Routines 14
viewport 11
Viewport Routines 11
vinit 2
vnewdev 5
voutput 4
vsetflush 5

window 13
winopen 4

